
Journal of Combinatorial Theory, Series B 139 (2019) 128–162
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series B

www.elsevier.com/locate/jctb

Structural properties of edge-chromatic critical 
multigraphs
Guantao Chen a,b,1, Guangming Jing a

a Department of Mathematics and Statistics, Georgia State University, Atlanta, 
GA 30303, United States of America
b School of Mathematics and Statistics, Central China Normal University, Wuhan, 
China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 September 2017
Available online 29 March 2019

Keywords:
Chromatic index
Graph density
Critical chromatic graph
Tashkinov tree

Let G be a graph with possible multiple edges but no 
loops. The density of G, denoted by ρ(G), is defined as 
maxH⊂G,|V (H)|≥2

⌈
|E(H)|

�|V (H)|/2�

⌉
. Goldberg (1973) and Seymour 

(1974) independently conjectured that if the chromatic index 
χ′(G) satisfies χ′(G) ≥ Δ(G) + 2 then χ′(G) = ρ(G), which 
is commonly regarded as Goldberg’s conjecture. An equiv-
alent conjecture, usually credited to Jakobsen, states that 
for any odd integer m ≥ 3, if χ′(G) ≥ mΔ(G)

m−1 + m−3
m−1 then 

χ′(G) = ρ(G). The Tashkinov tree technique, a common gen-
eralization of Vizing fans and Kierstead paths for multigraphs, 
has emerged as the main tool to attack these two conjectures. 
On the other hand, Asplund and McDonald recently showed 
that there is a limitation to this method. In this paper, we 
will go beyond Tashkinov trees and provide a much larger 
extended structure, using which we see hope to tackle the 
conjecture. Applying this new technique, we show that the 
Goldberg’s conjecture holds for graphs with Δ(G) ≤ 39 or 
|V (G)| ≤ 39 and the Jakobsen Conjecture holds for m ≤ 39, 
where the previously known best bound is 23. We also improve 
a number of other related results.
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1. Introduction

Graphs in this paper may contain multiple edges but no loops. We will generally follow 
the notation and terminology defined by Stiebitz et al. in [15]. Let G be a graph with 
vertex set V (G) and edge set E(G). Denote by Δ(G) and μ(G) the maximum degree 
and the multiplicity of G, respectively. When G is clear, we simply denote Δ(G) and 
μ(G) by Δ and μ respectively for convenience. A k-edge-coloring of a graph G is a map 
ϕ: E(G) −→ {1, 2, . . . , k} that assigns to every edge e of G a color ϕ(e) ∈ {1, 2, . . . , k}
such that no two adjacent edges of G receive the same color. Denote by Ck(G) the set 
of all k-edge-colorings of G. The chromatic index χ′ := χ′(G) is the least integer k ≥ 0
such that Ck(G) �= ∅. Clearly, χ′ ≥ Δ. Conversely, Vizing [17] showed that χ′ ≤ Δ + μ. 
The gap between Δ and Δ +μ may be large since μ is unbounded. To compute the exact 
value of χ′(G), people consider the density ρ := ρ(G) of G defined below.

ρ(G) := max
H⊆G,|V (H)|≥2|

⌈
|E(H)|

�|V (H)|/2	

⌉

Since the edges of G with the same color form a matching, we have |E(H)| ≤
χ′(G)�|V (H)|/2	 for any H ⊆ G. Thus χ′(G) ≥ ρ(G). A graph G is called elemen-
tary if χ′(G) = ρ(G). Goldberg (1973) [5] and Seymour (1974) [14] independently made 
the following conjecture, which is commonly referred to as Goldberg’s conjecture.

Conjecture 1. If G is a graph with χ′ ≥ Δ + 2, then G is elementary.

As mentioned in [3], Goldberg’s conjecture is equivalent to saying that if χ′ ≥ Δ + 2, 
then it is the ceiling of the fractional chromatic index of G, which can be computed in 
polynomial time. Consequently, the NP-completeness of determining χ′ lies in deciding 
whether χ′ = Δ, Δ + 1, or ≥ Δ + 2. Hence, Goldberg’s conjecture is interesting from a 
computational complexity standpoint. This conjecture and topics surrounding it are fea-
tured in the book [15] of Stiebitz, Scheide, Toft and Favrholdt and the elegant survey [11]
of McDonald.

A graph G is called k-critical if χ′(G) = k+1 and χ′(H) ≤ k for every proper subgraph 
H of G. We also call a graph critical if it is k-critical for some k ≥ Δ. Jakobsen in [9]
made the following weaker conjecture.

Conjecture 2. Let G be a critical graph. If χ′ > m
m−1 Δ + m−3

m−1 for an odd integer m ≥ 3, 
then |V (G)| ≤ m − 2.

Historically, the following conjecture, named the Jakobsen Conjecture, has been in-
vestigated intensively in the past. Clearly, the conjecture is equivalent to Goldberg’s 
conjecture and provides a “scaler” for proving Goldberg’s conjecture.
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Conjecture 3. If G is a graph with χ′ > m
m−1 Δ + m−3

m−1 for an odd integer m ≥ 3, then G
is elementary.

Clearly, if the Jakobsen Conjecture holds for an odd integer m then it holds for every 
odd integer m′ with m′ ≤ m. The Jakobsen Conjecture has been confirmed slowly for 
m ≤ 23 by a series of papers over the last 40 years: m = 5 independently by Andersen [1]
(1977), Goldberg [5] (1973), and Sørensen (unpublished, page 158 in [15]); m = 7 inde-
pendently by Andersen [1] (1977) and Sørensen (unpublished, page 158 in [15]); m = 9 by 
Goldberg [6] (1984); m = 11 independently by Nishizeki and Kashiwagi [12] (1990) and 
by Tashkinov [16] (2000); m = 13 by Favrholdt, Stiebitz and Toft [15] (2006); m = 15
by Scheide [13] (2010); and m = 23 by Chen et al. [3]. Applying our technique, we show 
in this paper that the Jakobsen Conjecture is true up to m = 39.

A k-triple (G, e, ϕ) consists of a k-critical graph G with k ≥ Δ + 1, an edge e ∈ E(G)
and a coloring ϕ ∈ Ck(G − e). Note that in the above definition we require k ≥ Δ + 1, so 
χ′ = k+1 ≥ Δ +2. Let (G, e, ϕ) be a k-triple. For a vertex v ∈ V (G), denote by ϕ(v) and 
ϕ(v) the sets of colors assigned and not-assigned to edges incident v, respectively. Colors 
in ϕ(v) and ϕ(v) are called seen and missing at v, respectively. For each color α, let 
Eα = {e ∈ E(G) : ϕ(e) = α}. Clearly, Eα is a matching of G and G[Eα ∪ Eβ ] is a union 
of disjoint paths or even cycles with edges alternatively colored with α and β, named
(α, β)-chains. If we interchange the colors α and β on an (α, β)-chain C, then we obtain 
a new k-edge-coloring ϕ∗ of G. In this case, we say the coloring ϕ∗ is obtained from ϕ
by recoloring C, and we denote ϕ∗ = ϕ/C. This operation is called a Kempe change. 
In this paper, our recoloring techniques are based on Kempe changes. An (α, β)-chain is 
also called an (α, β)-path if it is indeed a path. For each vertex v ∈ V (G) with α ∈ ϕ(v)
or β ∈ ϕ(v), denote by Pv(α, β, ϕ) the unique (α, β)-path containing v. Starting from the 
vertex v, we also notice that path Pv(α, β, ϕ) naturally generates a linear order �Pv(α,β,ϕ)
for all vertices on the path, i.e., x �Pv(α,β,ϕ) y if and only if x is between v and y in 
Pu(α, β, ϕ). For any subgraph H of G, let ϕe(H) := ϕ(E(H)) = {ϕ(f) : f ∈ E(H − e)}
and call each color in ϕe(H) an H-used color; let ϕv(H) = ∪v∈V (H)ϕ(v) and call each 
color in ϕv(H) an H-missing color. Edges with exactly one end-vertex in V (H) are 
called boundary edges of H. Denote by ∂(H) the set of boundary edges of H. Denote 
∂α,ϕ(H) = {f : f ∈ ∂(H), ϕ(f) = α}. If ϕ is understandable, we sometimes drop the 
coloring ϕ and denote ∂α(H) = {f : f ∈ ∂(H), ϕ(f) = α}.

• We call a vertex set X ⊆ V (G) elementary if ϕ(v) ∩ ϕ(w) = ∅ for any two distinct 
vertices v, w ∈ X.

• We call a subgraph H closed if ϕe(∂(H)) ∩ ϕv(H) = ∅, i.e., no color of a boundary 
edge is H-missing. Moreover, we call H strongly closed if H is closed and all edges 
in ∂(H) are colored differently.

The above concepts have played important roles in recent development of graph edge 
chromatic theory. Given a graph G, if there exists a k-triple (G, e, ϕ) and a subgraph 
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H of G with e ∈ E(H) where V (H) is elementary and H is strongly closed, then 
ρ(G[V (H)]) = ρ(G) = χ′(G) = k + 1, verifying Goldberg’s conjecture for G. To justify 
this, we consider an arbitrary color α ∈ {1, 2, ..., k}. Suppose α ∈ ϕ(H). Then α is 
seen at every vertex of H except one, because V (H) is elementary. Since H is closed, 
∂α,ϕ(H) = ∅. Because edges colored by α form a matching, |V (H)| is odd and there are 
exactly (|V (H)| − 1)/2 many edges of G colored by α with both ends in V (H). Suppose 
α /∈ ϕ(H). Then α is seen at every vertex of H. Since H is strongly closed, |∂α,ϕ(H)| = 1. 
Because edges colored by α form a matching and |V (H)| is odd, there are also exactly 
(|V (H)| −1)/2 many edges of G colored by α with both ends in V (H). This gives us totally 
k(|V (H)| −1)/2 many edges. Including the uncolored edge e, we have ρ(G[V (H)]) ≥ k+1. 
Since ρ is the lower bound for χ′, we have k + 1 ≤ ρ(G[V (H)]) ≤ ρ(G) ≤ χ′(G) = k + 1, 
as desired. In particular, if V (G) is elementary, then we have ρ(G) = χ′(G) since G itself 
is already strongly closed. Hence, we may abuse notation slightly and call a subgraph H
of G elementary if V (H) is elementary.

Starting with Vizing’s classic result [17], searching for large elementary subgraphs has 
a long history in the study of graph edge chromatic theory. Tashkinov [16] developed a 
method to find some special elementary trees in a k-triple. Such trees are called Tashkinov 
trees. Since as we shall see later maximal Tashkinov trees are closed, the existence of 
a closed elementary set is guaranteed and the Tashkinov tree method has emerged as 
the main tool to attack Goldberg’s conjecture. However, Asplund and McDonald [2]
presented a specific limit to this method. Thus researchers started to consider extending 
Tashkinov trees. There are a number of results [2–4,13,15] extending Tashkinov trees to 
larger elementary trees and there are a number of results [7,10,13,15] discovering some 
structural properties from the closed property of maximal Tashkinov trees. However, to 
the best of our knowledge there are no results extending Tashkinov trees to larger trees 
inheriting both elementary and closed properties. Given a k-triple (G, e, ϕ) and a closed 
elementary subgraph H ⊆ V (G), we basically show that under some minor conditions, if 
there exists a vertex x /∈ X such that V (H) ∪{x} is elementary, then there exists a closed 
elementary subgraph H ′ with V (H ′) ⊇ V (H) ∪ {x}. Applying our results, we improve 
almost all known results in this area. Our main result will be stated in Section 2 after 
giving formal definitions of Tashkinov trees and their extensions with some properties. 
In Section 2, we will also show some applications of our results; and we will give the 
proof of our main result in Section 5 due to its length. The proof is very long, but it 
contains some techniques and ideas which may shed some lights on attacking Goldberg’s 
conjecture. In section 3, we introduce a concept called condition R2 which is crucial to 
our main proof. Section 4 gives a proof of a basic application of our main theorem.

2. Tashkinov trees and their extensions

Let G be a graph and e ∈ E(G). A tree-sequence T is an alternating sequence 
(y0, e1, y1, e2, · · · , yp−1, ep, yp) of distinct vertices yi and edges ei of G such that e1 = e

and the endvertices of each ei are yi and yr for some r ∈ {1, 2, . . . , i − 1}. Clearly, the 
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edge set of a tree sequence T indeed induces a tree; following the sequence, all vertices 
and edges in T form a linear order ≺�. For every element x ∈ T , let Tx be the sequence 
generated by x and elements ≺� x, and call it an x-segment. Note that here x could be 
an edge or a vertex. Denote by |T | the number of vertices in T , i.e., |T | = p + 1 from the 
above definition. For each edge f ∈ ∂(T ), denote by a(T, f) and b(T, f) the endvertices 
of f in T and not in T , and name them the in-end and out-end of f , respectively. If T
is understandable, we simply use a(f) and b(f) for convenience.

Let ϕ be a k-edge-coloring of G − e. For a color α, denote by v(α, T ) the first vertex 
missing color α along ≺� of T if α ∈ ϕv(T ) and the last vertex of T if α /∈ ϕv(T ). If T is 
clear, we may simply denote v(α, T ) by v(α). We sometimes denote Tv(α) by T (v(α)).

A Tashkinov tree of a k-triple (G, e, ϕ) is a tree-sequence T = (y0, e1, y1, e2, · · · , yp−1,

ep, yp) such that for each j ≥ 1, ϕ(ej) ∈ ϕ(yi) for some i < j. A Tashkinov tree T is
maximal if there is no Tashkinov tree T ∗ of the same k-triple containing T as a proper 
subtree. Clearly, all maximal Tashkinov trees are closed. A Tashkinov tree is called
maximum if |T | is maximum over all k-triples with respect to the same graph G.

Theorem 2.1. [Tashkinov [16]] The vertex set of any Tashkinov tree of a k-triple (G, e, ϕ)
is elementary.

Let (G, e, ϕ) be a k-triple and H be a closed subgraph of G. A color δ is called a
defective color of H if |∂δ(H)| > 1. Since H is closed, we have δ /∈ ϕv(H) in this case. 
An edge f ∈ ∂(H) is called a connecting edge of H if δ := ϕ(f) is a defective color of H
and there exists a color γ ∈ ϕv(H) − ϕe(H) such that f ∈ Pv(γ)(δ, γ, ϕ) and f is the first 
edge of ∂(H) along Pv(γ)(δ, γ, ϕ) starting at v(γ). In this case, we call δ a connecting
color and γ the companion color of δ. Note that γ ∈ ϕv(H) − ϕe(H) means that color γ
is missing at a vertex in H and is not assigned to any edge of H.

Definition 1. An Extended Tashkinov Tree (ETT) of a k-triple (G, e, ϕ) is a tree-
sequence T = (y0, e1, y1, e2, ..., yp−1, ep, yp) such that for each ei with i ≥ 2, either 
ϕ(ei) ∈ ϕv(Tyi−1) or Tyi−1 is closed and ei is a connecting edge of Tyi−1 .

Note that in the above definition, the condition imposed on ei only involves edges 
incident to V (Tyi−1). So, if a coloring ϕ∗ agrees with ϕ on every edge incident to V (Typ−1), 
then T is also an ETT of (G, e, ϕ∗). This observation will be used later in our proof.

Let T be an ETT of a k-triple (G, e, ϕ). Let f1, f2, . . . , fn be all the connecting edges 
of T with f1 ≺� f2 ≺� · · · ≺� fn and denote Ti = Tfi

− {fi} for each 1 ≤ i ≤ n. Clearly, 
T1 is a maximal Tashkinov tree of (G, e, ϕ) and Ti is closed for every 1 ≤ i ≤ n. We 
call T1 ⊂ T2 ⊂ T3 ⊂ · · · ⊂ Tn ⊂ T the ladder of T and T an ETT with n rungs. 
We use m(T ) to denote the number of rungs of T . Let D(T ) = {δ1, δ2, . . . , δn} and 
Γ(T ) = {γ1, γ2, . . . , γn} denote the lists of all connecting colors and their companioning 
colors, respectively.
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Definition 2. Let T be an ETT of a k-triple (G, e, ϕ) with ladder T1 ⊂ T2 ⊂ T3 ⊂ · · · ⊂
Tn ⊂ T . Let D(T ) = {δ1, δ2, . . . , δn} and Γ(T ) = {γ1, γ2, . . . , γn}. We say a coloring 
ϕ∗ ∈ Ck(G − e) is T -stable with regard to ϕ and T is ϕ∗/ϕ-stable if the following two 
conditions are satisfied.

• Of the k-triple (G, e, ϕ∗), the tree-sequence T is also an ETT with the same sets of 
connecting edges, connecting colors and companion colors.

• For each 1 ≤ i ≤ n and every edge f incident to V (Tn), ϕ(f) = ϕ∗(f) if ϕ(f) ∈
{δi, γi} or ϕ∗(f) ∈ {δi, γi}.

By Definition 2, we can easily check that: (a) ϕ itself is T -stable with regard to ϕ; 
(b) if ϕ∗ is T -stable with regard to ϕ then ϕ is T -stable with regard to ϕ∗; and (c) if ϕ∗

is T -stable with regard to ϕ and ϕ∗∗ is T -stable with regard to ϕ∗, then ϕ∗∗ is T -stable 
with regard to ϕ. So, all T -stable colorings with regard to ϕ form an equivalence class 
and can be with regard to any coloring in the class. We call ϕ∗ a T -stable coloring and T
ϕ∗-stable for convenience. Clearly, if ϕ∗ is T -stable, then it is Tx-stable for any x-segment 
where x is a vertex of T . Moreover, we have the following.

