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a b s t r a c t

Given a graph G, denote by ∆(G) and χ ′(G) the maximum degree and the chromatic
index of G, respectively. A simple graph G is called edge-∆-critical if ∆(G) = ∆,
χ ′(G) = ∆ + 1 and χ ′(H) ≤ ∆ for every proper subgraph H of G. We prove that every
edge-∆-critical graph of order n with maximum degree at least 2n

3 + 12 is Hamiltonian.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. Let G be a graph with vertex set V (G) and edge set E(G). Denote by
∆(G), δ(G) and α(G) the maximum degree, the minimum degree and the independence number of G, respectively. An
edge-k-coloring of G is a mapping ϕ : E(G) → {1, 2, . . . , k} such that ϕ(e) ̸= ϕ(f ) for any two adjacent edges e and f . The
codomain {1, 2, . . . , k} is called the color set of ϕ. Denote by Ck(G) the set of all edge-k-colorings of G. The chromatic index
χ ′(G) is the least integer k ≥ 0 such that Ck(G) ̸= ∅. We call graph G class one if χ ′(G) = ∆(G) and class two otherwise.
Vizing [13] proved χ ′(G) = ∆(G) + 1 if G is class two. An edge e of G is called critical if χ ′(G − e) < χ ′(G), where G − e is
the subgraph obtained from G by removing the edge e. A graph G is called (edge-)∆-critical if ∆(G) = ∆, χ ′(G) = ∆ + 1
and χ ′(H) ≤ ∆ for any proper subgraph H of G. Clearly, if G is ∆-critical, then G is connected and χ ′(G − e) = ∆(G) for
any e ∈ E(G).

In 1965, Vizing [14] proposed the following conjecture about structure properties of ∆-critical graphs.

Conjecture 1 (Vizing [14]). Every ∆-critical graph with chromatic index at least 3 contains a 2-factor.

In 1968, Vizing [15] proposed a weaker conjecture on the independence number of ∆-critical graphs as follows.

Conjecture 2 (Vizing [15]). For every ∆-critical graph G of order n, α(G) ≤
n
2 .
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Conjecture 2 was verified by Luo and Zhao [9] for ∆-critical graphs of order n with maximum degree at least n
2 , and

by Grünewald and Steffen [6] for ∆-critical graphs with many edges, including all overfull graphs.
Chen and Shan [5] verified Conjecture 1 for ∆-critical graphs of order n with maximum degree at least n

2 . Obviously,
if a graph is Hamiltonian, then it contains a 2-factor. Luo and Zhao [10] proved that a ∆-critical graph G of order n
with ∆(G) ≥

6n
7 is Hamiltonian. Furthermore, Luo, Miao and Zhao [8] showed that a ∆-critical graph G of order n with

∆(G) ≥
4n
5 is Hamiltonian. Recently, Chen, Chen and Zhao [3] improved the lower bound to ∆(G) ≥

3n
4 . In this paper, we

give the following result about the Hamiltonicity of ∆-critical graphs.

Theorem 1. If G is a ∆-critical graph of order n with ∆(G) ≥
2n
3 + 12, then G is Hamiltonian.

It would be nice to know the minimum number α (0 < α < 1) such that every ∆-critical graph G of order n with
∆(G) ≥ αn is Hamiltonian. Our main techniques applied to prove Theorem 1 are the following: (1) extending Woodall’s
Lemma (q = 2∆(G) − d(x) − d(y) + 2, see Lemma 3) to an arbitrary q with q ≤ ∆(G) − 10 (see Lemma 4); (2) extending
Woodall’s Lemma (consider the neighbor of a vertex x, see Lemma 3) to Lemma 5 (consider the neighbor of two adjacent
vertices).

Let G be a graph and x be a vertex of G. Denote by NG(x) and dG(x) the neighborhood and degree of x in G, respectively.
We always drop the subscript G and simply write N(x) and d(x) if there is no ambiguity. For any nonnegative integer k, we
call a vertex x a k-vertex if d(x) = k, a (< k)-vertex if d(x) < k, and a (> k)-vertex if d(x) > k. Similarly, we call a neighbor
y of x a k-neighbor, a (< k)-neighbor and a (> k)-neighbor if d(y) = k, < k and > k, respectively. Denote by V≥k(G) the
subset of V (G) of vertices with degree at least k. Let k be a positive integer and e0 an edge of G such that Ck(G − e0) ̸= ∅,
and let ϕ ∈ Ck(G − e0) and v ∈ V (G). Let ϕ(v) = {ϕ(e) : e is incident with v} and ϕ̄(v) = {1, . . . , k} \ ϕ(v). We call ϕ(v)
the set of colors seen by v and ϕ̄(v) the set of colors missing at v. A set X ⊆ V (G) is called elementary with respect to ϕ if
ϕ̄(u) ∩ ϕ̄(v) = ∅ for every two distinct vertices u, v ∈ X . For any color α, let Eα denote the set of edges assigned color α.
Clearly, Eα is a matching of G. For any two colors α and β , the components of the spanning subgraph of G with edge set
Eα ∪ Eβ , named (α, β)-chains, are even cycles and paths with alternating colors α and β . For a vertex v of G, we denote
by Pv(α, β, ϕ) the unique (α, β)-chain that contains the vertex v. Let ϕ/Pv(α, β, ϕ) denote the edge-k-coloring obtained
from ϕ by switching colors α and β on the edges on Pv(α, β, ϕ). If v is not incident with any edge of color α or β , then
Pv(α, β, ϕ) = {v} (a path of length 0), and ϕ/Pv(α, β, ϕ) = ϕ.

We will give a few technical lemmas in Section 2 and prove Theorem 1 in Section 3. Due to the length of the proofs
of Lemmas 4 and 5, we will prove Lemmas 4 and 5 in Section 4.

2. Lemmas

Let q be a positive number, G be a ∆-critical graph and x ∈ V (G). For each y ∈ N(x), let σq(x, y) =

|{z ∈ N(y) \ {x} : d(z) ≥ q}|, the number of neighbors of y (except x) with degree at least q. Vizing studied the case
q = ∆ and obtained the following result.

Lemma 1 (Vizing’s Adjacency Lemma [14]). Let G be a ∆-critical graph. Then σ∆(x, y) ≥ ∆ − d(x) + 1 for every xy ∈ E(G).

Woodall [16] studied σq(x, y) for the case q = 2∆ − d(x) − d(y) + 2 and obtained the following two results. For
convenience, we let σ (x, y) = σq(x, y) when q = 2∆ − d(x) − d(y) + 2.

Lemma 2 (Woodall [16]). Let xy be an edge in a ∆-critical graph G. Then there are at least ∆ − σ (x, y) ≥ ∆ − d(y) + 1
vertices z ∈ N(x) \ {y} such that σ (x, z) ≥ 2∆ − d(x) − σ (x, y).

Furthermore, Woodall defined the following two parameters.

pmin(x) := min
y∈N(x)

σ (x, y) − ∆ + d(x) − 1 and

p(x) := min{ pmin(x),
⌊
d(x)
2

⌋
− 1 }.

Clearly, p(x) ≤ d(x)/2 − 1. As a corollary, the following lemma shows that there are at least d(x)/2 neighbors y of x such
that σ (x, y) ≥ ∆/2.

Lemma 3 (Woodall [16]). Every vertex x in a ∆-critical graph has at least d(x) − p(x) − 1 neighbors y for which σ (x, y) ≥

∆ − p(x) − 1.

Our proof of Theorem 1 uses the following two lemmas, which will be proved in Section 4.

Lemma 4. Let G be a ∆-critical graph. For a vertex x ∈ V (G) and a positive number q, if d(x) < ∆
2 and q ≤ ∆ − 10, then for

any y ∈ N(x), there exists another neighbor z of x such that σq(x, y)+ σq(x, z) > 2∆ − d(x)− 2(d(x)−1)
∆−q − ⌈

4(d(x)−1)
∆−q +

8(d(x)−1)
(∆−q)2

⌉.
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Lemma 5. Let G be a ∆-critical graph and q be a positive number such that q ≤ ∆−10 and minimum degree δ(G) > ∆
2 −2.

For an edge x1x2 ∈ E(G), if d(x1)+d(x2) ≤
3
2∆−2, then there exist two distinct vertices z, y ∈ V (G)\{x1, x2} with z ∈ N(x1) and

y ∈ N(x2) such that σq(x1, z)+σq(x2, y) > 3∆−d(x1)−d(x2)−
2(d(x1)+d(x2)−∆−2)

∆−q −⌈
4(d(x1)+d(x2)−∆+2)

∆−q +
8(d(x1)+d(x2)−∆−2)

(∆−q)2
⌉−2.

Our approach is inspired by the recent development of the Tashkinov tree technique for multigraphs. Let G be a
multigraph without loops, e1 be an edge of G with endvertices y0 and y1 and ϕ ∈ Ck(G − e1). A Tashkinov tree T with
respect to G, e1 and ϕ is an alternating sequence T = (y0, e1, y1, . . . , ep, yp) with p ≥ 1 consisting of edges e1, e2, . . . , ep
and vertices y0, y1, . . . , yp such that the following two conditions hold.

(1) The vertices y0, y1, . . . , yp are distinct and ei = yryi for each 1 ≤ i ≤ p, where r < i;
(2) For every edge ei with 2 ≤ i ≤ p, there is a vertex yh with 0 ≤ h < i such that ϕ(ei) ∈ ϕ̄(yh).

Clearly, a Tashkinov tree is indeed a tree of G. Tashkinov [12] proved that if G is k-critical with k ≥ ∆(G)+1, then V (T ) is
elementary. In the above definition, if we change condition (1) to say that the edges e1, e2, . . . , ep are distinct and ei = y0yi
for every i, then T is called a multi-fan, as defined in [11]. Stiebitz et al. [11] showed that the vertex set of a multi-fan is
elementary. In the definition of Tashkinov tree, if ei = yi−1yi for every i, i.e., T is a path with endvertices y0 and yp, then T
is called a Kierstead path, which was introduced by Kierstead [7]. Kierstead proved that for every Kierstead path P the set
V (P) is elementary if G is k-critical with k ≥ ∆(G)+ 1. For simple graphs, following Kierstead’s proof, Zhang [17] noticed
the following Lemma.

Lemma 6 (Kierstead [7], Zhang [17]). Let G be a class two graph with maximum degree ∆. If e1 ∈ E(G) is a critical edge and
K = (y0, e1, y1, . . . , yp−1, ep, yp) is a Kierstead path with respect to e1 and a coloring ϕ ∈ C∆(G − e1) such that d(yj) < ∆ for
j = 2, . . . , p, then V (K ) is elementary with respect to ϕ.

Kostochka and Stiebitz considered elementary property of Kierstead paths with four vertices and showed the following
Lemma.

Lemma 7 (Kostochka and Stiebitz [11]). Let G be a class two graph with maximum degree ∆. Let e1 be a critical edge of G and
ϕ ∈ C∆(G − e1). If K = (y0, e1, y1, e2, y2, e3, y3) is a Kierstead path with respect to e1 and ϕ, then the following statements
hold:

(1) ϕ̄(y0) ∩ ϕ̄(y1) = ∅;

(2) if d(y2) < ∆, then V (K ) is elementary with respect to ϕ;

(3) if d(y1) < ∆, then V (K ) is elementary with respect to ϕ;

(4) |ϕ̄(y3) ∩ (ϕ̄(y0) ∪ ϕ̄(y1))| ≤ 1.

