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1. Introduction

Graphs in this paper may contain multiple edges but no loops. We will generally follow
the notation and terminology defined by Stiebitz et al. in [15]. Let G be a graph with
vertex set V(G) and edge set F(G). Denote by A(G) and p(G) the maximum degree
and the multiplicity of G, respectively. When G is clear, we simply denote A(G) and
1(G) by A and p respectively for convenience. A k-edge-coloring of a graph G is a map
p: E(G) — {1,2,...,k} that assigns to every edge e of G a color p(e) € {1,2,...,k}
such that no two adjacent edges of G receive the same color. Denote by C¥(G) the set
of all k-edge-colorings of G. The chromatic index x’' := x/(G) is the least integer & > 0
such that C*(G) # 0. Clearly, ' > A. Conversely, Vizing [17] showed that x' < A + p.
The gap between A and A+ p may be large since p is unbounded. To compute the exact
value of x'(G), people consider the density p := p(G) of G defined below.

G D]

HCGIV (1)) >2) {LIV( H)|/2]

Since the edges of G with the same color form a matching, we have |E(H)| <
X' (G)||V(H)|/2] for any H C G. Thus x'(G) > p(G). A graph G is called elemen-
tary if xX'(G) = p(G). Goldberg (1973) [5] and Seymour (1974) [14] independently made
the following conjecture, which is commonly referred to as Goldberg’s conjecture.

Conjecture 1. If G is a graph with X' > A + 2, then G is elementary.

As mentioned in [3], Goldberg’s conjecture is equivalent to saying that if x’ > A+ 2,
then it is the ceiling of the fractional chromatic index of GG, which can be computed in
polynomial time. Consequently, the NP-completeness of determining x’ lies in deciding
whether ' = A, A + 1, or > A + 2. Hence, Goldberg’s conjecture is interesting from a
computational complexity standpoint. This conjecture and topics surrounding it are fea-
tured in the book [15] of Stiebitz, Scheide, Toft and Favrholdt and the elegant survey [11]
of McDonald.

A graph G is called k-critical if x'(G) = k+1 and x'(H) < k for every proper subgraph
H of G. We also call a graph critical if it is k-critical for some k& > A. Jakobsen in [9]
made the following weaker conjecture.

Conjecture 2. Let G be a critical graph. If X' > —m3 A 4 B= for an odd integer m > 3,
then |[V(G)| <m — 2.

Historically, the following conjecture, named the Jakobsen Conjecture, has been in-
vestigated intensively in the past. Clearly, the conjecture is equivalent to Goldberg’s
conjecture and provides a “scaler” for proving Goldberg’s conjecture.
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Conjecture 3. If G is a graph with x' > —"3 A+ z—j’ for an odd integer m > 3, then G
is elementary.

Clearly, if the Jakobsen Conjecture holds for an odd integer m then it holds for every
odd integer m’ with m’ < m. The Jakobsen Conjecture has been confirmed slowly for
m < 23 by a series of papers over the last 40 years: m = 5 independently by Andersen [1]
(1977), Goldberg [5] (1973), and Sgrensen (unpublished, page 158 in [15]); m = 7 inde-
pendently by Andersen [1] (1977) and Sgrensen (unpublished, page 158 in [15]); m = 9 by
Goldberg [6] (1984); m = 11 independently by Nishizeki and Kashiwagi [12] (1990) and
by Tashkinov [16] (2000); m = 13 by Favrholdt, Stiebitz and Toft [15] (2006); m = 15
by Scheide [13] (2010); and m = 23 by Chen et al. [3]. Applying our technique, we show
in this paper that the Jakobsen Conjecture is true up to m = 39.

A k-triple (G, e, ¢) consists of a k-critical graph G with k > A+ 1, an edge e € E(G)
and a coloring ¢ € C*(G — e). Note that in the above definition we require k > A +1, so
X =k+1>A+2. Let (G, e, ) be a k-triple. For a vertex v € V(G), denote by ¢(v) and
©(v) the sets of colors assigned and not-assigned to edges incident v, respectively. Colors
in p(v) and p(v) are called seen and missing at v, respectively. For each color «, let
E,={e€ E(G) : p(e) = a}. Clearly, E, is a matching of G and G[E, U Eg] is a union
of disjoint paths or even cycles with edges alternatively colored with « and 3, named
(c, B)-chains. If we interchange the colors a and £ on an («, §)-chain C, then we obtain
a new k-edge-coloring ¢* of G. In this case, we say the coloring ¢* is obtained from ¢
by recoloring C, and we denote p* = ¢/C. This operation is called a Kempe change.
In this paper, our recoloring techniques are based on Kempe changes. An («, 3)-chain is
also called an («, 8)-path if it is indeed a path. For each vertex v € V(G) with « € $(v)
or B € p(v), denote by P,(«, 8, ) the unique (¢, 8)-path containing v. Starting from the
vertex v, we also notice that path P, (a, 3, ¢) naturally generates a linear order =p, (4,3,¢)
for all vertices on the path, i.e., ¥ =p, (a,,,) ¥ if and only if z is between v and y in
P,(a, B, ). For any subgraph H of G, let . (H) := ¢(E(H)) = {¢(f) : f€ E(H—-e)}
and call each color in ¢.(H) an H-used color; let @, (H) = Uyey(m)@(v) and call each
color in @, (H) an H-missing color. Edges with exactly one end-vertex in V(H) are
called boundary edges of H. Denote by 9(H) the set of boundary edges of H. Denote
Ou,p(H) = {f : f € 0(H),¢(f) = a}. If ¢ is understandable, we sometimes drop the
coloring ¢ and denote J,(H) = {f: f € 0(H), ¢o(f) = a}.

o We call a vertex set X C V(G) elementary if 3(v) Np(w) = @ for any two distinct
vertices v,w € X.

o We call a subgraph H closed if ¢.(0(H)) N, (H) = 0, i.e., no color of a boundary
edge is H-missing. Moreover, we call H strongly closed if H is closed and all edges
in 9(H) are colored differently.

The above concepts have played important roles in recent development of graph edge
chromatic theory. Given a graph G, if there exists a k-triple (G, e, ) and a subgraph
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H of G with e € E(H) where V(H) is elementary and H is strongly closed, then
p(GIV(H)]) = p(G) = X'(G) = k + 1, verifying Goldberg’s conjecture for G. To justify
this, we consider an arbitrary color a € {1,2,...,k}. Suppose o € B(H). Then « is
seen at every vertex of H except one, because V(H) is elementary. Since H is closed,
Oa,»(H) = ). Because edges colored by « form a matching, |V (H)| is odd and there are
exactly (|[V(H)|—1)/2 many edges of G colored by o with both ends in V' (H). Suppose
a ¢ B(H). Then « is seen at every vertex of H. Since H is strongly closed, |0q,,(H)| = 1.
Because edges colored by « form a matching and |V (H)| is odd, there are also exactly
([V(H)|—1)/2 many edges of G colored by o with both ends in V' (H). This gives us totally
k(|V(H)|—1)/2 many edges. Including the uncolored edge e, we have p(G[V (H)]) > k+1.
Since p is the lower bound for x’, we have k + 1 < p(G[V (H)]) < p(G) < X'(G) = k+1,
as desired. In particular, if V(G) is elementary, then we have p(G) = x/(G) since G itself
is already strongly closed. Hence, we may abuse notation slightly and call a subgraph H
of G elementary if V(H) is elementary.

Starting with Vizing’s classic result [17], searching for large elementary subgraphs has
a long history in the study of graph edge chromatic theory. Tashkinov [16] developed a
method to find some special elementary trees in a k-triple. Such trees are called Tashkinov
trees. Since as we shall see later maximal Tashkinov trees are closed, the existence of
a closed elementary set is guaranteed and the Tashkinov tree method has emerged as
the main tool to attack Goldberg’s conjecture. However, Asplund and McDonald [2]
presented a specific limit to this method. Thus researchers started to consider extending
Tashkinov trees. There are a number of results [2-4,13,15] extending Tashkinov trees to
larger elementary trees and there are a number of results [7,10,13,15] discovering some
structural properties from the closed property of maximal Tashkinov trees. However, to
the best of our knowledge there are no results extending Tashkinov trees to larger trees
inheriting both elementary and closed properties. Given a k-triple (G, e, ¢) and a closed
elementary subgraph H C V(G), we basically show that under some minor conditions, if
there exists a vertex « ¢ X such that V(H)U{x} is elementary, then there exists a closed
elementary subgraph H' with V(H’) O V(H) U {z}. Applying our results, we improve
almost all known results in this area. Our main result will be stated in Section 2 after
giving formal definitions of Tashkinov trees and their extensions with some properties.
In Section 2, we will also show some applications of our results; and we will give the
proof of our main result in Section 5 due to its length. The proof is very long, but it
contains some techniques and ideas which may shed some lights on attacking Goldberg’s
conjecture. In section 3, we introduce a concept called condition R2 which is crucial to
our main proof. Section 4 gives a proof of a basic application of our main theorem.

2. Tashkinov trees and their extensions
Let G be a graph and e € FE(G). A tree-sequence T is an alternating sequence

(Yo,€1,y1,€2, - , Yp—1,€p, Yp) of distinct vertices y; and edges e; of G such that e; = e
and the endvertices of each e; are y; and y, for some r € {1,2,...,i — 1}. Clearly, the
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edge set of a tree sequence T indeed induces a tree; following the sequence, all vertices
and edges in T form a linear order <,. For every element x € T, let T,, be the sequence
generated by x and elements <, x, and call it an x-segment. Note that here x could be
an edge or a vertex. Denote by |T'| the number of vertices in T, i.e., |T| = p+ 1 from the
above definition. For each edge f € 9(T), denote by a(T, f) and b(T, f) the endvertices
of f in T and not in T, and name them the in-end and out-end of f, respectively. If T
is understandable, we simply use a(f) and b(f) for convenience.

Let ¢ be a k-edge-coloring of G — e. For a color «, denote by v(«,T') the first vertex
missing color « along <, of T if & € 3, (T") and the last vertex of T'if o ¢ 5, (T). If T is
clear, we may simply denote v(a, T') by v(a). We sometimes denote T, by T'(v(c)).

A Tashkinov tree of a k-triple (G, e, ¢) is a tree-sequence T' = (Yo, €1, Y1,€2, " * , Yp—1,
ep, Yp) such that for each j > 1, p(e;) € B(y;) for some i < j. A Tashkinov tree T is
maximal if there is no Tashkinov tree T of the same k-triple containing T" as a proper
subtree. Clearly, all maximal Tashkinov trees are closed. A Tashkinov tree is called
maximum if |T'| is maximum over all k-triples with respect to the same graph G.

Theorem 2.1. [Tashkinov [16]] The vertex set of any Tashkinov tree of a k-triple (G, e, ¢)
is elementary.

Let (G,e,p) be a k-triple and H be a closed subgraph of G. A color § is called a
defective color of H if |05(H)| > 1. Since H is closed, we have ¢ ¢ @, (H) in this case.
An edge f € O(H) is called a connecting edge of H if § := () is a defective color of H
and there exists a color v € §,(H) — ¢ (H) such that f € P,,(d,7,¢) and f is the first
edge of O(H) along P,(,(d,7,¢) starting at v(y). In this case, we call 6 a connecting
color and 7 the companion color of §. Note that v € @, (H) — ¢.(H) means that color v
is missing at a vertex in H and is not assigned to any edge of H.

Definition 1. An Extended Tashkinov Tree (ETT) of a k-triple (G,e,p) is a tree-
sequence T = (Yo, €1,Y1,€2,---; Yp—1, €p, Yp) such that for each e; with ¢ > 2, either
v(e;) € 9,(Ty,_,) or T,, , is closed and e; is a connecting edge of T}, ,.

Note that in the above definition, the condition imposed on e; only involves edges
incident to V/(Ty,_, ). So, if a coloring ¢* agrees with ¢ on every edge incident to V(T _, ),
then T is also an ETT of (G, e, ¢*). This observation will be used later in our proof.

Let T be an ETT of a k-triple (G, e, v). Let f1, fa, ..., fn be all the connecting edges
of T with f1 <¢ fo <¢ -+ <¢ fn and denote T; = Ty, — {f;} for each 1 <14 < n. Clearly,
T is a maximal Tashkinov tree of (G, e, ) and T; is closed for every 1 < i < n. We
call Ty c Tpb ¢ 13 C --- C T,, C T the ladder of T" and T" an ETT with n rungs.
We use m(T) to denote the number of rungs of T. Let D(T) = {d1,d2,...,0,} and
(T) = {y1,72,- - -, ¥n} denote the lists of all connecting colors and their companioning
colors, respectively.
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Definition 2. Let T be an ETT of a k-triple (G, e, ) with ladder Ty C To C T35 C --- C
T, C T. Let D(T) = {1,02,...,0,} and I'(T) = {y1,72,-.-,7n}- We say a coloring
©* € C*(G — e) is T-stable with regard to o and T is ¢* /p-stable if the following two
conditions are satisfied.

o Of the k-triple (G, e, ¢*), the tree-sequence T is also an ETT with the same sets of
connecting edges, connecting colors and companion colors.

o For each 1 < i < n and every edge f incident to V(T,), o(f) = ¢*(f) if (f) €
{0i,7i} or ©*(f) € {i, i}

By Definition 2, we can easily check that: (a) ¢ itself is T-stable with regard to ¢;
(b) if ¢* is T-stable with regard to ¢ then ¢ is T-stable with regard to ¢*; and (c) if ¢*

ok

is T-stable with regard to ¢ and @** is T-stable with regard to ¢*, then ¢** is T-stable
with regard to ¢. So, all T-stable colorings with regard to ¢ form an equivalence class
and can be with regard to any coloring in the class. We call p* a T-stable coloring and T’
p*-stable for convenience. Clearly, if ¢* is T-stable, then it is T, -stable for any z-segment

where x is a vertex of T'. Moreover, we have the following.

Lemma 2.2. Let T be an ETT of a k-triple (G, e, ) and y, be the last vertex of T. If a
coloring p* € C*(G — e) agrees with ¢ on all edges incident to V(T — y,), then ¢* is
T-stable.

Proof. Let T, (G, e, ) and ¢* be defined as in Lemma 2.2. Since ¢* agrees with ¢ on
every edge incident to V(T,,_,), T is an ETT of (G,e,¢*). Let 1 CTo C---C T, CT
be the ladder of T'. Since T}, C T),,_,, ¢* agrees with ¢ on every edge incident to V(75,).
So, ¢* is T-stable. O

Definition 3. Let T be an ETT of a k-triple (G, e, ¢) with ladder Ty c T, C ... T,, C T.

o We say that T satisfies condition MP (Maximum Property) if 7T} is a maximum
Tashikov tree and for each 2 < i < n, T; is closed among all T;-stable colorings.

o We say that 7" satisfies condition R1 if for each companion color ~; of a connecting
color 0; with 1 <i < n,~v; € B,(Tim,) — pe(Th;), where m; and M; are the minimum
and maximum indices, respectively, such that d,,, = §; = dr,.