Lemma 2.2. Let T be an ETT of a k-triple (G, e, ϕ) and yp be the last vertex of T . If a 
coloring ϕ∗ ∈ Ck(G − e) agrees with ϕ on all edges incident to V (T − yp), then ϕ∗ is 
T -stable.

Proof. Let T , (G, e, ϕ) and ϕ∗ be defined as in Lemma 2.2. Since ϕ∗ agrees with ϕ on 
every edge incident to V (Typ−1), T is an ETT of (G, e, ϕ∗). Let T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ T

be the ladder of T . Since Tn ⊆ Typ−1 , ϕ∗ agrees with ϕ on every edge incident to V (Tn). 
So, ϕ∗ is T -stable. �
Definition 3. Let T be an ETT of a k-triple (G, e, ϕ) with ladder T1 ⊂ T2 ⊂ . . . Tn ⊂ T .

• We say that T satisfies condition MP (Maximum Property) if T1 is a maximum 
Tashikov tree and for each 2 ≤ i ≤ n, Ti is closed among all Ti-stable colorings.

• We say that T satisfies condition R1 if for each companion color γi of a connecting 
color δi with 1 ≤ i ≤ n, γi ∈ ϕv(Tmi

) − ϕe(TMi
), where mi and Mi are the minimum 

and maximum indices, respectively, such that δmi
= δi = δMi

.

Lemma 2.3. Let T be an ETT of a k-triple (G, e, ϕ) and ϕ∗ be a T -stable coloring with 
regard to ϕ. If T satisfies condition MP (resp. R1) under ϕ, then it satisfies condition 
MP (resp. R1) under ϕ∗.

Proof. Let T1 ⊂ T2 ⊂ T3 ⊂ · · · ⊂ Tn ⊂ T be the ladder of T and Γ(T ) = {γ1, γ2, . . . , γn}. 
Since ϕ∗ is T -stable, T1 ⊂ T2 ⊂ . . . Tn ⊂ T is the ladder of the ETT T under ϕ∗. Assume 
that T satisfies condition MP under ϕ∗. Clearly, |T1| is still maximum over all k-triples. 
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For each 1 ≤ i ≤ n, let ϕ∗∗ be an arbitrary Ti-stable coloring with regard to ϕ∗. Then, 
ϕ∗∗ is a Ti-stable coloring with regard to ϕ. Since T satisfies condition MP under ϕ, Ti

is closed under ϕ∗∗. Therefore, T satisfies condition MP under ϕ∗.
Assume that T satisfies condition R1 under ϕ. Then, γi ∈ ϕv(Tmi

) − ϕe(TMi
). There-

fore γi ∈ ϕv(Tmi
) and γi /∈ ϕe(TMi

). Since ϕ∗ is T -stable with regard to ϕ, ϕ∗ and ϕ
have the same set of γi edges incident to V (TMi

). Hence γi ∈ ϕ∗
v(Tmi

) and γi /∈ ϕ∗
e(TMi

). 
Thus we have γi ∈ ϕ∗

v(Tmi
) − ϕ∗

e(TMi
). Therefore T still satisfies condition R1 under 

ϕ∗. �
Let (G, e, ϕ) be a k-triple and T be an ETT of G. We call the algorithm of adding 

a boundary edge f and b(f) to T with ϕ(f) ∈ ϕv(T ) Tashkinov Augment Algorithm 
(TAA). Given an ETT with ladder T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ T , we note that conditions 
MP and R1 only apply to Ti with i ≤ n. So, the following result holds.

Lemma 2.4. Let T be an ETT of a k-triple (G, e, ϕ) satisfying conditions MP and R1. If 
T ′ is an ETT obtained from T by adding some new edges and vertices by TAA under ϕ, 
then T ′ also satisfies conditions MP and R1 under ϕ.

The following is the main theorem of this paper.

Theorem 2.5. Let T be an ETT of a k-triple (G, e, ϕ) with G being non-elementary. If 
T satisfies conditions MP and R1 under ϕ, then T is elementary.

Note that if m(T ) = 0, then T is a Tashkinov tree, so it satisfies conditions MP and 
R1 by default. If m(T ) = 1 and T1 is a maximum Tashkinov tree, then T also satisfies 
both conditions MP and R1.

Corollary 2.6. Let T be a closed ETT of a k-triple (G, e, ϕ) with G being non-elementary. 
If T satisfies MP and all its connecting colors are distinct, T is elementary. In particular, 
if m(T ) = 1 and T1 is a maximum Tashkinov tree, then T is elementary.

Proof. We only need to verify that condition R1 is satisfied. Since all companion colors 
γ1, γ2, . . . , γn are distinct, mi = Mi = i for each 1 ≤ i ≤ n. By the definition of 
connecting edge of Ti, we have γi ∈ ϕv(Ti) − ϕe(Ti). �

In application, we will use the following result. A stronger version of Theorem 2.7 will 
be given as Theorem 4.1 in Section 4, and its proof is based on Theorem 2.5.

Theorem 2.7. Let G be a k-critical graph with k ≥ Δ + 1. If G is not elementary, then 
there exist a k-triple (G, e, ϕ), a maximum Tashkinov tree T1 and an elementary ETT 
T ⊃ T1 such that the following hold.
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|T − T1| ≥ 2|ϕv(T1)| + 2 (1)

|T − T1| > 2
(

1 + χ′ − 1 − Δ
μ

)|ϕv(T1)|
(2)

Lemma 2.8. [Scheide [13]] Let G be a k-critical graph with k ≥ Δ + 1. If G is not 
elementary, then |T | ≥ max{2(k − Δ) + 1, 11} for every maximum Tashkinov tree T

of G.

Since we mainly work on non-elementary graphs in this paper, we assume that |T | ≥ 11
for every maximum Tashkinov tree T by Lemma 2.8. Hence we have |ϕv(T )| ≥ 13 if T
is a maximum Tashkinov tree, because e is uncolored.

Lemma 2.9. If G is a non-elementary k-critical graph G with k ≥ Δ +1, then there exists 
a k-triple (G, e, ϕ) and an elementary ETT T such that

|T | ≥ max{(2(k − Δ) + 1)2 + 6, 22(k − Δ) + 17} ≥ 39. (3)

Proof. By Theorem 2.7, there exist a k-triple (G, e, ϕ), a maximum Tashkinov tree T1
and an elementary ETT T ⊃ T1 such that the following holds.

|T | ≥ 2|ϕv(T1)| + |T1| + 2

≥ 2(|T1|(k − Δ) + 2) + |T1| + 2

≥ 2(max{2(k − Δ) + 1, 11}(k − Δ) + 2) + max{2(k − Δ) + 1, 11} + 2

≥ max{(2(k − Δ) + 1)2 + 6, 22(k − Δ) + 17}. �
The following result gives an improvement to a result of Chen et al. [3] that if χ′ ≥

Δ + 3
√

Δ/2 − 1 then χ′ = ρ.

Theorem 2.10. If G is a graph with Δ ≥ 5 and χ′ ≥ Δ + 3
√

Δ/4, then G is elementary.

Proof. We assume without loss of generality G is critical, but not elementary. Since 
Δ ≥ 5, χ′ ≥ Δ + 3

√
Δ/4 ≥ Δ + 2. By Lemma 2.9, there exists a k-triple (G, e, ϕ) and an 

elementary ETT T such that |T | ≥ (2(k − Δ) + 1)2 + 6. Since T is elementary, we have

k ≥ ϕv(T ) ≥ ((2(k − Δ) + 1)2 + 6)(k − Δ) + 2,

which gives k < Δ + 3
√

Δ/4 − 1, a contradiction. �
We now show that Conjecture 3 is true up to m = 39. The following observation 

from [15] is needed. For completeness, we give its proof here.

Lemma 2.11. If (G, e, ϕ) be a k-triple with k > m
m−1 Δ + m−3

m−1 − 1, then |X| ≤ m − 1 for 
every elementary set X ⊆ V (G) with V (e) ⊆ X.
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Proof. Suppose on the contrary |X| ≥ m. The inequality k > m
m−1 Δ + m−3

m−1 − 1 is 
equivalent to k − Δ > Δ−2

m−1 . Since X is elementary, k ≥ |ϕ(X)| ≥ (k − Δ)|X| + 2 ≥
m(k − Δ) + 2. Subtracting k − Δ, we get Δ ≥ (m − 1)(k − Δ) + 2 > (Δ − 2) + 2 = Δ, 
a contradiction. �
Theorem 2.12. If G is a graph with χ′ > 39

38 Δ + 36
38 , then G is elementary.

Proof. Otherwise, by Lemmas 2.9, G has an elementary set X with |X| ≥ 39, which 
gives a contradiction to Lemma 2.11. �
Corollary 2.13. Let G be a graph with χ′ ≥ Δ + 2. If Δ ≤ 39 or |V (G)| ≤ 39, then G is 
elementary.

Proof. When Δ ≤ 39, we have Δ +2 ≥ 38
39 Δ + 36

38 , so G is elementary by Theorem 2.12. If 
G is not elementary, then G contains an elementary ETT T with |T | ≥ 39 by Lemma 2.9, 
and therefore |V (G)| > 39. So G is elementary if |V (G)| ≤ 39. �

Haxell and McDonald [8] obtained a necessary and sufficient condition for χ′ = Δ + μ

when μ ≥ log5/4 Δ + 1. We improve this result lowering the lower bound of μ.

Theorem 2.14. If G is a graph with multiplicity μ ≥ log 5
4

(
log 3

2
( Δ

2 )
)

+1, then χ′ = Δ +μ

if and only if ρ = Δ + μ, where ρ is the density of G.

Proof. Since ρ ≤ χ′ ≤ Δ + μ as mentioned earlier, we have χ′ = Δ + μ if ρ = Δ + μ. 
We now suppose μ ≥ log5/4

(
log3/2( Δ

2 )
)

+ 1 and χ′ = Δ + μ. To show ρ′ = Δ + μ, we 

only need to show that ρ = χ′, i.e., G is elementary. Assume without loss of generality 
that G is critical. Suppose on the contrary G is not elementary. By (2) of Theorem 2.7, 
there exists an elementary ETT T containing a maximum Tashkinov tree T1 having the 
following property:

|T − T1| ≥ 2
(

1 + χ′ − 1 − Δ
μ

)|ϕv(T1)|
> 2

(
1 + μ − 1

μ

)(μ−1)|T1|+2

(4)

Here we have χ′ −1 −Δ = μ −1 and |ϕv(T1)| > (μ −1)|T1| +2 because of the assumption 
that χ′ = Δ + μ and the fact that T1 is elementary as a Tashkinov tree. Haxell and 
McDonald [8] gave a lower bound of |T1| below:

|T1| ≥
(

1 + χ′ − 1 − Δ
2μ

)χ′−1−Δ

+ 1 ≥
(

1 + μ − 1
2μ

)μ−1

+ 1. (5)

Note that |ϕv(T )| ≤ χ′ − 1. Since T is elementary, we have |ϕv(T )| ≥ (μ − 1)|T |. Recall 
that χ′ − 1 − Δ = μ − 1, we have |T |(χ′ − 1 − Δ) ≤ χ′ − 1, so (|T | − 1)(χ′ − 1 − Δ) ≤ Δ, 
which is equivalent to
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(|T | − 1) ≤ Δ
μ − 1

.

Since |T | − 1 = |T − T1| + |T1| − 1 ≥ |T − T1|, by (4) and (5) we have

2
(

1 + μ − 1
μ

)(μ−1)(1+ μ−1
2μ )μ−1

<
Δ

μ − 1 .

Hence

2(μ − 1)
(

1 + μ − 1
μ

)(μ−1)(1+ μ−1
2μ )μ−1

< Δ.

Note that μ ≥ 2 and 2(μ − 1) 
(

1 + μ−1
μ

)(μ−1)(1+ μ−1
2μ )x−1

is an increasing function of 

μ when we fix x with x ≥ 2, we get 3
2

5
4

μ−1

< Δ
2 by plugging in μ = 2. Thus we have 

μ < log 5
4

(
log 3

2
( Δ

2 )
)

+ 1, a contradiction. �
Haxell and McDonald in the same paper proved that a graph is elementary if χ′ ≥

Δ + 2
√

μ log Δ, where log denotes the natural logarithm. We improve their result as 
follows.

Theorem 2.15. Let G be a graph with χ′ > Δ + 1. Then G is elementary if χ′ ≥ Δ +
min{2

√
μ(log log Δ

2 + log 2μ), 3
√

μ log Δ
2 }.

Proof. Let G be a graph satisfying the above conditions and assume on the contrary G
is not elementary. Assume without loss of generality that G is critical. Let t = χ′ −1 −Δ
and T , T1 be as defined in Theorem 2.7. Following similar arguments as in the proof of 
Theorem 2.14, we have the following inequality:

t · (|T − T1| + |T1|) + 2 ≤ |ϕv(T )| ≤ χ′ − 1 = Δ + t (6)

Combine (4) and (5) with (6), we have

t

(
1 + t

μ

)t
(

1+ t
2μ

)t

<
Δ
2 .

Since 0 < t
μ < 1, we have 1 + t

2μ > e
t

4μ and 1 + t
μ > e

t
2μ , which in turn gives te

t2
2μ e

t2
4μ

< Δ
2 . 

Since t ≥ 1, we have t < 2
√

μ(log log Δ
2 + log 2μ) by plugging t = 1 into te

t2
2μ . By 

Lemma 2.8, we have |T1| ≥ 2t + 1. Using this inequality with (4) and (6), we have 

t 
(

1 + t
μ

)t(2t+1)+2
< Δ

2 . Since 1 +t/μ > et/2μ and t ≥ 1, we similarly have t < 3
√

μ log Δ
2 . 

Thus we have t < min{2
√

μ(log log Δ
2 + log 2μ), 3

√
μ log Δ

2 }, giving a contradiction. �
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3. Condition R2

Let (G, e, ϕ) be a k-triple. For a color set B and a subgraph H ⊆ G, we say H is
B-closed if ϕ(∂(H)) ∩ B = ∅ and H is B−-closed if H is (ϕv(H) − B)-closed. Clearly, H
is closed if H is ϕv(H)-closed. When B = {β} is a singleton, we say H is β-closed
if it is {β}-closed. We also say β is closed in H and H is closed for β for conve-
nience if H is β-closed. Let T be an ETT with ladder T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ T

of a k-triple (G, e, ϕ). We call the subsequence T − Tn the tail of T and any nested 
sequence of segments Tn,0(= Tn) ⊂ Tn,1 ⊂ · · · ⊂ Tn,q ⊂ Tn,q+1(= T ) a split 
tail for T if each Tn,j ends with a vertex of T − Tn. We further call the sequence 
T1 ⊂ T2 ⊂ · · · ⊂ Tn := Tn,0 ⊂ Tn,1 ⊂ · · · ⊂ Tn,q ⊂ T := Tn,q+1 a refinery of T

with n rungs and q splitters, or simply a refinery of T . For each Tn,j with 0 ≤ j ≤ q, 
let Dn,j = D(T ) − ϕv(Tn,j) = {δ1, ..., δn} − ϕv(Tn,j). Clearly, Dn,q+1 ⊆ Dn,q ⊆, ..., ⊆
Dn,0.

Definition 4. An ETT T satisfies condition R2 if T has a refinery

T1 ⊂ T2 ⊂ · · · ⊂ Tn = Tn,0 ⊂ Tn,1 ⊂ · · · ⊂ Tn,q ⊂ Tn,q+1 = T

such that for every 0 ≤ j ≤ q and every δh ∈ Dn,j , there exists a two color set Γj
h =

{γj
h1

, γj
h2

} satisfying the following four properties.

(1) Γj
h ⊆ ϕv(Tn,j) − ϕe(Tn,j+1(v(δh)) − Tn,j) for every j and δh ∈ Dn,j .

(2) Γj
h ∩ Γj

g = ∅ for every j and two distinct δh, δg ∈ Dn,j .
(3) Γj − Γj−1 ⊆ ϕv(Tn,j − Tn,j−1) for each 1 ≤ j ≤ q, where Γj = ∪δh∈Dn,j

Γj
h and 

Γj−1 = ∪δh∈Dn,j−1Γj−1
h .

(4) Tn,j is (∪δh∈Dn,j
Γj−1

h )−-closed for every 1 ≤ j ≤ q.

Remark 1. Not every ETT T satisfies condition R2. We will show in statement B of 
Section 5 that for every T satisfying conditions MP and R1, there exists an ETT T ′

with V (T ′) ⊇ V (T ) satisfying conditions MP, R1, and R2. Since switching colors δi with 
another color on a color alternating chain usually creates a non-stable coloring, we may 
use colors in Γj

h as stepping stones to swap colors while keeping the coloring stable in 
later proofs. Thus, we may consider the set Γj

h as a color set reserved for δh and (1) as 
a condition that ensures the ETT properties after some changes of colorings. We also 
notice that (1) and (2) actually involve Tn,q+1 for j = q while (3) and (4) only involve 
Tn,q.