In the definition of Tashkinov tree T = (y0, e1, y1, e2, y2, . . . , yp), we call T a broom if e2 = y1y2 and for each
i ≥ 3, ei = y2yi, i.e., y2 is one of the endvertices of ei for each i ≥ 3. Moreover, we call a broom T a simple broom if
ϕ(ei) ∈ ϕ̄(y0) ∪ ϕ̄(y1) for each i ≥ 3, i.e., (y0, e1, y1, e2, y2, ei, yi) is a Kierstead path.

Lemma 8 (Chen, Chen and Zhao [3]). Let G be a ∆-critical graph, e1 = y0y1 ∈ E(G) and ϕ ∈ C∆(G − e1). Let B =

{y0, e1, y1, e2, y2, . . . , ep, yp} be a simple broom with respect to e1 and ϕ. If |ϕ̄(y0) ∪ ϕ̄(y1)| ≥ 4 and min{d(y1), d(y2)} < ∆,
then V (B) is elementary with respect to ϕ.

The circumference of a graph is the length of longest cycles of the graph.

Lemma 9 (Brandt and Veldman [2]). Let G ̸= K1,n−1 be a graph of order n. If d(x) + d(y) ≥ n for every edge xy of G, then the
circumference of G is n − max{|S| − |N(S)| + 1, 0}, where S is an independent set of G with S ∪ N(S) ̸= V (G).

Using Lemma 9, Chen, Chen and Zhao obtained the following result.

Lemma 10 (Chen, Chen and Zhao [3]). Let G be a ∆-critical graph of order n. If d(x) + d(y) ≥ n for every edge xy of G, then
G is Hamiltonian.

The Bondy–Chvátal closure C(G) of a graph G with order n, defined by Bondy and Chvátal [1], is the maximal graph
obtained from G by consecutively adding the edges xy if the degree sum of x and y is at least n. They proved that C(G) is
well-defined and C(G) is Hamiltonian if and only if G is Hamiltonian.

Lemma 11 (Chen, Ellingham, Saito and Shan [4]). Let G be a bipartite graph with partite sets X and Y . If for every S ⊆ X,
|N(S)| ≥

3|S|
2 , then G has a subgraph H covering X such that for every x ∈ X, dH (x) = 2 and for every y ∈ Y , dH (y) ≤ 2.
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3. Proof of Theorem 1

Suppose on the contrary that there exists a non-Hamiltonian ∆-critical graph G of order n with maximum degree
∆ ≥

2
3n + 12. Solving n > ∆ ≥

2
3n + 12, we get ∆ > 36. Recall that C(G) is the Bondy–Chvátal closure of G.

Before proceeding with the proof, we give a brief outline of our proof strategy. We first show that there is a positive
number r1 := r1(∆) such that |V≥r1 (G)| ≥

n
2 . We then show that there is another positive number r2 := r2(∆), which is

smaller than r1, such that for any u ∈ V>r2 (G) and any v ∈ V≥r1 (G), we have that dC(G)(u) + dC(G)(v) ≥ n, which in turn
shows that dC(G)(u) ≥ |V≥r1 (G)| ≥

n
2 . So V>r2 (G) is a clique in C(G). We finally show that V≤r2 (G) is an independent set of

G and is covered by paths intersecting V>r2 (G) and all endvertices of these paths are in V>r2 (G), which shows that C(G) is
Hamiltonian, so does G.

We first prove a general result.

Claim 3.1. Let q be a positive number with q ≤ ∆ − 10. Then

|V≥q(G)| >

⎧⎨⎩
3∆
4 −

3∆−18
2(∆−q) −

2∆−12
(∆−q)2

+
1
2 if δ(G) ≤

∆
2 − 2;

3∆
4 −

3∆−110
2(∆−q) −

2∆−84
(∆−q)2

+ 8 if δ(G) > ∆
2 − 2.

Consequently, we have

|V≥q(G)| >
3∆
4

−
3∆

2(∆ − q)
−

2∆
(∆ − q)2

.

Proof. Assume first that δ(G) ≤
∆
2 − 2, and let x be a vertex such that d(x) = δ(G). By Lemma 4, there exists a vertex

y ∈ N(x) such that

σq(x, y) > ∆ −
d(x)
2

−
3(d(x) − 1)

∆ − q
−

4(d(x) − 1)
(∆ − q)2

−
1
2
. (1)

Clearly, |V≥q(G)| ≥ σq(x, y). Using d(x) ≤
∆
2 − 2 in (1), we obtain the lower bound.

Assume now that δ(G) > ∆
2 − 2. Note that n ≤

3
2∆ − 18 since ∆ ≥

2n
3 + 12. Let xy be an edge of G such that

d(x) + d(y) ≤ n − 1 < 3
2∆ − 2, such an edge exists as otherwise G would be Hamiltonian by Lemma 10. Applying

Lemma 5, we may assume that there exists a neighbor z of x such that

σq(x, z) >
3∆ − d(x) − d(y) − 3

2
−

3(d(x) + d(y) − ∆) + 2
∆ − q

−
4(d(x) + d(y) − ∆ − 2)

(∆ − q)2
.

Since d(x) + d(y) ≤ n − 1 ≤
3
2∆ − 19, we get the desired lower bound. □

Applying Claim 3.1 to q = ∆ − 17 < ∆ − 10, we obtain the following inequality

|V≥∆−17(G)| >
3∆
4

−
3∆
34

−
2∆
172 =

757
1156

∆. (2)

Let

r1 := r1(∆) =

{
∆ − 17 if ∆ ≤ 94;

(1 −
179
1156 )∆ if ∆ ≥ 95.

Claim 3.2. |V≥r1 (G)| ≥
n
2 .

Proof. If ∆ ≤ 94, then by (2) we have |V≥r1 (G)| = |V≥∆−17(G)| > 757
1156∆ > 3

4∆ − 9 ≥
3
4 (

2
3n + 12) − 9 =

n
2 .

Suppose ∆ ≥ 95. Let q = (1 −
179
1156 )∆ < ∆ − 10. If δ(G) > ∆

2 − 2, then by Claim 3.1 we have

|V
≥(1− 179

1156 )∆
(G)| >

3∆
4

−
3 · 1156∆
2 · 179∆

−
2 · 11562∆

1792∆2 + 8 >
n
2

+ 9 + 8 − 10 − 2 >
n
2
,

where we use the following inequalities 3
4∆ ≥

n
2 + 9, 3·1156

2·179 =
3468
358 < 10, ∆ > 92, and 2·11562

1792∆
< 2( 11561611 )

2 < 2. If
δ(G) ≤

∆
2 − 2, then by Claim 3.1,

|V
≥(1− 179

1156 )∆
(G)| >

3∆
4

−
1156(3∆ − 18)

2 · 179∆
−

11562(2∆ − 12)
1792∆2 +

1
2

≥
n
2

+ 9 +
1
2

−
1734
179

+

(
1156 · 9
179∆

−
11562

· 2
1792∆

)
+

11562
· 12

1792∆2

=
n
2

− A − B(∆),
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where A = −9 −
1
2 +

1734
179 =

67
358 < 0.2, and

B(∆) =
1156
1792

(
−179 · 9 + 1156 · 2

∆
−

1156 · 12
∆2

)
=

1156
1792

(
701
∆

−
13872

∆2

)
.

As a function of ∆, B(∆) has a unique maximum at 2·13872
701 , which is less than 94, and so, for ∆ ≥ 95,

B(∆) < B(94) =
1156
1792 ·

52022
942 <

1200
1702 ·

1702
· 2

902 < 0.3.

Thus |V
≥(1− 179

1156 )∆
(G)| > n

2 − 0.2 − 0.3 =
n−1
2 , and so, being an integer, |V

≥(1− 179
1156 )∆

(G)| ≥
n
2 . □

Let r2 := r2(∆) =
∆
2 − 2.

Claim 3.3. For any u ∈ V>r2 (G) and any v ∈ V≥r1 (G), dC(G)(u) + dC(G)(v) ≥ n.

Proof. If ∆ ≤ 94, we have r1 = ∆ − 17, and so dC(G)(u) + dC(G)(v) ≥ d(u) + d(v) > 3∆
2 − 19 ≥ n − 1.

Suppose ∆ ≥ 95. For any vertex w ∈ V≥∆−17(G), we have d(u) + d(w) > 3∆
2 − 19 ≥ n − 1. So uw ∈ E(C(G)). Thus by

(2) we have dC(G)(u) ≥ |V≥∆−17(G)| > 757
1156∆. Then

dC(G)(u) + dC(G)(v) ≥ dC(G)(u) + d(v) >
757
1156

∆ + (1 −
179
1156

)∆ =
3
2
∆ > n.

This completes the proof of Claim 3.3. □

By Claims 3.2 and 3.3, we have dC(G)(u) ≥ |V≥r1 (G)| ≥
n
2 . So V>r2 (G) is a clique in C(G).

Claim 3.4. |N(X)| ≥ 2|X | for any X ⊆ V< ∆
2 +1(G).

Proof. Let X be a subset of V< ∆
2 +1(G). Since G is ∆-critical, each edge uv of G has d(u) + d(v) ≥ ∆ + 2. Thus X is an

independent set of G, so X ∩ N(X) = ∅. Let H be the bipartite graph induced by the edges with one endvertex in X and
the other in N(X). For each x ∈ X , let N1(x) = {y ∈ N(x) : σ (x, y) ≥ ∆ − p(x) − 1} and N2(x) = N(x) \ N1(x), where p(x) is
defined before Lemma 3.

Let x ∈ X . By Lemma 3, x has at least d(x) − p(x) − 1 neighbors y for which σ (x, y) ≥ ∆ − p(x) − 1. Thus
|N1(x)| ≥ d(x) − p(x) − 1. Since 2∆ − d(x) − d(y) + 2 > ∆

2 + 1, we have σ (x, y) ≤ σ∆
2 +1(x, y) ≤ d(y) − dH (y). Thus

for each y ∈ N1(x) we have

dH (y) ≤ d(y) − σ (x, y) ≤ d(y) − (∆ − p(x) − 1) ≤ p(x) + 1,

and for each y ∈ N(x) we have

dH (y) ≤ d(y) − σ (x, y) ≤ d(y) − (∆ − d(x) + p(x) + 1) ≤ d(x) − p(x) − 1.

For each edge xy ∈ E(H) with x ∈ X and y ∈ N(X), we define M(x, y) =
1

dH (y) . Then we have∑
xy∈E(H)

M(x, y) =

∑
y∈N(X)

∑
x∈N(y)

1
dH (y)

=

∑
y∈N(X)

1 = |N(X)|.