Lemma 2.3. Let T be an ETT of a k-triple (G, e, ) and ¢* be a T-stable coloring with
regard to . If T satisfies condition MP (resp. R1) under o, then it satisfies condition
MP (resp. R1) under ©*.

Proof. Let Ty C T, C T3 C --- C T, C T be the ladder of T and T'(T') = {v1,72, - -, Yn }-
Since ¢* is T-stable, Ty C Ty C ...T,, C T is the ladder of the ETT T under ¢*. Assume
that T satisfies condition MP under ¢*. Clearly, |T1| is still maximum over all k-triples.
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For each 1 <7 < n, let ©** be an arbitrary T;-stable coloring with regard to ¢*. Then,
©** is a T;-stable coloring with regard to ¢. Since T satisfies condition MP under ¢, T;
is closed under ¢**. Therefore, T" satisfies condition MP under ¢*.

Assume that T satisfies condition R1 under ¢. Then, v; € @,(Th,;) — ¢e(Tn, ). There-
fore v; € B,(Th,;) and v; € pe(Thy;). Since ¢* is T-stable with regard to ¢, ¢* and ¢
have the same set of y; edges incident to V(Tay, ). Hence «; € @5 (T, ) and v; ¢ @5 (T, ).
Thus we have v; € @5 (Th,) — ©5(Tha,). Therefore T still satisfies condition R1 under
p*. O

Let (G, e, ) be a k-triple and T be an ETT of G. We call the algorithm of adding
a boundary edge f and b(f) to T with ¢(f) € ©,(T) Tashkinov Augment Algorithm
(TAA). Given an ETT with ladder Ty € 75 C -+ C T,, C T, we note that conditions
MP and R1 only apply to T; with i < n. So, the following result holds.

Lemma 2.4. Let T be an ETT of a k-triple (G, e, ) satisfying conditions MP and R1. If
T’ is an ETT obtained from T by adding some new edges and vertices by TAA under @,
then T' also satisfies conditions MP and R1 under .

The following is the main theorem of this paper.

Theorem 2.5. Let T be an ETT of a k-triple (G, e, ) with G being non-elementary. If
T satisfies conditions MP and R1 under ¢, then T is elementary.

Note that if m(T) = 0, then T is a Tashkinov tree, so it satisfies conditions MP and
R1 by default. If m(T") = 1 and 77 is a maximum Tashkinov tree, then 1" also satisfies
both conditions MP and R1.

Corollary 2.6. Let T be a closed ETT of a k-triple (G, e, ) with G being non-elementary.
If T satisfies MP and all its connecting colors are distinct, T is elementary. In particular,
if m(T) =1 and Ty is a mazimum Tashkinov tree, then T is elementary.

Proof. We only need to verify that condition R1 is satisfied. Since all companion colors
Y1, Y2, -, Yn are distinct, m; = M; = ¢ for each 1 < ¢ < n. By the definition of
connecting edge of T;, we have v; € 3,(T;) — ¢e(T3). O

In application, we will use the following result. A stronger version of Theorem 2.7 will
be given as Theorem 4.1 in Section 4, and its proof is based on Theorem 2.5.

Theorem 2.7. Let G be a k-critical graph with k > A+ 1. If G is not elementary, then
there exist a k-triple (G, e, ), a mazimum Tashkinov tree Ty and an elementary ETT
T DTy such that the following hold.
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T —Th| = 2[p,(T1)| + 2 (1)
1A [, (T1)]
|TT1|>2<1+XM> 2)

Lemma 2.8. [Scheide [13]] Let G be a k-critical graph with k > A+ 1. If G is not
elementary, then |T| > max{2(k — A) + 1,11} for every mazimum Tashkinov tree T
of G.

Since we mainly work on non-elementary graphs in this paper, we assume that |T'| > 11
for every maximum Tashkinov tree T' by Lemma 2.8. Hence we have [, (T)| > 13 if T
is a maximum Tashkinov tree, because e is uncolored.

Lemma 2.9. If G is a non-elementary k-critical graph G with k > A+1, then there exists
a k-triple (G, e, @) and an elementary ETT T such that

IT| > max{(2(k — A) +1)* +6,22(k — A) + 17} > 39. (3)

Proof. By Theorem 2.7, there exist a k-triple (G, e, ¢), a maximum Tashkinov tree T}
and an elementary ETT T D T3 such that the following holds.

IT| > 2[@,(T1)] + [T1] + 2
>2(|Th|(k — A)+2) + |Th| + 2
> 2(max{2(k — A)+1,11}(k — A) + 2) + max{2(k — A) + 1,11} + 2
> max{(2(k — A) + 1) +6,22(k — A) +17}. O
The following result gives an improvement to a result of Chen et al. [3] that if x' >
A+ {/A/2 —1 then X' = p.
Theorem 2.10. If G is a graph with A > 5 and X' > A+ {/A/4, then G is elementary.

Proof. We assume without loss of generality G is critical, but not elementary. Since
A>5x' >A+{/A/4> A+2 By Lemma 2.9, there exists a k-triple (G, e, ¢) and an
elementary ETT T such that |T| > (2(k — A) + 1)? 4 6. Since T is elementary, we have

k>3,(T) > ((2(k = A) +1)* +6)(k — A) + 2,
which gives k < A+ {/A/4 — 1, a contradiction. O

We now show that Conjecture 3 is true up to m = 39. The following observation
from [15] is needed. For completeness, we give its proof here.

Lemma 2.11. If (G, e, ) be a k-triple with k > -2 A + ™=3 — 1 then |X| <m —1 for
every elementary set X C V(G) with V(e) C X.
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Proof. Suppose on the contrary |X| > m. The inequality & > A + m—j’ —1is
equivalent to k — A > £=2_ Since X is elementary, k > [3(X)| > (k — A)|[X| +2 >
m(k — A) 4+ 2. Subtracting k — A, weget A > (m—1)(k—A)+2> (A-2)+2=A,

a contradiction. O

: : 39 36 :
Theorem 2.12. If G is a graph with x' > 55 A + 55, then G is elementary.

Proof. Otherwise, by Lemmas 2.9, G has an elementary set X with |X| > 39, which
gives a contradiction to Lemma 2.11. 0O

Corollary 2.13. Let G be a graph with X' > A+ 2. If A <39 or |[V(G)| < 39, then G is
elementary.

Proof. When A < 39, we have A+2 > %AJr %, so G is elementary by Theorem 2.12. If
G is not elementary, then G contains an elementary ETT T with |T'| > 39 by Lemma 2.9,
and therefore |V(G)| > 39. So G is elementary if |[V(G)| <39. O

Haxell and McDonald [8] obtained a necessary and sufficient condition for x' = A+ p
when p > logs /4 A + 1. We improve this result lowering the lower bound of p.

Theorem 2.14. If G is a graph with multiplicity p > logs (1og% (%)) +1, then X' = A4p
if and only if p = A + p, where p is the density of G.

Proof. Since p < x’ < A + i as mentioned earlier, we have x' = A+ p if p = A + p.
We now suppose p > logs /4 (logg/g(%)) +1and x' = A+ p. To show p' = A + u, we

' i.e., G is elementary. Assume without loss of generality

only need to show that p = x
that G is critical. Suppose on the contrary G is not elementary. By (2) of Theorem 2.7,
there exists an elementary ETT T containing a maximum Tashkinov tree 77 having the

following property:

I_1—-A [, (T1)] _1 (p—1)|T1|+2
romfz2 (1 XS0 T s (14 1) @)
1 u

Here we have x'—1—A = p—1and [¢,(11)| > (1 —1)|T1]|+ 2 because of the assumption
that ¥’ = A + p and the fact that T is elementary as a Tashkinov tree. Haxell and
McDonald [8] gave a lower bound of |7}| below:

'_1-A X' —1-A -1 p—1
|T12(1—|—XT> +12<1+%> +1. (5)

Note that |,(T)| < x’ — 1. Since T is elementary, we have |, (T)| > (u — 1)|T|. Recall
that ' =1 —A=p—1,wehave |T|(x’ =1 -A) < x ' — 1,80 (|[T| - 1)(x =1 = A) <A,
which is equivalent to
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A
1)< =
(T =1 ==

Since |T|—1=|T —T1|+ |T1| — 1 > |T — T1|, by (4) and (5) we have

14+ — < —.
1% p—1
Hence
-1 (n=1) (1550t
2(p—1) (1+—> < A.
i
1\ (b= DA+
Note that p > 2 and 2(p — 1) (1 + %) is an increasing function of
=1

1 when we fix x with x > 2, we get %i < % by plugging in p = 2. Thus we have

p < logs <log%(%)) + 1, a contradiction. O

Haxell and McDonald in the same paper proved that a graph is elementary if x’ >
A + 2¢/plog A, where log denotes the natural logarithm. We improve their result as
follows.

Theorem 2.15. Let G be a graph with X' > A+ 1. Then G is elementary if X' > A+
min{Q\/,u(log log % + log2u), \S/pJ log %}

Proof. Let G be a graph satisfying the above conditions and assume on the contrary G
is not elementary. Assume without loss of generality that G is critical. Let t = x' —1—A
and T', T be as defined in Theorem 2.7. Following similar arguments as in the proof of
Theorem 2.14, we have the following inequality:

t(T-T+ ) +2< @, (D) < x' —1=A+1 (6)
Combine (4) and (5) with (6), we have

' t(1+ﬁ)t A
t<1+—> < 5

"
+2

t t 2 an
Since 0 < ﬁ < 1, we have 1+2L” > e and 1+ﬁ > e2¢ which in turn gives teznc™ < %.

t2
Since t > 1, we have t < 2\/,u(log log% +log2u) by plugging t = 1 into te?:. By
Lemma 2.8, we have |Ty| > 2t 4+ 1. Using this inequality with (4) and (6), we have

t(1+1L R A Since 1+¢/p > e'/?* and t > 1 imilarly have t < {¢/pulog &
m 5 - n>e an 2 1, we similarly have ¢ < {/pulog 5.

Thus we have ¢t < min{2\/u(log log % + log 2u), i/u log %}, giving a contradiction. O




138 G. Chen, G. Jing / Journal of Combinatorial Theory, Series B 139 (2019) 128-162

3. Condition R2

Let (G, e, ) be a k-triple. For a color set B and a subgraph H C G, we say H is
B-closed if o(0(H))NB = () and H is B~ -closed if H is (i, (H) — B)-closed. Clearly, H
is closed if H is ,(H)-closed. When B = {f} is a singleton, we say H is [(-closed
if it is {B}-closed. We also say S is closed in H and H is closed for 8 for conve-
nience if H is (-closed. Let T be an ETT with ladder 77y ¢ T, C --- C T, C T
of a k-triple (G, e, ). We call the subsequence T' — T,, the tail of T" and any nested

sequence of segments T, o(= T,) C Tp1 C -+ C Thq C The+1(= T) a split
tail for 7' if each 7T, ; ends with a vertex of T'— T;,. We further call the sequence
ThCcTyC - CTy=T,0 CThy C - CThy CT := T,q41 a refinery of T'

with n rungs and ¢ splitters, or simply a refinery of 7. For each T}, ; with 0 < j < g,
let Dy ; = D(T) - @v(Tn,j) = {617"'ﬂ6n} _¢u(Tn,j)~ Clearly, Dy, g+1 € Dpng G, ..., C
Dy 0.

Definition 4. An ETT T satisfies condition R2 if T" has a refinery
hchCc---Cly,=ThoCThC---CThq¢CTlhg1=T

such that for every 0 < j < g and every 0, € D, j, there exists a two color set F{L =
{71,571, } satistying the following four properties.

(1) PiL - ?v(Tn,j) - (Pe(Tn,j+1(v(6h)) - Tn,j) for everyj and 5h € Dn,j-
N = i) for every 7 and two distinct 04,0, € D, ;.
2) Iy NT) =0 f j and distinct 0y, 04 € Dy,
(3) TV =T~ C @, (T, — Tnj—1) for each 1 < j < g, where IV = Uj,ep, ,I'}, and
=t = UéheDn,j—lr‘Ijl_l'
(4) T, is (U(;,Lepmfi_l)’—closed for every 1 < j <g.

Remark 1. Not every ETT T satisfies condition R2. We will show in statement B of
Section 5 that for every T satisfying conditions MP and R1, there exists an ETT T’
with V(T") D V(T) satisfying conditions MP, R1, and R2. Since switching colors §; with
another color on a color alternating chain usually creates a non-stable coloring, we may
use colors in Ffl as stepping stones to swap CQIOI‘S while keeping the coloring stable in
later proofs. Thus, we may consider the set I') as a color set reserved for 8, and (1) as
a condition that ensures the ETT properties after some changes of colorings. We also
notice that (1) and (2) actually involve T;, 411 for j = ¢ while (3) and (4) only involve
T q-

Let T be an ETT of (G, e, ¢) satisfying condition R2. In the remainder of this paper,
when we mention that 7" satisfies condition R2 under another coloring ¢* associated
with ¢, we always mean that T satisfies condition R2 under ¢* with the same refinery
and Ffl as under ¢ for every 0 < j < ¢ and every d;, € D,, ;. Let o, 8 be two colors and
Q be an («, B)-chain. If V(Q) NV (T) # 0, we say Q intersects T
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Lemma 3.1. Let T be an ETT of a k-triple (G,e,) and ¢* be obtained from ¢ by
recoloring some («, B)-chains. If these (a, B8)-chains do not intersect T — y,, then T
is @/p*-stable. Moreover, if T additionally satisfies condition MP (resp. R1, resp. R2)
under o, then it also satisfies condition MP (resp. R1, resp. R2) under ¢*.

Proof. Recall that y, is the last vertex in T'. Since ¢* and ¢ agree on all edges incident to
V(T —yp,), ¢* is a T-stable coloring by Lemma 2.2. Moreover, if T' satisfies condition MP
(resp. R1) under ¢, then it satisfies condition MP (resp. R1) under ¢* by Lemma 2.3.
Assume that T satisfies condition R2 under ¢. Let the corresponding splitting tail of T
be T, =Tp0CTphy C--- CThy CT =T,4+1. Since p(f) = ¢*(f) for every edge f
incident to V(T — y,), (v) = §*(v) for every vertex v € T —y, and T}, ; C T — y,, for
every 0 < ¢ < ¢, the conditions (1), (2), (3) and (4) in Definition 4 are satisfied for T
under ¢* with the same I'} as under ¢ for each 0 < i < g and each &y, € D,, ;. Therefore,
T also satisfies condition R2 under ¢*. O

4. An applicable result

An ETT T of a k-triple (G,e,p) with ladder Ty € T3 C --- € T,, C T is called
a simple ETT (SETT) if 43 = 72 = -+ = 7,. By the definition of companion colors,
vi € B,(T3) — @e(T;) for each 1 < i < n. So, we have v1 € §,(T1) — we(T,) if T is an
SETT, which in turn shows that all SETTs satisfy condition R1. Let « and 8 be two
colors and suppose T is {a, f}-closed under . Let ¢ /(G —T, «, 8) be a coloring obtained
from ¢ by interchanging these two colors outside T. Clearly, ¢/(G — T, «, 3) is also a
k-edge-coloring. By Lemma 2.2, ¢ /(G =T, a, ) is T-stable. We prove the following result
which is a stronger version of Theorem 2.7 in Section 2.