Let T be an ETT of (G, e, ϕ) satisfying condition R2. In the remainder of this paper, 
when we mention that T satisfies condition R2 under another coloring ϕ∗ associated 
with ϕ, we always mean that T satisfies condition R2 under ϕ∗ with the same refinery 
and Γj

h as under ϕ for every 0 ≤ j ≤ q and every δh ∈ Dn,j . Let α, β be two colors and 
Q be an (α, β)-chain. If V (Q) ∩ V (T ) �= ∅, we say Q intersects T .
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Lemma 3.1. Let T be an ETT of a k-triple (G, e, ϕ) and ϕ∗ be obtained from ϕ by 
recoloring some (α, β)-chains. If these (α, β)-chains do not intersect T − yp, then T

is ϕ/ϕ∗-stable. Moreover, if T additionally satisfies condition MP (resp. R1, resp. R2) 
under ϕ, then it also satisfies condition MP (resp. R1, resp. R2) under ϕ∗.

Proof. Recall that yp is the last vertex in T . Since ϕ∗ and ϕ agree on all edges incident to 
V (T −yp), ϕ∗ is a T -stable coloring by Lemma 2.2. Moreover, if T satisfies condition MP 
(resp. R1) under ϕ, then it satisfies condition MP (resp. R1) under ϕ∗ by Lemma 2.3. 
Assume that T satisfies condition R2 under ϕ. Let the corresponding splitting tail of T
be Tn = Tn,0 ⊂ Tn,1 ⊂ · · · ⊂ Tn,q ⊂ T = Tn,q+1. Since ϕ(f) = ϕ∗(f) for every edge f
incident to V (T − yp), ϕ(v) = ϕ∗(v) for every vertex v ∈ T − yp and Tn,i ⊆ T − yp for 
every 0 ≤ i ≤ q, the conditions (1), (2), (3) and (4) in Definition 4 are satisfied for T
under ϕ∗ with the same Γi

h as under ϕ for each 0 ≤ i ≤ q and each δh ∈ Dn,i. Therefore, 
T also satisfies condition R2 under ϕ∗. �
4. An applicable result

An ETT T of a k-triple (G, e, ϕ) with ladder T0 ⊂ T1 ⊂ · · · ⊂ Tn ⊂ T is called 
a simple ETT (SETT) if γ1 = γ2 = · · · = γn. By the definition of companion colors, 
γi ∈ ϕv(Ti) − ϕe(Ti) for each 1 ≤ i ≤ n. So, we have γ1 ∈ ϕv(T1) − ϕe(Tn) if T is an 
SETT, which in turn shows that all SETTs satisfy condition R1. Let α and β be two 
colors and suppose T is {α, β}-closed under ϕ. Let ϕ/(G −T, α, β) be a coloring obtained 
from ϕ by interchanging these two colors outside T . Clearly, ϕ/(G − T, α, β) is also a 
k-edge-coloring. By Lemma 2.2, ϕ/(G −T, α, β) is T -stable. We prove the following result 
which is a stronger version of Theorem 2.7 in Section 2.

Theorem 4.1. Let G be a k-critical graph with k ≥ Δ + 1. If G is not elementary, then 
there exists a k-triple (G, e, ϕ), a maximum Tashkinov tree T1 and an elementary SETT 
T ⊃ T1 satisfying condition MP with the following three properties:

ϕv(Tn) ⊆ ϕe(T − Tn) (7)

|T − Tn| ≥ 2|ϕv(Tn)| + 2 (8)

|T − Tn| > 2
(

1 + χ′ − 1 − Δ
μ

)|ϕv(Tn)|
(9)

Proof. Let G be a non-elementary k-critical graph with k ≥ Δ + 1. We first note that 
every maximum Tashkinov T is closed under any T -stable coloring since, otherwise, 
there would be a larger Tashkinov tree. Moreover, every Tashkinov tree is an SETT by 
default. Based on the above statements, we let T be an SETT satisfying condition MP 
with ladder T1 ⊂ T2 ⊂, ..., ⊂ Tn ⊂ T such that T is closed under every T -stable coloring. 
We further assume that m(T ) = n is maximum. Let γ := γ1 = γ2 · · · = γn. Since all 
SETTs satisfy condition R1, T satisfies both conditions MP and R1. By Theorem 2.5, T
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is elementary. Since G is not elementary, T is not strongly closed. So, T has a defective 
color.

We first show that (7) holds. Otherwise, let α ∈ ϕv(Tn) −ϕe(T −Tn) and ϕ∗ = ϕ/(G −
Tn, α, γ). By Lemma 3.1, ϕ∗ is a Tn ∪ (fn, b(fn))-stable coloring. Since α, γ ∈ ϕv(Tn), T
is still an ETT under ϕ∗ with the same set of connecting colors and companion colors 
under ϕ. Therefore ϕ∗ is T -stable. Since α /∈ ϕe(T − Tn), γ /∈ ϕ∗

e(T − Tn), which in 
turn shows γ /∈ ϕ∗

e(T ) because γ ∈ ϕv(T1) − ϕe(Tn). Let δn+1 be a defective color 
of T . Since T is elementary, T can not contain both ends of Pv(γ)(δn+1, γ, ϕ∗). Since 
γ ∈ ϕ∗

v(T1) − ϕ∗
e(T ), we can extend T to a larger SETT T ∗ by adding a connecting edge 

fn+1 which is the first edge in ∂(T ) along Pu(δn+1, γ, ϕ∗). Moreover, the resulting SETT 
satisfies condition MP because we assumed that T is closed among all T -stable colorings. 
Since stable colorings keep conditions MP and R1 by Lemma 2.3, by taking maximum 
value of |T ∗| with the above properties, we can assume T ∗ is closed under all T ∗-stable 
colorings, which gives a contradiction to the maximality of m(T ).

Recall T is elementary as we mentioned earlier. To prove (8) and (9), starting from Tn∪
{fn} we apply TAA repeatedly with priority of adding boundary edges with colors being 
missing on the vertices not in Tn and call such an algorithm modified TAA (mTAA). 
Clearly, the resulting closed SETT has the same vertex set as T . Assume, without loss 
of generality, T itself is the resulting tree by applying mTAA till T is maximal to get a 
closed extension of Tn ∪ {fn}. For any α ∈ ϕv(Tn), let Tα be the maximal segment of T
before the last edge with color α being added, i.e., the last element of Tα is the vertex 
before the last edge colored by α in T along ≺�. By (7), Tα is a proper subtree of T for 
each α ∈ ϕv(Tn). Moreover, we have V (Tα − Tn) �= ∅ for each α ∈ ϕv(Tn) since the last 
connecting edge fn is not colored by colors missing in Tn.

We claim that |Tα| is odd for each α ∈ ϕv(Tn). Otherwise, we assume |Tα| is even 
and let β ∈ ϕv(Tα − Tn). Since T is elementary, Tα is also elementary. Since Tα is 
elementary and has an even number of vertices, it has a boundary edge colored by β
which should be added to Tα before the corresponding α-edge, a contradiction. By (7), 
each color α ∈ ϕ(Tn) must be used by an edge in T − Tn. Since each color α ∈ ϕv(Tn)
is used by an edge in T − Tn by (7) and |Tα| is odd for each α ∈ ϕv(Tn), we have 
|E(T − Tn)| ≥ 2|ϕv(Tn)| + 2, where the additional 2 follows from ϕ(fn) /∈ ϕv(Tn). So, 
(8) holds.

To prove (9), let e1 ≺� e2 ≺� · · · ≺� eq be the list of all edges in T − Tn such 
that ϕ(ei) ∈ ϕv(Tn) for all i = 1, 2, . . . , q. Clearly, q ≥ |ϕv(Tn)|. For each 1 ≤ i ≤ q, 
since T is elementary we have ϕ(b(ei)) ⊇ ϕ(Tei

− Tn). On the other hand, according 
to mTAA, ϕ(∂(Tei

) ∩ ϕv(Tei
− Tn) = ∅. By eliminating parallel edges, we can add at 

least |ϕv(Tei
− Tn)|/μ neighbors of b(ei) in V − V (Tei

) to Tei
∪ {b(ei)} using colors in 

ϕv(Tei
− Tn) �= ∅. Since |ϕ(v)| ≥ χ′ − 1 − Δ for all v ∈ V (G), the following inequalities 

hold:

|Tei+1 − Tn| ≥ 1 + |Tei
− Tn| + |ϕv(Tei

− Tn)|
> |Tei

− Tn|
(

1 + χ′ − 1 − Δ
)

μ μ
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where Teq+1 = T . Hence,

|T − Tn| ≥ |Te1 − Tn|
(

1 + χ′ − 1 − Δ
μ

)q

≥ |Te1 − Tn|
(

1 + χ′ − 1 − Δ
μ

)|ϕv(Tn)|
.

Note that Te1 contains fn and one more edge with color in ϕ(b(fn)), we have |Te1 −Tn| ≥
2, which in turn gives (9). �
5. Proof of Theorem 2.5

Theorem 2.5. Let T be an ETT of a k-triple (G, e, ϕ) with G being non-elementary. If 
T satisfies conditions MP and R1 under ϕ, then T is elementary.

Let T be an ETT of a k-triple (G, e, ϕ) with G being non-elementary. We will prove 
Theorem 2.5 inductively on m(T ), the number of rungs. To facilitate our proof, we add 
the following two statements simultaneously for each nonnegative integer n.

A. If T is an ETT satisfying conditions MP, R1, and R2 with m(T ) = n, then T is 
elementary.

B. Suppose statement A holds. If T is an ETT with ladder T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ T

satisfying conditions MP and R1, then there exists a closed ETT T ′ with V (T ) ⊆
V (T ′) and ladder T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ T ′ satisfying conditions MP, R1, and R2.

Although statement A appears weaker than Theorem 2.5, statement B shows that they 
are equivalent. By Tashkinov’s Theorem, Theorem 2.5 holds for n = 0. Assume n ≥ 1
and all ETTs with m(T ) ≤ n − 1 satisfying MP and R1 are elementary. We will show 
both statements hold for ETTs T with m(T ) = n, and consequently, they imply all ETTs 
with m(T ) = n satisfying MP and R1 are elementary based on following: Let T be an 
ETT with m(T ) = n satisfying conditions MP and R1. By statement B, there exists 
an ETT T ′ with m(T ′) = n satisfying MP, R1, and R2 such that V (T ′) ⊇ V (T ). By 
statement A, T ′ is elementary, so is T .

The following flowchart depicts the proof strategy. We place the proof of statement B 
first since it is much shorter than the proof of statement A.

5.1. Proof of statement B

Proof. Assume that statement A holds for all ETTs with at most n rungs which satisfy 
conditions MP, R1, and R2. Let T be an ETT with ladder T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ T
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satisfying conditions MP and R1 of a k-triple (G, e, ϕ). Starting with Tn, we will construct 
an ETT T ′ with V (T ) ⊆ V (T ′) by adding a split tail Tn = Tn,0 ⊂ · · · ⊂ Tn,q ⊂ T ′ =
Tn,q+1 satisfying conditions MP, R1, and R2.

We first note a simple fact: under the same coloring ϕ, for any ETT T ∗ with T ∗ ⊃
Tn ∪ (fn, b(fn)), if T ∗ is closed then V (T ∗) ⊇ V (T ). To justify this, we suppose on the 
contrary that T ∗ is closed and V (T ) − V (T ∗) �= ∅. Let ei be the first edge of T crossing 
the boundary of T ∗. Then, ϕ(ei) ∈ ϕv(T ∗), giving a contradiction to T ∗ being closed.

We define Γ0
h = {γn,0

h1 , γn,0
h2 } ⊆ ϕv(Tn,0) for all δh ∈ Dn,0 as follows. Recall D(T ) =

{δ1, δ2, . . . , δn} and Dn,0 = D(T ) − ϕv(Tn,0). So, |Dn,0| ≤ n. Since T1 is a maximum 
Tashkinov tree, |T1| ≥ 11. Because m(Tn) = n − 1, Tn is elementary by the induction 
hypothesis. For each 1 ≤ i ≤ n, since Ti is closed, |Ti| is odd. Thus |Tn| ≥ 2n, so 
|ϕv(Tn)| ≥ |Tn| + 2 ≥ 2|Dn,0|. We simply pick 2|Dn,0| colors from ϕv(Tn), divide them 
into |Dn,0| pairs, assign a distinct pair to each distinct connecting color δh ∈ Dn,0 and 
name it as Γ0

h := {γn,0
h1 , γn,0

h2 }. Then condition R2(2) is satisfied. Let Γ0 = ∪δh∈Dn,0Γ0
h.

We define Tn,1 by the following greedy algorithm. We first let Tn,1 = Tn,0 ∪(fn, b(fn)), 
where fn is the connecting edge of T after Tn. While there exists an edge f ∈ ∂(Tn,1)
such that ϕ(f) ∈ ϕv(Tn,1) −∪δh∈Dn,1Γ0

h, we always augment Tn,1 by letting Tn,1 := Tn,1∪
(f, b(f)). Then the resulting Tn,1 obtained from this algorithm is (∪δh∈Dn,1Γ0

h)−-closed. 
Note that condition R2(1) and (4) are satisfied through this algorithm.

Suppose Tn,j−1 is defined for some j ≥ 2. If Tn,j−1 is closed, then V (T ) ⊆
V (Tn,j−1) and we let Tn,j−1 = T ′. Suppose Tn,j−1 is not closed. Since Tn,j−1 is 
(∪δh∈Dn,j−1Γj−2

h )−-closed, there exists an edge f ′ ∈ ∂(Tn,j−1) such that ϕ(f ′) ∈ Γj−2
h

for some δh ∈ Dn,j−1. Let Γj−1
h be a set of two missing colors in ϕv(Tn,j−1 − Tn,j−2), 

and Γj−1
h∗ = Γj−2

h∗ for any other δh∗ ∈ Dn,j−1. By statement A, Tn,j−1 is elementary. 
Therefore, |ϕv(Tn,j−1 − Tn,j−2)| ≥ 2. So, Γj−1

h is well defined. Note that condition R2(2) 
and (3) are satisfied by our construction of Γj−1

h and Γj−1
h∗ .

We define Tn,j as follows. We first let Tn,j = Tn,j−1 ∪ (f ′, b(f ′)), where f ′ is defined 
above. While there exists f ∈ ∂(Tn,j) such that ϕ(f) ∈ ϕv(Tn,j) − ∪δh∈Dn,j

Γj−1
h , we 

always augment Tn,j by letting Tn,j := Tn,j ∪(f, b(f)). Then the resulting Tn,j is obtained 
from this algorithm is (∪δh∈Dn,j

Γj−1
h )−-closed. In addition, condition R2(1) and (4) are 

satisfied through this algorithm.
Clearly, Tn,j satisfies condition R2. Since Tn ∪ (fn, b(fn)) ⊆ T satisfies conditions MP 

and R1 under ϕ, Tn,j also satisfies conditions MP and R1 by Lemma 2.4. Now if Tn,j is 
closed, then V (T ) ⊆ V (Tn,j) and we let Tn,j = T ′. If Tn,j is not closed, we will continue 
to build Tn,j+1. Eventually we will obtain a closed T ′ as desired. �
5.2. Proof of statement A

Proof. Let T be an ETT satisfying conditions MP, R1 and R2 with the following refinery.

T1 ⊂ T2 ⊂ · · · ⊂ Tn = Tn,0 ⊂ Tn,1 ⊂ · · · ⊂ Tn,q ⊂ T = Tn,q+1.
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We prove statement A by induction on q which is the number of splitters. We will 
prove the basis step and the inductive step together in the later proof. When q = 0, 
we have Tn,q = Tn,0 = Tn. Note that we have that Tn,0 = Tn is elementary because 
m(Tn) = n − 1 < n. Therefore we can assume Tn,q is elementary and show T = Tn,q+1
is also elementary. Denote T by Tn,q ∪ (e0, y0, e1, ..., ep, yp) following the order ≺�. We 
define the path number p(T ) of T as the smallest index i ∈ {0, 1, ..., p} such that the 
sequence yiT := (yi, ei+1, ..., ep, yp) is a path in G. Suppose on the contrary that T is a 
counterexample to statement A, i.e., T is an ETT satisfying conditions MP, R1, and R2 
but is not elementary. Furthermore, we assume that among all counterexamples under 
Tn,q-stable colorings when q ≥ 1 and under Tn ∪ (fn, b(fn))-stable coloring when q = 0, 
the following two conditions hold:

(1) p(T ) is minimum,
(2) |T − Tn,q| is minimum subject to (1).

In the rest of this paper, when we say a coloring is Tn,q-stable in the proof, we always 
mean that it is Tn ∪(fn, b(fn))-stable coloring when q = 0 for convenience. By our choice, 
Typ−1 is elementary, where Typ−1 = Tn,q when p = 0. Since T is not elementary, there 
exists a color α ∈ ϕ(yp) ∩ ϕ(v) for some v ∈ V (Typ−1). For simplification of notations, 
we let Γq

h = {γh1, γh2} for δh ∈ Dn,q.

5.2.1. A few properties
We first introduce a few concepts that will be used later in the proof. Let (G, e, ϕ)

be a k-triple, H be an elementary subgraph of G and P be a nonempty sub-chain of 
an (α, β)-chain. If P is a path, V (P ) ∩ V (H) = {u} is an end-vertex and the other 
end-vertex of P outside of H has either α or β as a missing color, we call the path P an 
(α, β)-leg of H and u an (α, β)-exit. We denote the (α, β)-leg P = P ex

u (α, β, ϕ), where u
is the unique vertex in V (P ) ∩ V (H). Two colors α and β are interchangeable in H if H
has at most one (α, β)-leg.