On the other hand,

∑
xy∈E(H)

M(x, y) =

∑
x∈X

∑
y∈N(x)

1
dH (y)

=

∑
x∈X

⎛⎝ ∑
y∈N1(x)

1
dH (y)

+

∑
y∈N2(x)

1
dH (y)

⎞⎠
≥

∑
x∈X

(
d(x) − p(x) − 1

p(x) + 1
+

p(x) + 1
d(x) − p(x) − 1

)
≥

∑
x∈X

2 = 2|X |.

Therefore |N(X)| ≥ 2|X |. □

By Claim 3.4 and Lemma 11, G has a subgraph H covering V≤r2 (G) such that for every x ∈ V≤r2 (G), dH (x) = 2 and for
every y ∈ V>r2 (G), dH (y) ≤ 2. That is, there exist some vertex-disjoint paths P1, . . . , Ps covering V≤r2 (G) such that the
endvertices of Pi belong to V>r2 (G) for all 1 ≤ i ≤ s. Therefore, we can insert each vertex of V≤r2 (G) into the subgraph
induced by V>r2 (G). Since V>r2 (G) is a clique of C(G), C(G) is Hamiltonian. So G is Hamiltonian, a contradiction.
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4. Proofs of Lemmas 4 and 5

4.1. Proof of Lemma 4

Lemma 4. Let G be a ∆-critical graph. For a vertex x ∈ V (G) and a positive number q, if d(x) < ∆
2 and q ≤ ∆ − 10, then for

any y ∈ N(x), there exists another neighbor z of x such that σq(x, y)+σq(x, z) > 2∆− d(x)− 2(d(x)−1)
∆−q −⌈

4(d(x)−1)
∆−q +

8(d(x)−1)
(∆−q)2

⌉.

Proof. Let y be a neighbor of x. A vertex z ∈ N(x) \ {y} is called feasible if there exists a coloring ϕ ∈ C∆(G− xy) such that
ϕ(xz) ∈ ϕ̄(y), and such a coloring ϕ is called z-feasible. Denote by Cz the set of all z-feasible colorings. For each feasible
vertex z and each z-feasible coloring ϕ ∈ Cz , let

Z(ϕ) = {v ∈ N(z) \ {x} : ϕ(vz) ∈ ϕ̄(x) ∪ ϕ̄(y)},
Cz(ϕ) = {ϕ(vz) : v ∈ Z(ϕ) and d(v) < q},
Y (ϕ) = {v ∈ N(y) \ {x} : ϕ(vy) ∈ ϕ̄(x) ∪ ϕ̄(z)}, and
Cy(ϕ) = {ϕ(vy) : v ∈ Y (ϕ) and d(v) < q}.

Note that Z(ϕ) and Y (ϕ) are vertex sets while Cz(ϕ) and Cy(ϕ) are color sets. Clearly, Cz(ϕ) ⊆ ϕ̄(x) ∪ ϕ̄(y) and Cy(ϕ) ⊆

ϕ̄(x) ∪ ϕ̄(z). For each color α ∈ ϕ(z), let zα ∈ N(z) such that ϕ(zzα) = α. For each color β ∈ ϕ(y), let yβ ∈ N(y) such that
ϕ(yyβ ) = β . Let

T0(ϕ) = {α ∈ ϕ(x) ∩ ϕ(y) ∩ ϕ(z) : d(yα) < q and d(zα) < q}.

Since (ϕ(x) ∩ ϕ(y)) ∩ (ϕ̄(x) ∪ ϕ̄(y)) = ∅ and (ϕ(x) ∩ ϕ(z)) ∩ (ϕ̄(x) ∪ ϕ̄(z)) = ∅, we obtain that T0(ϕ) ∩ (Cz(ϕ) ∪ Cy(ϕ)) = ∅.
Since G is ∆-critical and ϕ is z-feasible, {x, y, z} is elementary with respect to ϕ. So ϕ̄(x), ϕ̄(y), ϕ̄(z) and ϕ(x)∩ϕ(y)∩ϕ(z)

are mutually exclusive. It is not difficult to see that

|Z(ϕ)| = |ϕ̄(x)| + |ϕ̄(y)| − 1 and |Y (ϕ)| = |ϕ̄(x)| + |ϕ̄(z)|. (3)

Also,

ϕ̄(x) ∪ ϕ̄(y) ∪ ϕ̄(z) ∪ (ϕ(x) ∩ ϕ(y) ∩ ϕ(z)) = {1, 2, . . . , ∆}. (4)

Recall that σq(x, y) and σq(x, z) are the numbers of vertices with degree at least q in N(y) \ {x} and N(z) \ {x}, respectively.
So, by Eqs. (3) and (4), we have

σq(x, y) + σq(x, z)
≥ |Y (ϕ)| − |Cy(ϕ)| + |Z(ϕ)| − |Cz(ϕ)| + |ϕ(x) ∩ ϕ(y) ∩ ϕ(z)| − |T0(ϕ)|
= |ϕ̄(x)| + |ϕ̄(z)| + |ϕ̄(x)| + |ϕ̄(y)| − 1 + |ϕ(x) ∩ ϕ(y) ∩ ϕ(z)|

− |Cy(ϕ)| − |Cz(ϕ)| − |T0(ϕ)|
= ∆ + |ϕ̄(x)| − 1 − |Cy(ϕ)| − |Cz(ϕ)| − |T0(ϕ)|
= 2∆ − d(x) − |Cy(ϕ)| − |Cz(ϕ)| − |T0(ϕ)|.

So, Lemma 4 follows from the two statements below.

I. For any ϕ ∈ Cz , |Cz(ϕ)| <
d(x)−1
∆−q and |Cy(ϕ)| <

d(x)−1
∆−q ;

II. there exists a ϕ ∈ Cz such that |T0(ϕ)| ≤ ⌈
4(d(x)−1)

∆−q +
8(d(x)−1)
(∆−q)2

⌉.

For every z-feasible coloring ϕ ∈ C∆(G − xy), let ϕd
∈ C∆(G − xz) be obtained from ϕ by uncoloring edge xz and

assigning ϕ(xz) to edge xy, and keeping all colors on other edges unchanged. Clearly, ϕd is y-feasible and Z(ϕd) = Z(ϕ),
Y (ϕd) = Y (ϕ), Cz(ϕd) = Cz(ϕ) and Cy(ϕd) = Cy(ϕ). We call ϕd the dual coloring of ϕ. Considering dual colorings, we see
that some properties that hold for vertex z also hold for vertex y.

Let z ∈ N(x) \ {y} be a feasible vertex and ϕ ∈ Cz be a corresponding coloring. By the definition of Z(ϕ), {y, x, z} ∪ Z(ϕ)
is the vertex set of a simple broom. Since 1 ≤ d(x) < ∆

2 , we have |ϕ̄(x) ∪ ϕ̄(y)| ≥ ∆ − d(x) + 2 ≥ 4. Thus by Lemma 8
the set {y, x, z} ∪ Z(ϕ) is elementary with respect to ϕ. Counting the number of missing colors of vertices in the set
{y, x, z} ∪ Z(ϕ), since y may be a vertex of Z(ϕ), we obtain (∆ − q)|Cz(ϕ)| + |ϕ̄(x)| <

∑
v∈{y,x,z}∪Z(ϕ) |ϕ̄(v)| ≤ ∆, which

implies that |Cz(ϕ)| <
d(x)−1
∆−q . By considering its dual coloring ϕd, we have |Cy(ϕ)| = |Cy(ϕd)| <

d(x)−1
∆−q . Hence, I holds.

The proof of II is much more complicated and will be placed in a separate section. A coloring ϕ ∈ Cz is called optimal
if over all z-feasible colorings the followings hold:

1. |Cz(ϕ)| + |Cy(ϕ)| is maximum;
2. subject to 1, |Cz(ϕ) ∩ Cy(ϕ)| is minimum.
Note that a z-feasible coloring ϕ is optimal if and only if its dual coloring ϕd is an optimal y-feasible coloring.
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4.1.1. Proof of Statement II
Suppose to the contrary that |T0(ϕ)| > ⌈

4(d(x)−1)
∆−q +

8(d(x)−1)
(∆−q)2

⌉ for every ϕ ∈ Cz . For each z-feasible coloring ϕ, let
R(ϕ) = Cz(ϕ) ∪ Cy(ϕ), T0(ϕ) = {k1, . . . , k|T0(ϕ)|} and

V (T0(ϕ)) = {zki ∈ N(z) : ki ∈ T0(ϕ)} ∪ {yki ∈ N(y) : ki ∈ T0(ϕ)}.

Let ϕ be an optimal z-feasible coloring and assume, without loss of generality, ϕ(xz) = 1. For convenience, we let Z = Z(ϕ),
Y = Y (ϕ), Cz = Cz(ϕ), Cy = Cy(ϕ), T0 = T0(ϕ) and R = R(ϕ). Note that 1 /∈ R ∪ T0 and R ∩ T0 = ∅.

Claim A. For each i ∈ ϕ̄(x) \ R and k ∈ T0, Px(i, k, ϕ) contains both y and z.

Proof. We first show that z ∈ V (Px(i, k, ϕ)). Otherwise, Pz(i, k, ϕ) is disjoint from Px(i, k, ϕ). Let ϕ′
= ϕ/Pz(i, k, ϕ). Since

1 /∈ {i, k}, ϕ′ is also z-feasible. Note that ϕ′(zzk) = ϕ(zzi) = i. Since d(zk) < q and i ∈ ϕ̄(x) \R, we have i ∈ Cz(ϕ′) \Cz . Since
neither i nor k is in R, we have Cz(ϕ′) ⊇ Cz ∪ {i} and Cy(ϕ′) ⊇ Cy, giving a contradiction to the maximality of |Cy| + |Cz |.
By considering the dual coloring ϕd, we can verify that y ∈ V (Px(i, k, ϕ)). □

Claim B. Suppose that there exist three vertices u1, u2, u3 ∈ V (T0) \ {y, z} and two distinct colors α, β with α ∈ ϕ̄(u1) ∩

ϕ̄(u2) ∩ ϕ̄(u3) and β ∈ ϕ̄(x) \ R. Then there exists a vertex u ∈ {u1, u2, u3} with x /∈ V (Pu(α, β, ϕ)) such that the coloring
ϕ′

= ϕ/Pu(α, β, ϕ) is z-feasible and optimal and has the following properties: ϕ′(x) = ϕ(x), Cy(ϕ′) = Cy, Cz(ϕ′) = Cz ,
R(ϕ′) = R, T0(ϕ′) ⊇ T0 and β ∈ ϕ̄′(u).

Proof. For each i ∈ {1, 2, 3}, let Pi = Pui (α, β, ϕ) and ϕi = ϕ/Pi. Clearly none of u1, u2, u3, x can be an internal vertex (of
degree 2) in an (α, β)-chain, and so there are at least two values of i such that x /∈ V (Pi); let i = 1 be one of them. For
each i such that x /∈ V (Pi), we have the following observations.