Theorem 4.1. Let G be a k-critical graph with k > A + 1. If G is not elementary, then
there exists a k-triple (G, e, ), a mazimum Tashkinov tree Ty and an elementary SETT
T DTy satisfying condition MP with the following three properties:

@v (Tn) g Soe(T - Tn) (7)

‘T - Tn| 2 2|¢v(Tn>| +2 (8)
AN BT

T—Tn|>2<1+%> (9)

Proof. Let G be a non-elementary k-critical graph with & > A 4 1. We first note that
every maximum Tashkinov T is closed under any T-stable coloring since, otherwise,
there would be a larger Tashkinov tree. Moreover, every Tashkinov tree is an SETT by
default. Based on the above statements, we let T' be an SETT satisfying condition MP
with ladder T3 C Ts C, ..., C T,, C T such that T is closed under every T-stable coloring.
We further assume that m(7T) = n is maximum. Let v := 43 = 3+ = 7,. Since all
SETTs satisfy condition R1, T satisfies both conditions MP and R1. By Theorem 2.5, T
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is elementary. Since G is not elementary, T' is not strongly closed. So, T has a defective
color.

We first show that (7) holds. Otherwise, let o € B,(T3,) —@e(T'—T),) and ¢* = /(G —
Ty, a,y). By Lemma 3.1, ¢* is a T,, U (fn, b(fn))-stable coloring. Since o,y € %,(T},), T
is still an ETT under ¢* with the same set of connecting colors and companion colors
under ¢. Therefore ¢* is T-stable. Since o ¢ (T — T},), v ¢ ¢i(T — T,), which in
turn shows v ¢ ¢5(T) because v € B,(T1) — @e(Ty). Let 0,41 be a defective color
of T'. Since T is elementary, 7' can not contain both ends of P,(y)(dn41,7,¢*). Since
v € @i(Th) — i(T), we can extend T to a larger SETT T* by adding a connecting edge
frn+1 which is the first edge in 9(T) along Py, (dn41,7, ¢*). Moreover, the resulting SETT
satisfies condition MP because we assumed that T is closed among all T-stable colorings.
Since stable colorings keep conditions MP and R1 by Lemma 2.3, by taking maximum
value of |T*| with the above properties, we can assume T™ is closed under all T*-stable
colorings, which gives a contradiction to the maximality of m(T).

Recall T is elementary as we mentioned earlier. To prove (8) and (9), starting from 7}, U
{fn} we apply TAA repeatedly with priority of adding boundary edges with colors being
missing on the vertices not in 7, and call such an algorithm modified TAA (mTAA).
Clearly, the resulting closed SETT has the same vertex set as T'. Assume, without loss
of generality, T itself is the resulting tree by applying mTAA till T is maximal to get a
closed extension of T,, U {f,}. For any a € ,(T,,), let T,, be the maximal segment of T'
before the last edge with color « being added, i.e., the last element of T, is the vertex
before the last edge colored by « in T along <;. By (7), T, is a proper subtree of T for
each o € g, (T},). Moreover, we have V (T, — T;,) # 0 for each « € B,(1T},) since the last
connecting edge f, is not colored by colors missing in 7;,.

We claim that |T,| is odd for each a € B,(T},). Otherwise, we assume |T,| is even
and let § € ©,(T, — Ty). Since T is elementary, T, is also elementary. Since T, is
elementary and has an even number of vertices, it has a boundary edge colored by [
which should be added to T, before the corresponding a-edge, a contradiction. By (7),
each color a € B(T},) must be used by an edge in T — T,,. Since each color o € 3, (T7,)
is used by an edge in T'— T, by (7) and |T,| is odd for each « € 3,(T},), we have
|E(T — T3,)| > 2[¢,(Tn)| + 2, where the additional 2 follows from ¢(f,) ¢ @,(Ty). So,
(8) holds.

To prove (9), let e; < ez <¢ --- <¢ €4 be the list of all edges in T' — T, such
that ¢(e;) € g,(Ty) for all i = 1,2,...,q. Clearly, ¢ > |,(T})|. For each 1 < i < g,
since T is elementary we have ¢(b(e;)) 2 (T, — T)). On the other hand, according
to mTAA, ¢(0(Te,) N, (Te, — T),) = 0. By eliminating parallel edges, we can add at
least [@, (T, — Ty)|/u neighbors of b(e;) in V — V(T,) to Te, U {b(e;)} using colors in
@, (Te, — T),) # 0. Since [p(v)| > x' — 1 — A for all v € V(G), the following inequalities
hold:

T — Ty >14|T — Ty| + 22

€it1

(Tei — Tn)|
o

'1-A
> |T,, — Tl (1 + X7>

I
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where Tt ,

/_1_A q l—l—A [@, (Tn)l
|T*Tn| > |Tel *Tn‘ (1 + X‘) > |Te1 *Tn| (1 + X—) .
0 I

Note that T,, contains f,, and one more edge with color in B(b(f,)), we have |T,, —T},| >
2, which in turn gives (9). O

= T. Hence,

5. Proof of Theorem 2.5

Theorem 2.5. Let T be an ETT of a k-triple (G, e, p) with G being non-elementary. If
T satisfies conditions MP and R1 under o, then T is elementary.

Let T be an ETT of a k-triple (G, e, ¢) with G being non-elementary. We will prove
Theorem 2.5 inductively on m(T'), the number of rungs. To facilitate our proof, we add
the following two statements simultaneously for each nonnegative integer n.

A. If T is an ETT satisfying conditions MP, R1, and R2 with m(T) = n, then T is
elementary.

B. Suppose statement A holds. If T' is an ETT with ladder Ty Cc T, € --- C T,, C T
satisfying conditions MP and R1, then there exists a closed ETT T with V(T') C
V(T') and ladder Ty C Ty C -+ C T, C T” satisfying conditions MP, R1, and R2.

Although statement A appears weaker than Theorem 2.5, statement B shows that they
are equivalent. By Tashkinov’s Theorem, Theorem 2.5 holds for n = 0. Assume n > 1
and all ETTs with m(T) < n — 1 satisfying MP and R1 are elementary. We will show
both statements hold for ETTs T' with m(T) = n, and consequently, they imply all ETTs
with m(T) = n satisfying MP and R1 are elementary based on following: Let T' be an
ETT with m(T) = n satisfying conditions MP and R1. By statement B, there exists
an ETT T with m(T”) = n satisfying MP, R1, and R2 such that V(T") O V(T). By
statement A, T” is elementary, so is T

The following flowchart depicts the proof strategy. We place the proof of statement B
first since it is much shorter than the proof of statement A.

i

Proof. Assume that statement A holds for all ETTs with at most n rungs which satisfy
conditions MP, R1, and R2. Let T be an ETT with ladder Ty Cc T, € --- C T,, C T

m(T) 0

Theorem

W=e—"-> N

1
A
By
Statement Tashkinov's
B

5.1. Proof of statement B
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satisfying conditions MP and R1 of a k-triple (G, e, ). Starting with T;,, we will construct
an ETT T' with V(T) C V(T”) by adding a split tail T, = T, 0 C --- C T, C T' =
T q+1 satisfying conditions MP, R1, and R2.

We first note a simple fact: under the same coloring ¢, for any ETT T* with T* D
T U (fn,b(fn)), it T* is closed then V(T™) D V(T'). To justify this, we suppose on the
contrary that T* is closed and V(T') — V(T*) # 0. Let e; be the first edge of T crossing
the boundary of T*. Then, (ei) € 3,(T*), giving a contradiction to T being closed.

We define I') = {7h1 Vs OV C ,(Th,0) for all 6, € D, ¢ as follows. Recall D(T') =
{61,02,...,0n} and D, o = D(T) — @,(Tn0)- S0, |Dpo| < n. Since Ty is a maximum
Tashkinov tree, |T1| > 11. Because m(T,) = n — 1, T,, is elementary by the induction
hypothesis. For each 1 < i < n, since T; is closed, |T;| is odd. Thus |T,,| > 2n, so
|6, (Tn)| > |T0| + 2 > 2| Dy, 0]. We simply pick 2|D,, o| colors from %, (T5,), divide them
into |D,, 0| pairs, assign a distinct pair to each distinct connecting color §;, € D, o and
name it as ') := {y1:°, 75 }. Then condition R2(2) is satisfied. Let T° = Us, ep, ;9.

We define T;, 1 by the following greedy algorithm. We first let T}, 1 = T3, 0U(fn, b(fn)),
where f,, is the connecting edge of T after T,,. While there exists an edge f € 9(T),,1)
such that o(f) € ,(Th,1) fU(s,,eDMF%, we always augment 15, 1 by letting T3, 1 := 15, 1 U
(f,b(f)). Then the resulting 7, 1 obtained from this algorithm is (Us,ep, ,I) -closed.
Note that condition R2(1) and (4) are satisfied through this algorithm.

Suppose T, ;1 is defined for some j > 2. If T, ;1 is closed, then V(T) C
V(T,,j-1) and we let T, ;1 = T’. Suppose T, j_1 is not closed. Since T, j_1 is
(U(;heDn)j_lI‘ff )~ -closed, there exists an edge f' € (T, ;j_1) such that o(f') € 77>
for some §;, € DnJ 1. Let IU ! be a set of two missing colors in @, (TnJ 1— T j- 2)s
and F{;l =TIy % for any other §p € Dnj 1. By statement A, T}, ;_; is elementary.
Therefore, |g0v( i1 —Tnj_2)] > 2. S0, I is well defined. Note that condition R2(2)
and (3) are satisfied by our construction of I, ~" and T, ".

We define T, ; as follows. We first let T,, ; = T}, j—1 U (f',b(f’)), where f’ is defined
above. While there exists f € 9(T), ;) such that ¢(f) € 3,(Tn,;) — UgheDnJF] ' we
always augment T}, ; by letting T;, ; := T;, ;U(f, b(f)). Then the resulting T}, ; is obtamed
from this algorithm is (Us,ep, ")~ -closed. In addition, condition R2(1) and (4) are
satisfied through this algorithm.

Clearly, T, ; satisfies condition R2. Since T}, U (fy,b(fn)) C T satisfies conditions MP
and R1 under ¢, T}, ; also satisfies conditions MP and R1 by Lemma 2.4. Now if T}, ; is
closed, then V(T') C V(T;, ;) and we let T, ; = T". If T}, ; is not closed, we will continue
to build T, j 1. Eventually we will obtain a closed 7" as desired. O

5.2. Proof of statement A
Proof. Let T be an ETT satisfying conditions MP, R1 and R2 with the following refinery.

TlCTQC"'CTnZTm()CTmlC"'CTn,qCTZqu_,_l.
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We prove statement A by induction on ¢ which is the number of splitters. We will
prove the basis step and the inductive step together in the later proof. When ¢ = 0,
we have T, 4 = Ty, 0 = T,,. Note that we have that T,, o = T, is elementary because
m(T,) = n — 1 < n. Therefore we can assume T,, , is elementary and show T' = T;, 411
is also elementary. Denote T by T, , U (eo, Yo, €1, ---; €p, Yp) following the order <,. We
define the path number p(T') of T as the smallest index ¢ € {0, 1, ...,p} such that the
sequence y; T := (Yi, €i11, ..., €p, Yp) is a path in G. Suppose on the contrary that T is a
counterexample to statement A, i.e., T is an ETT satisfying conditions MP, R1, and R2
but is not elementary. Furthermore, we assume that among all counterexamples under
T, 4-stable colorings when ¢ > 1 and under T;, U (fy, b(fy))-stable coloring when ¢ = 0,
the following two conditions hold:

(1) p(T) is minimum,
(2) |T —T),q| is minimum subject to (1).

In the rest of this paper, when we say a coloring is 7T;, 4-stable in the proof, we always
mean that it is T,, U(fn, b(f))-stable coloring when ¢ = 0 for convenience. By our choice,
Ty, , is elementary, where T, _,
exists a color a € B(y,) NP(v) for some v € V(T,, _,). For simplification of notations,

= T, when p = 0. Since T is not elementary, there
we let I = {vp1, 2} for 0, € Dy q.

5.2.1. A few properties

We first introduce a few concepts that will be used later in the proof. Let (G, e, ¢)
be a k-triple, H be an elementary subgraph of G and P be a nonempty sub-chain of
an (o, B)-chain. If P is a path, V(P) N V(H) = {u} is an end-vertex and the other
end-vertex of P outside of H has either a or # as a missing color, we call the path P an
(v, B)-leg of H and u an (a, §)-exit. We denote the («, 5)-leg P = P (a, 3, ), where u
is the unique vertex in V(P) NV (H). Two colors o and 3 are interchangeable in H if H
has at most one («, §)-leg.

Claim 5.1. For any T, ; with 0 < j < g and two colors o, 8, if o € B, (T},;) and is closed
in Ty ;, then a and B are interchangeable in T, ;.

Proof. We prove Claim 5.1 by induction on j. First we consider the case when j = 0.
Since T, is closed, there is no («, 5)-leg if g € @, (T},). Hence we assume 8 ¢ @, (T),).
Since T, is elementary and closed, |05(T}, ;)| is odd. Hence T, ; has odd number of
(o, B)-legs. If |05(T,5)| = 1, we are done. Therefore we assume that [9g(T5, ;)| > 3. Let
u, v, w be three exits of (a, §)-legs with u <; v <; w. Let n’ be the smallest index such
that w € T,,,. Then w € T}, — Ty _1.

Let v € P(w). Note T, is closed for 7. By Lemma 3.1, ¢* = ¢/(G — Ty, a,7) is
T,-stable, and T, still satisfies conditions MP and R1 under ¢*. Moreover, we have

that P (v,8,¢*) = Pu(v,8,¢*) = P (o, B,¢), P*(v,B,¢*) = P*(a,f,¢) and
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P (v, B8, ¢*) = P¢*(a, B,¢) are three (v, )-legs of T,,s. Let the wq, us and vy be the
other end vertices of P (v, S, ¢*), PS* (v, 3,¢*) and PS*(v,8,¢*) not in T, . Let u’
be the vertex in PS*(y, 8, ¢*) next to u, and f, be the edge connecting v and «’ in
Pe* (v, 8, ¢*); and v’ be the vertex in PS* (7, 3, ¢*) next to v, and f, be the edge connect-
ing v and v’ in P (v, 3, ¢*). Note that ©*(f,) = ¢*(f») = B. Let p? = o* /P (7, B, p*).
Since w € T,y — Tpy—1 and Py (v, 8, ¢*) N T,y = w, Ty, satisfies conditions MP and R1
under ¢? by Lemma 3.1. Note that under ¢?, 3 € B*(w). Moreover, Ty, U (fy, o, fu, ')
is an ETT satisfying conditions MP and R1 by Lemma 2.4 because it is obtained from
T by TAA under p?. Applying TAA to Ty U (fu, ', fu,v") to keep adding edges and
vertices until we cannot, we obtain a closed ETT T72. Clearly, T satisfies conditions
MP and R1 by Lemma 2.4. Since T2 has n’ — 1 < n rungs, T2, is elementary. If one of
wa, Uz, v is in T2, then v must be missing at that vertex since 3 € 72 (T2). Thus both
v, B €32 (T?2), which in turn shows that all three vertices ws, ug, vy are in T2,. However,
all of them are missing either v or 3 under ¢? which contradicts the elementary property.
Thus none of these three vertices are in T'2,. Hence each of P&%(v, 8, ¢*), PE%(v, 8, ¢*)
and P (v, 3,¢*) contains a (7, 8)-leg of T2 under ¢?. Let uy,v1,w; be the correspond-
ing exits for the (v, 8)-legs contained in above paths respectively. We assume without of
generality, u; <¢ v1 <¢ wi. We have wy # w since we already have w < u <y v in Tg,.
Note that P£%(v, 8, ¢?) and P£*(v, 8, ¢?) are sub-paths of P¢*(«, 3, ¢) and P{*(av, B8, ¢)
and are shorter than those two. Moreover, since w; € sz’ — T, _1, we can continue the
proof process again for T, inductively as we did for T, and finally we will reach a
contradiction to the elementary property because we will obtain shorter and shorter legs
and finally contain all the ends.