Claim 5.1. For any Tn,j with 0 ≤ j ≤ q and two colors α, β, if α ∈ ϕv(Tn,j) and is closed 
in Tn,j, then α and β are interchangeable in Tn,j.

Proof. We prove Claim 5.1 by induction on j. First we consider the case when j = 0. 
Since Tn is closed, there is no (α, β)-leg if β ∈ ϕv(Tn). Hence we assume β /∈ ϕv(Tn). 
Since Tn,0 is elementary and closed, |∂β(Tn,j)| is odd. Hence Tn,j has odd number of 
(α, β)-legs. If |∂β(Tn,j)| = 1, we are done. Therefore we assume that |∂β(Tn,j)| ≥ 3. Let 
u, v, w be three exits of (α, β)-legs with u ≺l v ≺l w. Let n′ be the smallest index such 
that w ∈ Tn′ . Then w ∈ Tn′ − Tn′−1.

Let γ ∈ ϕ(w). Note Tn is closed for γ. By Lemma 3.1, ϕ∗ = ϕ/(G − Tn, α, γ) is 
Tn-stable, and Tn′ still satisfies conditions MP and R1 under ϕ∗. Moreover, we have 
that P ex

w (γ, β, ϕ∗) = Pw(γ, β, ϕ∗) = P ex
w (α, β, ϕ), P ex

u (γ, β, ϕ∗) = P ex
u (α, β, ϕ) and 
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P ex
v (γ, β, ϕ∗) = P ex

v (α, β, ϕ) are three (γ, β)-legs of Tn′ . Let the w2, u2 and v2 be the 
other end vertices of P ex

w (γ, β, ϕ∗), P ex
u (γ, β, ϕ∗) and P ex

v (γ, β, ϕ∗) not in Tn′ . Let u′

be the vertex in P ex
u (γ, β, ϕ∗) next to u, and fu be the edge connecting u and u′ in 

P ex
u (γ, β, ϕ∗); and v′ be the vertex in P ex

v (γ, β, ϕ∗) next to v, and fv be the edge connect-
ing v and v′ in P ex

v (γ, β, ϕ∗). Note that ϕ∗(fu) = ϕ∗(fv) = β. Let ϕ2 = ϕ∗/P ex
w (γ, β, ϕ∗). 

Since w ∈ Tn′ − Tn′−1 and Pw(γ, β, ϕ∗) ∩ Tn′ = w, Tw satisfies conditions MP and R1 
under ϕ2 by Lemma 3.1. Note that under ϕ2, β ∈ ϕ2(w). Moreover, Tw ∪ (fu, u′, fv, v′)
is an ETT satisfying conditions MP and R1 by Lemma 2.4 because it is obtained from 
Tw by TAA under ϕ2. Applying TAA to Tw ∪ (fu, u′, fv, v′) to keep adding edges and 
vertices until we cannot, we obtain a closed ETT T 2

n′ . Clearly, T 2
n′ satisfies conditions 

MP and R1 by Lemma 2.4. Since T 2
n′ has n′ − 1 < n rungs, T 2

n′ is elementary. If one of 
w2, u2, v2 is in T 2

n′ , then γ must be missing at that vertex since β ∈ ϕ2(T 2
n′). Thus both 

γ, β ∈ ϕ2(T 2
n′), which in turn shows that all three vertices w2, u2, v2 are in T 2

n′ . However, 
all of them are missing either γ or β under ϕ2 which contradicts the elementary property. 
Thus none of these three vertices are in T 2

n′ . Hence each of P ex
u (γ, β, ϕ∗), P ex

v (γ, β, ϕ∗)
and P ex

w (γ, β, ϕ∗) contains a (γ, β)-leg of T 2
n′ under ϕ2. Let u1, v1, w1 be the correspond-

ing exits for the (γ, β)-legs contained in above paths respectively. We assume without of 
generality, u1 ≺� v1 ≺� w1. We have w1 �= w since we already have w ≺f u′ ≺f v′ in T 2

n′ . 
Note that P ex

u1
(γ, β, ϕ2) and P ex

v1
(γ, β, ϕ2) are sub-paths of P ex

u (α, β, ϕ) and P ex
v (α, β, ϕ)

and are shorter than those two. Moreover, since w1 ∈ T 2
n′ − Tn′−1, we can continue the 

proof process again for T 2
n′ inductively as we did for Tn′ , and finally we will reach a 

contradiction to the elementary property because we will obtain shorter and shorter legs 
and finally contain all the ends.

Now we suppose j > 0 and consider the following two cases. Note that two cases below 
are similar but differ by the number of (α, β)-legs.

Case I: β ∈ ϕv(Tn,j).

Since Tn,j is α-closed and, by the induction hypothesis Tn,j is elementary, |V (Tn,j)|
is odd. Therefore |∂β(Tn,j)| is even and there are even number of (α, β)-legs. If there are 
none, we are done. Hence we assume that there exist two exit vertices u, v ∈ Tn,j , and 
they belong to legs P ex

u (α, β, ϕ) and P ex
v (α, β, ϕ), respectively. We may assume u �l v.

Case I.a: v ∈ Tn,j − Tn,j−1.

Since β ∈ ϕ(∂(Tn,j)) and β ∈ ϕv(Tn,j), i.e., Tn,j is not closed for β, we have 
v(β) ∈ V (Tn,j−1) by condition R2(4). Let γ ∈ ϕ(v). Then γ /∈ Γj−1 hence γ is closed 
in Tn,j by R2. Therefore Tn,j is closed for both α and γ. Hence ϕ∗ = ϕ/(G − Tn,j , α, γ)
is Tn,j-stable, and conditions MP, R1, and R2 are still satisfied for Tn,j under ϕ∗

by Lemma 3.1. However under ϕ∗, P ex
v (α, β, ϕ) = P ex

v (γ, β, ϕ∗) = Pv(γ, β, ϕ∗) and 
P ex

u (α, β, ϕ) = P ex
u (γ, β, ϕ∗) are two (γ, β)-legs. Let ϕ2 = ϕ∗/P ex

v (γ, β, ϕ∗). Then be-
cause P ex

v (γ, β, ϕ∗) ∩ Tv = {v}, ϕ2 is Tv-stable and Tv satisfies conditions MP, R1, and 
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R2 by Lemma 3.1. However, we have β ∈ ϕ2(Tn,j−1) and β ∈ ϕ2(v), where we reach 
a contradiction to the elementary property of Tn,j−1 which comes from the minimality 
of q.

Case I.b: v ∈ Tn,j−1.

We claim that there exists a color α∗ ∈ ϕv(Tn,j−1) that is closed in both Tn,j−1 and 
Tn,j . First we consider the case when j = 1. Note that by condition R2(2), | ∪δh∈Dn,1 Γ0

h| =
2|Dn,1| ≤ 2n. Since |ϕv(T1)| ≥ 13 and Tn is elementary with |Ti| being odd for all i ≤ n, 
we have |ϕv(Tn)| ≥ 11 + 2n ≥ | ∪δh∈Dn,1 Γ0

h|. By condition R2, Γ0
h ⊆ ϕv(Tn) for each 

δh ∈ Dn,0. Hence we have Γ0
h ⊆ ϕv(Tn) for each δh ∈ Dn,1 because Dn,1 ⊆ Dn,0. 

Therefore there exists α∗ ∈ ϕv(Tn) − (∪δh∈Dn,1Γ0
h). Since Tn,1 is (∪δh∈Dn,1Γ0

h)−-closed 
by condition R2(4) and Tn is closed, α∗ is closed in both Tn,1 and Tn. Now we assume 
j > 1. By condition R2(4), Tj−1 is (∪δh∈Dn,j−1Γj−2

h )−-closed. Similarly as the case 
j = 1, we have |ϕv(Tn,j−2)| ≥ 11 + 2n ≥ | ∪δh∈Dn,j−1 Γj−2

h |, and there exists α∗ ∈
ϕv(Tn,j−2) − (∪δh∈Dn,j−1Γj−2

h ). Hence α∗ is closed in Tn,j−1. By condition R2(3), Γj −
Γj−1 ⊆ ϕv(Tn,j − Tn,j−1), α∗ /∈ Γj . Therefore α∗ /∈ (∪δh∈Dn,j

Γj−1
h ) ⊆ Γj . Now by 

condition R2(4), α∗ is also closed in Tn,j , where we have the color α∗ as claimed.
Since α is closed in Tn,j , ϕ∗ = ϕ/(α, α∗, G − Tn,j) is Tn,j-stable, and Tn,j satis-

fies conditions MP, R1, and R2 under ϕ∗ by Lemma 3.1. Note that α∗ ∈ ϕ∗
v(Tn,j−1)

and α∗ is still closed in Tn,j−1 under ϕ∗. However P ex
u (α∗, β, ϕ∗) = P ex

u (α, β, ϕ) and 
P ex

v (α∗, β, ϕ∗) = P ex
v (α, β, ϕ) are two (α∗, β)-legs of Tn,j−1 under ϕ∗, giving a contra-

diction to the induction hypothesis of the minimality of j.

Case II: β /∈ ϕv(Tn,j).

In this case |∂β(Tn,j)| is odd and β /∈ Γj−1. Hence Tn,j has odd number of (α, β)-legs. 
Let u, v, w be exits from three (α, β)-legs for Tn,j with u ≺l v ≺l w.

Case II.a: w ∈ Tn,j − Tn,j−1.

Let γ ∈ ϕ(w). By definition, γ /∈ Γj−1. Hence Tn,j is closed for γ by con-
dition R2(4). By Lemma 3.1, ϕ∗ = ϕ/(G − Tn,j , α, γ) is Tn,j-stable, and condi-
tions MP, R1, and R2 are still satisfied for Tn,j under ϕ∗. Moreover, under ϕ∗, we 
have P ex

w (γ, β, ϕ∗) = Pw(γ, β, ϕ∗) = P ex
w (α, β, ϕ), P ex

u (γ, β, ϕ∗) = P ex
u (α, β, ϕ) and 

P ex
v (γ, β, ϕ∗) = P ex

v (α, β, ϕ) are three (γ, β)-legs for Tn,j . Let the 3 other end vertices 
of P ex

w (γ, β, ϕ∗), P ex
u (γ, β, ϕ∗) and P ex

v (γ, β, ϕ∗) not in Tn,j be w2, u2 and v2 respec-
tively. Let u′ be the vertex in P ex

u (γ, β, ϕ∗) next to u, and fu be the edge connecting u
and u′ in P ex

u (γ, β, ϕ∗); and v′ be the vertex in P ex
v (γ, β, ϕ∗) next to v, and fv be the 

edge connecting v and v′ in P ex
v (γ, β, ϕ∗). Note that fv and fu are colored β under ϕ∗. 

Let ϕ2 = ϕ∗/P ex
w (γ, β, ϕ∗). Since w ∈ Tn,j − Tn,j−1 and Pw(γ, β, ϕ∗) ∩ Tn,j = w, Tw

satisfies conditions MP, R1, and R2 by Lemma 3.1. Note that under ϕ2, β ∈ ϕ2(w). 
Since β /∈ Γj−1, we have that Tw ∪ (fu, u′, fv, v′) satisfies condition R2. Moreover, 
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it satisfies conditions MP and R1 by Lemma 2.4. Based on the definition of condi-
tion R2, by Lemma 2.4 we can keep conditions R1 and MP by keeping extending 
Tw ∪ (fu, u′, fv, v′) using TAA under condition R2 without using any connecting edges 
until it is (∪δh∈Dn,j

Γj−1
h )−-closed. Let the resulting ETT be T 2

n,j . Clearly T 2
n,j satis-

fies conditions MP, R1, and R2. By the minimality of q, T 2
n,j is elementary. If one of 

w2, u2, v2 is in T 2
n,j , then γ must be missing at that vertex since β ∈ ϕ2(T 2

n,j). Since 
both γ, β /∈ Γj−1, and both γ, β ∈ ϕ2(T 2

n,j), we must have all three vertices w2, u2, v2

in T 2
n,j . However, all of them miss either γ or β under ϕ2, which gives a contradic-

tion to the elementary property. Thus none of the vertices above are in T 2
n,j . Hence 

each of P ex
u (γ, β, ϕ∗), P ex

v (γ, β, ϕ∗) and P ex
w (γ, β, ϕ∗) contains a (γ, β)-leg of T 2

n,j . Let 
u1, v1, w1 be the exits for the (γ, β)-legs contained in the three paths above respectively. 
We without loss of generality assume u1 ≺f v1 ≺f w1. Note that w1 �= w since we 
already have w ≺f u′ ≺f v′ in T 2

n,j . Note that P ex
u1

(γ, β, ϕ2) and P ex
v1

(γ, β, ϕ2) are sub-
paths of P ex

u (α, β, ϕ) and P ex
v (α, β, ϕ) and are shorter than those two. Moreover, since 

w1 ∈ T 2
n,j −Tn,j−1, we can continue the proof process again for T 2

n,j inductively as we did 
for Tn,j . Continue in this fashion, we will reach a contradiction because we will obtain 
shorter and shorter legs until finally all the ends are contained.

Case II.b: w /∈ Tn,j − Tn,j−1.

The proof of this case is essentially the same as in Case I.b. We first show there exists 
a color which is closed in both Tn,j−1 and Tn,j . So there is a Tn,j-stable coloring ϕ∗ in 
which Tn,j satisfies all conditions MP, R1, and R2. However under ϕ∗, α∗ and β are not 
interchangeable in Tn,j−1, giving a contradiction to the minimality of j. Here we omit 
the proof. �
Claim 5.2. For an arbitrary vertex y ∈ V (Typ−1) − V (Tn,q), |ϕv(Ty) − ϕe(Ty − Tn,q)| ≥
11 +2n. Furthermore, if |ϕv(Ty) −Γq ∪Dn,q ∪ϕe(Ty −Tn,q)| ≤ 4, then there exist 7 distinct 
connecting colors δi with δi ∈ ϕv(Ty) such that all colors δi, γi1, γi2 /∈ ϕe(Ty − Tn,q).

Proof. Since |ϕ(Ty − Tn,q)| ≥ |ϕe(Ty − Tn,q)|, |V (Tn,q)| ≥ 11 + 2(n − 1) and |ϕv(Ty) −
ϕe(Ty − Tn,q)| ≥ |ϕv(Tn,q)| ≥ |V (Tn,q)| + 2 ≥ 11 + 2n. Now assume |ϕv(Ty) − Γq ∪
Dn,q ∪ ϕe(Ty − Tn,q)| ≤ 4. Since ϕv(Ty) = (ϕv(Ty) − Γq ∪ Dn,q ∪ ϕe(Ty − Tn,q)) ∪
((Γq ∪ Dn,q) ∩ ϕv(Ty) − ϕe(Ty − Tn,q) ∩ ϕv(Ty)) ∪ (ϕe(Ty − Tn,q) ∩ ϕv(Ty)), we have 
|(Γq ∪ Dn,q) ∩ ϕv(Ty) − ϕe(Ty − Tn,q) ∩ ϕv(Ty)| ≥ |ϕv(Ty)| − 4 − |ϕ(Ty − Tn,q)| ≥ 2n + 7. 
Thus we have

|(Γq ∪ Dn,q) ∩ ϕv(Ty) − ϕe(Ty − Tn,q)| ≥ 2n + 7.

By the Pigeonhole Principle, there are 7 distinguished i such that δi, γi1, γi2 /∈ ϕe(Ty −
Tn,q), so the result holds. �
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Claim 5.3. Let α and β be two missing colors of V (Typ−1) with v(α) ≺� v(β). If α /∈
ϕe(Tv(β) −Tn,q), then Pv(α)(α, β, ϕ) = Pv(β)(α, β, ϕ) unless at least one of α, β is in Dn,q

and α /∈ ϕ(Tn,q). Additionally, if α ∈ ϕv(Tn,q) and α is Tn,q-closed, then Pv(α)(α, β, ϕ)
is the only (α, β)-path that may intersect ∂(Tn,q).

Note that Tv(β) − Tn,q = ∅ if v(β) ∈ Tn,q and in Claim 5.3, (α, β)-path can not be 
replaced by (α, β)-chain because there may be (α, β)-cycles intersecting ∂(Tm).

Proof. Let v(α) = u and v(β) = w. We consider the following few cases.

Case I: u, w ∈ Tn,q.

If Tn,q is closed for both α, β, then (Eα ∪ Eβ) ∩ ∂(Tn,q) = ∅ and Pu(α, β, ϕ) =
Pw(α, β, ϕ) since Tn,q is elementary. So Claim 5.3 holds. Suppose Tn,q is closed for α or 
β but not for both. By Claim 5.1 there is at most one (α, β)-leg in Tn,q. If Pu(α, β, ϕ) �=
Pw(α, β, ϕ), then both paths have one endvertex outside Tn,q, and therefore there are two 
(α, β)-legs in Tn,q, giving a contradiction to Claim 5.1. If Pu(α, β, ϕ) is not the unique 
(α, β)-path intersecting ∂(Tn,q), then Tn,q has at least two (α, β)-legs, where we also 
have a contradiction. Hence Pu(α, β, ϕ) is the unique (α, β)-path intersecting ∂(Tn,q) and 
Pu(α, β, ϕ) = Pw(α, β, ϕ), where we have as desired. We now assume neither α nor β is 
Tn,q-closed. Under this assumption, we only need to show that Pu(α, β, ϕ) = Pw(α, β, ϕ). 
We may assume β ∈ ϕv(Tn,j′ − Tn,j′−1) for some 0 ≤ j′ < q where Tn,−1 = ∅ for 
convenience. By condition R2, β is closed in Tn,j′ . In the same fashion as we did the 
case in which Tn,q is closed for either α or β, we have Pu(α, β, ϕ) = Pw(α, β, ϕ) in Tn,j′

because we have u, v ∈ Tn,j′ .