• ϕi(x) = ϕ(x) since x /∈ V (Pi).
• β ∈ ϕ̄i(ui) since α ∈ ϕ̄(ui).
• All the conclusions of Claim B hold (with ϕ′

= ϕi and T0(ϕi) = T0) if V (Pi) ∩ {x, y, z} = ∅.
• Since β /∈ T0, we have T0(ϕi) ⊇ T0 if α /∈ T0. But if α ∈ T0 then it follows from Claim A that V (Pi) ∩ {x, y, z} = ∅, and

so T0(ϕi) = T0.
• Since β ̸= 1, we have ϕi(xz) = 1 ∈ ϕ̄i(y) if α ̸= 1, and so ϕi is z-feasible. But y ∈ Px(1, β, ϕ), as otherwise we could

get an edge-∆-coloring of G from ϕ/Px(1, β, ϕ) by coloring xy with 1; thus if α = 1 then V (Pi) ∩ {x, y, z} = ∅ and
all the conclusions hold.

Thus it suffices to assume α ̸= 1 and to prove that there exists a number i ∈ {1, 2, 3} such that x /∈ V (Pi), Cy(ϕi) = Cy

and Cz(ϕi) = Cz , as these imply that ϕi is optimal and R(ϕi) = R. We consider the following four cases.
Case 1: α ∈ ϕ(x) \ R and α ̸= 1.
Since α, β /∈ R = Cy ∪ Cz , it follows that Cy(ϕ1) ⊇ Cy and Cz(ϕ1) ⊇ Cz . Since ϕ is optimal, Cy(ϕ1) = Cy and Cz(ϕ1) = Cz ,

which is all we need to prove.
Case 2: α ∈ ϕ(x) ∩ R.
Assume first α ∈ Cy. By the definition of Cy, α ∈ ϕ̄(z). If z /∈ V (Px(α, β, ϕ)) then we could get an edge-∆-coloring of

G from ϕd/Px(α, β, ϕ) by coloring xz with α. Thus Px(α, β, ϕ) = Pz(α, β, ϕ), and so x, z /∈ V (Pi) for all i ∈ {1, 2, 3}. Note
that there exists a path Pj (j ∈ {1, 2, 3}) such that y /∈ V (Pj). So V (Pj) ∩ {x, y, z} = ∅, which is all we need.

If α ∈ Cz , then by interchanging y and z in the above argument, and replacing ϕd by ϕ in the second line, we get the
same conclusion.

Case 3: α ∈ ϕ̄(x) \ (Cy ∩ Cz).
Since {x, y, z} is an elementary set with respect to ϕ, α, β ∈ ϕ̄(x) ∩ ϕ(y) ∩ ϕ(z). Since α /∈ Cy ∩ Cz and β /∈ R, either

α, β /∈ Cy or α, β /∈ Cz (or both). Without loss of generality, we assume α, β /∈ Cy (the other case is similar). Then the
neighbors yα and yβ of y both have degree at least q. Clearly x /∈ V (Pi) for all i ∈ {1, 2, 3}, and so we can choose Pj
(j ∈ {1, 2, 3}) so that z /∈ V (Pj). Then Cy(ϕj) = Cy and Cz(ϕj) = Cz , regardless of whether or not y ∈ V (Pj).

Case 4: α ∈ Cz ∩ Cy.
In this case, α ∈ ϕ̄(x). Clearly x /∈ V (Pi) for all i ∈ {1, 2, 3}. We claim that Pz(α, β, ϕ) = Py(α, β, ϕ). For otherwise, let

ϕ0 = ϕ/Pz(α, β, ϕ). Since α, β ∈ ϕ̄(x), Px(α, β, ϕ) = {x}, which is disjoint from Pz(α, β, ϕ), and so ϕ0(x) = ϕ(x). Since
α ∈ Cz and β ∈ ϕ̄(x) \ R, we have d(zα) < q and d(zβ ) ≥ q, so Cz(ϕ0) = (Cz ∪ {β}) \ {α} and Cy(ϕ0) = Cy, which implies
that |Cz(ϕ0)| + |Cy(ϕ0)| = |Cz | + |Cy| and |Cz(ϕ0) ∩ Cy(ϕ0)| = |Cz ∩ Cy| − 1, which contradicts the minimality of |Cz ∩ Cy|.
Thus Pz(α, β, ϕ) = Py(α, β, ϕ). So we can choose Pj (j ∈ {1, 2, 3}) so that V (Pj) ∩ {x, y, z} = ∅, which is all we need. □
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Let t = ⌈
4(d(x)−1)

∆−q +
8(d(x)−1)
(∆−q)2

⌉. Recall that we have assumed |T0(ϕ)| > t . If yz ∈ E(G), then let T ′

0(ϕ) = T0(ϕ) \ {ϕ(yz)},
otherwise, let T ′

0(ϕ) = T0(ϕ). Clearly, |T ′

0(ϕ)| ≥ t . For each t-element subset T of T ′

0(ϕ), say T = {k1, . . . , kt}, let

V (T , ϕ) = {zk1 , zk2 , . . . , zkt } ∪ {yk1 , yk2 , . . . , ykt },
W (T , ϕ) = {u ∈ V (T , ϕ) : ϕ̄(u) ∩ (ϕ̄(x) \ R(ϕ)) = ∅},

M(T , ϕ) = {u ∈ V (T , ϕ) : ϕ̄(u) ∩ (ϕ̄(x) \ R(ϕ)) ̸= ∅},

E(T , ϕ) = {zzk1 , zzk2 , . . . , zzkt , yyk1 , yyk2 , . . . , yykt },
EW (T , ϕ) = {e ∈ E(T , ϕ) : e is incident with a vertex in W (T , ϕ)}, and
EM (T , ϕ) = {e ∈ E(T , ϕ) : e is incident with a vertex in M(T , ϕ)}.

Clearly, V (T , ϕ) = W (T , ϕ)⊎M(T , ϕ) and E(T , ϕ) = EW (T , ϕ)⊎EM (T , ϕ), where ⊎ denotes disjoint union. For convenience,
we let W = W (T , ϕ),M = M(T , ϕ), EW = EW (T , ϕ) and EM = EM (T , ϕ) if T and ϕ are clear. Note that {zk1 , . . . , zkt } ∩

{yk1 , . . . , ykt } may not be empty, but |T | ≤ |V (T , ϕ)| ≤ |E(T , ϕ)| = 2|T |, |EW |

2 ≤ |W | ≤ |EW | and |EM |

2 ≤ |M| ≤ |EM |.
We assume that |EM (T , ϕ)| is maximum over all optimal z-feasible colorings ϕ and all t-element subsets T of T ′

0(ϕ).
Let YM = {yk : k ∈ T and zk, yk ∈ M}. For any Y ′

⊆ YM , let Z(Y ′) = {zk : yk ∈ Y ′
}, and let CM (Y ′) be the union of

all single-element sets of the form ϕ̄(v) ∩ (ϕ̄(x) \ R) with v ∈ Y ′
∪ Z(Y ′), ignoring any sets of this form with more than

one element. Moreover, let CM be the union of all single-element sets of the form ϕ̄(v) ∩ (ϕ̄(x) \ R) with v ∈ M . Clearly,
|CM (YM )| ≤ |CM | ≤ |M|.

Claim C. The following three statements hold.
(a) If k ∈ T0, i, j ∈ ϕ̄(x) \ R, i ∈ ϕ̄(zk) and j ∈ ϕ̄(yk), then i ̸= j.
(b) If yk ∈ YM then there exist distinct colors i, j as in (a).
(c) If yk ∈ YM and |ϕ̄(yk) ∩ (ϕ̄(x) \ R)| ≥ 2, then there exist distinct colors i, j, l ∈ ϕ̄(x)\R such that i ∈ ϕ̄(zk) and j, l ∈ ϕ̄(yk).

Proof. If i ∈ ϕ̄(yk)∩ ϕ̄(zk), then neither yk nor zk can be an internal vertex (with degree 2) of Px(i, k, ϕ), whereas Claim A
implies that at least one of yk and zk must be an internal vertex of this path. Thus i ̸= j, which proves (a). (b) follows
because, by the definitions of YM and M , there exist colors i, j ∈ ϕ̄(x) \ R such that i ∈ ϕ̄(zk) and j ∈ ϕ̄(yk); and (c) holds
for the same reason. □

Claim D. The following two statements hold.
(a) The hypotheses of Claim B cannot hold with u1, u2, u3 ∈ W and β /∈ CM .
(b) If the hypotheses of Claim B hold, and u and ϕ′

= ϕ/Pu(α, β, ϕ) are given by Claim B, then
(i) if β /∈ CM then u /∈ W;
(ii) if α ∈ ϕ(x) ∪ R, u ∈ YM and β /∈ CM ({u}), then there is a color k ∈ T ⊆ T ′

0(ϕ
′) for which the following holds: there are

three distinct colors i, j, l ∈ ϕ̄′(x) \ R(ϕ′) such that i ∈ ϕ̄′(zk) and j, l ∈ ϕ̄′(yk).

Proof. Clearly (a) follows from (b)(i).
By Claim B, ϕ′(x) = ϕ(x), R(ϕ′) = R, T0 ⊆ T0(ϕ′), and β ∈ ϕ̄′(u). As we remarked in the proof of Claim B,

β /∈ T0, and if α ∈ T0 then V (Pu(α, β, ϕ)) ∩ {x, y, z} = ∅. Thus T ′

0(ϕ
′) ⊇ T ′

0(ϕ) ⊇ T and for each k ∈ T we have
ϕ′(yyk) = ϕ′(zzk) = ϕ(yyk) = ϕ(zzk) = k.

To prove (b)(i), suppose that β /∈ CM and u ∈ W . Since β ∈ ϕ̄(x) \ R = ϕ̄′(x) \ R(ϕ′) and u ∈ W , it follows that
u ∈ M(T , ϕ′) \ M . To avoid the contradiction |EM (T , ϕ′)| > |EM |, it must be that Pu(α, β, ϕ) ends with an edge of color α

at a vertex v ∈ M such that β is the unique color in ϕ̄(v) ∩ (ϕ̄(x) \ R), so that v /∈ M(T , ϕ′). But then β ∈ CM , which is a
contradiction.