Now we suppose j > 0 and consider the following two cases. Note that two cases below
are similar but differ by the number of («a, §)-legs.

CaseI: 5 € 5,(Ty ;).

Since T;, ; is a-closed and, by the induction hypothesis T;, ; is elementary, |V (T}, ;)]
is odd. Therefore |0g(T}, ;)| is even and there are even number of (c, 8)-legs. If there are
none, we are done. Hence we assume that there exist two exit vertices u,v € 1), 5, and
they belong to legs P2 (a, 3, ¢) and PS*(a, B, ¢), respectively. We may assume u =<; v.

Case La:v e T, ; — T, 1.

Since 8 € p(0(Ty,;)) and B € B,(Ty,;), i-e., T, ; is not closed for B, we have
v(B) € V(Ty,;—1) by condition R2(4). Let v € B(v). Then v ¢ I'V=! hence v is closed
in T, ; by R2. Therefore T, ; is closed for both o and . Hence ¢* = /(G — T, ;, o, )
is T}, j-stable, and conditions MP, R1, and R2 are still satisfied for 7}, ; under ¢*
by Lemma 3.1. However under ¢*, P (a, f8,¢) = P*(v,B8,¢*) = Py(v,0,¢*) and
P (a, B,0) = Pt (v, B,¢*) are two (v, 8)-legs. Let 9* = ¢*/Ps*(v, 8, ¢*). Then be-
cause P (v, B,¢*)NT, = {v}, ¢? is T,-stable and T, satisfies conditions MP, R1, and
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R2 by Lemma 3.1. However, we have 8 € $*(T,, ;—1) and 8 € $*(v), where we reach
a contradiction to the elementary property of T}, ;1 which comes from the minimality
of q.

Case Lb:v €T, ;1.

We claim that there exists a color a* € 3, (T}, j—1) that is closed in both T}, ;_; and
T,,;- First we consider the case when j = 1. Note that by condition R2(2), |Us,ep,, ,I')| =
2|D,, 1| < 2n. Since |g,(T1)| > 13 and T, is elementary with |T;| being odd for all i < n,
we have [¢,(T,)| > 11 +2n > | Us,ep, , I'j|- By condition R2, T') C @, (T,,) for each
0n € Dy . Hence we have 1"2 C $,(T,) for each 6, € Dy 1 because D, 1 C Dyp.
Therefore there exists a* € @,(T},) — (Us,ep, ,I'). Since Ty, 1 is (Us,ep, ')~ -closed
by condition R2(4) and T, is closed, a* is closed in both T}, ; and T;,. Now we assume
j > 1. By condition R2(4), Tj_; is (U(;hepn’jflI’%_Q)_—closed. Similarly as the case
j = 1, we have [@,(Tn,j—2)] > 11+ 2n > | Us,ep, ,_, IY72|, and there exists a* €
Bo(Th j—2) — (UéheD",j,lFi_Q)- Hence a* is closed in T}, j_1. By condition R2(3), [V —
=Y C 3, (Tn; — Tn,j—1), o ¢ IJ. Therefore o* ¢ (u(;heDMF{l‘l) C IV. Now by
condition R2(4), o* is also closed in T, ;, where we have the color o* as claimed.

Since « is closed in T, ;, ¢* = ¢/(a,a*,G — T, ;) is T, j-stable, and T, ; satis-
fies conditions MP, R1, and R2 under ¢* by Lemma 3.1. Note that o* € @} (T, ;1)
and o* is still closed in T, ;—1 under ¢*. However P:*(a*,3,¢*) = P¢*(a, B, ¢) and
Pt (a*, B, ¢*) = P5*™(a, B, ) are two (a*, 3)-legs of T, ;1 under ¢*, giving a contra-
diction to the induction hypothesis of the minimality of j.

Case II: 5 ¢ ©,(T), ;).

In this case |03(T}, ;)| is odd and 3 ¢ IV~!. Hence T}, ; has odd number of (a, 3)-legs.
Let u,v,w be exits from three («, §)-legs for T;, ; with u <; v <; w.

CaseILa: we T, ; — T, j—1.

Let v € P(w). By definition, v ¢ IY~!. Hence T, ; is closed for v by con-
dition R2(4). By Lemma 3.1, ¢* = ¢/(G — T, ;,a,v) is T, j-stable, and condi-
tions MP, R1, and R2 are still satisfied for T}, ; under ¢*. Moreover, under ¢*, we
have PU(y,B,¢%) = Pu(v,8,¢%) = Pi(a,B,¢), Pr*(v,8,¢") = Pi*(a,B,¢) and
Pet(y, B,¢*) = PS™(o, B, p) are three (v, 8)-legs for T, ;. Let the 3 other end vertices
of PS*(v,B,¢"), PS™ (7, B, ¢*) and P{*(y,3,¢*) not in T, ; be ws, us and vy respec-
tively. Let «’ be the vertex in PS* (v, 8, ¢*) next to u, and f, be the edge connecting u
and «' in PS*(v, 3, ¢*); and v’ be the vertex in PS*(v, 3, ¢*) next to v, and f, be the
edge connecting v and v’ in P¢* (v, 8, ¢*). Note that f, and f, are colored § under *.
Let ¢ = ¢* /P (v, B,¢%). Since w € T), j — Ty j—1 and Py (v, B,9*) N T, ; = w, Ty,
satisfies conditions MP, R1, and R2 by Lemma 3.1. Note that under ¢?, 8 € %(w).
Since 8 ¢ TY~! we have that T, U (fu,u', fu,v’) satisfies condition R2. Moreover,
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it satisfies conditions MP and R1 by Lemma 2.4. Based on the definition of condi-
tion R2, by Lemma 2.4 we can keep conditions R1 and MP by keeping extending
Tw U (fu,t, fv,v") using TAA under condition R2 without using any connecting edges
until it is (U(;heDn’jI‘ifl)’—closed. Let the resulting ETT be T? ;. Clearly T2 ; satis-
fies conditions MP, R1, and R2. By the minimality of ¢, Tij is elementary. If one of
Wa, U, Vg 18 in Tg’j, then v must be missing at that vertex since 8 € @%Tij). Since
both v, 3 ¢ TV~1, and both v, 8 € P*(T7 ;), we must have all three vertices wa,ua, vy
in Tij. However, all of them miss either v or 8 under ¢?, which gives a contradic-
tion to the elementary property. Thus none of the vertices above are in Tﬁ’j. Hence
each of P*(v, S, ¢*), P¢*(v, B,¢*) and P&*(v, 8, ¢*) contains a (v, S)-leg of Tr%,j' Let
u1,v1,w; be the exits for the (v, 3)-legs contained in the three paths above respectively.
We without loss of generality assume u; <¢ vi <y w;. Note that wy # w since we
already have w <y v’ <y ¢’ in T2 Note that P¢%(v, 8, ¢%) and P*(v, B,¢?) are sub-
paths of P*(a, 3, ¢) and P2 (« ,6, ) and are shorter than those two. Moreover, since
wy € TEL, ;—Tn,j—1, we can continue the proof process again for TEL’ ; inductively as we did
for T;, ;. Continue in this fashion, we will reach a contradiction because we will obtain
shorter and shorter legs until finally all the ends are contained.

Case ILb: w ¢ T, ; — T, 1.

The proof of this case is essentially the same as in Case I.b. We first show there exists
a color which is closed in both T, j_1 and Tj, ;. So there is a T}, j-stable coloring ¢* in
which T;, ; satisfies all conditions MP, R1, and R2. However under ¢*, a* and /3 are not
interchangeable in 7}, ;_1, giving a contradiction to the minimality of j. Here we omit
the proof. O

Claim 5.2. For an arbitrary vertex y € V(Ty,_,) — V(Tn,q), |8,(Ty) — 0e(Ty — Thnq)| >
114-2n. Furthermore, if |@,(Ty) —TYUD,, (Upc(Ty—Ty q)| < 4, then there exist T distinct
connecting colors §; with 6; € B,(Ty) such that all colors 8iysYi1, Yiz & @e(Ty — T g)-

Proof. Since [p(Ty — T g)| = |pe(Ty — Thng)l, [V(Tng)|l = 11+ 2(n — 1) and [, (T}) —
e(Ty — Tng)l = [@,(Tng)l = [V(Thg)l +2 > 11 + 2n. Now assume [p, (1) — ' U
Dy q U @e(Ty — Th,q)l < 4. Since @v(Ty) = (@v(Ty) —T9UDpqU ‘Pe(T = Thq)) U
(TTU Dyg) N9, (Ty) — e(Ty — Tng) NP,(T,)) U (Soe(Ty = Th,q) NP, (Ty)), we have
[(T1U Dng) By (Ty) = @e(Ty — Tng) NP, (Ty)| = [, (Ty)| =4 = lo(Ty = Thg)| = 2n+17.
Thus we have

|(T7u Dn,q) N Ev(Ty) - We(Ty - Tn,q)| >2n+7.

By the Pigeonhole Principle, there are 7 distinguished 4 such that 0;, 71, vi2 € @e(Ty —
T,.q), so the result holds. O
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Claim 5.3. Let o and (8 be two missing colors of V(T,,_,) with v(a) <¢ v(B). If a ¢

0e(Ty(g)—Thn,q), then Pyo)(a, B,¢) = Py, B, @) unless at least one of o, 3 is in Dy 4
and o & P(T, ). Additionally, if o € B,(Ty,q) and « is T, 4-closed, then Py (a, B, 9)
is the only (o, B)-path that may intersect O(Th, q)-

Note that T,g) — Tn,q = 0 if v(5) € Ty q and in Claim 5.3, («, 8)-path can not be
replaced by («, 8)-chain because there may be (a, 8)-cycles intersecting (T, ).

Proof. Let v(a) = w and v(8) = w. We consider the following few cases.
Case I: u,w € T}, 4.

If T, 4 is closed for both «,f, then (E, U Eg) N 9(Ty,4) = 0 and Py(a,B,¢) =
P, (e, B, ¢) since T,, 4 is elementary. So Claim 5.3 holds. Suppose T, 4 is closed for a or
B but not for both. By Claim 5.1 there is at most one («, 8)-leg in T}, 4. If P,(c, 8, ¢) #
P, (e, B, ), then both paths have one endvertex outside T}, 4, and therefore there are two
(o, B)-legs in T, 4, giving a contradiction to Claim 5.1. If P,(«, 3, ) is not the unique
(o, B)-path intersecting 9(T}, 4), then T, , has at least two (v, 5)-legs, where we also
have a contradiction. Hence P, («, 3, ¢) is the unique (o, 3)-path intersecting 9(7}, 4) and
P.(a, 8,¢) = Py(a, B, ), where we have as desired. We now assume neither « nor 3 is
T, 4-closed. Under this assumption, we only need to show that P,(c, 8, ¢) = Py (o, B, ¢).
We may assume (8 € @,(T,,j» — Tn jr—1) for some 0 < j° < ¢ where T}, 1 = 0 for
convenience. By condition R2, 8 is closed in T}, ;.. In the same fashion as we did the
case in which T;, 4 is closed for either o or 3, we have Py («, 8,¢) = Py(o, ,¢) in T), j:
because we have u,v € Ty, ;.

Case II: w € T,, ; and w ¢ T}, 4.

In this case a & (T — T ,q). We first consider the case that « is closed in T;, 4. By
Claim 5.1, T}, 4 has at most one (¢, §)-leg. We also note P,(«, 3, ¢) contains at least one
(e, B)-leg, so it is the only (a, 5)-leg intersecting T, 4. If P, (e, B, ¢) # Py (e, B, ¢), then
P, (e, B, ) does not intersect T}, 4. Therefore o* = /P, (e, 5, ¢) is T}, o-stable and T, 4
satisfies conditions MP R1 and R2 by Lemma 3.1. Moreover since P, («, 8, ¢) does not
intersect T, 4, all colors closed in 7}, s under ¢ stay closed under ¢* for each 0 < s < gq.
Since a, 8 ¢ pe(Tw — Tn,q) — fn where f, is the last connecting edge, ¢*(f) = ¢(f)
for each f € E(T, — Ty,q). Hence by Lemma 2.4, T,, satisfies conditions MP and RI.
Moreover, since ©*(f) = ¢(f) for each f € E(T,—T,,,) and all colors closed in T}, ; under
@ stay closed under ¢* for each 0 < s < ¢, T}, still satisfies R2 under ¢*. Since T,, C T,
p(Tw) < p(T). However, T,, is not elementary under ¢*, which gives a contradiction to
the minimality of p if p(Ty,) = p(T'), or to the minimality of p(T) if p(Ty) < p(T).