Case II: u ∈ Tn,q and w /∈ Tn,q.

In this case α /∈ ϕe(Tw − Tn,q). We first consider the case that α is closed in Tn,q. By 
Claim 5.1, Tn,q has at most one (α, β)-leg. We also note Pu(α, β, ϕ) contains at least one 
(α, β)-leg, so it is the only (α, β)-leg intersecting Tn,q. If Pu(α, β, ϕ) �= Pw(α, β, ϕ), then 
Pw(α, β, ϕ) does not intersect Tn,q. Therefore ϕ∗ = ϕ/Pw(α, β, ϕ) is Tn,q-stable and Tn,q

satisfies conditions MP R1 and R2 by Lemma 3.1. Moreover since Pw(α, β, ϕ) does not 
intersect Tn,q, all colors closed in Tn,s under ϕ stay closed under ϕ∗ for each 0 ≤ s ≤ q. 
Since α, β /∈ ϕe(Tw − Tn,q) − fn where fn is the last connecting edge, ϕ∗(f) = ϕ(f)
for each f ∈ E(Tw − Tn,q). Hence by Lemma 2.4, Tw satisfies conditions MP and R1. 
Moreover, since ϕ∗(f) = ϕ(f) for each f ∈ E(Tw−Tn,q) and all colors closed in Tn,s under 
ϕ stay closed under ϕ∗ for each 0 ≤ s ≤ q, Tw still satisfies R2 under ϕ∗. Since Tw ⊂ T , 
p(Tw) ≤ p(T ). However, Tw is not elementary under ϕ∗, which gives a contradiction to 
the minimality of p if p(Tw) = p(T ), or to the minimality of p(T ) if p(Tw) < p(T ).

Now we assume that α is not closed in Tn,q. In this case we only need to prove 
Pu(α, β, ϕ) = Pw(α, β, ϕ). Suppose Pu(α, β, ϕ) �= Pw(α, β, ϕ). Recall that α ∈ ϕv(Tn,q). 
If α ∈ ϕv(Tn), it is closed in Tn = Tn,0. If α ∈ ϕv(Tn,j − Tn,j−1) for some 1 ≤ j ≤ q, 
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then α /∈ Γj−1, and therefore α is closed in Tn,j by condition R2(4). So either way, there 
exists the largest q′ such that α is closed in Tn,q′ . Since the only edge in T −Tn with color 
not missing before is the connecting edge with color δn, we have β /∈ ϕe(Tw − Tn − fn). 
We claim that α /∈ ϕe(Tw − Tn,q′). Suppose α ∈ ϕe(Tw − Tn,q′). We can assume α ∈
ϕe(Tn,r − Tn,r−1) for some r > q′. Then α /∈ ∪δh∈Dn,r

Γr−1
h by condition R2(1), and 

therefore α is closed in Tn,r by condition R2(4), which contradicts the maximality of q′. 
Hence we indeed have α /∈ ϕe(Tw −Tn,q′). By Claim 5.1 there is at most one (α, β)-leg in 
Tn,q′ , which is a sub-path of Pu(α, β, ϕ). Then Pw(α, β, ϕ) is disjoint with Tn,q′ . Hence 
under ϕ∗ = ϕ/Pw(α, β, ϕ), Tn,q′ satisfies conditions MP, R1, and R2 by Lemma 3.1. 
Moreover, Tw satisfies conditions MP and R1 by Lemma 2.4 since α /∈ ϕe(Tw − Tn,q′)
and β /∈ ϕe(Tw − Tn − fn). Now we first consider the case when q′ ≥ 1 or β �= δn. In 
this case α, β /∈ ϕe(Tw − Tn,q′). Therefore, α, β /∈ ϕ∗

e(Tw − Tn,q′), and ϕ∗ is Tn,q-stable, 
which implies Tw and all Tn,s for q′ ≤ s ≤ q satisfies conditions MP, R1, and R2(1), (2) 
(3) under ϕ∗. Note that neither α nor β is closed in Tn,s for q′ ≤ s ≤ q for ϕ, we have 
Tw and all Tn,s for q′ ≤ s ≤ q satisfies condition R2(4) because none of the closed colors 
become non-closed in Tn,s for q′ ≤ s ≤ q under ϕ∗. However, α ∈ ϕ∗(w) ∩ ϕ∗

e(Tn,q), 
giving a contradiction to the minimality of p if p(Tw) = p(T ), or to the minimality of 
p(T ) if p(Tw) < p(T ). For the case q′ = 0 and β = δn, we have that β is only assigned 
to the connecting edge fn in Tn,1 − Tn by the construction of Tn,1 and the assumption 
of β ∈ ϕ(w) and w /∈ Tn,q. Moreover, by Claim 5.1, α is interchangeable with β in Tn,0, 
hence there is only one (α, β)-leg in Tn,0. Therefore Pw(α, β, ϕ) is disjoint with Tn,0, and 
therefore ϕ∗(fn) = β. Note that we can conclude ϕ∗ is Tw-stable as before, so similarly 
we have Tw satisfying conditions MP, R1, and R2. We then reach a contradiction since 
α ∈ ϕ∗(w) ∩ ϕ∗

v(Tn,q).

Case III: u, w /∈ Tn,q.

In this case, we have α /∈ ϕe(Tw−Tn,q) and α, β /∈ Dn,q, which in turn give α, β /∈ Dn∪
ϕ(Tw −w). Then α, β /∈ ϕe(Tw). Suppose on the contrary that Pu(α, β, ϕ) �= Pw(α, β, ϕ). 
Now consider the proper coloring ϕ∗ = ϕ/Pw(α, β, ϕ). Since α, β /∈ Dn ∪ ϕ(Tw − w), all 
the edges colored by connecting colors and their companion colors stay the same under ϕ∗

as ϕ and therefore Tw is an ETT under ϕ∗. Moreover, each Ti is still closed under ϕ∗ for 
1 ≤ i ≤ n. Since α /∈ ϕe(Tw −Tn,q), ϕ(f) = ϕ∗(f) for every f ∈ E(Tw) and ϕ(v) = ϕ∗(v)
for every v ∈ Tw − w. Thus T is still an ETT under ϕ∗. Therefore ϕ∗ is T -stable and 
T satisfies conditions MP and R1 by Lemma 2.3. Moreover, T still satisfies condition 
R2 under ϕ∗ because R2 is not related to colors in ϕv(T − Tn,q) − Dn,q. However, now 
α ∈ ϕ∗(u) ∩ ϕ∗(w), which gives a contradiction to the minimality of |T − Tn,q|. �
Claim 5.4. For any two colors α, β ∈ ϕv(Typ−1), the following two statements hold.

(1) If α ∈ ϕv(Tn,q) and P is an (α, β)-path other than Pv(α)(α, β, ϕ), then Tn,q satisfies 
conditions MP, R1, and R2 under the Tn,q-stable coloring ϕ∗ = ϕ/P . Here by con-



G. Chen, G. Jing / Journal of Combinatorial Theory, Series B 139 (2019) 128–162 149
dition R2 holds, we mean R2(1) holds for j < q, and R2(2), (3) and (4) hold for 
j ≤ q.

(2) If Tn,q ≺� v(α) ≺� v(β) ≺� yp−1, α /∈ ϕe(Tv(β)) and α, β /∈ Dn,q, then ϕ∗ = ϕ/P is 
T -stable for any (α, β)-chain P . Consequently, T satisfies conditions MP, R1, and 
R2 under ϕ∗.

Remark 2. In part (1) by condition R2 holds, we mean R2(1) holds for j < q, and R2(2), 
(3) and (4) hold for j ≤ q. Therefore after applying Claim 5.4, we only need to show 
that T −Tn,q satisfies condition R2(1) for j = q to confirm that T also satisfies condition 
R2 under ϕ∗. Moreover, after applying Claim 5.4 we could always apply Lemma 2.4 to 
show that T also satisfies conditions MP and R1 if T is still an ETT obtained from Tn,q

by TAA under ϕ∗.

Proof. We first prove (1). If one of α and β is closed in Tn,q, we have that Pv(α)(α, β, ϕ)
is the only (α, β)-path intersecting Tn,q by Claim 5.3. Therefore P is disjoint with Tn,q. 
Then ϕ∗ = ϕ/P is a Tn,q-stable coloring and Tn,q satisfies conditions MP, R1, R2 under 
ϕ∗ by Lemma 3.1. We now suppose that neither α nor β is closed in Tn,q. Then similarly 
to the proof of Claim 5.3, by condition R2(4), there exist the largest q′ such that either 
α or β is closed in Tn,q′ . First we consider the case when β �= δn or q′ > 0. We claim that 
α, β /∈ ϕe(Tn,q − Tn,q′). The proof of α /∈ ϕe(Tn,q − Tn,q′) is the same as in Claim 5.3
Case II, where we assume α is not closed in Tn,q. Now we prove β /∈ ϕe(Tn,q − Tn,q′). If 
β ∈ ϕv(Tn,q), we argue just as in the case when α is not closed in Tn,q. If β /∈ ϕv(Tn,q), 
the only possibility that β ∈ ϕe(Tn,q − Tn,q′) is β = δn and q′ = 1 by the definition of 
ETT, which does not meet the assumption of this case. Hence α, β /∈ ϕe(Tn,q −Tn,q′). By 
Claim 5.1 there is at most one (α, β)-leg in Tn,q′ , which is a sub-path of Pv(α)(α, β, ϕ). 
Then P is disjoint with Tn,q′ . Hence Tn,q′ satisfies conditions MP, R1, and R2 and ϕ∗

is Tn,q′-stable by Lemma 3.1. Since α, β /∈ ϕe(Tn,q − Tn,q′), Tn,q satisfies (1) (2) and (3) 
of condition R2 under ϕ∗ and ϕ∗ is Tn,q-stable. Moreover, Tn,q satisfies conditions MP 
and R1 by Lemma 2.3. Since both α, β are not closed in Tn,t for q′ ≤ t ≤ q, Tn,t satisfies 
condition R2(4) because none of the closed colors become non-closed in Tn,t. Thus Tn,q

itself satisfies condition R2(4) and we have as desired. For the case q′ = 0 and β = δn, 
the only edge fn colored by β is a connecting edge by the construction of Tn,1, and 
β /∈ ϕe(Tn,q − Tn,1), α /∈ ϕe(Tn,q − Tn,0). Moreover, by Claim 5.1, α is interchangeable 
with β in Tn,0. Hence there is only one (α, β)-leg in Tn,0. Therefore P is disjoint with 
Tn,0, and ϕ∗(fn) = β. Note that we can conclude ϕ∗ is Tn,q-stable as the case earlier and 
prove that Tn,q satisfies conditions MP, R1, and R2, where we can proceed as earlier to 
finish the proof.

Now we prove (2). By Claim 5.3, Pv(α)(α, β, ϕ) = Pv(β)(α, β, ϕ). In this case we 
have α, β /∈ ϕv(Tn,q) ∪ Dn and α, β /∈ ϕe(Tv(β)). If P = Pv(α)(α, β, ϕ), then T is an 
ETT under ϕ∗ = ϕ/P since α, β /∈ ϕ∗

e(Tv(β)) and α, β /∈ ϕv(Tn,q) ∪ Dn. Moreover, 
all the edges colored by connecting colors and their companion colors stay the same 
under ϕ∗ as ϕ. Thus ϕ∗ is T -stable. By Lemma 2.3, T also satisfies condition MP 
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and R1. Since α, β ∈ ϕv(T − Tn,q) − Dn,q and condition R2 is not related to colors 
in ϕv(T − Tn,q) − Dn,q, T satisfies condition R2 under ϕ∗. If P �= Pv(α)(α, β, ϕ), then 
similarly ϕ∗ is T -stable and T is an ETT satisfying conditions MP and R1 under ϕ∗ by 
Lemma 2.3 because we still have α, β /∈ ϕ∗

e(Tv(β)) and α, β /∈ ϕv(Tn,q) ∪ Dn. Moreover, 
since α, β ∈ ϕv(T − Tn,q) − Dn,q, T still satisfies condition R2 under ϕ∗. �
5.2.2. Case verification

Claim 5.5. p > 0.

Proof. Suppose on the contrary p = 0, that is, T = Tn,q ∪(e0, y0). We consider two cases.

Case I: q = 0. In this case Tn,q = Tn is closed and e0 is a connecting edge.

Let α ∈ ϕv(Tn,q) ∩ ϕ(y0). Let k be the minimum index such that γn ∈ ϕv(Tk). 
By condition R1, γn ∈ ϕv(Tk) and γn /∈ ϕe(Tn). Let ϕ∗ = ϕ/(G − Tn, γn, α). By 
Lemma 3.1, T satisfies conditions MP, R1, and R2 under the T -stable coloring ϕ∗. Note 
that Pv(γn)(δn, γn, ϕ∗) = Py0(δn, γn, ϕ∗) by Claim 5.3 where v(γn) is the unique vertex in 
V (Tk) such that γn ∈ ϕ(v(γn)). Because e0 is the first edge in Pv(γn)(δn, γn, ϕ) ∩ ∂(Tn), 
Pv(γn)(δn, γn, ϕ∗) contains only one edge colored δn in ∂(Tn) under the coloring ϕ∗. Hence 
there is another (δn, γn)-chain Q intersecting ∂(Tn) under ϕ∗. Let s be the smallest index 
with s ≥ k such that V (Q) ∩ V (Ts) �= ∅. Let ϕ2 = ϕ∗/Q. We claim that ϕ2 is a Ts-stable 
coloring. We first consider the case s > k. Then V (Q) ∩ V (Ts−1) = ∅. By Lemma 3.1, 
ϕ2 is Ts−1 ∪ (fs, b(fs))-stable and Ts−1 ∪ (fs, b(fs)) is still an ETT under ϕ2. Because 
γn /∈ ϕe(Ts) and δn /∈ ϕe(Ts − Ts−1 − fs−1) where fs−1 is a connecting edge, we have 
ϕ∗(f) = ϕ2(f) for all f incident to V (Ts−1), ϕ∗(f) = ϕ2(f) for all f ∈ E(Ts−1) and 
ϕ∗(v) = ϕ2(v) for all v ∈ V (Ts). Therefore Ts is still an ETT under ϕ2 with the same 
connecting colors, connecting edges and companion colors as under ϕ∗, and ϕ(f) = ϕ∗(f)
for every f incident to V (Ts−1) if ϕ(f) ∈ {δi, γi} or ϕ∗(f) ∈ {δi, γi} with 1 ≤ i ≤ s − 1. 
Hence ϕ2 is T -stable. We then assume s = k. By condition R1 and the definition of ETT, 
δn has not been used as a connecting color in Ts and γn has not been used as a com-
panion color in Ts, i.e., γi �= γn and δi �= δn for 1 ≤ i < s. Therefore we also have that 
ϕ(f) = ϕ∗(f) for every f incident to V (Ts−1) if ϕ(f) ∈ {δi, γi} or ϕ∗(f) ∈ {δi, γi} with 
1 ≤ i ≤ s − 1, and Ts is an ETT under ϕ2 with the same connecting colors, connecting 
edges and companion colors as under ϕ∗. Thus ϕ2 is Ts-stable in both cases. However, 
under the coloring ϕ2, Ts is no longer closed, giving a contradiction to MP condition 
of T .

Case II: q > 0. In this case Tn,q is not closed although it is (∪δh∈Dn,q
Γq−1

h )−-closed.

Assume without loss of generality that e0 is colored by γ0 ∈ Γq−1. Let α ∈ ϕv(Tn,q) ∩
ϕ(y0). Let u = a(e0) the endvertex of e0 in Tn,q. We further assume that u ∈ Tn,q′ −
Tn,q′−1 for some q′ ≤ q where Tn,−1 = ∅ for convenience. We claim that v(γ0) ≺l u. 
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Otherwise we can assume v(γ0) ∈ Tn,s − Tn,s−1 for some q′ ≤ s ≤ q, and then γ0 is 
closed in Tn,s by condition R2(4). Combining with the assumption u ≺f v(γ0), we get 
y0 ∈ Tn,s, a contradiction. Hence we have as claimed. Let γ ∈ ϕ(u). Clearly α �= γ0 and 
γ �= γ0 because ϕ(e0) = γ0 and α, γ are missing at the endvertices of e0. Since both v(α)
and u are in Tn,q, we have Pv(α)(α, γ, ϕ) = Pu(α, γ, ϕ) by Claim 5.3, and Py0(α, β, ϕ) is 
different from the path above. Moreover by Claim 5.4, ϕ∗ = ϕ/Py0(α, γ, ϕ) is Tn,q-stable 
and Tn,q satisfies conditions MP, R1, and R2. Since α �= γ0 and γ �= γ0, ϕ∗(e0) = γ0. 
Note that γ ∈ ϕ∗(u) ∩ϕ∗(y0). Let ϕ2 be the coloring obtained from ϕ∗ by recoloring e0 by 
γ. Hence γ0 ∈ ϕ2(u). In the case u /∈ Tn, since ϕ∗ and ϕ2 are only differed by one edge e0
and both endvertices of e0 are outside of Tu−u, ϕ2 is Tu-stable and Tu satisfies conditions 
MP, R1, and R2 by Lemma 3.1. Since v(γ0) ≺l u, we have γ0 ∈ ϕ2(u) ∩ϕ2(v(γ0)), giving 
a contradiction to the minimality of q. Now we assume u ∈ Tn. Then similarly ϕ2 is 
Tu-stable and Tu satisfies conditions MP and R1 by Lemma 3.1. Since m(Tw) ≤ n − 1, 
Tw is elementary under ϕ2 by our assumption. However, we have γ0 ∈ ϕ2(u) ∩ϕ2(v(γ0)), 
giving a contradiction. �

The remainder of this proof is divided into three cases based on the value of p(T ). 
Recall that the path number p(T ) is the smallest index i ∈ {0, 1, ..., p} such that the 
sequence yiT := (yi, ei+1, ..., ep, yp) is a path in G.