To prove (b)(ii), suppose that u = yk ∈ YM , where k ∈ T ⊆ T ′

0(ϕ
′). Since β /∈ CM ({u}) = CM ({yk}), it is not possible that

ϕ̄(zk)∩ (ϕ̄(x) \ R) = {β} or ϕ̄(yk)∩ (ϕ̄(x) \ R) = {β}. By Claim C, there exist distinct colors i, j ∈ ϕ̄(x) \ R = ϕ̄′(x) \ R(ϕ′) such
that i ∈ ϕ̄(zk), j ∈ ϕ̄(yk), and β /∈ {i, j}. Since α ∈ ϕ(x) ∪ R, it follows that α /∈ {i, j}. Thus i ∈ ϕ̄′(zk) and j ∈ ϕ̄′(yk). Since
also β ∈ ϕ̄′(u) = ϕ̄′(yk), the result follows with l = β . □

Recall that the statement I states that for any ϕ ∈ Cz we have |Cz(ϕ)| <
d(x)−1
∆−q and |Cy(ϕ)| <

d(x)−1
∆−q . Since

|T | = ⌈
4(d(x)−1)

∆−q +
8(d(x)−1)
(∆−q)2

⌉, we have

(∆ − q)|T |

2
≥ 2d(x) − 2 +

4(d(x) − 1)
∆ − q

> 2|ϕ(x) ∪ R|, (5)

where the second inequality follows from I. Since d(x) < ∆
2 and q ≤ ∆ − 10, the second inequality of (5) implies

2|ϕ(x) ∪ R| < 6∆−12
5 . By I again, we have |ϕ̄(x) \ R| > ∆ − d(x) + 1 − 2( d(x)−1

∆−q ) > 2∆+6
5 , and |T | +

2|ϕ(x)∪R|
∆−q−1 <

∆−2
5 +

∆−2
25 +

6∆−12
45 + 1 =

84∆+57
225 . Since 2∆+6

5 > 84∆+57
225 and 2∆+6

5 >
2(6∆−12)

45 + 2 as ∆ > 2, we have

|ϕ̄(x) \ R| > |T | +
2|ϕ(x) ∪ R|
∆ − q − 1

(6)
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and

|ϕ̄(x) \ R| >
4|ϕ(x) ∪ R|
∆ − q − 1

+ 2. (7)

Claim E. There exist an optimal z-feasible coloring ϕ′ and a color k ∈ T ⊆ T ′

0(ϕ
′) for which the following holds: there are

three distinct colors i, j, l ∈ ϕ̄′(x) \ R(ϕ′) such that i ∈ ϕ̄′(zk) and j, l ∈ ϕ̄′(yk).

Proof. We consider the following two cases, according to the value of |EM |.
Case 1: |EM | ≤ |T | +

2|ϕ(x)∪R|
∆−q−1 .

Since |CM | ≤ |EM |, it follows from (6) that there exists a color β ∈ ϕ̄(x) \ (R ∪ CM ).
We first claim that |EM | > |T |. If not, then |EM | ≤ |T |, which in turn gives |EW | ≥ |T | since |EM | + |EW | = 2|T |.

Thus |W | ≥
|T |

2 . By the definition of T0, we have d(v) < q for every vertex v ∈ V (T , ϕ), which includes all v ∈ W . So∑
v∈W |ϕ̄(v)| > (∆−q) |T |

2 > 2|ϕ(x) ∪ R|, by (5). By the definition of W , ϕ̄(v) ⊆ ϕ(x)∪R for every v ∈ W . By the Pigeonhole
Principle, there exist three vertices u1, u2, u3 ∈ W and a color α ∈ ϕ(x) ∪ R such that α ∈ ϕ̄(u1) ∩ ϕ̄(u2) ∩ ϕ̄(u3). But this
contradicts Claim D(a).

So we may assume that |EM | = |T | + p, so that |EW | = |T | − p, where p > 0. Since |EM | = |T | + p, it follows that
|YM | ≥ p. We may assume that |ϕ̄(yk) ∩ (ϕ̄(x) \ R)| = 1 for all yk ∈ YM , as otherwise the result holds by Claim C(c). Thus
|ϕ̄(v) ∩ (ϕ(x) ∪ R)| = |ϕ̄(v)|−1 > ∆− q−1 for all v ∈ YM , while |ϕ̄(v) ∩ (ϕ(x) ∪ R)| = |ϕ̄(v)| > ∆− q for all v ∈ W . Since
|W | ≥ |EW |/2, |EW | = |T | − p, and ∆ − q > 2, we have

∑
v∈W∪YM

|ϕ̄(v) ∩ (ϕ(x) ∪ R)| > (∆ − q) |T |−p
2 + (∆ − q − 1)p >

(∆ − q) |T |

2 > 2|ϕ(x) ∪ R|, by (5). Hence there exist three vertices u1, u2, u3 ∈ W ∪ YM and a color α ∈ ϕ(x) ∪ R such that
α ∈ ϕ̄(u1) ∩ ϕ̄(u2) ∩ ϕ̄(u3). Since β /∈ CM , the result follows from Claim D(b).

Case 2: |EM | > |T | +
2|ϕ(x)∪R|
∆−q−1 .

Since |EM | > |T | +
2|ϕ(x)∪R|
∆−q−1 , it follows that |YM | >

2|ϕ(x)∪R|
∆−q−1 . We may assume that |ϕ̄(yk) ∩ (ϕ̄(x) \ R)| = 1 for all

yk ∈ YM , as otherwise the result holds by Claim C(c). Let Y ′ be a subset of YM with |Y ′
| =

⌈
2|ϕ(x)∪R|
∆−q−1

⌉
. Then we have∑

v∈Y ′ |ϕ̄(v) ∩ (ϕ(x) ∪ R)| > (∆ − q − 1)|Y ′
| ≥ 2|ϕ(x) ∪ R|. Thus there exist three vertices u1, u2, u3 ∈ Y ′ and a color

α ∈ ϕ(x) ∪ R such that α ∈ ϕ̄(u1) ∩ ϕ̄(u2) ∩ ϕ̄(u3). Clearly, |CM (Y ′)| ≤ 2|Y ′
|. By (7), we have |ϕ̄(x) \ R| > 2|Y ′

| ≥ |CM (Y ′)|,
thus there exists a color β ∈ ϕ̄(x) \ (R ∪ CM (Y ′)), and the result follows from Claim D(b). □

Let k, i, j, l, ϕ′ be as stated in Claim E. By the proofs of Claim B, D and E, we know that ϕ′(x) = ϕ(x), ϕ′(xz) = 1 ∈ ϕ̄′(y),
Cy(ϕ′) = Cy and Cz(ϕ′) = Cz . Clearly, l ̸= 1. So Px(l, 1, ϕ′) = Py(l, 1, ϕ′), and they are disjoint from Pyk (l, 1, ϕ

′). If 1 /∈ ϕ̄′(yk),
we consider the coloring ϕ′/Pyk (l, 1, ϕ

′), and rename it as ϕ′. So we may assume 1 ∈ ϕ̄′(yk).
By Claim A, the paths Px(i, k, ϕ′) and Px(j, k, ϕ′) both contain y, z. Since ϕ′(yyk) = ϕ′(zzk) = k, these two paths also

contain yk, zk. Since i ∈ ϕ̄′(zk), x and zk are the two endvertices of Px(i, k, ϕ′). So, i ∈ ϕ′(y) ∩ ϕ′(z) ∩ ϕ′(yk). Similarly,
j ∈ ϕ′(y) ∩ ϕ′(z) ∩ ϕ′(zk). We now consider the following sequence of colorings of G − xy.

Let ϕ1 be obtained from ϕ′ by assigning ϕ1(yyk) = 1. Since 1 was missing at both y and yk, ϕ1 is an edge-∆-coloring
of G − xy. Now k is missing at y and yk, and i is still missing at x and zk. Note that Px(i, k, ϕ1) = Py(i, k, ϕ1), as otherwise
we could get an edge-∆-coloring of G from ϕ1/Px(i, k, ϕ1) by coloring xy with k. Furthermore, zk, yk /∈ V (Px(i, k, ϕ1)) since
either i or k is missing at these two vertices, which in turn shows that z /∈ V (Px(i, k, ϕ1)) since ϕ1(zzk) = k.

Let ϕ2 = ϕ1/Px(i, k, ϕ1). We have k ∈ ϕ̄2(x), i ∈ ϕ̄2(y) ∩ ϕ̄2(zk) and j ∈ ϕ̄2(x) ∩ ϕ̄2(yk). Since G is not edge-∆-colorable,
Px(i, j, ϕ2) = Py(i, j, ϕ2) which contains neither yk nor zk.

Let ϕ3 = ϕ2/Px(i, j, ϕ2). Then k ∈ ϕ̄3(x) and j ∈ ϕ̄3(y) ∩ ϕ̄3(yk).
Let ϕ4 be obtained from ϕ3 by recoloring yyk with j. Then ϕ4(xz) = 1 ∈ ϕ̄4(y) and ϕ4(zzk) = k ∈ ϕ̄4(x); the first of

these implies that ϕ4 is z-feasible, and the second implies that k ∈ Cz(ϕ4), since d(zk) < q. Since 1, i, j, k /∈ R = Cy ∪ Cz ,
the colors in R are unchanged during this sequence of recolorings, and so Cy(ϕ4) ⊇ Cy and Cz(ϕ4) ⊇ Cz ∪ {k}. Therefore,
|Cy(ϕ4)| + |Cz(ϕ4)| ≥ |Cy| + |Cz | + 1, giving a contradiction. So II holds. □

4.2. Proof of Lemma 5

The proof of Lemma 5 has a similar structure to that of Lemma 4, but the differences are sufficiently great that we
include it in full.

Lemma 5. Let G be a ∆-critical graph and q be a positive number such that q ≤ ∆−10 and minimum degree δ(G) > ∆
2 −2. For

an edge x1x2 ∈ E(G), if d(x1)+ d(x2) ≤
3
2∆ − 2, then there exist two distinct vertices z, y ∈ V (G) \ {x1, x2} with z ∈ N(x1) and

y ∈ N(x2) such that σq(x1, z)+σq(x2, y) > 3∆−d(x1)−d(x2)−
2(d(x1)+d(x2)−∆−2)

∆−q −⌈
4(d(x1)+d(x2)−∆+2)

∆−q +
8(d(x1)+d(x2)−∆−2)

(∆−q)2
⌉−2.

Proof. Let edge x1x2 ∈ E(G) be defined as in Lemma 5. A pair of distinct vertices z, y ∈ V (G) \ {x1, x2} with z ∈ N(x1) and
y ∈ N(x2) is called feasible if there exists a coloring ϕ ∈ C∆(G − x1x2) such that ϕ(x1z) ∈ ϕ̄(x2) and ϕ(x2y) ∈ ϕ̄(x1), and
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such a coloring ϕ is called zy-feasible. Denote by Czy the set of all zy-feasible colorings. For each pair of feasible vertices
z, y and each zy-feasible coloring ϕ ∈ Czy, let

Z(ϕ) = {v ∈ N(z) \ {x1} : ϕ(vz) ∈ ϕ̄(x1) ∪ ϕ̄(x2) ∪ ϕ̄(y)},
Cz(ϕ) = {ϕ(vz) : v ∈ Z(ϕ) and d(v) < q},
Y (ϕ) = {v ∈ N(y) \ {x2} : ϕ(vy) ∈ ϕ̄(x1) ∪ ϕ̄(x2) ∪ ϕ̄(z)}, and
Cy(ϕ) = {ϕ(vy) : v ∈ Y (ϕ) and d(v) < q}.

Note that Z(ϕ) and Y (ϕ) are vertex sets while Cz(ϕ) and Cy(ϕ) are color sets. Clearly, Cz(ϕ) ⊆ ϕ̄(x1) ∪ ϕ̄(x2) ∪ ϕ̄(y) and
Cy(ϕ) ⊆ ϕ̄(x1) ∪ ϕ̄(x2) ∪ ϕ̄(z). For each color α ∈ ϕ(z), let zα ∈ N(z) such that ϕ(zzα) = α. For each color β ∈ ϕ(y), let
yβ ∈ N(y) such that ϕ(yyβ ) = β . Let

T0(ϕ) = {α ∈ ϕ(x1) ∩ ϕ(x2) ∩ ϕ(y) ∩ ϕ(z) : d(yα) < q and d(zα) < q}.