Now we assume that a is not closed in Tj, 4. In this case we only need to prove
P, (o, B,¢) = Py(a, B, ¢). Suppose P,(a, 8,¢) # Py(a, 5,¢). Recall that « € 3,(T5, 4)-
If @ € 3,(T},), it is closed in T, = Ty 0. If @ € B,(Ty,; — Tp,j—1) for some 1 < j < g,
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then a ¢ TY~1, and therefore « is closed in T}, ; by condition R2(4). So either way, there
exists the largest ¢’ such that « is closed in T, . Since the only edge in T'—T,, with color
not missing before is the connecting edge with color §,,, we have 8 ¢ p. (T, — Ty, — fn)-
We claim that a ¢ @c(Ty — Th,q). Suppose a € @e(Ty — Ty,q). We can assume o €
@e(Tnr — Tnype1) for some r > ¢'. Then a & Us,ep, Iy ' by condition R2(1), and
therefore « is closed in T, , by condition R2(4), which contradicts the maximality of ¢’.
Hence we indeed have o ¢ ¢ (T, —T5,,q). By Claim 5.1 there is at most one (a, )-leg in

T, 4, which is a sub-path of P,(«, 3, ). Then P,(c, 3, ¢) is disjoint with T}, ,». Hence
under ¢* = ¢/P,(a, B,¢), Tp ¢ satisfies conditions MP, R1, and R2 by Lemma 3.1.
Moreover, T,, satisfies conditions MP and R1 by Lemma 2.4 since o ¢ @e(Tw — Th,q)
and 8 ¢ ¢.(Ty — T, — fn). Now we first consider the case when ¢’ > 1 or 8 # 4,. In
this case o, 8 ¢ @e(Tyw — T g). Therefore, o, 8 ¢ @5 (Tyy — T q), and ¢* is T,, ,-stable,
which implies T,, and all T}, ; for ¢’ < s < ¢ satisfies conditions MP, R1, and R2(1), (2)
(3) under ¢*. Note that neither o nor 3 is closed in T, ¢ for ¢’ < s < ¢ for ¢, we have
T, and all T,, ; for ¢ < s < ¢ satisfies condition R2(4) because none of the closed colors
become non-closed in T, s for ¢ < s < ¢ under ¢*. However, o € ¢©*(w) N @i (Thq),
giving a contradiction to the minimality of p if p(Ty,) = p(T'), or to the minimality of
p(T) if p(Tyw) < p(T'). For the case ¢ = 0 and 8 = ¢, we have that § is only assigned
to the connecting edge f, in T}, 1 — T3, by the construction of 75, ; and the assumption
of B € p(w) and w ¢ T,, 4. Moreover, by Claim 5.1, « is interchangeable with 8 in T}, g,
hence there is only one («, 8)-leg in T;, o. Therefore P, (e, 3, ¢) is disjoint with T, ¢, and
therefore p*(f,) = 8. Note that we can conclude ¢* is Ty, -stable as before, so similarly
we have T, satisfying conditions MP, R1, and R2. We then reach a contradiction since

a € " (w) NPy (Thq)-
Case IIL: w,w ¢ T,, .

In this case, we have a ¢ (T —Th,4) and «, 8 ¢ D,, 4, which in turn give a, 8 ¢ D, U
@(Ty —w). Then «, B ¢ p.(Ty). Suppose on the contrary that P, («, 3, ¢) # Pu(a, 5, ¢).
Now consider the proper coloring ¢* = ¢/P,(a, 8, ). Since «, 8 ¢ D,, Up(T,, — w), all
the edges colored by connecting colors and their companion colors stay the same under ¢*
as o and therefore T, is an ETT under ¢*. Moreover, each T; is still closed under ¢* for
1<i<mn.Since @ ¢ @c(Tyy—Thnq), ©(f) = @*(f) for every f € E(T,,) and $(v) = 7" (v)
for every v € T, — w. Thus T is still an ETT under ¢*. Therefore ¢* is T-stable and
T satisfies conditions MP and R1 by Lemma 2.3. Moreover, T still satisfies condition
R2 under ¢* because R2 is not related to colors in @, (T — T}, ) — D», 4. However, now
a € P*(u) NP*(w), which gives a contradiction to the minimality of |T — T, 4|. O

Claim 5.4. For any two colors o, B € ©,(T),,_,), the following two statements hold.

(1) If « € 9,(Th,q) and P is an (a, B)-path other than Py (v, B, p), then T, 4 satisfies
conditions MP, R1, and R2 under the T, 4-stable coloring ¢* = ¢/P. Here by con-
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dition R2 holds, we mean R2(1) holds for j < q, and R2(2), (3) and (4) hold for
J=<q.

(2) If T g <ev(a) <0 v(B) <eyp—1, @ & 0e(Typy) and o, B & Dy g, then ©* = /P is
T-stable for any («, B)-chain P. Consequently, T satisfies conditions MP, R1, and
R2 under p*.

Remark 2. In part (1) by condition R2 holds, we mean R2(1) holds for j < ¢, and R2(2),
(3) and (4) hold for j < ¢. Therefore after applying Claim 5.4, we only need to show
that T'— T, 4 satisfies condition R2(1) for j = ¢ to confirm that T" also satisfies condition
R2 under ¢*. Moreover, after applying Claim 5.4 we could always apply Lemma 2.4 to
show that T" also satisfies conditions MP and R1 if T is still an ETT obtained from 7}, 4
by TAA under ¢*.

Proof. We first prove (1). If one of o and f3 is closed in T}, 4, we have that P,()(c, B, ¢)
is the only (a, 8)-path intersecting T, , by Claim 5.3. Therefore P is disjoint with T, 4.
Then ¢* = ¢/P is a T, ,-stable coloring and T, , satisfies conditions MP, R1, R2 under
©* by Lemma 3.1. We now suppose that neither o nor 3 is closed in T}, 4. Then similarly
to the proof of Claim 5.3, by condition R2(4), there exist the largest ¢’ such that either
a or (3 is closed in T}, o. First we consider the case when § # §,, or ¢’ > 0. We claim that
a,B ¢ @e(Tn,g — Tn,q). The proof of a ¢ pe(Ty,q — Th,q) is the same as in Claim 5.3
Case II, where we assume « is not closed in T}, ;. Now we prove 8 ¢ pe(Ty,g — Tn,q)- If
B € 3,(Thq), we argue just as in the case when « is not closed in T}, 4. If 8 ¢ @, (Th.q)s
the only possibility that 8 € pe(Th,q — Tn,g) is B = 0, and ¢’ = 1 by the definition of
ETT, which does not meet the assumption of this case. Hence o, 8 ¢ @c(Ty,g —Th,q)- By
Claim 5.1 there is at most one (v, 3)-leg in T;, ¢, which is a sub-path of P,()(c, 3, ).
Then P is disjoint with T, ;. Hence T, o satisfies conditions MP, R1, and R2 and ¢*
is Ty, o-stable by Lemma 3.1. Since «, 5 ¢ @e(Th,q — Thn.q'), Tn,q satisfies (1) (2) and (3)
of condition R2 under ¢* and ¢* is T,, ,-stable. Moreover, T;, , satisfies conditions MP
and R1 by Lemma 2.3. Since both «, 8 are not closed in T, ; for ¢’ <t < ¢, T, satisfies
condition R2(4) because none of the closed colors become non-closed in ), ;. Thus T}, ,
itself satisfies condition R2(4) and we have as desired. For the case ¢' = 0 and 3 = §,,
the only edge f, colored by 8 is a connecting edge by the construction of 7T}, 1, and
B¢ we(Tng—Tna),a ¢ @e(Th.q — Tho). Moreover, by Claim 5.1, « is interchangeable
with 8 in T, o. Hence there is only one («, 8)-leg in T), o. Therefore P is disjoint with
T,.0, and ¢*(f,) = B. Note that we can conclude ¢* is T;, ,-stable as the case earlier and
prove that T;, , satisfies conditions MP, R1, and R2, where we can proceed as earlier to
finish the proof.

Now we prove (2). By Claim 5.3, Py (a,8,9) = Py (a,B,9). In this case we
have o, 8 ¢ ©,(Th,q) U Dy and o, 8 & @e(Ty(g))- If P = Pya)(a, B,¢), then T is an
ETT under ¢* = ¢/P since o, 3 ¢ ©(T,)) and o, ¢ ©,(Tn,q) U D,. Moreover,
all the edges colored by connecting colors and their companion colors stay the same
under ¢* as ¢. Thus ¢* is T-stable. By Lemma 2.3, T also satisfies condition MP
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and R1. Since o, 8 € B,(T — T, q) — Dn,q and condition R2 is not related to colors
in $,(T = Th,q) — Dng, T satisfies condition R2 under ¢*. If P # P,(4)(c, 3,¢), then
similarly ¢* is T-stable and T is an ETT satisfying conditions MP and R1 under ¢* by
Lemma 2.3 because we still have o, 3 ¢ % (T, )) and «, 8 ¢ B,(T,q) U D,,. Moreover,
since a, B € B,(T — Ty,q) — Dn g, T still satisfies condition R2 under ¢*. O

5.2.2. Case verification

Claim 5.5. p > 0.

Proof. Suppose on the contrary p = 0, that is, T = T, ;U (e, yo). We consider two cases.
Case I: ¢ = 0. In this case T}, = T}, is closed and ey is a connecting edge.

Let o € ©,(Th,q) N ®(yo). Let k be the minimum index such that v, € @,(Tk).
By condition R1, v, € 9,(T%) and v, ¢ ¢c(T). Let ¢* = /(G — Tp,,vn, ). By
Lemma 3.1, T satisfies conditions MP, R1, and R2 under the T-stable coloring ¢*. Note
that Py(y,)(0n, Yn, ©*) = Pyo(0n, Yn, ¢*) by Claim 5.3 where v(+,,) is the unique vertex in
V(T},) such that v, € P(v(yn)). Because eq is the first edge in Py(,)(dn; Yn, ) N (1),
Py(4,) (00, ¥n, ©*) contains only one edge colored 6, in 9(7;,) under the coloring ¢*. Hence
there is another (d,,, v, )-chain @ intersecting 9(7},) under ¢*. Let s be the smallest index
with s > k such that V(Q) NV (Ts) # 0. Let ¢* = ¢*/Q. We claim that (? is a Ti-stable
coloring. We first consider the case s > k. Then V(Q) N V(Ts—1) = 0. By Lemma 3.1,
0% is Ts_1 U (fs,b(fs))-stable and Tis_1 U (fs, b(fs)) is still an ETT under (2. Because
Y & pe(Ts) and §,, ¢ p(Ts — Ts—1 — fs—1) where f,_; is a connecting edge, we have
©*(f) = ¢*(f) for all f incident to V(Ts_1), ¢*(f) = ¢*(f) for all f € E(Ts_1) and
7" (v) = §?(v) for all v € V(Ty). Therefore T, is still an ETT under ¢? with the same
connecting colors, connecting edges and companion colors as under ¢*, and ¢(f) = ¢*(f)
for every f incident to V(Ts_1) if o(f) € {di,7:} or ¢*(f) € {ds, %} with 1 <i<s—1.
Hence (? is T-stable. We then assume s = k. By condition R1 and the definition of ETT,
0, has not been used as a connecting color in Ty and 7, has not been used as a com-
panion color in T, i.e., v; # v, and §; # §,, for 1 < i < s. Therefore we also have that
@(f) = ¢*(f) for every f incident to V(Ts-1) if p(f) € {0s,7i} or ¢*(f) € {d;, v} with
1<i<s—1,and T, is an ETT under <,02 with the same connecting colors, connecting
edges and companion colors as under ¢*. Thus ¢? is T,-stable in both cases. However,

under the coloring ¢?, T} is no longer closed, giving a contradiction to MP condition
of T.

Case II: ¢ > 0. In this case T, 4 is not closed although it is (U(;heDn’qI‘Zfl)’—closed.

Assume without loss of generality that eq is colored by v € I'""!. Let a € §,,(T},,4) N
?(yo)- Let u = a(ep) the endvertex of ey in T}, ,. We further assume that v € T), ;» —
Ty.q—1 for some ¢’ < g where T,, _1 = () for convenience. We claim that v(yg) < wu.
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Otherwise we can assume v(yg) € Ty s — T s—1 for some ¢ < s < ¢, and then 7 is
closed in T, s by condition R2(4). Combining with the assumption u <y v(yy), we get
yo € T, s, a contradiction. Hence we have as claimed. Let v € $(u). Clearly a # yy and
v # o because ¢(eg) = o and «a, 7y are missing at the endvertices of eg. Since both v(«)
and u are in T}, 4, we have Py, (a,7,¢) = Py(a,7,¢) by Claim 5.3, and Py, (o, 3, ¢) is
different from the path above. Moreover by Claim 5.4, ¢* = ¢/P,, (e, 7, @) is T}, 4-stable
and T, , satisfies conditions MP, R1, and R2. Since a # 7o and v # 7o, ¢*(e0) = 7o
Note that v € $*(u)NP*(yo). Let 2 be the coloring obtained from ¢* by recoloring ey by
7. Hence vy € B%(u). In the case u ¢ T),, since ¢* and o? are only differed by one edge e
and both endvertices of e are outside of T,, —u, (2 is T},-stable and T}, satisfies conditions
MP, R1, and R2 by Lemma 3.1. Since v(7y) <; u, we have 7o € $%(u) N%>(v(70)), giving
a contradiction to the minimality of q. Now we assume u € T,. Then similarly ¢? is
T,-stable and T,, satisfies conditions MP and R1 by Lemma 3.1. Since m(Ty,) < n — 1,
T, is elementary under ¢? by our assumption. However, we have vy € % (u) N%2(v(70)),
giving a contradiction. O

The remainder of this proof is divided into three cases based on the value of p(T).
Recall that the path number p(T') is the smallest index ¢ € {0,1,...,p} such that the
sequence y; 1T := (Y;, €i41, ..., €p, Yp) is & path in G.

Case 1. p(T') = 0.
In this case T'— T}, 4 is a path, so we call T" a Generalized Kierstead path.
Claim 5.6. We may assume o € B(y;) N@(yp) for some 0 < i < p.

Proof. Suppose a € B(y,) N H(v) for some v € V(T ,). We first consider the case
a & pe(T —Thyg). Let B € @(yp—1). By Claim 5.3 Py(a,8,9) = P, _, (o, B,¢) and
P, (a, B, ) is difference from the path above. Let ¢* := ¢/P, (a, B, ¢). By Claim 5.4,
Th,q is @/¢*-stable and satisfies conditions MP, R1, and R2. Since «, 8 ¢ ¢c(Ty, —Tn.q),
T clearly satisfies condition R2 under ¢*. By Lemma 2.4, T also satisfies MP and R1
under ¢*. Note that we have 8 € " (yp—1) N ¥"(yp), Claim 5.6 holds.

We now consider the case o € ¢ (T — T), ). Following order <, let e; be the first
edge in T'— T;, , such that o = p(e;). We first consider the case j > 1. Let 8 € (y;-1)-
By Claim 5.3, Py(a, 3,9) = Py,_,(c, B,9) and P, (a, 3, ) is different from the path
above. Moreover, by Claim 5.4 ¢* = /P, (c, 3,¢) is a T, 4-stable coloring and T}, 4
satisfies conditions MP, R1, and R2. Moreover, T is still an ETT obtained from T, 4
by TAA under ¢* and therefore it satisfies MP and R1 by Lemma 2.4. Clearly, under
©*, condition R2 holds for T if @ ¢ T'?. If @ € T'?, say a = ;1 for some 0 < i < n,
by condition R2 we have §;, € @(w) for some w =<, y;_1. Since only edges after w in

the order <, may change colors between o and 3, condition R2 also holds under ¢*.
Since 8 € $*(y;—1) N ¥*(yp), Claim 5.6 holds by simply denoting ¢* as ¢. From now
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on when we claim that T satisfies MP, R1, and R2 without checking MP and R1, we
either follow Lemma 2.4, or the checking of those conditions are trivial, especially after
applying Claim 5.3.