Case 1. p(T ) = 0.

In this case T − Tn,q is a path, so we call T a Generalized Kierstead path.

Claim 5.6. We may assume α ∈ ϕ(yi) ∩ ϕ(yp) for some 0 ≤ i < p.

Proof. Suppose α ∈ ϕ(yp) ∩ ϕ(v) for some v ∈ V (Tn,q). We first consider the case 
α /∈ ϕe(T − Tn,q). Let β ∈ ϕ(yp−1). By Claim 5.3 Pv(α, β, ϕ) = Pyp−1(α, β, ϕ) and 
Pyp

(α, β, ϕ) is difference from the path above. Let ϕ∗ := ϕ/Pyp
(α, β, ϕ). By Claim 5.4, 

Tn,q is ϕ/ϕ∗-stable and satisfies conditions MP, R1, and R2. Since α, β /∈ ϕe(Typ
−Tn,q), 

T clearly satisfies condition R2 under ϕ∗. By Lemma 2.4, T also satisfies MP and R1 
under ϕ∗. Note that we have β ∈ ϕ∗(yp−1) ∩ ϕ∗(yp), Claim 5.6 holds.

We now consider the case α ∈ ϕe(T − Tn,q). Following order ≺�, let ej be the first 
edge in T − Tn,q such that α = ϕ(ej). We first consider the case j ≥ 1. Let β ∈ ϕ(yj−1). 
By Claim 5.3, Pv(α, β, ϕ) = Pyj−1(α, β, ϕ) and Pyp

(α, β, ϕ) is different from the path 
above. Moreover, by Claim 5.4 ϕ∗ = ϕ/Pyp

(α, β, ϕ) is a Tn,q-stable coloring and Tn,q

satisfies conditions MP, R1, and R2. Moreover, T is still an ETT obtained from Tn,q

by TAA under ϕ∗ and therefore it satisfies MP and R1 by Lemma 2.4. Clearly, under 
ϕ∗, condition R2 holds for T if α /∈ Γq. If α ∈ Γq, say α = γi1 for some 0 < i ≤ n, 
by condition R2 we have δi ∈ ϕ(w) for some w �� yj−1. Since only edges after w in 
the order ≺� may change colors between α and β, condition R2 also holds under ϕ∗. 
Since β ∈ ϕ∗(yj−1) ∩ ϕ∗(yp), Claim 5.6 holds by simply denoting ϕ∗ as ϕ. From now 
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on when we claim that T satisfies MP, R1, and R2 without checking MP and R1, we 
either follow Lemma 2.4, or the checking of those conditions are trivial, especially after 
applying Claim 5.3.

Now we assume that j = 0. In this case q > 0, since q = 0 implies α = δn which 
is a contradiction to α ∈ ϕv(Tn,q). Therefore, α = ϕ(e0) where α ∈ Γq−1. Note that 
α /∈ Γq by condition R2. We will show that there exists γ ∈ ϕv(Tn,q) − Γq such that 
γ is closed in Tn,q. By condition R2(4), Tn,q is (∪δh∈Dn,q

Γq−1
h )−-closed. Therefore, Tn,q

is closed for colors in ϕv(Tn,q) − Γq−1 because ∪δh∈Dn,q
Γq−1

h ⊆ Γq−1. Hence we need to 
show that there exists γ ∈ ϕv(Tn,q) − Γq ∪ Γq−1. Since Γq − Γq−1 ⊆ ϕv(Tn,q − Tn,q−1)
by condition R2 and the assumption that Tn,q−1 is elementary, we have |(Γq ∪ Γq−1) ∩
ϕv(Tn,q−1)| = |Γq−1 ∩ϕv(Tn,q−1)| ≤ 2n and |ϕv(Tn,q−1)| ≥ |ϕv(T1)| +2(n −1) = 2n +11. 
Therefore |ϕv(Tn,q) − Γq ∪ Γq−1| = |ϕv(Tn,q−1) − Γq−1)| + |ϕv(Tn,q − Tn,q−1) − (Γq −
Γq−1)| ≥ |ϕv(Tn,q−1) −Γq−1| ≥ (2n +11) −2n ≥ 11, where we have γ as desired. Now by 
Claim 5.3, Pv(α)(α, γ, ϕ) = Pv(γ)(α, γ, ϕ), and Pyp

(α, β, ϕ) is disjoint with Tn,q. Therefore 
by Claim 5.4, Tn,q is stable under ϕ∗ = ϕ/Pyp

(α, γ, ϕ) and satisfies conditions MP, R1, 
and R2. Moreover, since e0 ∈ ∂(Tn,q), e0 /∈ Pyp

(α, γ, ϕ). Since α, γ /∈ Γq, Typ satisfies 
conditions MP, R1, and R2 under ϕ∗. Now γ ∈ ϕ∗(yp) ∩ ϕ∗(v) for some v ∈ V (Tn,q) and 
α �= γ, which returns to the case either γ /∈ ϕv(T − Tn,q) or j ≥ 1. �

Among all T -stable colorings satisfying conditions MP, R1, and R2, we assume that 
i is the maximum index such that α ∈ ϕ(yp) ∩ ϕ(yi).

Claim 5.7. i = p − 1.

Proof. Suppose on the contrary i < p − 1. We first consider the case α /∈ Dn,q. Let θ ∈
ϕ(yi+1). If θ /∈ Dn,q, then {α, θ} ∩ Dn,q = ∅. By Claim 5.3, Pyi

(α, θ, ϕ) = Pyi+1(α, θ, ϕ). 
Let ϕ∗ = ϕ/Pyp

(α, β, ϕ). Since both yi, yi+1 ∈ T −Tn,q and α /∈ Tyi+1 , by Claim 5.4, T is 
also an ETT under ϕ∗ and conditions MP, R1, and R2 hold. But θ ∈ ϕ∗(yp) ∩ ϕ∗(yi+1), 
which contradicts the maximality of i. We now consider the case θ = δk for some k ≤
n. By Claim 5.3, Pv(γk1)(α, γk1, ϕ) = Pyi

(α, γk1, ϕ) and Pyp
(α, γk1, ϕ) is different from 

path above. Note that Pyp
(α, γk1, ϕ) = yp can occur if γk1 ∈ ϕ(yp). By Claim 5.4, 

ϕ∗ = ϕ/Pyp
(α, γk1, ϕ) is a Tn,q-stable coloring and Tn,q satisfies conditions MP, R1, and 

R2. Moreover, since α /∈ ϕe(Tyi+1) and δk ∈ ϕ(yi+1), T still satisfies conditions MP, 
R1, and R2 under ϕ∗. Then, by Claim 5.3 again, Pv(γk1)(δk, γk1, ϕ∗) = Pyi

(δk, γk1, ϕ∗)
and Pyp

(δk, γk1, ϕ∗) is different from the path above. Let ϕ∗∗ = ϕ∗/Pyp
(δk, γk1, ϕ∗). By 

Claim 5.4, ϕ∗∗ is Tn,q-stable and Tn,q satisfies conditions MP, R1, and R2 under ϕ∗∗. 
Note that γk1 /∈ ϕ∗∗

v (Tyi+1 −Tn,q), and δk is only used by connecting edges in Tyi+1 where 
they are colored the same under ϕ∗∗, we see that T satisfies condition R2. However under 
ϕ∗∗, δk ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yi+1), giving a contradiction to the maximality of i.

We now consider the case α ∈ Dn,q, say α = δk for some k ≤ n. Since ϕ(ei+1)
can not be both γk1 and γk2, we assume without loss of generality ϕ(ei+1) �= γk1. By 
Claim 5.3, Pv(γk1)(δk, γk1, ϕ) = Pyi

(δk, γk1, ϕ) and Pyp
(δk, γk1, ϕ) is a different path. Let 
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ϕ∗ = ϕ/Pyp
(δk, γk1, ϕ). By Claim 5.4, ϕ∗ is Tn,q-stable and Tn,q satisfies conditions MP, 

R1, and R2. Now γk1 ∈ ϕ∗(yp). Moreover, since γk1 /∈ ϕv(Tyi
−Tn,q) and δk is only used by 

connecting edges in Tyi
where they are colored the same under ϕ∗, T satisfies conditions 

MP, R1, R2 and ϕ∗(ei+1) �= γk1. Hence γk1 /∈ ϕ∗
e(Tyi+1 − Tn,q). Let θ ∈ ϕ∗(yi+1). By the 

minimality of V (T − Tn,q), θ �= γk1. By Claim 5.3, Pv(γk1)(θ, γk1, ϕ∗) = Pyi+1(θ, γk1, ϕ∗), 
and Pyp

(θ, γk1, ϕ∗) is a different path. By Claim 5.4, ϕ∗∗ = ϕ∗/Pyp
(θ, γk1, ϕ∗) is 

Tn,q-stable and Tn,q satisfies conditions MP, R1, and R2. Moreover, since θ ∈ ϕe(Tyi+1)
implies θ = δm (m ≤ n) which is only used by some connecting edges in Tyi+1 and 
γk1 /∈ ϕ∗

e(Tyi+1 − Tn,q), ϕ∗∗ is Tn,q-stable ensures T satisfies conditions MP, R1, and R2 
under ϕ∗∗. However, θ ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yi+1), giving a contradiction to the maximality 
of i. �

Now we have i = p −1. Let ϕ(ep) = θ. Since α ∈ ϕ(yp) ∩ϕ(yp−1), we can recolor ep by 
α. Denote the new coloring by ϕ∗. Then θ ∈ ϕ∗(yp−1), and ϕ∗ is Typ−1 -stable. Moreover, 
Typ−1 satisfies conditions MP, R1, and R2 under ϕ∗. Note that v(θ) ≺� yp−1, we have a 
counterexample which has one less vertex than T , giving a contradiction. This completes 
Case 1.

Case 2. p(T ) = p ≥ 1. In this case, yp−1 is not incident to ep. Let θ = ϕ(ep).

We divide this case into a few subcases. In summary, we will prove Case 2.1.1 inde-
pendently. Case 2.1.2 is redirected to Case 2.1.1 and Case 2.2.1, Case 2.2.1 is redirected 
to Case 2.1.1, Case 2.2.2 is redirected to Case 2.2.1, which is further redirected to Case 
2.1.1. Case 2.3.1 is redirected to Case 2.1, Case 2.3.2 is redirected to Case 2.1.1 and Case 
2.2. Therefore, at the end, there is no loophole in our proof. The next figure describes 
the above.

Case 2.1. α ∈ ϕ(yp) ∩ ϕ(yp−1) and α ∈ Dn,q.

Assume α = δm for some m ≤ n. Since δm ∈ ϕ(yp), we have θ �= δm. Note that 
θ ∈ Dn,q may occur.

Case 2.1.1. θ /∈ ϕ(yp−1).
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We first consider the case θ /∈ Γq. By condition R2, γm1, γm2 /∈ ϕe(Typ−1 − Tn,q). 
Thus γm1, γm2 /∈ ϕe(T − Tn,q). If γm1 ∈ ϕ(yp), then γm1 is missing twice in the ETT 
T ∗ = Tn,q ∪ (e0, y0, e1, ..., ep−2, yp−2, ep, yp) when p ≥ 2. Here T ∗ gives a coun-
terexample smaller than T . If p = 1, we must have q > 0. Otherwise since Tn,0 is 
closed for colors in ϕv(Tn,0), we have θ ∈ ϕ(yp−1), giving a contradiction. We then 
consider Tn,q ∪ (e1, y1) as a smaller counterlexample. Note that Tn,q ∪ (e1, y1) still sat-
isfies conditions MP, R1, and R2 while dropping e0, as ϕ(e1) ∈ ∪δh∈Dn,q

Γq−1
h and 

ϕ(e1) = θ /∈ Γq. By Claim 5.3, Pv(γm1)(δm, γm1, ϕ) = Pyp−1(δm, γm1, ϕ). Now we consider 
Typ,yp−1 = Tn,q ∪ (y0, e1, ..., yp−2, ep, yp, ep−1, yp−1) obtained from T by switching the or-
der of joining vertices yp and yp−1. We can see Typ,yp−1 is also an ETT of (G, e, ϕ) since 
θ /∈ ϕ(yp−1) and θ /∈ Γq and conditions MP, R1, R2 are satisfied. Applying Claim 5.3
again, we have Pv(γm1 )(δm, γm1, ϕ) = Pyp−1(δm, γm1, ϕ), giving a contradiction.

Now we assume θ ∈ Γq. Without loss of generality we say θ = γk1 for some 
k ≤ n. By Claim 5.3, Pv(γm1)(δm, γm1, ϕ) = Pyp−1(δm, γm1, ϕ). If δk /∈ ϕ(yp−1), Typ,yp−1

also satisfies MP, R1, and R2, where we proceed in the same fashion as the previ-
ous case and consider Typ,yp−1 . Since γk1 can not be both γm1 and γm2, we assume 
δk ∈ ϕ(yp−1) and γm2 �= γk1. By condition R2, we have γm2 /∈ ϕe(T −Tn,q). By Claim 5.3, 
Pv(γm2)(δm, γm2, ϕ) = Pyp−1(δm, γm2, ϕ) and that Pyp

(δm, γm2, ϕ) is different from the 
path above. Note that γm2 ∈ ϕv(Tn,q), by Claim 5.4, Tn,q is an ETT satisfying condi-
tions MP, R1, and R2 under the Tn,q-stable coloring ϕ∗ = ϕ/Pyp

(δm, γm2, ϕ). Moreover, 
T under ϕ∗ satisfies conditions MP, R1, and R2 since γm2 /∈ ϕe(T − Tn,q). Furthermore, 
the combination of δm ∈ ϕ(yp−1) and θ = γk1 implies δm is only assigned to connect-
ing edges in T . Therefore, γm2 /∈ ϕ∗

e(T − Tn,q) because γm2 /∈ ϕe(T − Tn,q) and no 
δm edge in T is recolored under ϕ∗. By Claim 5.2, |ϕ∗

v(Typ−1) − ϕ∗
e(Typ−1 − Tn,q))| ≥

11 + 2n. Hence there exists β ∈ ϕ∗(V (Typ−2)) − Γq such that β /∈ ϕ∗
e(T − Tn,q). 

By Claim 5.3, Pv(γm2)(β, γm2, ϕ∗) = Pv(β)(β, γm2, ϕ∗), and Pyp
(β, γm2, ϕ∗) is a dif-

ferent path than above. Let ϕ∗∗ = ϕ∗/Pyp
(β, γm2, ϕ∗). Applying Claim 5.4, we see 

that the coloring ϕ∗∗ is Tn,q-stable and Tn,q satisfies conditions MP, R1, R2. More-
over, since γm2, β /∈ ϕ∗

e(T − Tn,q), γm2, β /∈ ϕ∗∗
e (T − Tn,q). Hence T satisfies conditions 

MP, R1, and R2 under ϕ∗∗. Now β ∈ ϕ∗∗(yp). By Claim 5.3, Pv(γk1)(β, γk1, ϕ∗∗) =
Pv(β)(β, γk1, ϕ∗∗), and Pyp

(β, γk1, ϕ∗∗) is a different path than above. Finally, we let 
ϕ∗∗∗ = ϕ∗∗/Pyp

(β, γk1, ϕ∗∗). Since β /∈ ϕ∗∗
e (T − Tn,q) and by Claim 5.4, we can see 

that T satisfies conditions MP, R1, and R2 under ϕ∗∗∗. However, under ϕ∗∗∗ we have 
ϕ∗∗∗(ep) = β, γk1 ∈ ϕ∗∗∗(yp) and v(β) ≺� yp−1. Hence Tn,q ∪(y0, e1, ..., ep−2, yp−2, ep, yp)
is a counterexample smaller than T , giving a contradiction.

Case 2.1.2. θ ∈ ϕ(yp−1). In this case θ �= δm and θ /∈ ϕv(Tn,q).