Since d(x1)+d(x2) ≤
3
2∆−2 and δ(G) > ∆

2 −2, we have d(x1) < ∆ and d(x2) < ∆. We assume that ϕ(x1z) = 1 ∈ ϕ̄(x2)
and ϕ(x2y) = 2 ∈ ϕ̄(x1).

First, we claim that ϕ̄(x1), ϕ̄(x2), ϕ̄(y), ϕ̄(z) and ϕ(x1) ∩ ϕ(x2) ∩ ϕ(y) ∩ ϕ(z) are mutually exclusive. Let ϕ0 be a coloring
obtained from ϕ by uncoloring x1z and coloring x1x2 with 1. In the new coloring ϕ0, we have ϕ̄0(z) = ϕ̄(z) ∪ {1},
ϕ̄0(x1) = ϕ̄(x1), ϕ̄0(x2) = ϕ̄(x2) \ {1} and ϕ̄0(y) = ϕ̄(y). Since ϕ0(x1x2) = 1 ∈ ϕ̄0(z) and ϕ0(x2y) = 2 ∈ ϕ̄0(x1), {z, x1, x2, y}
forms a Kierstead path with respect to ϕ0. By Lemma 7, {z, x1, x2, y} is elementary with respect to ϕ0 as d(x1) < ∆. It
follows that ϕ̄0(x1), ϕ̄0(x2), ϕ̄0(y) and ϕ̄0(z) are mutually exclusive. Clearly, ϕ̄(x1), ϕ̄(x2), ϕ̄(y) and ϕ̄(z) also are mutually
exclusive, and then the claim holds.

It is not difficult to see that

|Z(ϕ)| = |ϕ̄(x1)| + |ϕ̄(x2)| + |ϕ̄(y)| − 1, |Y (ϕ)| = |ϕ̄(x1)| + |ϕ̄(x2)| + |ϕ̄(z)| − 1, (8)

and T0(ϕ) ∩ (Cz(ϕ) ∪ Cy(ϕ)) = ∅. Also,

ϕ̄(x1) ∪ ϕ̄(x2) ∪ ϕ̄(y) ∪ ϕ̄(z) ∪ (ϕ(x1) ∩ ϕ(x2) ∩ ϕ(y) ∩ ϕ(z)) = {1, 2, . . . , ∆}. (9)

Recall that σq(x2, y) and σq(x1, z) are the numbers of vertices with degree at least q in N(y) \ {x2} and N(z) \ {x1},
respectively. So, by Eqs. (8) and (9), we have

σq(x2, y) + σq(x1, z)
≥ |Y (ϕ)| − |Cy(ϕ)| + |Z(ϕ)| − |Cz(ϕ)| + |ϕ(x1) ∩ ϕ(x2) ∩ ϕ(y) ∩ ϕ(z)| − |T0(ϕ)|
= |ϕ̄(x1)| + |ϕ̄(x2)| + |ϕ̄(z)| − 1 + |ϕ̄(x1)| + |ϕ̄(x2)| + |ϕ̄(y)| − 1

+|ϕ(x1) ∩ ϕ(x2) ∩ ϕ(y) ∩ ϕ(z)| − |Cy(ϕ)| − |Cz(ϕ)| − |T0(ϕ)|
= ∆ + |ϕ̄(x1)| + |ϕ̄(x2)| − |Cy(ϕ)| − |Cz(ϕ)| − |T0(ϕ)| − 2
= 3∆ − d(x1) − d(x2) − |Cy(ϕ)| − |Cz(ϕ)| − |T0(ϕ)|.

For any edge e /∈ E(G), we let {ϕ(e)} = ∅. So, Lemma 5 follows from the two statements below as T0(ϕ)∩(Cz(ϕ)∪Cy(ϕ)) = ∅.

I. For any ϕ ∈ Czy, |Cz(ϕ) \ {ϕ(zx2)}| <
d(x1)+d(x2)−∆−2

∆−q and |Cy(ϕ) \ {ϕ(yx1)}| <
d(x1)+d(x2)−∆−2

∆−q ;
II. there exists a ϕ ∈ Czy such that |T0(ϕ) \ {ϕ(zx2), ϕ(yx1)}| ≤ ⌈

4(d(x1)+d(x2)−∆+2)
∆−q +

8(d(x1)+d(x2)−∆−2)
(∆−q)2

⌉.

To prove statements I and II, we first give the following claim.

Claim A1. Under a coloring ϕ ∈ Czy, the following two statements hold.
(a) {z, x1, x2, y} is elementary with respect to ϕ.
(b) Assume ϕ(x1z) = 1 ∈ ϕ̄(x2) and ϕ(x2y) = 2 ∈ ϕ̄(x1). For every two distinct vertices w1, w2 ∈ {z, x1, x2, y} and two

distinct colors α, β with α ∈ ϕ̄(w1) and β ∈ ϕ̄(w2),
(i) if {α, β} ∩ {1, 2} = ∅, then Pw1 (α, β, ϕ) = Pw2 (α, β, ϕ);
(ii) if {α, β} ∩ {1, 2} ̸= ∅, w1 = x1 and w2 = x2, then Px1 (α, β, ϕ) = Px2 (α, β, ϕ).

Proof. Note that ϕ̄(x1), ϕ̄(x2), ϕ̄(y) and ϕ̄(z) are mutually exclusive. By the definition of elementary, (a) holds.
To prove (b)(i), suppose that Pw1 (α, β, ϕ) ̸= Pw2 (α, β, ϕ). Let ϕ1 = ϕ/Pw1 (α, β, ϕ). Then β ∈ ϕ̄1(w1) ∩ ϕ̄1(w2). Let ϕ2

be obtained from ϕ1 by uncoloring zx1 and coloring x1x2 with 1. Then ϕ2(x1x2) = 1 ∈ ϕ̄2(z), ϕ2(x2y) = 2 ∈ ϕ̄2(x1) and
β ∈ ϕ̄2(w1) ∩ ϕ̄2(w2). Thus {z, x1, x2, y} forms a Kierstead path, and by Lemma 7, {z, x1, x2, y} is elementary with respect
to ϕ2 as d(x1) < ∆. This contradicts the fact that β ∈ ϕ̄2(w1) ∩ ϕ̄2(w2).

To prove (b)(ii), if Px1 (α, β, ϕ) ̸= Px2 (α, β, ϕ), then we could get an edge-∆-coloring of G from ϕ1 = ϕ/Px1 (α, β, ϕ) by
coloring x1x2 with color β , a contradiction. □
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4.2.1. Proof of Statement I
First we prove the following claim.

Claim B1. For every ϕ ∈ Czy, the sets {x2, x1, z} ∪ Z(ϕ) and {x1, x2, y} ∪ Y (ϕ) are both elementary with respect to ϕ.

Proof. Let ϕ be an arbitrary coloring in Czy. Since y and z are symmetric, we only need to show that {x2, x1, z} ∪ Z(ϕ) is
elementary with respect to ϕ, that is, we only need to prove that

for any v ∈ Z(ϕ) \ {x2}, {x2, x1, z, v} is elementary with respect to ϕ, (10)

and

ϕ̄(v) ∩ ϕ̄(v′) = ∅ for every two distinct vertices v, v′
∈ Z(ϕ) \ {x2}. (11)

We first show that (10) holds. If ϕ(vz) ∈ ϕ̄(x1) ∪ ϕ̄(x2), then {x2, x1, z, v} forms a Kierstead path as ϕ(zx1) ∈ ϕ̄(x2).
Since d(x1) < ∆, by Lemma 7, {x2, x1, z, v} is elementary with respect to ϕ, so (10) holds. Then we suppose that
k = ϕ(vz) ∈ ϕ(x1) ∩ ϕ(x2) ∩ ϕ̄(y). Clearly, d(y) < ∆. By Claim A1(a), {x2, x1, z} is elementary with respect to ϕ. So if
(10) does not hold, then there exists a color η in ϕ̄(v) ∩ (ϕ̄(x1) ∪ ϕ̄(x2) ∪ ϕ̄(z)). We can choose η to satisfy one of the
following three cases.

Case 1: η ∈ ϕ̄(v) ∩ ϕ̄(x1) \ {2}.
Note that k ∈ ϕ̄(y) and {η, k} ∩ {1, 2} = ∅. By Claim A1(b)(i), Px1 (η, k, ϕ) = Py(η, k, ϕ). Since v is an endvertex of

an (η, k)-chain, Px1 (η, k, ϕ) is disjoint from Pv(η, k, ϕ). Let ϕ1 = ϕ/Px1 (η, k, ϕ). Then k ∈ ϕ̄1(x) and η ∈ ϕ̄1(y) ∩ ϕ̄1(v).
Let ϕ2 be obtained from ϕ1 by uncoloring vz, zx1 and coloring zx1, x1x2 with k, 1, respectively. Then η ∈ ϕ̄2(y) ∩ ϕ̄2(v),
ϕ2(zx1) = k ∈ ϕ̄2(v), ϕ2(x1x2) = 1 ∈ ϕ̄2(z) and ϕ2(x2y) = 2 ∈ ϕ̄2(x1). It follows that {v, z, x1, x2, y} forms a Kierstead path
with respect to ϕ2. Since x1, x2, y are (< ∆)-vertices, by Lemma 6, the set {v, z, x1, x2, y} is elementary with respect to
ϕ2, contradicting the fact that η ∈ ϕ̄2(y) ∩ ϕ̄2(v).

Case 2: η ∈ {1, 2} and ϕ̄(v) ∩ ϕ̄(x1) \ {2} = ∅.
By Claim A1(b)(ii), Px1 (1, 2, ϕ) = Px2 (1, 2, ϕ). Since ϕ(zx1) = 1 and ϕ(x2y) = 2, V (Pv(1, 2, ϕ)) ∩ {z, x1, x2, y} = ∅. If

η = 2, let ϕ′
= ϕ/Pv(1, 2, ϕ), then 1 ∈ ϕ̄′(v). So we may assume that η = 1. Since d(x1) < ∆ and colors 1, k ∈ ϕ(x1), there

exists a color δ ∈ ϕ̄(x1) such that δ /∈ {1, 2, k}. By Claim A1(b)(ii), Px1 (1, δ, ϕ) = Px2 (1, δ, ϕ). So Px1 (1, δ, ϕ) is disjoint from
Pv(1, δ, ϕ). Let ϕ1 = ϕ/Pv(1, δ, ϕ). Then δ ∈ ϕ̄1(v)∩ ϕ̄1(x1) \ {2}. By the similar argument of Case 1 (replace η by δ in Case
1), we are done.

Case 3: η ∈ ϕ̄(v) ∩ (ϕ̄(x2) ∪ ϕ̄(z)) \ {1} and ϕ̄(v) ∩ ϕ̄(x1) = ∅.
Recall that d(x1) < ∆ and colors 1, k ∈ ϕ(x1), and η ∈ ϕ(x1) since ϕ̄(v) ∩ ϕ̄(x1) = ∅. Thus there exists a color

δ ∈ ϕ̄(x1) such that δ /∈ {1, 2, k, η}. Since η ∈ ϕ̄(x2) ∪ ϕ̄(z) \ {1}, by Claim A1(b)(i), Pz(δ, η, ϕ) = Px1 (δ, η, ϕ) or
Px2 (δ, η, ϕ) = Px1 (δ, η, ϕ). So Px1 (δ, η, ϕ) is disjoint from Pv(δ, η, ϕ). Let ϕ1 = ϕ/Pv(δ, η, ϕ). Then δ ∈ ϕ̄1(x1) ∩ ϕ̄1(v) \ {2}.
By the similar argument of Case 1, we are done.