Now we assume that 7 = 0. In this case ¢ > 0, since ¢ = 0 implies a = §,, which
is a contradiction to o € B,(T, ). Therefore, @ = ¢(eg) where a € I'""1. Note that
a ¢ I'? by condition R2. We will show that there exists v € $,(T,,q) — I'? such that
«v is closed in T, 4. By condition R2(4), T;, 4 is (U(;hequFZ*l)*—closed. Therefore, T}, 4
is closed for colors in B, (Th,q) — [9~! because Us,ep, ,I'f ' C I'9~1. Hence we need to
show that there exists v € @, (T, 4) — T9UT? 1. Since I'" =191 C 3, (T g — Thg-1)
by condition R2 and the assumption that T, ,—1 is elementary, we have |(I'7 UT'7"1) N
Zu(Tog 1)l = P9 15, (T 1)| < 20 and [, (Tog 1)| > [7,(T1)]+2(n—1) = 2n-+11.
Therefore [3,(Ty,q) — T UL = [8,(Thg-1) = T )| + [@y(Tng — Tng-1) — (T7 =
Y > @, (Th.g—1) —T97Y > (2n+11) —2n > 11, where we have 7y as desired. Now by
Claim 5.3, Py(a)(a, 7, ¢) = Py(y)(a,7, ), and Py (c, B, ¢) is disjoint with T}, ;. Therefore
by Claim 5.4, T}, , is stable under ¢* = /P, (a,7,¢) and satisfies conditions MP, R1,
and R2. Moreover, since eg € d(Ty4), €0 ¢ Py, (a7, ). Since a,y ¢ 'Y, Ty, satisfies
conditions MP, R1, and R2 under ¢*. Now v € $*(y,) N %" (v) for some v € V(T,, ,) and
« # 7y, which returns to the case either v ¢ ¢, (I' =T, 4) or j>1. O

Among all T-stable colorings satisfying conditions MP, R1, and R2, we assume that
i is the maximum index such that o € B(yp) N B(y;).

Claim 5.7. i = p — 1.

Proof. Suppose on the contrary ¢ < p — 1. We first consider the case a ¢ D, ,. Let 6 €
P(Yit1)- If 0 & Dy g, then {o,0} N Dy, ; = 0. By Claim 5.3, Py, (a,0,¢) = Py, (o, 6, ¢).
Let ¢* = ¢/P, (o, B,¢). Since both y;, y;11 € T —T), g and a ¢ T}, ,, by Claim 5.4, T'is
also an ETT under ¢* and conditions MP, R1, and R2 hold. But 6 € 3" (y,) N &* (Yi+1),
which contradicts the maximality of .. We now consider the case § = J; for some k <
n. By Claim 5.3, Pyy,,)(o, Vr1,9) = Py, (o, Y1, ) and P, (o, k1, ) is different from
path above. Note that P, (a,vk1,9) = ¥, can occur if yu1 € B(yp). By Claim 5.4,
0" = @/Py, (a,vk1,¢) is a T, 4-stable coloring and T;, 4 satisfies conditions MP, R1, and
R2. Moreover, since a ¢ ¢.(Ty;+1) and §; € B(yi+1), T still satisfies conditions MP,
R1, and R2 under ¢*. Then, by Claim 5.3 again, P,(y,,)(0k,Vk1,%©") = Py, (0r, k1, ")
and Py, (g, Vk1,¢*) is different from the path above. Let ©** = ¢*/P, (0k,Yk1,%"). By
Claim 5.4, ¢** is T}, 4-stable and T, 4 satisfies conditions MP, R1, and R2 under ¢**.
Note that yx1 ¢ @3 (Ty,,, — 1
they are colored the same under ¢**, we see that T satisfies condition R2. However under

T, q), and 0y, is only used by connecting edges in T}, ,, where
©**, 0k € D (yp) NP (Yit1), giving a contradiction to the maximality of 1.

We now consider the case a@ € D,, 4, say o = 0j for some k£ < n. Since ¢(e;t1)
can not be both v and i, we assume without loss of generality p(ej+1) # 1. By
Claim 5.3, Py(y,,)(0k; Yr1, ) = Py, Ok, Yk1, ) and Py (0k,Vk1, ®) is a different path. Let
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©* = @/P, (0k, k1, @). By Claim 5.4, ¢* is T;, 4-stable and T;, 4 satisfies conditions MP,
R1, and R2. Now vx1 € $*(yp). Moreover, since yg1 ¢ @, (T, —Tn,q) and J is only used by
connecting edges in T}, where they are colored the same under ¢*, T' satisfies conditions
MP, R1, R2 and ¢*(eiy1) # Yr1- Hence vi1 & 07 (Ty,, — Thn,q)- Let 0 € % (yi41). By the
minimality of V(T —T, 4), 0 # vr1. By Claim 5.3, Py(4,,)(0, k1, ©*) = Py, (0,71, 0%),
and P, (0,7vk1,¢") is a different path. By Claim 5.4, ¢o** = ¢©*/P, (0,vk1,¢") is
T, q-stable and T, 4 satisfies conditions MP, R1, and R2. Moreover, since 0 € ¢.(Ty,, )
implies § = 0,, (m < n) which is only used by some connecting edges in T}, , and
Ye1 & ©5(Tyisy — Tnyg), @ is T), g-stable ensures T satisfies conditions MP, R1, and R2
under ¢**. However, 6 € 3" (y,) N @ (yi+1), giving a contradiction to the maximality
ofi. O

Now we have i = p—1. Let ¢(e,,) = 6. Since a € B(y,) NB(yp—1), we can recolor e, by
a. Denote the new coloring by ¢*. Then 6 € B*(y,—1), and ¢* is T, _ -stable. Moreover,
T,,_, satisfies conditions MP, R1, and R2 under *. Note that v(6) <¢ y,—1, we have a
counterexample which has one less vertex than T', giving a contradiction. This completes

Case 1.
Case 2. p(T') = p > 1. In this case, y,—1 is not incident to e,. Let § = ¢(ep).

We divide this case into a few subcases. In summary, we will prove Case 2.1.1 inde-
pendently. Case 2.1.2 is redirected to Case 2.1.1 and Case 2.2.1, Case 2.2.1 is redirected
to Case 2.1.1, Case 2.2.2 is redirected to Case 2.2.1, which is further redirected to Case
2.1.1. Case 2.3.1 is redirected to Case 2.1, Case 2.3.2 is redirected to Case 2.1.1 and Case
2.2. Therefore, at the end, there is no loophole in our proof. The next figure describes
the above.

case 2.1.2

case 2.1.1

Case 2.1. o € (yp) N B(yp—1) and o € D, .

Assume a = ¢, for some m < n. Since 0, € B(y,), we have 6§ # J,,. Note that
0 € D, 4 may occur.

Case 2.1.1. 6 ¢ B(yp—1).
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We first consider the case § ¢ I'". By condition R2, Y1, Ym2 & @e(Ty,_, — Tn,q)-
Thus Ym1, Ym2 € ©e(T — Tnq). If ym1 € @(yp), then v,,1 is missing twice in the ETT
T* = T, qU (€0, Yo, €1,.., €p—2,Yp—2, €p, Yp) When p > 2. Here T* gives a coun-
terexample smaller than 7. If p = 1, we must have ¢ > 0. Otherwise since T}, ¢ is
closed for colors in @, (T,,0), we have 8 € B(yp—1), giving a contradiction. We then
consider T}, ;4 U (e1,y1) as a smaller counterlexample. Note that Th.q U (€1, y1) still sat-
isfies conditions MP, R1, and R2 while dropping eg, as ¢(e1) € Ughepnqu‘}fl and
p(er) =0 ¢ I'. By Claim 5.3, Py(4,..)(0m; Ym1,®) = Py,_, (6m, ¥m1, ¢). Now we consider
Typypr = TngU (Yo, €1, Yp—2,€p, Yp, €p—1, Yp—1) Obtained from T" by switching the or-
der of joining vertices y, and y,_1. We can see T}, , _, is also an ETT of (G, e, ¢) since
0 ¢ P(yp—1) and 0 ¢ T'Y and conditions MP, R1, R2 are satisfied. Applying Claim 5.3
again, we have Py(y,, y(0m, Ym1,¢) = Py, ,

Now we assume 6 € I['?7. Without loss of generality we say 6 = -, for some

k < mn. By Claim 5.3, Py, ) (s Y1, ©) = Pyyy Gy Y1, @)- I 85 & B(yp-1), Ty, .y,
also satisfies MP, R1, and R2, where we proceed in the same fashion as the previ-

(0m,Ym1,®), giving a contradiction.

ous case and consider T, , . Since 7,1 can not be both v,,; and v,,2, we assume
Ok € B(yp—1) and ym2 # Yk1. By condition R2, we have vi,2 ¢ @e(T'—T5,q). By Claim 5.3,
Py(yma) Oy Ym2, ) = Py, (6m,Yma2, @) and that P, (0, Yme, @) is different from the
path above. Note that V2 € @,(Th.4), by Claim 5.4, T,, , is an ETT satisfying condi-
tions MP, R1, and R2 under the T}, ,-stable coloring ©* = ¢/P, (dm,Ym2, ). Moreover,
T under ¢* satisfies conditions MP, R1, and R2 since Y2 ¢ @e(T — T),,4). Furthermore,
the combination of d,, € B(yp—1) and 6 = 71 implies 6, is only assigned to connect-
ing edges in T. Therefore, Vo ¢ @i(T — T),4) because Vo ¢ (T — T,,4) and no
0 edge in T is recolored under ¢*. By Claim 5.2, [@,(Ty,_,) — @5 (Ty,_, — Thgq))| >
11 + 2n. Hence there exists 3 € @*(V(T,,_,)) — I'Y such that 8 ¢ @i(T — T,q).
By Claim 5.3, Py(q,,)(8,Ym2,%") = Pu(g) (B, Ym2, ¢"), and Py, (B, Ym2, ") is a dif-
ferent path than above. Let ¢** = ¢*/P, (8, Vm2,¢*). Applying Claim 5.4, we see
that the coloring ¢** is T), o-stable and T, , satisfies conditions MP, R1, R2. More-
over, since Ym2, 8 ¢ @i(T — Ty q)s Ym2, B ¢ @i (T —T,,4). Hence T satisfies conditions
MP, R1, and R2 under ¢**. Now 8 € ©"*(y,). By Claim 5.3, Py, (3, k1, ¢™) =
Py (8,71, 0™"), and Py (B,7k1,¢™") is a different path than above. Finally, we let
O = /P, (B,Yk1,¢""). Since f ¢ @*(T — Ty4) and by Claim 5.4, we can see
that T satisfies conditions MP, R1, and R2 under ¢***. However, under ¢*** we have

90***(61:) = ﬁa Y1 € @ (yp) and U(ﬂ) =¢ Yp—1- Hence Tn,q U (y07 €15y €p—2,Yp—2,Ep, yp)
is a counterexample smaller than T, giving a contradiction.

Case 2.1.2. 0 € P(y,—1). In this case 6 # d,,, and 0 ¢ B,(T,.4)-

Note that 4, is only assigned to connecting edges in T'. By Claim 5.3, Py(y,.,)(0m.,
Ym1,0) = Py, (0m»Ym1, ) and Py (8, Ym1,¢) is a different path from above. Let
©* = /Py, (6m,Ym1,¢). By Claim 5.4, in T}, ;-stable coloring ¢*, T}, 4 is an ETT satisfies
conditions MP, R1, and R2. Moreover, Y1 ¢ @e(T—T),4) and d,, is only used by connect-
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ing edges in T ensures T satisfies condition R2 under ¢*. Since V1 € @ (Th,q), by apply-
ing Claim 5.3 again, we have Py, .)(0,Ym1,¢*) = Py, , (0, Ym1,¢*) and P, (0, ¥m1,¢")
is a different path than above. Let o** = ¢* /P, (0,vm1,¢*). Now since y,u1 € By (Th,q),
by applying Claim 5.4, we see that under the T, 4-stable coloring ¢**, T}, 4 is an ETT
and satisfies conditions MP, R1, and R2. Moreover, T satisfies conditions MP, R1, and
R2 under ¢** since Y1 & @e(Typ—1 — Tp,q) and 0 may only be used by connecting
colors in T if § = d;, for some k < n. Note that under ¢**, 8 € T**(y,) N T**(yp—1)
*%

and ¢**(ep) = Ym1. If 6 € D,, 4, then under ¢** we have Case 2.1.1. So we may assume
0 ¢ D,, 4, which will be handled in Case 2.2.1 below (here 6 is « in Case 2.2.1 because

0 €2 (yp) NP (Yp—1) and ©**(ep) = Ym1 & P (yp-1))-
Case 2.2. o € P(yp) NP(yp—1) and o ¢ D,, 4.
Case 2.2.1. 6 ¢ B(yp—1).

In this case, Ty, , = Th,qU (Yo, €1, -, Yp—2,€p, Yp, €p—1,Yp—1) is also an ETT under
 satisfies conditions MP, R1, and R2 except for the case where 0 € I'?, for some m < n
and d,, € P(yp—1). We first assume there does not exist 1 < m < n such that § € T'Z,
and 0,, € B(yp—1). By Claim 5.2, we have |G, (Typ—1) — ¢(E(Typ—1 —Tn,q))| > 2n+ 11.
So there exists a color 8 € B,(Typ—2) — Dp 4 such that 5 ¢ ¢.(T — T, 4). We claim
that 8 ¢ ®(yp). Otherwise, T, 4 U (Yo,€1,-.., €p—2, Yp—2,€p,Yp) is a counterexample
smaller than T', giving a contradiction. Since a, 3 ¢ D, 4, by Claim 5.3 P, g)(a, 8, ¢) =
Py, (o, B,¢). Applying Claim 5.3 to T, ,,._,, we see that P,g)(c, 8,9) = P, (o, 3, ¢).
So, P,(s)(a, B, ) has three endvertices v(3), yp—1 and y,, a contradiction. Hence, we
may assume 6 = v,,1 and 6, € P(yp—1) for some m with 1 < m < n, which in turn gives
Ym2: & ¢ pe(T — T, 4) and 0, is only used by connecting edges in T

By Claim 5.3, Py(4,..)(@Ym2,9) = Py, (0, Ym2, ) and P, (o, Ym2,®) is a dif-
ferent path from above. Let ¢* = /P, (o, Ym2,®). Since yma € @,(Th,q), by ap-
plying Claim 5.4, we see that, under ¢*, T, , is an ETT and satisfies conditions
MP, R1, and R2. Moreover T satisfies condition MP, R1, and R2 under ¢* because
Ym2, & & (T — T ). If 6y € B (yp), then with 6, € T*(yp) N P (yp—1) and
©*(ep) = Ym1 ¢ ¥ (Yp—1), where we have Case 2.1.1. Hence 6, ¢ @*(yp). Now by
Claim 5.3, Py(4,,.,)(0m, Ym2, ") = Py, (0m, Yma, ¢*), and Py, (6m, ym2, ¢”) is different
from the path above. Let ©** = ©* /P, (0m, Ym2, ¢*). Since ")/mg € 0,y (Th,q), by apply-
ing Claim 5.4, we see that under the Tj, 4-stable coloring ¢**, T}, ;, is an ETT satisfies
conditions MP, R1, and R2. Additionally, T' satisfies condition MP, R1, and R2 since
Yma & @i(T —T),4) and d,, is only assigned to connecting edges in 7. In ¢**, we have
Om € T (yp) N T (Yp=1), Ym1 = ¢ (ep) ¢ P (yp—1), which also leads us back to
Case 2.1.1.