Note that δm is only assigned to connecting edges in T . By Claim 5.3, Pv(γm1)(δm,

γm1, ϕ) = Pyp−1(δm, γm1, ϕ) and Pyp
(δm, γm1, ϕ) is a different path from above. Let 

ϕ∗ = ϕ/Pyp
(δm, γm1, ϕ). By Claim 5.4, in Tn,q-stable coloring ϕ∗, Tn,q is an ETT satisfies 

conditions MP, R1, and R2. Moreover, γm1 /∈ ϕe(T −Tn,q) and δm is only used by connect-
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ing edges in T ensures T satisfies condition R2 under ϕ∗. Since γm1 ∈ ϕ∗
v(Tn,q), by apply-

ing Claim 5.3 again, we have Pv(γm1)(θ, γm1, ϕ∗) = Pyp−1(θ, γm1, ϕ∗) and Pyp
(θ, γm1, ϕ∗)

is a different path than above. Let ϕ∗∗ = ϕ∗/Pyp
(θ, γm1, ϕ∗). Now since γm1 ∈ ϕ∗∗

v (Tn,q), 
by applying Claim 5.4, we see that under the Tn,q-stable coloring ϕ∗∗, Tn,q is an ETT 
and satisfies conditions MP, R1, and R2. Moreover, T satisfies conditions MP, R1, and 
R2 under ϕ∗∗ since γm1 /∈ ϕe(Typ−1 − Tn,q) and θ may only be used by connecting 
colors in T if θ = δk for some k ≤ n. Note that under ϕ∗∗, θ ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yp−1)
and ϕ∗∗(ep) = γm1. If θ ∈ Dn,q, then under ϕ∗∗ we have Case 2.1.1. So we may assume 
θ /∈ Dn,q, which will be handled in Case 2.2.1 below (here θ is α in Case 2.2.1 because 
θ ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yp−1) and ϕ∗∗(ep) = γm1 /∈ ϕ∗∗(yp−1)).

Case 2.2. α ∈ ϕ(yp) ∩ ϕ(yp−1) and α /∈ Dn,q.

Case 2.2.1. θ /∈ ϕ(yp−1).

In this case, Typ,yp−1 = Tn,q ∪(y0, e1, . . . , yp−2, ep, yp, ep−1, yp−1) is also an ETT under 
ϕ satisfies conditions MP, R1, and R2 except for the case where θ ∈ Γq

m for some m ≤ n

and δm ∈ ϕ(yp−1). We first assume there does not exist 1 ≤ m ≤ n such that θ ∈ Γq
m

and δm ∈ ϕ(yp−1). By Claim 5.2, we have |ϕv(Typ−1) − ϕ(E(Typ−1 − Tn,q))| ≥ 2n + 11. 
So there exists a color β ∈ ϕv(Typ−2) − Dn,q such that β /∈ ϕe(T − Tn,q). We claim 
that β /∈ ϕ(yp). Otherwise, Tn,q ∪ (y0, e1, ..., ep−2, yp−2, ep, yp) is a counterexample 
smaller than T , giving a contradiction. Since α, β /∈ Dn,q, by Claim 5.3 Pv(β)(α, β, ϕ) =
Pyp−1(α, β, ϕ). Applying Claim 5.3 to Typ,yp−1 , we see that Pv(β)(α, β, ϕ) = Pyp

(α, β, ϕ). 
So, Pv(β)(α, β, ϕ) has three endvertices v(β), yp−1 and yp, a contradiction. Hence, we 
may assume θ = γm1 and δm ∈ ϕ(yp−1) for some m with 1 ≤ m ≤ n, which in turn gives 
γm2, α /∈ ϕe(T − Tn,q) and δm is only used by connecting edges in T .

By Claim 5.3, Pv(γm2)(α, γm2, ϕ) = Pyp−1(α, γm2, ϕ) and Pyp
(α, γm2, ϕ) is a dif-

ferent path from above. Let ϕ∗ = ϕ/Pyp
(α, γm2, ϕ). Since γm2 ∈ ϕv(Tn,q), by ap-

plying Claim 5.4, we see that, under ϕ∗, Tn,q is an ETT and satisfies conditions 
MP, R1, and R2. Moreover T satisfies condition MP, R1, and R2 under ϕ∗ because 
γm2, α /∈ ϕe(T − Tn,q). If δm ∈ ϕ∗(yp), then with δm ∈ ϕ∗(yp) ∩ ϕ∗(yp−1) and 
ϕ∗(ep) = γm1 /∈ ϕ∗(yp−1), where we have Case 2.1.1. Hence δm /∈ ϕ∗(yp). Now by 
Claim 5.3, Pv(γm2 )(δm, γm2, ϕ∗) = Pyp−1(δm, γm2, ϕ∗), and Pyp

(δm, γm2, ϕ∗) is different 
from the path above. Let ϕ∗∗ = ϕ∗/Pyp

(δm, γm2, ϕ∗). Since γm2 ∈ ϕ∗
v(Tn,q), by apply-

ing Claim 5.4, we see that under the Tn,q-stable coloring ϕ∗∗, Tn,q is an ETT satisfies 
conditions MP, R1, and R2. Additionally, T satisfies condition MP, R1, and R2 since 
γm2 /∈ ϕ∗

e(T − Tn,q) and δm is only assigned to connecting edges in T . In ϕ∗∗, we have 
δm ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yp−1), γm1 = ϕ∗∗(ep) /∈ ϕ∗∗(yp−1), which also leads us back to 
Case 2.1.1.

Case 2.2.2. θ ∈ ϕ(yp−1). In this case, α /∈ ϕe(T − Tn,q).
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We first assume θ = δm for some m ≤ n. By condition R2, γm1 /∈ ϕe(T − Tn,q). 
By Claim 5.3, Pv(γm1)(α, γm1, ϕ) = Pyp−1(α, γm1, ϕ), and Pyp

(α, γm1, ϕ) is a path dif-
ferent from above. Let ϕ∗ = ϕ/Pyp

(α, γm1, ϕ). Since γm1 ∈ ϕv(Tn,q), we see that ϕ∗ is 
Tn,q-stable and Tn,q satisfies conditions MP, R1, R2 under ϕ∗ by Claim 5.4. More-
over T satisfies condition MP, R1, and R2 since α, γm1 /∈ ϕe(T − Tn,q). Note that 
γm1 /∈ ϕ∗

e(T − Tn,q). By Claim 5.3 again, Pv(γm1)(δm1, γm1, ϕ∗) = Pyp−1(δm1, γm1, ϕ∗), 
and Pyp

(δm1, γm1, ϕ∗) is a different path from above. Let ϕ∗∗ = ϕ∗/Pyp
(δm1, γm1, ϕ∗). 

Since γm1 ∈ ϕv(Tn,q), by applying Claim 5.4, Tn,q is an ETT satisfying conditions MP, 
R1, and R2 under the Tn,q-stable coloring ϕ∗∗. Since γm1 /∈ ϕ∗

e(T −Tn,q), T satisfies condi-
tions MP, R1, and R2 under ϕ∗∗. Note that under ϕ∗∗, we have δm ∈ ϕ∗∗(yp) ∩ϕ∗∗(yp−1), 
γm1 = ϕ∗∗(ep) /∈ ϕ∗∗(yp−1), which is Case 2.1.1. So, we assume θ /∈ Dn,q.

By Claim 5.2, there exists a color β ∈ ϕv(Typ−2) − Dn,q such that β /∈ ϕe(T − Tn,q)
satisfying either β /∈ Γq or there exists an r ∈ [n] with β = γr1 ∈ Γq and δr ∈ ϕv(Typ−2). 
By Claim 5.3, Pv(β)(α, β, ϕ) = Pyp−1(α, β, ϕ) and Pyp

(α, β, ϕ) is a different path from 
above. Let ϕ∗ = ϕ/Pyp

(α, β, ϕ). Applying Claim 5.4, we see that under the Tn,q-stable 
coloring ϕ∗, Tn,q is an ETT satisfying conditions MP, R1, and R2. Moreover T satisfies 
conditions MP, R1, and R2 under ϕ∗ since α, β /∈ ϕe(T − Tn,q). In ϕ∗, we have β ∈
ϕ∗(yp) ∩ϕ∗(v(β)) and v(β) �= yp−1. Note that θ /∈ ϕ∗

e(Typ−1 −Tn,q) and β /∈ ϕ∗
e(T −Tn,q). 

Since β, θ /∈ Dn,q, by Claim 5.3, Pv(β)(θ, β, ϕ∗) = Pyp−1(θ, β, ϕ∗) and Pyp
(θ, β, ϕ∗) is 

different path other than above. Let ϕ∗∗ = ϕ/Pyp
(θ, β, ϕ∗). Applying Claim 5.4 again, 

we see that under ϕ∗∗, Tn,q is an ETT satisfies conditions MP, R1, and R2. Now we 
check R2 for T . Since θ /∈ ϕ∗

e(Typ−1 − Tn,q) and β /∈ ϕ∗
e(T − Tn,q), we have R2 being 

satisfied if β /∈ Γq. For the case when β = γr1 ∈ Γq, we have δr ∈ ϕv(Typ−2) which 
in turn gives condition R2. Finally by Lemma 2.4, T satisfies MP and R1 under ϕ∗∗). 
However, we have θ ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yp−1) and ϕ∗∗(ep) = β /∈ ϕ∗∗(yp−1), which goes 
back to Case 2.2.1.

Case 2.3. α ∈ ϕ(yp) ∩ ϕ(v) for a vertex v ≺� yp−1.

Claim 5.8. We may assume α /∈ ϕe(T − Tn,q) such that either α /∈ Dn,q ∪ Γq or there 
exists k ∈ [n] with α = δk ∈ ϕv(T ) and γk1, γk2 /∈ ϕe(T − Tn,q).

Proof. By Claim 5.2, we have |ϕv(Typ−2 −Dn,q ∪Γq ∪ϕe(Typ−2 −Tn,q)| ≥ 4 or there exists 
index k such that all δk, γk1 and γk2 ∈ ϕv(Typ−2) − ϕe(T − Tn,q). The first inequality 
implies that there exists a color β ∈ ϕv(Tp−2) − Dn,q ∪ Γq ∪ ϕe(T − Tn,q). If the second 
case happens, we take β = δk. If β ∈ ϕ(yp), we are done. Hence we assume β /∈ ϕ(yp). 
Let P := Pyp

(α, β, ϕ). We will show one of the following two statement holds.

P: In coloring ϕ∗ = ϕ/P , T is an ETT and satisfies conditions MP, R1, and R2.
Q: In ϕ, there exists a non-elementary ETT T ′ with the same ladder as T and q splitters 

where Tn,q ⊆ T ′ such that conditions MP, R1, and R2 are satisfied, but p(T ′) < p(T ).
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Note that statement P gives Claim 5.8 while statement Q gives a contradiction. Note 
that β /∈ Γq by the choice of β in Claim 5.2. We proceed with the proof by considering 
three cases: α /∈ Γq, α ∈ Γq − ϕe(T − Tn,q) and α ∈ Γq ∩ ϕe(T − Tn,q).

If V (P ) ∩ V (Typ−1) = ∅, by Claim 5.4, we can show that under ϕ∗ = ϕ/P , T is an 
ETT and satisfies conditions MP, R1, and R2, so statement P holds. Hence we assume 
V (P ) ∩ V (Typ−1) �= ∅. Along the order of P from yp, let u be the first vertex in V (Typ−1)
and P ′ be the subpath joining u and yp. Let

T ′ = Typ−2 ∪ P ′ if u �= yp−1, and

T ′ = Typ−1 ∪ P ′ if u = yp−1.

Note that e0 /∈ T ′ may happen when q > 0, but it is easy to see that T ′ is still an ETT 
with the same ladder as T and q splitters where Tn,q ⊆ T ′.

Case I: α /∈ Γq. Since α, β ∈ ϕv(Typ−2) and α /∈ Γq, T ′ is an ETT satisfying conditions 
MP, R1, and R2. Hence statement Q holds and gives a contradiction to the minimality 
of p(T ).

Case II: α ∈ Γq ∩ ϕe(T − Tn,q). Assume α = γm1 for some m ≤ n. Since ϕ(ep) �= α, α ∈
ϕe(Typ−1 −Tn,q). Therefore we must have δm ∈ ϕv(Typ−2) by condition R2. Furthermore, 
β ∈ ϕv(Typ−2). Therefore T ′ is an ETT and satisfies conditions MP, R1, and R2. Hence 
statement Q holds.

Case III: α ∈ Γq − ϕe(T − Tn,q). Let ϕ∗ = ϕ/P . By Claim 5.3, P is a path different from 
Pv(α)(α, β, ϕ) = Pv(β)(α, β, ϕ). Hence ϕ∗ is Tn,q-stable and conditions MP, R1, R2 are 
satisfied for Tn,q by Claim 5.4. Note that in this case ϕ(f) = ϕ∗(f) for every edge f in 
E(T − Tn,q). Therefore T is an ETT satisfying conditions MP, R1, and R2 in coloring 
ϕ∗. Hence statement P holds. �

Now let ϕ and α be as the claim above. We then consider two cases.

Case 2.3.1. θ = ϕ(ep) /∈ ϕ(yp−1).

Let T ′ = Tn,q ∪ (e0, y0, e1, y1, ..., ep−2, yp−2, ep, yp). In this case, T ′ is an ETT satisfies 
conditions MP and R1. Note that T ′ also satisfies condition R2 with the exception 
θ = γm1 and δm ∈ ϕ(yp−1) for some m ≤ n, which gives a contradiction to the minimality 
of p(T ). Hence we may assume θ = γm1 and δm ∈ ϕ(yp−1) for some m ≤ n. By condition 
R2, we have γm1 /∈ ϕe(Typ−1 − Tn,q). By Claim 5.3, Pv(α, γm1, ϕ) = Pv(γm1)(α, γm1, ϕ)
and Pyp

(α, γm1, ϕ) is different from the path above. Let ϕ∗ = ϕ/Pyp
(α, γm1, ϕ). By 

Claim 5.4, Tn,q is an ETT satisfying conditions MP, R1, and R2 under the Tn,q-stable 
coloring ϕ∗. Since α /∈ ϕe(T −Tn,q), for every edge f ∈ E(T −Tn,q) we have ϕ∗(f) = γm1
only if ϕ(f) = γm1. Therefore under ϕ∗, T is an ETT satisfying conditions MP, R1, and 
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R2. Note γm1 ∈ ϕ∗(yp) ∩ ϕ∗(v(γm1)). Since δm ∈ ϕ(yp−1), we have δm /∈ ϕe(T − Tn,q). 
Let ϕ∗∗ = ϕ∗/Pyp

(δm, γm1, ϕ∗). Applying Claim 5.3 and Claim 5.4, we can show as 
before that under ϕ∗∗, T is an ETT and satisfies conditions MP, R1, R2, and δm ∈
ϕ∗∗(yp) ∩ ϕ∗∗(yp−1). So, under ϕ∗∗ we go back to Case 2.1.

Case 2.3.2. θ = ϕ(ep) ∈ ϕ(yp−1).

We first assume θ = ϕ(ep) = δm for some m ≤ n. By condition R2, γm1 /∈ ϕe(T −Tn,q). 
By Claim 5.3, Pv(γm1)(α, γm1, ϕ) = Pv(α, γm1, ϕ) and Pyp

(α, γm1, ϕ) is a different path 
from above. Let ϕ∗ = ϕ/Pyp

(α, γm1, ϕ). By Claim 5.4, under the Tn,q-coloring ϕ∗, Tn,q is 
an ETT satisfying conditions MP, R1, and R2. Since α, γm1 /∈ ϕe(T −Tn,q), T is an ETT 
satisfying MP, R1, and R2 under ϕ∗. Now γm1 ∈ ϕ∗(yp) and δm, γm1 /∈ ϕ∗

e(T − Tn,q). 
Similarly, by applying Claim 5.3 and Claim 5.4, we can show that under the coloring 
ϕ∗∗ = ϕ∗/Pyp

(δm, γm1, ϕ∗), T is also an ETT satisfying conditions MP, R1, and R2. 
Now δm ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yp−1), which is dealt in Case 2.1.1.

We now consider the case θ = ϕ(ep) /∈ Dn,q. Since θ ∈ ϕ(yp−1) and Typ−1 is ele-
mentary, we have θ /∈ Γq, so θ /∈ Dn,q ∪ Γq. Suppose α �= Dn,q. Then, α �= Dn,q ∪ Γq

by Claim 5.8. By Claim 5.3, Pv(α)(α, θ, ϕ) = Pyp−1(α, θ, ϕ) and Pyp
(α, θ, ϕ) is a differ-

ent path than the one above. Let ϕ∗ = ϕ/Pyp
(α, θ, ϕ). By Claim 5.4, under ϕ∗, Tn,q

is an ETT satisfying conditions MP, R1, and R2. Since θ, α /∈ ϕe(Typ−1 − Tn,q) and 
α, θ /∈ Dn,q ∪ Γq, T is an ETT satisfying conditions MP, R1, and R2 under ϕ∗. Now 
θ ∈ ϕ∗(yp) ∩ ϕ∗(yp−1), which is dealt in Case 2.1. Hence we may assume α = δm ∈ Dn,q

for some m ≤ n. By Claim 5.8, we have γm1, γm2, δm /∈ ϕe(T − Tn,q). By Claim 5.3, 
Pv(γm1)(α, γm1, ϕ) = Pv(α, γm1, ϕ) and Pyp

(α, γm1, ϕ) is different from the path above. 
Let ϕ∗ = ϕ/Pyp

(α, γm1, ϕ). Since γm1, δm /∈ ϕe(T − Tn,q), by Claim 5.4, Tn,q is an ETT 
satisfying conditions MP, R1, and R2 under ϕ∗. Moreover, since γm1, δm /∈ ϕe(T − Tn,q), 
T satisfies conditions MP, R1, and R2 under ϕ∗. Note γm1 /∈ ϕ∗

e(T − Tn,q). Hence by 
Claim 5.3, Pv(γm1)(θ, γm1, ϕ∗) = Pyp−1(θ, γm1, ϕ∗) and Pyp

(θ, γm1, ϕ∗) is a different path 
than above. Let ϕ∗∗ = ϕ∗/Pyp

(θ, γm1, ϕ∗). Again by Claim 5.4, Tn,q is an ETT satisfying 
conditions MP, R1, and R2 under ϕ∗. Note that from ϕ∗ to ϕ∗∗, in E(T −Tn,q), ep is the 
only edge changed color from θ to γm1. Since δm = α ∈ ϕ∗∗(v), T also an ETT satisfying 
conditions MP, R1, and R2 under ϕ∗∗. Now θ ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yp−1), which is dealt in 
Case 2.2. This completes Case 2.