We now show that (11) holds. If not, let α ∈ ϕ̄(v) ∩ ϕ̄(v′). By (10) and the fact that 1 ∈ ϕ̄(x2) and 2 ∈ ϕ̄(x1), we have
α /∈ {1, 2, ϕ(vz), ϕ(v′z)}. Since d(x1)+d(x2) ≤

3
2∆−2 and ∆ ≥ q+10 > 10, we have |ϕ̄(x1)|+|ϕ̄(x2)| ≥ 2∆−( 32∆−2)+2 =

1
2∆ + 4 > 9, which implies that for some i ∈ {1, 2} there exists a color β ∈ ϕ̄(xi) such that β /∈ {1, 2, ϕ(vz), ϕ(v′z)}.
Clearly, each of v, v′, xi must be an endvertex in an (α, β)-chain, so there exists a vertex in {v, v′

}, assume v, not in the
path Pxi (α, β, ϕ). Let ϕ1 = ϕ/Pxi (α, β, ϕ). Then α ∈ ϕ̄1(v)∩ ϕ̄1(xi). On the other hand, we will show that ϕ̄1(v)∩ ϕ̄1(xi) = ∅.
Since α, β /∈ {1, 2, ϕ(vz), ϕ(v′z)}, we have v ∈ Z(ϕ1)\{x2} and ϕ1 is zy-feasible. Therefore, {v, z, x1, x2} is elementary with
respect to ϕ1 by (10), a contradiction.

This completes the proof of Claim B1. □

Note that x2 may be a vertex of Z(ϕ) and x1 may be a vertex of Y (ϕ). By Claim B1 and the definitions of Cy(ϕ) and
Cz(ϕ), we have

(∆ − q)|Cz(ϕ) \ {ϕ(zx2)}| + |ϕ̄(x1)| + |ϕ̄(x2)| <
∑

v∈{x1,x2,z}∪Z(ϕ)

|ϕ̄(v)| ≤ ∆

and

(∆ − q)|Cy(ϕ) \ {ϕ(yx1)}| + |ϕ̄(x1)| + |ϕ̄(x2)| <
∑

v∈{x1,x2,y}∪Y (ϕ)

|ϕ̄(v)| ≤ ∆.

It follows that |Cz(ϕ) \ {ϕ(zx2)}| <
d(x1)+d(x2)−∆−2

∆−q and |Cy(ϕ) \ {ϕ(yx1)}| <
d(x1)+d(x2)−∆−2

∆−q . Hence, I holds.

4.2.2. Proof of Statement II
Suppose to the contrary that for every ϕ ∈ Czy we have |T0(ϕ) \ {ϕ(zx2), ϕ(yx1)}| > ⌈

4(d(x1)+d(x2)−∆+2)
∆−q +

8(d(x1)+d(x2)−∆−2)
(∆−q)2

⌉.
For each coloring ϕ ∈ Czy, let R(ϕ) = Cz(ϕ) ∪ Cy(ϕ), R′(ϕ) = R(ϕ) ∪ {1, 2}, T0(ϕ) = {k1, . . . , k|T0(ϕ)|} and

V (T0(ϕ)) = {zki ∈ N(z) : ki ∈ T0(ϕ)} ∪ {yki ∈ N(y) : ki ∈ T0(ϕ)}.
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Note that {x1, x2} ∩ V (T0(ϕ)) may not be empty. If x1 (x2) is in V (T0(ϕ)), then yx1 ∈ E(G) (zx2 ∈ E(G)).
A coloring ϕ ∈ Czy is called optimal if over all zy-feasible colorings the followings hold:
1. |Cz(ϕ)| + |Cy(ϕ)| is maximum;
2. subject to 1, |Cz(ϕ) ∩ Cy(ϕ)| is minimum.
Let ϕ be an optimal zy-feasible coloring and assume that ϕ(x1z) = 1 ∈ ϕ̄(x2) and ϕ(x2y) = 2 ∈ ϕ̄(x1). For convenience,

we let Z = Z(ϕ), Y = Y (ϕ), Cz = Cz(ϕ), Cy = Cy(ϕ), T0 = T0(ϕ), R = R(ϕ) and R′
= R′(ϕ). Note that 1 /∈ Cz ∪ T0, 2 /∈ Cy ∪ T0

and R ∩ T0 = ∅.

Claim C1. Let k be an arbitrary color in T0. For each i ∈ ϕ̄(x2) \ (R ∪ {1}), Px2 (i, k, ϕ) contains both y and z; and for each
i ∈ ϕ̄(x1) \ (R ∪ {2}), Px1 (i, k, ϕ) contains both y and z.

Proof. Since x1 and x2 are symmetric, we only show the first part of the statement. Let {u, v} = {y, z}. Suppose that
u /∈ V (Px2 (i, k, ϕ)). Then Pu(i, k, ϕ) is disjoint from Px2 (i, k, ϕ). Let ϕ′

= ϕ/Pu(i, k, ϕ). Since {i, k} ∩ {1, 2} = ∅, ϕ′ is also
zy-feasible. Note that ϕ′(uuk) = ϕ(uui) = i. Since d(uk) < q and i ∈ ϕ̄(x2) \ (R ∪ {1}), we have i ∈ Cu(ϕ′) \ Cu. Since k ∈ T0,
R∩T0 = ∅ and i /∈ R, the colors in R are unchanged, it follows that Cu(ϕ′) ⊇ Cu ∪{i} and Cv(ϕ′) ⊇ Cv , giving a contradiction
to the maximality of |Cy| + |Cz |. Thus Px2 (i, k, ϕ) contains both y and z. □

Let ϕ0 be obtained from ϕ by interchanging the colors 1 and 2 on all (1, 2)-chains except the one connecting x1 to x2.
Since {z, x1, x2, y} ⊆ V (Px2 (1, 2, ϕ)), we have ϕ0(v) = ϕ(v) for every vertex v ∈ {z, x1, x2, y}. It is easy to see that ϕ0 is an
optimal zy-feasible coloring if and only if ϕ is an optimal zy-feasible coloring. Recall that R′

= Cy ∪ Cz ∪ {1, 2}.

Claim D1. Suppose that there exist three vertices u1, u2, u3 ∈ V (T0) \ {z, x1, x2, y} and two distinct colors α, β with
α ∈ ϕ̄(u1) ∩ ϕ̄(u2) ∩ ϕ̄(u3) and β ∈ (ϕ̄(x1) ∪ ϕ̄(x2)) \ R′. For a vertex u ∈ {u1, u2, u3}, let ϕ′

u = ϕ0/Pu(i, β, ϕ0) if
β ∈ ϕ̄(xi)\R′ and α = j, where {i, j} = {1, 2}, and let ϕ′

u = ϕ/Pu(α, β, ϕ) otherwise. Then there exists a vertex u ∈ {u1, u2, u3}

with {x1, x2} ⊈ V (Pu(α, β, ϕ)) such that the coloring ϕ′
= ϕ′

u is zy-feasible and optimal and has the following properties:
ϕ′(x1) = ϕ(x1), ϕ′(x2) = ϕ(x2), Cy(ϕ′) = Cy, Cz(ϕ′) = Cz , R(ϕ′) = R, T0(ϕ′) ⊇ T0 and β ∈ ϕ̄′(u).

Proof. Since ϕ̄(x1) ∩ ϕ̄(x2) = ∅ and x1 and x2 are symmetric, we assume β ∈ ϕ̄(x1) \ R′ and therefore β ∈ ϕ(x2). For
i ∈ {1, 2, 3}, let Pi = Pui (α, β, ϕ) and ϕi = ϕ/Pi. Clearly none of u1, u2, u3, x1 can be an internal vertex (of degree 2) in an
(α, β)-chain, and so there are at least two values of i such that x1 /∈ V (Pi); let i = 1 be one of them. For each i such that
x1 /∈ V (Pi), we have the following observations.

• ϕi(x1) = ϕ(x1) since x1 /∈ V (Pi).
• ϕi(x2) = ϕ(x2). This is obvious if α ∈ ϕ(x2), since β ∈ ϕ(x2). And if α ∈ ϕ̄(x2) then Px1 (α, β, ϕ) = Px2 (α, β, ϕ) by

Claim A1(b), and so x2 /∈ V (Pi).
• β ∈ ϕ̄i(ui) since α ∈ ϕ̄(ui).
• All the conclusions of Claim D1 hold (with ϕ′

= ϕ′
ui and T0(ϕ′

ui ) = T0) if V (Pi) ∩ {x1, y, z} = ∅.
• Since β /∈ T0, we have T0(ϕ′

ui ) ⊇ T0 if α /∈ T0. But if α ∈ T0 then it follows from Claim C1 that V (Pi) ∩ {x1, y, z} = ∅,
and so T0(ϕ′

ui ) = T0.
• The result holds if α = 1. For, by Claim A1(b) and the fact that ϕ(x1z) = 1, we have Pz(1, β, ϕ) = Px1 (1, β, ϕ) =

Px2 (1, β, ϕ). So if we choose j so that y /∈ Pj, then V (Pj) ∩ {x1, x2, y, z} = ∅, which is more than we need.
• The result holds if α = 2. In this case ϕ′

= ϕ0/Pu(1, β, ϕ0) by definition, where u ∈ {u1, u2, u3}. Note that 1 ∈ ϕ̄0(uj)
for all j ∈ {1, 2, 3}, and ϕ0(v) = ϕ(v) for every vertex v ∈ {z, x1, x2, y}, and so the result follows by applying the
case α = 1 to ϕ0.

Thus it suffices to assume α /∈ {1, 2} and to prove that there exists a number i ∈ {1, 2, 3} such that x1 /∈ V (Pi),
Cy(ϕi) = Cy and Cz(ϕi) = Cz , as these imply that ϕi is optimal and R(ϕi) = R. Note that ϕi is zy-feasible, since
{α, β} ∩ {1, 2} = ∅. We consider the following four cases.

Case 1: α ∈ (ϕ(x1) ∩ ϕ(x2)) \ R′.
Since α, β /∈ R′

= Cy ∪ Cz ∪ {1, 2}, it follows that Cy(ϕ1) ⊇ Cy and Cz(ϕ1) ⊇ Cz . Since ϕ is optimal, Cy(ϕ1) = Cy and
Cz(ϕ1) = Cz , which is all we need to prove.

Case 2: α ∈ ϕ(x1) ∩ ϕ(x2) ∩ R′.
Clearly, α /∈ {1, 2}. Assume first α ∈ Cy. By the definition of Cy, α ∈ ϕ̄(z). It follows that Px1 (α, β, ϕ) = Pz(α, β, ϕ) by

Claim A1(b). So x1, z /∈ V (Pi) for all i ∈ {1, 2, 3}. Note that there exists a path Pj (j ∈ {1, 2, 3}) such that y /∈ V (Pj). So
V (Pj) ∩ {x1, y, z} = ∅, which is all we need.