Case 2.2.2. § € B(yp—1). In this case, a@ & pe(T — T q)-
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We first assume 6 = d,, for some m < n. By condition R2, ym1 ¢ @e(T — Thq).
By Claim 5.3, Py(y,.,)(0 Ym1,9) = Py,_, (&, Ym1,¥), and P, (&, Ym1, ) is a path dif-
ferent from above. Let ¢* = ¢/P, (a,Ym1,¢). Since Y1 € B,(Th,q), we see that ¢ is
T, q-stable and T, , satisfies conditions MP, R1, R2 under ¢* by Claim 5.4. More-
over T satisfies condition MP, R1, and R2 since a,Vm1 ¢ @c(T — T5,4). Note that
Ym1 & Pe(T — T q). By Claim 5.3 again, Py(y,.,)(6m1, Ym1,®*) = Py, (0m1, Ym1,¢*),
and P, (0m1,Ym1, ") is a different path from above. Let ¢** = ¢©*/P, (0m1,Ym1, ")
Since Yim1 € @,(Th,q), by applying Claim 5.4, T,, , is an ETT satisfying conditions MP,
R1, and R2 under the T, 4-stable coloring ¢**. Since v1 ¢ @5 (T'—T), ), T satisfies condi-
tions MP, R1, and R2 under ¢**. Note that under ¢**, we have 6,, € T (y,) NG (Yp—1),
Ym1 = ¢**(ep) € T (yp—1), which is Case 2.1.1. So, we assume 6 ¢ D, ,.

By Claim 5.2, there exists a color 5 € @,(T},_,) — Dpnq such that 8 ¢ p.(T — T, 4)
satisfying either 3 ¢ I'? or there exists an r € [n] with 8 = v,1 € I'? and §, € §,(Ty,_,)-
By Claim 5.3, Py(g)(a, B,9) = P,,_,(a,,9) and P, (o, 3,¢) is a different path from
above. Let ¢* = np/Pyp( a, B, ¢). Applying Claim 5.4, we see that under the T, ,-stable
coloring ¢*, T}, 4 is an ETT satisfying conditions MP, R1, and R2. Moreover 1" satisfies
conditions MP, R1, and R2 under ¢* since o, ¢ @o(T — T), ¢). In ¢*, we have 8 €
7" (p)1%" (0(9) w0 o) # y-3. oo hat 0 (T, ~To) a0 3 53T~ )
Since 8,60 ¢ Dy 4, by Claim 5.3, Py (0,53,¢%) = P,,_,(0,8,¢*) and P, (0,0,¢") is
different path other than above. Let ¢** = ¢/P, (6, 3,¢*). Applying Claim 5.4 again,
we see that under ¢**, T}, ; is an ETT satisfies conditions MP, R1, and R2. Now we
check R2 for T'. Since 0 ¢ 3 (T, , — Thq) and 8 ¢ @5(T — Ty 4), we have R2 being
satisfied if 5 ¢ I'?. For the case when = v,1 € I'?, we have 0, € @,(Typ—2) which
in turn gives condition R2. Finally by Lemma 2.4, T satisfies MP and R1 under ¢**).
However, we have 6 € " (y,) N T**(yp—1) and ¢**(ep) = B ¢ F**(yp—1), which goes
back to Case 2.2.1.

Case 2.3. a € B(y,) NP(v) for a vertex v <4 Yp_1.

Claim 5.8. We may assume o ¢ wo(T — T, ) such that either o ¢ D,, , UT? or there
exists k € [n] with a = 0, € B,(T) and Vi1, V2 & @e(T — Thq)-

Proof. By Claim 5.2, we have ¢, (T, _, — Dy, UT'?"Uq, (T,

Yp—2 Yp—2
index k such that all 0x,v%1 and yko € B,(Ty,_,) — @e(T — Ty q). The first inequality
implies that there exists a color § € B, (Tp—2) — Dy ¢ UT9U @ (T — T, 4). If the second
case happens, we take 8 = 0. If 5 € B(y,), we are done. Hence we assume § ¢ B(y,).

Let P:= P, (a, 3, ). We will show one of the following two statement holds.

T,.q)| > 4 or there exists

P: In coloring ¢* = ¢/P, T is an ETT and satisfies conditions MP, R1, and R2.
Q: In ¢, there exists a non-elementary ETT T” with the same ladder as T and ¢ splitters
where T), ; C T" such that conditions MP, R1, and R2 are satisfied, but p(T") < p(T).
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Note that statement P gives Claim 5.8 while statement Q gives a contradiction. Note
that 5 ¢ I'? by the choice of § in Claim 5.2. We proceed with the proof by considering
three cases: a ¢ 'Y, a € T — (T — T, 4) and a € TN (T — T3, 4).

If V(P)NV(Ty,_,) = 0, by Claim 5.4, we can show that under p* = /P, T is an
ETT and satisfies conditions MP, R1, and R2, so statement P holds. Hence we assume
V(P)NV(T,,_,) # 0. Along the order of P from y,, let u be the first vertex in V(T,,_,)

and P’ be the subpath joining u and y,. Let

T"=T, ,UP ifu#y,,and
T =T, UP  ifu=y,.

T T Yp-1
Note that eg ¢ 7' may happen when ¢ > 0, but it is easy to see that 7" is still an ETT
with the same ladder as T and ¢ splitters where T,, , C T".
Case I: o ¢ I'. Since o, 8 € $,(Ty,_,) and a ¢ I'Y, T" is an ETT satisfying conditions
MP, R1, and R2. Hence statement Q holds and gives a contradiction to the minimality
of p(T).

Case IL: o € T'9 N (T — Ty, ). Assume o = 1 for some m < n. Since p(ep,) # a, o €
@e(Ty,_, —Tn,q)- Therefore we must have 6,, € 3, (T}, _,) by condition R2. Furthermore,
B € @,(Typ—2). Therefore T” is an ETT and satisfies conditions MP, R1, and R2. Hence
statement Q holds.

Case III: o« € T — . (T — T, 4)- Let ¢* = ¢/ P. By Claim 5.3, P is a path different from
Pyay(a, B,9) = Pypy(a, B,¢). Hence ¢* is T, 4-stable and conditions MP, R1, R2 are
satisfied for T;, ; by Claim 5.4. Note that in this case ¢(f) = ¢*(f) for every edge f in
E(T — T, q). Therefore T is an ETT satisfying conditions MP, R1, and R2 in coloring
©*. Hence statement P holds. O

Now let ¢ and a be as the claim above. We then consider two cases.

Case 2.3.1. § = ¢(ep) ¢ B(yp—1)-

Let T =T}, g U (€0, Y0, €1, Y15 ---» €p—2; Yp—2, €p, Yp). In this case, T” is an ETT satisfies
conditions MP and R1. Note that 7" also satisfies condition R2 with the exception
0 = Ym1 and d,,, € B(y,—1) for some m < n, which gives a contradiction to the minimality
of p(T'). Hence we may assume 6 = 7,1 and d,,, € P(yp—1) for some m < n. By condition
R2, we have 1 ¢ we(Ty,_, — Tn,q). By Claim 5.3, Py(a, Ym1,9¢) = Py(yi) (@ Ymi1, ¢)
and P, (&, Ym1, ) is different from the path above. Let ¢* = /P, (a,VYm1,¢). By
Claim 5.4, T;, 4 is an ETT satisfying conditions MP, R1, and R2 under the T;, ;-stable
coloring ¢*. Since a ¢ (T —T, 4), for every edge f € E(T —1T,,_4) we have ¢*(f) = ym1
only if ©(f) = vm1. Therefore under ¢*, T is an ETT satisfying conditions MP, R1, and
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R2. Note Ym1 € @*(yp) N T (v(Ym1)). Since 0y, € B(Yp—1), we have 0, & (T — T q).
Let o** = ©*/P, (6m,Ym1,9"). Applying Claim 5.3 and Claim 5.4, we can show as
before that under ¢**, T' is an ETT and satisfies conditions MP, R1, R2, and §,, €
P (yp) NT**(yp—1)- So, under p** we go back to Case 2.1.

Case 2.3.2. 0 = p(ep) € B(Yp—1)-

We first assume 6 = ¢(ep) = dy, for some m < n. By condition R2, ypm1 & @ (T =T, 4)-
By Claim 5.3, Py(4,..)(0, Ym1,9) = Py(a,Ym1,¢) and Py, (o, Ym1, ) is a different path
from above. Let ¢* = /P, (&, Ym1, ). By Claim 5.4, under the T}, 4-coloring ¢*, T}, 4 is
an ETT satisfying conditions MP, R1, and R2. Since o, ym1 ¢ @e(T' =Ty 4), T is an ETT
satisfying MP, R1, and R2 under ¢*. Now 7,1 € B (yp) and 0, Ym1 ¢ ©5(T — Th q)-
Similarly, by applying Claim 5.3 and Claim 5.4, we can show that under the coloring
©** = 9" /Py (0, Ym1,¢*), T is also an ETT satisfying conditions MP, R1, and R2.
Now 6, € 2" (yp) N F**(yp—1), which is dealt in Case 2.1.1.

We now consider the case 6 = p(e,) ¢ Dy 4. Since 0 € P(yp,—1) and T, is ele-
mentary, we have § ¢ I'?, so § ¢ D,, , UT'%. Suppose a # D,, 4. Then, a # D,, , UT?
by Claim 5.8. By Claim 5.3, Py (a,0,¢) = P, _ (a,0,9) and P, (a,0,¢) is a differ-
ent path than the one above. Let ¢* = /P, (a,0,9). By Claim 5.4, under ¢*, T, 4
is an ETT satisfying conditions MP, R1, and R2. Since 0,a ¢ (T, , — Tn ) and
a,0 ¢ D, ,UT? T is an ETT satisfying conditions MP, R1, and R2 under ¢*. Now
0 € 2*(yp) N ®" (yp—1), which is dealt in Case 2.1. Hence we may assume & = 0,, € Dy, 4
for some m < n. By Claim 5.8, we have ym1,Ym2,0m ¢ @c(T — Ty,4). By Claim 5.3,
Py (@ Ym1,9) = Py, Ym1, ) and Py (o, Ym1, @) is different from the path above.
Let ¢* = /Py, (o, Ym1,®). Since Ym1,0m ¢ ©c(T' — Tn ), by Claim 5.4, T), ; is an ETT
satisfying conditions MP, R1, and R2 under ¢*. Moreover, since Yi,1, 0m ¢ @ (T — Tnq),
T satisfies conditions MP, R1, and R2 under ¢*. Note v,n1 ¢ @i (T — T, 4). Hence by
Claim 5.3, Py(y,..) (0, Ym1,©*) = Py, (0,%m1,¢*) and P, (0, ym1, ") is a different path
than above. Let o** = ¢*/P, (0,vm1,¢*). Again by Claim 5.4, T}, , is an ETT satisfying
conditions MP, R1, and R2 under ¢*. Note that from ¢* to ¢**, in E(T —T, 4), ep is the
only edge changed color from 6 to 7,,1. Since d,, = « € ¢**(v), T also an ETT satisfying
conditions MP, R1, and R2 under ¢**. Now 6 € ¥**(y,) N @**(yp—1), which is dealt in
Case 2.2. This completes Case 2.

In the remainder of the proof, let I, = {i > 0 : §(y,) NP(y;) # 0} and let j = p(T).
Clearly I, = 0 when {v : B(yp,) NB(v) # 0} C V(T),4). For convention, we denote
max([,) = —1 when I, = (). By the assumption of p(T'), we have j > 1 and y;_1 is not
incident to e;.

Case 3. p(T) <p—1.

Firstly note that we can assume max(I,) < p(7T'). This is because the case max([,) >
p(T) is similar to Case 1 and can be handled in the same fashion: We first show that
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max(I,) = p — 1 and replace color ¢(e;,) by « to get a smaller counterexample. Here we
omit the details.

Let j = p(T). Then j > 1 and e; ¢ Eq(y;—1,y;). Let min(l,) = i if I, # (). We let
y;j—2 be the last vertex in T;, 4 if j = 1, and in this case T}, , =T}, 4.

Yj—2

Claim 5.9. We may assume there exist & € B(y,) NP, (Ty, ,) such that either oo ¢ T'9, or

Yj—2
a = Y1 € 'Y with 6y, € Dy g and v(d) =4 Yj—2.

Proof. We first consider the case when I, # (). Since we assume max([,) < j, i < j— 1.
If i <j—1, then j —2 > 0, and we have a € %(y,) NP, (Ty,_,) with o ¢ I'Y because
I'" € %, (Tn,q) and there is a color in @(y,) NP, (Ty, _, —Th,q)- Hence we assume i = j—1.
Thus we have a color a € @(y;) N B(y,), and therefore o ¢ (T, 4) and o ¢ T'7. By
Claim 5.2, there exists a color § € @, (Ty,_,) such that 3 ¢ (T, , — T 4) and either
B & DngUT9 0r =0k € Dy g with ye1,vr2, 0k & 0e(Ty;,_, — T q)-

We now consider the case o = §,,, € D,, 4 for some m < n. By condition R2, v,,1 ¢
0e(Ty, —Thq))- By Claim 5.3, P,y ) (0, Y1, @) = Py, (0ms Ym1, ) and Py, (6, Ym1, ¢)
is a different path. Let ¢* = ©/P, (0m; Ym,,®). By Claim 5.4, under the T, ,-stable
coloring ¢*, T;, 4 satisfies conditions MP, R1, and R2. Since V1 ¢ ¢i(Ty, —Th,q) and 0,
is only assigned to connecting edges in T}, T" is an ETT satisfying conditions MP, R1,
and R2 under ¢*. Note that v,,1 & 05 (T, , — Tnq). We have v & 05 (Tys) — Tnyg)-
Moreover, 3 ¢ 0i(T,, , — Tn,q). By Claim 5.3, Py, (B, Ym1,9*) = Pys)(B; Ym1, ©*)
and P, (8,Ym1,¢*) is a different path. Let o** = ©* /P, (Ym,, 8, ¢*). By Claim 5.4, T}, 4
satisfies conditions MP, R1, and R2 under the T, ,-stable coloring ¢**. Since S, ym1 ¢
©5(Ty,_, — Tnyq), we have B,vm1 & @i*(Ty;,_, — Thq). Thus, under p**, T is an ETT
satisfying conditions MP, R1, and R2. Now 5 € **(y,) N%**(v(8)), so Claim 5.9 holds.