In the remainder of the proof, let Iϕ = {i ≥ 0 : ϕ(yp) ∩ ϕ(yi) �= ∅} and let j = p(T ). 
Clearly Iϕ = ∅ when {v : ϕ(yp) ∩ ϕ(v) �= ∅} ⊆ V (Tn,q). For convention, we denote 
max(Iϕ) = −1 when Iϕ = ∅. By the assumption of p(T ), we have j ≥ 1 and yj−1 is not 
incident to ej .

Case 3. p(T ) ≤ p − 1.

Firstly note that we can assume max(Iϕ) < p(T ). This is because the case max(Iϕ) ≥
p(T ) is similar to Case 1 and can be handled in the same fashion: We first show that 
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max(Iϕ) = p − 1 and replace color ϕ(ep) by α to get a smaller counterexample. Here we 
omit the details.

Let j = p(T ). Then j ≥ 1 and ej /∈ EG(yj−1, yj). Let min(Iϕ) = i if Iϕ �= ∅. We let 
yj−2 be the last vertex in Tn,q if j = 1, and in this case Tyj−2 = Tn,q.

Claim 5.9. We may assume there exist α ∈ ϕ(yp) ∩ ϕv(Tyj−2) such that either α /∈ Γq, or 
α = γm1 ∈ Γq with δm ∈ Dn,q and v(δm) �� yj−2.

Proof. We first consider the case when Iϕ �= ∅. Since we assume max(Iϕ) < j, i ≤ j − 1. 
If i < j − 1, then j − 2 ≥ 0, and we have α ∈ ϕ(yp) ∩ ϕv(Tyj−2) with α /∈ Γq because 
Γq ⊆ ϕv(Tn,q) and there is a color in ϕ(yp) ∩ϕv(Tyj−2 −Tn,q). Hence we assume i = j −1. 
Thus we have a color α ∈ ϕ(yi) ∩ ϕ(yp), and therefore α /∈ ϕv(Tn,q) and α /∈ Γq. By 
Claim 5.2, there exists a color β ∈ ϕv(Tyj−2) such that β /∈ ϕe(Tyj−1 − Tn,q) and either 
β /∈ Dn,q ∪ Γq or β = δk ∈ Dn,q with γk1, γk2, δk /∈ ϕe(Tyj−1 − Tn,q).

We now consider the case α = δm ∈ Dn,q for some m ≤ n. By condition R2, γm1 /∈
ϕe(Tyi

−Tn,q)). By Claim 5.3, Pv(γm1)(δm, γm1, ϕ) = Pyi
(δm, γm1, ϕ) and Pyp

(δm, γm1, ϕ)
is a different path. Let ϕ∗ = ϕ/Pyp

(δm, γm1 , ϕ). By Claim 5.4, under the Tn,q-stable 
coloring ϕ∗, Tn,q satisfies conditions MP, R1, and R2. Since γm1 /∈ ϕ∗

e(Tyi
−Tn,q) and δm

is only assigned to connecting edges in Tyi
, T is an ETT satisfying conditions MP, R1, 

and R2 under ϕ∗. Note that γm1 /∈ ϕ∗
e(Tyj−1 − Tn,q). We have γm1 /∈ ϕ∗

e(Tv(β) − Tn,q). 
Moreover, β /∈ ϕ∗

e(Tyj−1 − Tn,q). By Claim 5.3, Pv(γm1)(β, γm1, ϕ∗) = Pv(β)(β, γm1, ϕ∗)
and Pyp

(β, γm1, ϕ∗) is a different path. Let ϕ∗∗ = ϕ∗/Pyp
(γm1 , β, ϕ∗). By Claim 5.4, Tn,q

satisfies conditions MP, R1, and R2 under the Tn,q-stable coloring ϕ∗∗. Since β, γm1 /∈
ϕ∗

e(Tyj−1 − Tn,q), we have β, γm1 /∈ ϕ∗∗
e (Tyj−1 − Tn,q). Thus, under ϕ∗∗, T is an ETT 

satisfying conditions MP, R1, and R2. Now β ∈ ϕ∗∗(yp) ∩ ϕ∗∗(v(β)), so Claim 5.9 holds.
We now consider the case α /∈ Dn,q. Recall that α /∈ Γq. Since α ∈ ϕ(yj−1) ∩ ϕ(yp), 

α /∈ ϕe(Tyj−1 − Tn,q). We first assume β /∈ Dn,q ∪ Γq. Since α, β /∈ ϕe(Tyj−1 − Tn,q), by 
Claim 5.3, Pv(β)(α, β, ϕ) = Pyi

(α, β, ϕ) and Pyp
(α, β, ϕ) is a different path. By Claim 5.4, 

under ϕ∗ = ϕ/Pyp
(α, β, ϕ), Tn,q satisfies conditions MP, R1, and R2. For any edge 

f ∈ E(Tyj−1), ϕ(f) = ϕ∗(f) since α, β /∈ ϕe(Tyj−1 − Tn,q). Since α, β ∈ ϕ∗
v(Tyj−1), T

is still an ETT satisfying conditions MP and R1 under ϕ∗ by Lemma 2.4. Since both 
α, β /∈ Dn,q ∪ Γq, T also satisfies condition R2 under ϕ∗. It is seen that, under ϕ∗, 
Claim 5.9 holds.

We now assume β = δm ∈ Dn,q for some m ≤ n. By our choice of β, we have 
δm, γm1, γm2 /∈ ϕe(Tyi

− Tn,q). By Claim 5.3, Pv(γm1)(α, γm1, ϕ) = Pyi
(α, γm1, ϕ)

and Pyp
(α, γm1, ϕ) a different path. Let ϕ∗ = ϕ/Pyp

(α, γm1, ϕ). By Claim 5.4, ϕ∗ is 
Tn,q-stable and Tn,q satisfies conditions MP, R1, and R2 under ϕ∗. Since α, γm1 /∈
ϕe(Tyi

− Tn,q), we have α, γm1 /∈ ϕ∗
e(Tyi

− Tn,q). So, as an ETT under ϕ∗, Tn,q can 
be extended to T and condition R2 holds. Now we have as claimed under ϕ∗ because 
β = δm ∈ ϕ∗

v(Tyj−2).
We then consider the case Iϕ = ∅. If α /∈ Γq, we are done. Hence we assume α =

γm1 ∈ Γq for some m ≤ n. We first assume that δm /∈ ϕv(Typ−1). Then γm1 /∈ ϕe(T −



160 G. Chen, G. Jing / Journal of Combinatorial Theory, Series B 139 (2019) 128–162
Tn,q). By Claim 5.2, there exists a color β ∈ ϕv(Typ−2) such that β /∈ ϕe(Typ
− Tn,q)

and either β /∈ Dn,q ∪ Γq or β = δk ∈ Dn,q with γk1, γk2, δk /∈ ϕe(Typ
− Tn,q). By 

Claim 5.3, Pv(γm1)(β, γm1, ϕ) = Pv(β)(β, γm1, ϕ) and Pyp
(β, γm1, ϕ) is a different path. 

By Claim 5.4, we have that Tn,q is an ETT satisfying conditions MP, R1, R2 under 
the Tn,q-stable coloring ϕ∗ = ϕ/Pyp

(β, γm1, ϕ). Since β, γm1 /∈ ϕe(Typ
− Tn,q), we have 

β, γm1 /∈ ϕ∗
e(Typ

− Tn,q). So, as an ETT under ϕ∗, Tn,q can be extended to an ETT T
which satisfies conditions MP, R1, and R2. Note that under ϕ∗ we have Claim 5.9 if 
v(β) ≺� yj−2. If yj ≺� v(β), we have max(Iϕ) ≥ p(T ). If v(β) = yj−1, we have the case 
Iϕ �= ∅, where we can proceed as before.

We now assume that δm ∈ ϕv(Typ−1). Since δm ∈ Dn,q, δm /∈ ϕv(Tn,q). Without loss 
of generality, we assume that δm ∈ ϕ(yk) for some k ≤ p − 1. If k < j − 1, we have 
Claim 5.9, hence we assume k ≥ j − 1. By condition R2, γm /∈ ϕe(Tyk

− Tn,q). By 
Claim 5.3, Pv(γm1)(δm, γm1, ϕ) = Pyk

(δm, γm1, ϕ) and Pyp
(δm, γm1, ϕ) a different path. 

By Claim 5.4, under the Tn,q-stable coloring ϕ∗ := ϕ/Pyp
(δm, γm1, ϕ), Tn,q satisfies 

conditions MP, R1, and R2. Since γm1, δm /∈ ϕe(Tyk
− Tn,q), T satisfies conditions MP, 

R1, and R2 under ϕ∗ because the edges of T which are colored different under ϕ∗ and 
ϕ is in Typ

− Tyk
, and they are colored by γm1 or δm in both colorings ϕ and ϕ∗. If 

k > j − 1, we have max(Iϕ) ≥ p(T ). If k = j − 1, we have the case Iϕ �= ∅, where we can 
proceed as before. �

We assume ϕ satisfies Claim 5.9. By Claim 5.2, there exists a color β ∈ ϕv(Tyj−2) with 
β /∈ ϕe(Tyj

− Tn,q) such that either β /∈ Dn,q ∪ Γq or β = δk ∈ Dn,q with δk, γk1, γk2 /∈
ϕe(Tyj

− Tn,q) for some k ≤ n. Now we consider the path P := Pyp
(α, β, ϕ). First we 

consider the case V (P ) ∩ V (Tyj−1) �= ∅. Along the order of P from yp, let u be the first 
vertex in V (Tyj−1) and P ′ be the subpath joining u and yp. Let

T ′ = Tyj−2 ∪ P ′ if u �= yj−1, and

T ′ = Tyj−1 ∪ P ′ if u = yj−1.

Again note that e0 /∈ T ′ may happen when q > 0, but it is easy to see that T ′ is still an 
ETT with the same ladder as T and q splitters where Tn,q ⊆ T ′.

Case I: α /∈ Γq. Since α, β ∈ ϕv(Tyj−2), T ′ is an ETT satisfying conditions MP, R1, and 
R2, giving a contradiction to the minimality of p(T ).

Case II: α ∈ Γq. Then by Claim 5.9, α = γm1 ∈ Γq for some m ≤ n and v(δm) ≺� yj−2. 
Then δm ∈ ϕv(Tyj−2). Furthermore, β ∈ ϕv(Tyj−2). Therefore T ′ is an ETT and satisfies 
conditions MP, R1, and R2, giving a contradiction to the minimality of p(T ).

Therefore we have V (P ) ∩ V (Tyj−1) = ∅. Let ϕ∗ = ϕ/P . Then ϕ∗ is Tyj−1 -stable and 
Tyj−1 satisfies conditions MP, R1, and R2 by Lemma 3.1. If α /∈ Γq, T satisfies conditions 
MP, R1, and R2 under ϕ∗ since α, β ∈ ϕv(Tyj−2) and β /∈ Γq. If α ∈ Γq, by Claim 5.9, 
α = γm1 ∈ Γq for some m ≤ n and v(δm) ≺� yj−2. Therefore T satisfies conditions 
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MP, R1, and R2 since β, δm ∈ ϕv(Tyj−2) and β /∈ Γq. Note that β /∈ ϕ∗
e(Tyj

− Tn,q)
and β ∈ ϕ∗(yp) ∩ ϕ∗(v(β)), where v(β) ≺l yj−2. Denote v = v(β) for convenience. Let 
γ ∈ ϕ(yj). Then γ /∈ Γq and γ /∈ ϕ∗(Tyj

− Tn,q). We then denote ϕ∗ = ϕ and consider 
the following two cases.

Case 3.1. γ /∈ Dn,q.

Case 3.1.1. β /∈ Dn,q.

By Claim 5.3, Pv(β)(β, γ, ϕ) = Pyj
(β, γ, ϕ) and Pyp

(β, γ, ϕ) is a different path. Let 
ϕ∗ = ϕ/Pyp

(β, γ, ϕ). Then by Claim 5.4, ϕ∗ is Tn,q-stable and Tn,q satisfies conditions 
MP, R1, R2 under ϕ∗. Since γ, β /∈ ϕe(Tyj

− Tn,q) and v ≺l yj , and moreover γ, β /∈ Γq, 
T satisfies conditions MP, R1, and R2 under ϕ∗. Now γ ∈ ϕ∗(yp) ∩ ϕ∗(yj), where we 
have max(Iϕ) ≥ p(T ).

Case 3.1.2. β = δm ∈ Dn,q for some m ≤ n.

In this case γm1, γm2 /∈ ϕ((Tyj
− Tn,q)) by our choice on β. By Claim 5.3, 

Pv(β)(β, γm1, ϕ) = Pv(γm1)(β, γm1, ϕ) and Pyp
(β, γm1, ϕ) a different path. Let ϕ∗ =

ϕ/Pyp
(γm1, β, ϕ). By Claim 5.4, Tn,q is an ETT satisfying conditions MP, R1, and R2 

under the Tn,q-stable coloring ϕ∗. Moreover, T satisfies conditions MP, R1, and R2 under 
ϕ∗ since δm = β ∈ ϕv(Tyj−2) and β, γm1 /∈ ϕe(Tyj

− Tn,q). Similarly by Claim 5.3 again, 
Pv(β)(γ, γm1, ϕ∗) = Pv(γm1)(γ, γm1, ϕ∗) and Pyp

(γ, γm1, ϕ∗) a different path. Note that 
we have γ, γm1 /∈ ϕ∗

e(Tyj
− Tn,q). Let ϕ∗∗ = ϕ∗/Pyp

(γm1, γ, ϕ∗). By Claim 5.4, Tn,q satis-
fies conditions MP, R1, and R2 under the Tn,q-stable coloring ϕ∗∗. Since δm ∈ ϕ∗

v(Tyj−2)
and γ, γm1 /∈ ϕ∗

e(Tyj
− Tn,q), T satisfies conditions MP, R1, and R2 under ϕ∗∗. However, 

we have γ ∈ ϕ∗∗(yp) ∩ ϕ∗∗(yj), where we have max(Iϕ) ≥ p(T ).

Case 3.2. γ = δm ∈ Dn,q for some m ≤ n.

By condition R2, γm1, γm2 /∈ ϕe(Tyj
− Tn,q). Recall that β /∈ ϕe(Tyj

− Tn,q). By 
Claim 5.3, Pv(β)(β, γm1, ϕ) = Pv(γm1)(β, γm1, ϕ) and Pyp

(β, γm1, ϕ) is a different path. 
Let ϕ∗ = ϕ/Pyp

(γm1, β, ϕ). By Claim 5.4, Tn,q is an ETT satisfying conditions MP, 
R1, and R2 under the Tn,q-stable coloring ϕ∗. Moreover, T satisfies conditions MP, R1, 
and R2 under ϕ∗ since δm = γ ∈ ϕv(Tyj

) and β, γm1 /∈ ϕe(Tyj
− Tn,q). Note that 

β, γm1 /∈ ϕ∗
e(Tyj

− Tn,q). Similarly by Claim 5.3, Pv(β)(γ, γm1, ϕ∗) = Pv(γm1)(γ, γm1, ϕ∗)
and Pyp

(γ, γm1, ϕ∗) is a different path. Let ϕ∗∗ = ϕ∗/Pyp
(γm1, γ, ϕ∗). By Claim 5.4, 

Tn,q satisfies conditions MP, R1, and R2 under ϕ∗∗. Since δm ∈ ϕ∗
v(Tyj

) and γ, γm1 /∈
ϕ∗

e(Tyj
− Tn,q), T satisfies conditions MP, R1, and R2 under ϕ∗∗. Now we have δm ∈

ϕ∗∗(yp) ∩ ϕ∗∗(yj), where we have max(Iϕ) ≥ p(T ).
This completes the proof of Case 3. Now for all cases we arrive at a contradiction, 

which proved statement A. �
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Remark 3. We can see from the proof of Theorem 2.5, conditions MP and R1 are only 
used to show T = Tk ∪ (fk, b(fk)) is elementary if Tk satisfies MP and R1 where fk is 
a connecting edge for each 0 < k ≤ n. All the techniques we used during the proof are 
about reducing the number of vertices to obtain a contradiction with Tk ∪ (fk, b(fk))
being elementary. Therefore, if we can figure out new ways of adding a vertex to a closed 
ETT Tk and proving the resulting ETT is elementary without R1, we may have a chance 
to tackle the conjecture.
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