We now consider the case a ¢ D,, 4. Recall that a ¢ T'?. Since a € B(y,;—1) N B(Yp),
a ¢ 0Ty, —Tny). We first assume 3 ¢ D, , UT'?. Since o, B ¢ 0c(Ty,_, — Tn,q), by
Claim 5.3, Py(g)(a, B, ) = Py, (a, B, ¢) and P, («, 3, ¢) is a different path. By Claim 5.4,
under ¢* = /P, (o, B,9), T, satisfies conditions MP, R1, and R2. For any edge
f € ET,_ ), o(f) = ¢*(f) since a,8 & pe(Ty;_, — Tn,q)- Since o, 3 € B,(T,,_,), T
is still an ETT satisfying conditions MP and R1 under ¢* by Lemma 2.4. Since both
a,8 ¢ D, ,UTY T also satisfies condition R2 under ¢*. It is seen that, under ¢*,
Claim 5.9 holds.

We now assume 3 = d,, € D, 4 for some m < n. By our choice of 8, we have
Omy Ym1s Ym2 & Pe(Ty, — Tnyg)- By Claim 5.3, Py, (0 Ym1,9) = Py (,Ym1, 9)
and P, (a,Ym1,¢) a different path. Let ¢* = ¢/P, (@, Ym1,¢). By Claim 5.4, ¢* is
T, o-stable and T, , satisfies conditions MP, R1, and R2 under ¢*. Since a,Vm1 ¢
0e(Ty, — Th.q), we have o, Y1 ¢ @i(Ty, — Tn,q). So, as an ETT under ¢*, T, , can
be extended to T" and condition R2 holds. Now we have as claimed under ¢* because
6 =0m € @Z(Ty;’—ﬁ'

We then consider the case I, = 0. If o ¢ T'9, we are done. Hence we assume o =
Ym1 € I'? for some m < n. We first assume that 0,, ¢ ?,(T,,_,). Then v,1 ¢ (T —
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Th,q). By Claim 5.2, there exists a color 3 € @,(T),,_,) such that 3 ¢ ©.(Ty, — Tn,q)
and either § ¢ D, ,UT9 or B = 6 € Dyg with ye1, V2,06 € ©e(Ty, — Thyq). By
Claim 5.3, Py(y,..)(B,%m1,9) = Pypy(B,Ym1, ) and P, (B, Vm1,¢) is a different path.
By Claim 5.4, we have that T), ; is an ETT satisfying conditions MP, R1, R2 under
the T, 4-stable coloring ¢* = ¢/P, (B,Ym1,¢). Since B,Ym1 & @e(T,, — Tn,q), we have
By¥m1 & 05 (Ty, — Tnq). So, as an ETT under ¢*, T}, , can be extended to an ETT T
which satisfies conditions MP, R1, and R2. Note that under ¢* we have Claim 5.9 if
v(B) <¢ yj—2. If y; <¢ v(B), we have max(I,) > p(T). If v(8) = y;—1, we have the case
I, # (), where we can proceed as before.

We now assume that 6., € $,(Ty,_,). Since 8,y € Dn gy Om & @,,(Th,q). Without loss
of generality, we assume that 0,, € P(yx) for some k < p—1. If k < j — 1, we have
Claim 5.9, hence we assume k > j — 1. By condition R2, v, ¢ ¢e(Ty, — Tn,q). By
Claim 5.3, Py(y,..)(0m; Ym1,¢) = Py, (0m; Ym1,¢) and Py (0, Ym1,¢) a different path.
By Claim 5.4, under the T, s-stable coloring ¢* := ¢/P, (6m,Ym1,¥), Tn g satisfies
conditions MP, R1, and R2. Since ym1,0m ¢ @e(Ty, — Thn,q), T satisfies conditions MP,
R1, and R2 under ¢* because the edges of T which are colored different under ¢* and
¢ is in T, — T, , and they are colored by 7,1 or d,, in both colorings ¢ and ¢*. If
k> j—1, we have max([,) > p(T). If k = j — 1, we have the case I, # 0, where we can
proceed as before. O

We assume ¢ satisfies Claim 5.9. By Claim 5.2, there exists a color § € 3, (T}, ,) with
B & 0e(Ty, — Tn,q) such that either 3 ¢ D, ,UT? or f = 0y € Dy q With dg, Vr1, 72 ¢
@e(Ty; — Th,q) for some k < n. Now we consider the path P := P, (a, 3,¢). First we
consider the case V(P) NV (T,,_,) # 0. Along the order of P from y,,, let u be the first
vertex in V(T),,_,) and P’ be the subpath joining u and y,. Let

T'=T,, ,UP" ifu#y;_1,and
T‘/:T‘y]._1 UPI if?.l,:yjfl.

Again note that eg ¢ 7" may happen when ¢ > 0, but it is easy to see that 7" is still an
ETT with the same ladder as T and ¢ splitters where T, , C 1".

Case I: o ¢ I, Since o, 8 € $,(Ty,_,), T is an ETT satisfying conditions MP, R1, and
R2, giving a contradiction to the minimality of p(T").

Case II: o € I'?. Then by Claim 5.9, a = y,1 € I'? for some m < n and v(6,n) <¢ y;—2.
Then 6,, € §,(T),_,). Furthermore, 8 € $,(T,_,). Therefore 7" is an ETT and satisfies
conditions MP, R1, and R2, giving a contradiction to the minimality of p(T).
Therefore we have V(P) N V(T,,_,) = 0. Let ¢* = ¢/P. Then ¢* is T, -stable and
T,,_, satisfies conditions MP, R1, and R2 by Lemma 3.1. If a ¢ T'9, T satisfies conditions
MP, R1, and R2 under ¢* since o, 3 € §,(Ty,_,) and g ¢ I'". If a € T'?, by Claim 5.9,
a = Y1 € T'? for some m < n and v(d,,) <¢ yj—2. Therefore T satisfies conditions
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MP, R1, and R2 since 3,0, € @,(T,,_,) and 3 ¢ I'‘. Note that 3 ¢ ¢i(Ty, — Thn,q)
and 5 € ©*(yp,) N@"(v(B)), where v(8) <; y;—2. Denote v = v(3) for convenience. Let
v € ®(y;)- Then v ¢ I'" and v ¢ o*(T,, — Tp4). We then denote ¢* = ¢ and consider
the following two cases.

Case 3.1. v ¢ Dy, 4.
Case 3.1.1. 5 ¢ D,, .

By Claim 5.3, Pyg)(B,7,9) = Py, (B,7,%) and P, (8,7,¢) is a different path. Let
©* = @/Py (B,7,%). Then by Claim 5.4, p* is T}, 4-stable and T;, , satisfies conditions
MP, R1, R2 under ¢*. Since 7, 8 ¢ pe(Ty, — T q) and v <; y;, and moreover 7, 3 ¢ I'?,
T satisfies conditions MP, R1, and R2 under ¢*. Now v € @*(yp) N P (y;), where we
have max(I,) > p(T).

Case 3.1.2. § = 0,, € D,, 4 for some m < n.

In this case Ymi,Ym2 ¢ @((Ty, — Thgq)) by our choice on (. By Claim 5.3,
Pygy(B,Ym1,¢) = Poyon)(B,¥m1,¢) and Py (B,%m1, @) a different path. Let ¢* =
©/Py, (Ym1, B, ¢). By Claim 5.4, T}, 4 is an ETT satisfying conditions MP, R1, and R2
under the T, ;-stable coloring ¢*. Moreover, T satisfies conditions MP, R1, and R2 under
@* since 6,y = B € P, (Ty,_,) and B,%m1 ¢ 0e(Ty, — Tn,q). Similarly by Claim 5.3 again,
Pygy (7 Ym1,9") = Pyy,) (7 Ym1, ™) and P, (7, VYm1, ") a different path. Note that
we have 7, Ym1 ¢ @i (Ty;, — Tn,q)- Let ™ = ©* /Py (Ym1,7, ¢*). By Claim 5.4, T}, ; satis-
fies conditions MP, R1, and R2 under the T), 4-stable coloring ¢**. Since d,,, € @ (Ty,_,)
and v, Ym1 & 05 (Ty; —Tn,q), T satisfies conditions MP, R1, and R2 under ¢**. However,
we have v € " (yp) NP (y;), where we have max([,) > p(T).

Case 3.2. v = 0,, € Dy, 4 for some m < n.

By condition R2, Y1, Ym2 ¢ @e(Ty;, — Tn,q)- Recall that 8 ¢ o (T, — Ty q). By
Claim 5.3, Pygy (B, Ym1,9) = Pyyn)(B,Ym1,¢) and P, (B,%m1,¢) is a different path.
Let ¢* = ¢/Py (Ym1,B,¢). By Claim 5.4, T, ; is an ETT satisfying conditions MP,
R1, and R2 under the T, ,-stable coloring ¢*. Moreover, T satisfies conditions MP, R1,
and R2 under ¢* since 6,, = v € B,(T,,) and B,vm1 ¢ @e(Ty, — Tn,q). Note that
B, ym1 & 0i(Ty, — Th,q)- Similarly by Claim 5.3, Pys) (7, Ym1,©*) = Po(ymy) (V> Ym1, ©*)
and P, (V,%m1,9") is a different path. Let ¢o** = ¢©*/P, (Ym1,7,¢*). By Claim 5.4,
T}, satisfies conditions MP, R1, and R2 under ¢**. Since 6,, € @, (T},;) and v,vm1 ¢
©i(Ty;, — Thyq), T satisfies conditions MP, R1, and R2 under ¢**. Now we have 0,, €
T (yp) N®**(y;), where we have max(I,) > p(T).

This completes the proof of Case 3. Now for all cases we arrive at a contradiction,
which proved statement A. O
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Remark 3. We can see from the proof of Theorem 2.5, conditions MP and R1 are only
used to show T = Ty U (f%,b(fx)) is elementary if T}, satisfies MP and R1 where fj is
a connecting edge for each 0 < k < n. All the techniques we used during the proof are
about reducing the number of vertices to obtain a contradiction with Tj U (fi, b(fi))
being elementary. Therefore, if we can figure out new ways of adding a vertex to a closed
ETT T}, and proving the resulting ETT is elementary without R1, we may have a chance
to tackle the conjecture.

References

[1] Lars Dgvling Andersen, On edge-colourings of graphs, Math. Scand. 40 (2) (1977) 161-175. MR
0465922 (57 #5808).

[2] John Asplund, Jessica McDonald, On a limit of the method of Tashkinov trees for edge-colouring,
Discrete Math. 339 (9) (2016) 2231-2238. MR 3512337.

[3] Guantao Chen, Yuping Gao, Ringi Kim, Luke Postle, Songling Shan, Chromatic index determined
by fractional chromatic index, J. Combin. Theory Ser. B 131 (2018) 85-108. MR 3794143.

[4] Guantao Chen, Xingxing Yu, Wenan Zang, Approximating the chromatic index of multigraphs,
J. Comb. Optim. 21 (2) (2011) 219-246. MR 2770056 (2012g:05073).

[5] Mark K. Goldberg, On multigraphs of almost maximal chromatic class, Diskretn. Anal. 23 (1973)
3-7 (in Russian).

[6] Mark K. Goldberg, Edge-coloring of multigraphs: recoloring technique, J. Graph Theory 8 (1) (1984)
123-137. MR 732026 (85¢:05071).

[7] Penny Haxell, Henry Kierstead, Edge coloring multigraphs without small dense subsets, Discrete
Math. 338 (12) (2015) 2502-2506. MR 3373354.

[8] Penny Haxell, Jessica McDonald, On characterizing Vizing’s edge colouring bound, J. Graph Theory
69 (2) (2012) 160-168. MR 2864456.

[9] Ivan Tafteberg Jakobsen, Some remarks on the chromatic index of a graph, Arch. Math. (Basel) 24
(1973) 440-448. MR 0332547 (48 #10874).

[10] Jessica McDonald, On a theorem of Goldberg, J. Graph Theory 68 (1) (2011) 8-21. MR 2833960
(2012i:05105).

[11] Jessica McDonald, Edge-colourings, in: L.W. Beineke, R.J. Wilson (Eds.), Topics in Topological
Graph Theory, Cambridge University Press, 2015, pp. 94-113.

[12] Takao Nishizeki, Kenichi Kashiwagi, On the 1.1 edge-coloring of multigraphs, STAM J. Discrete
Math. 3 (3) (1990) 391-410. MR 1061980 (91£:05055).

[13] Diego Scheide, Graph edge colouring: Tashkinov trees and Goldberg’s conjecture, J. Combin. Theory
Ser. B 100 (1) (2010) 68-96. MR 2563514 (2010m:05124).

[14] Paul Seymour, On multicolourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc.
Lond. Math. Soc. (3) 38 (3) (1979) 423-460. MR 532981 (81j:05061).

[15] Michael Stiebitz, Diego Scheide, Bjarne Toft, Lene Monrad Favrholdt, Vizing’s theorem and Gold-
berg’s conjecture, with a preface by Stiebitz and Toft, in: Graph Edge Coloring, in: Wiley Series in
Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2012. MR 2975974.

[16] Vladimir Aleksandrovich Tashkinov, On an algorithm for the edge coloring of multigraphs, Diskretn.
Anal. Issled. Oper. Ser. 1 7 (3) (2000) 72-85, 100. MR 1794647 (2001g:05096).

[17] Vadim Georgievich Vizing, On an estimate of the chromatic class of a p-graph, Diskretn. Anal. 3
(1964) 25-30. MR 0180505 (31 #4740).


http://refhub.elsevier.com/S0095-8956(19)30031-0/bib416E64657273656Es1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib416E64657273656Es1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib6173706C756E64s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib6173706C756E64s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4368656E474B505331362Bs1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4368656E474B505331362Bs1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib43595A2D32303131s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib43595A2D32303131s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib476F6C6462657267s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib476F6C6462657267s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib476F6C64626572672D31393834s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib476F6C64626572672D31393834s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib486178656C6C4B32303135s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib486178656C6C4B32303135s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib486178656C6C4D3131s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib486178656C6C4D3131s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4A616B6F6273656E3733s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4A616B6F6273656E3733s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4D63446F6E616C643131s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4D63446F6E616C643131s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4D63446F6E616C645375727665793135s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4D63446F6E616C645375727665793135s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4E697368697A656B692D4B61736869776167692D31393930s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib4E697368697A656B692D4B61736869776167692D31393930s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib536368656964652D32303130s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib536368656964652D32303130s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib5365796D6F7572s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib5365796D6F7572s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib53746965625354462D426F6F6Bs1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib53746965625354462D426F6F6Bs1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib53746965625354462D426F6F6Bs1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib546173686B696E6F762D32303030s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib546173686B696E6F762D32303030s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib56697A696E673634s1
http://refhub.elsevier.com/S0095-8956(19)30031-0/bib56697A696E673634s1

	Structural properties of edge-chromatic critical multigraphs
	1 Introduction
	2 Tashkinov trees and their extensions
	3 Condition R2
	4 An applicable result
	5 Proof of Theorem 2.5
	5.1 Proof of statement B
	5.2 Proof of statement A
	5.2.1 A few properties
	5.2.2 Case veriﬁcation


	References