If α ∈ Cz , then by interchanging y and z in the above argument, we get the same conclusion.
Case 3: α ∈ (ϕ̄(x1) ∪ ϕ̄(x2)) \ (Cy ∩ Cz) and α /∈ {1, 2}.
By Claim A1(a), {z, x1, x2, y} is elementary with respect to ϕ. Then α, β ∈ (ϕ̄(x1)∪ ϕ̄(x2))∩ϕ(y)∩ϕ(z). Since α /∈ Cy ∩Cz

and β /∈ R, either α, β /∈ Cy or α, β /∈ Cz (or both). Without loss of generality, we assume α, β /∈ Cy (the other
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case is similar). Then the neighbors yα and yβ of y both have degree at least q. Note that by Claim A1(b) we have
Px1 (α, β, ϕ) = Px2 (α, β, ϕ) if α ∈ ϕ̄(x2), and Px1 (α, β, ϕ) = {x1} if α ∈ ϕ̄(x1). It follows that x1 /∈ V (Pi) for all i ∈ {1, 2, 3},
and so we can choose Pj (j ∈ {1, 2, 3}) so that z /∈ V (Pj). Then Cy(ϕj) = Cy and Cz(ϕj) = Cz , regardless of whether or not
y ∈ V (Pj).

Case 4: α ∈ Cz ∩ Cy and α /∈ {1, 2}.
In this case, α ∈ ϕ̄(x1) ∪ ϕ̄(x2). By the same argument as in Case 3, x1 /∈ V (Pi) for all i ∈ {1, 2, 3}. Since α ∈ Cz ∩ Cy

and β ∈ ϕ̄(x1) \ R ⊆ ϕ(y) ∩ ϕ(z), the vertices yα and zα have degree less than q and the vertices yβ and zβ have degree
at least q. Let ϕ0 = ϕ/Pz(α, β, ϕ). Then either ϕ0(x1) = ϕ(x1) and ϕ0(x2) = ϕ(x2) (if α ∈ ϕ̄(x1) or Px1 (α, β, ϕ) does not
pass through z), or else ϕ0(x1) = (ϕ(x1) ∪ {β}) \ {α} and ϕ0(x2) = (ϕ(x2) ∪ {α}) \ {β} (if α ∈ ϕ̄(x2) and Px1 (α, β, ϕ)
passes through z). So α, β ∈ ϕ̄0(x1) ∪ ϕ̄0(x2) = ϕ̄(x1) ∪ ϕ̄(x2), Z(ϕ0) = Z(ϕ), and Y (ϕ0) = Y (ϕ). If Pz(α, β, ϕ) does not
pass through y, then Cz(ϕ0) = (Cz ∪ {β}) \ {α} and Cy(ϕ0) = Cy, which implies that |Cz(ϕ0)| + |Cy(ϕ0)| = |Cz | + |Cy|

and |Cz(ϕ0) ∩ Cy(ϕ0)| = |Cz ∩ Cy| − 1; this contradicts the minimality of |Cz ∩ Cy|, and this contradiction shows that
Pz(α, β, ϕ) = Py(α, β, ϕ). So we can choose j so that Pj does not pass through y or z, and then V (Pj) ∩ {x1, y, z} = ∅,
which is all we need. □

Let t = ⌈
4(d(x1)+d(x2)−∆+2)

∆−q +
8(d(x1)+d(x2)−∆−2)

(∆−q)2
⌉. Recall that |T0(ϕ) \ {ϕ(zx2), ϕ(yx1)}| > t . Let T ′

0(ϕ) = T0(ϕ) \

{ϕ(yz), ϕ(yx1), ϕ(zx2)}. Note that yz may not be an edge of G. It follows that |T ′

0(ϕ)| ≥ |T0(ϕ) \ {ϕ(zx2), ϕ(yx1)}| − 1. Thus
|T ′

0(ϕ)| ≥ t . For each t-element subset T = {k1, . . . , kt} of T ′

0(ϕ), let

V (T , ϕ) = {zk1 , zk2 , . . . , zkt } ∪ {yk1 , yk2 , . . . , ykt },
W (T , ϕ) = {u ∈ V (T , ϕ) : ϕ̄(u) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′(ϕ)) = ∅},

M(T , ϕ) = {u ∈ V (T , ϕ) : ϕ̄(u) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′(ϕ)) ̸= ∅},

E(T , ϕ) = {zzk1 , zzk2 , . . . , zzkt , yyk1 , yyk2 , . . . , yykt },
EW (T , ϕ) = {e ∈ E(T , ϕ) : e is incident with a vertex in W (T , ϕ)}, and
EM (T , ϕ) = {e ∈ E(T , ϕ) : e is incident with a vertex in M(T , ϕ)}.

Clearly, V (T , ϕ) = W (T , ϕ) ⊎ M(T , ϕ) and E(T , ϕ) = EW (T , ϕ) ⊎ EM (T , ϕ), where ⊎ denotes disjoint union. For
convenience, we let W = W (T , ϕ),M = M(T , ϕ), EW = EW (T , ϕ) and EM = EM (T , ϕ) if T and ϕ are clear. Note that
{zk1 , . . . , zkt } ∩ {yk1 , . . . , ykt } may not be empty, but |T | ≤ |V (T , ϕ)| ≤ |E(T , ϕ)| = 2|T |, |EW |

2 ≤ |W | ≤ |EW | and
|EM |

2 ≤ |M| ≤ |EM |.
We assume that |EM (T , ϕ)| is maximum over all optimal zy-feasible colorings ϕ and all t-element subsets T of T ′

0(ϕ).
Let YM = {yk : k ∈ T and zk, yk ∈ M}. For any Y ′

⊆ YM , let Z(Y ′) = {zk : yk ∈ Y ′
}, and let CM (Y ′) be the union of all

single-element sets of the form ϕ̄(v) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′) with v ∈ Y ′
∪ Z(Y ′), ignoring any sets of this form with more

than one element. Moreover, let CM be the union of all single-element sets of the form ϕ̄(v) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′) with
v ∈ M . Clearly, |CM (YM )| ≤ |CM | ≤ |M|.

Claim E1. The following three statements hold.
(a) If k ∈ T ′

0(ϕ), i, j ∈ (ϕ̄(x1) ∪ ϕ̄(x2)) \ R′, i ∈ ϕ̄(zk) and j ∈ ϕ̄(yk), then i ̸= j.
(b) If yk ∈ YM then there exist distinct colors i, j as in (a).
(c) If yk ∈ YM and |ϕ̄(yk) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′)| ≥ 2, then there exist distinct colors i, j, l ∈ (ϕ̄(x1) ∪ ϕ̄(x2)) \ R′ such that

i ∈ ϕ̄(zk) and j, l ∈ ϕ̄(yk).

Proof. If i ∈ ϕ̄(yk) ∩ ϕ̄(zk), then neither yk nor zk can be an internal vertex (with degree 2) of Px1 (i, k, ϕ) or Px2 (i, k, ϕ),
whereas Claim C1 implies that at least one of yk and zk must be an internal vertex of one of these paths. Thus i ̸= j,
which proves (a). (b) follows because, by the definitions of YM and M , there exist colors i, j ∈ (ϕ̄(x1)∪ ϕ̄(x2)) \R′ such that
i ∈ ϕ̄(zk) and j ∈ ϕ̄(yk); and (c) holds for the same reason. □

Recall that ϕ0 is obtained from ϕ by interchanging the colors 1 and 2 on all (1, 2)-chains except the one connecting x1
to x2. Since 1, 2 /∈ T0(ϕ), it follows that T0(ϕ0) = T0(ϕ) and T ⊆ T ′

0(ϕ
0) = T ′

0(ϕ). Hence V (T , ϕ0) = V (T , ϕ). It is clear that
R(ϕ0) is the same as R(ϕ) except possibly for changing 1 to 2 or vice versa, and so R′(ϕ0) = R′(ϕ) = R(ϕ) ∪ {1, 2}. Thus,
for each vertex v ∈ V (T , ϕ), ϕ̄0(v) ∩ ((ϕ̄0(x1) ∪ ϕ̄0(x2)) \ R′(ϕ0)) = ϕ̄(v) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′).

Claim F1. The following two statements hold.
(a) The hypotheses of Claim D1 cannot hold with u1, u2, u3 ∈ W and β /∈ CM .
(b) Assume that the hypotheses of Claim D1 hold, and u and ϕ′ are given by Claim D1, where ϕ′

= ϕ/Pu(α, β, ϕ),
ϕ0/Pu(1, β, ϕ0) or ϕ0/Pu(2, β, ϕ0) as appropriate. Then

(i) if β /∈ CM then u /∈ W;
(ii) if α /∈ (ϕ̄(x1) ∪ ϕ̄(x2)) \ R′, u ∈ YM and β /∈ CM ({u}), then there is a color k ∈ T ⊆ T ′

0(ϕ
′) for which the following holds:

there are three distinct colors i, j, l ∈ (ϕ̄′(x1) ∪ ϕ̄′(x2)) \ R′(ϕ′) such that i ∈ ϕ̄′(zk) and j, l ∈ ϕ̄′(yk).
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Proof. Clearly (a) follows from (b)(i). In the rest of this proof we will assume by symmetry that β ∈ ϕ̄(x1) \ R′.
By Claim D1, ϕ′(x1) = ϕ(x1), ϕ′(x2) = ϕ(x2), R(ϕ′) = R, T0 ⊆ T0(ϕ′), and β ∈ ϕ̄′(u). As we remarked in the proof of

Claim D1, β /∈ T0, and if α ∈ T0 then V (Pu(α, β, ϕ)) ∩ {x1, y, z} = ∅. Thus T ′

0(ϕ
′) ⊇ T ′

0(ϕ) ⊇ T and for each k ∈ T we have
ϕ′(yyk) = ϕ′(zzk) = ϕ(yyk) = ϕ(zzk) = k.

To prove (b)(i), suppose that β /∈ CM and u ∈ W . Since β ∈ (ϕ̄(x1) ∪ ϕ̄(x2)) \ R′
= (ϕ̄′(x1) ∪ ϕ̄′(x2)) \ R′(ϕ′) and u ∈ W ,

it follows that u ∈ M(T , ϕ′) \ M . To avoid the contradiction |EM (T , ϕ′)| > |EM |, it must be that Pu(α, β, ϕ) or Pu(1, β, ϕ0)
ends with an edge of color α at a vertex v ∈ M such that β is the unique color in ϕ̄(v) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′), so that
v /∈ M(T , ϕ′). But then β ∈ CM , which is a contradiction.

To prove (b)(ii), suppose that u = yk ∈ YM , where k ∈ T ⊆ T ′

0(ϕ
′). Since β /∈ CM ({u}) = CM ({yk}), it is not possible

that ϕ̄(zk) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′) = {β} or ϕ̄(yk) ∩ ((ϕ̄(x1) ∪ ϕ̄(x2)) \ R′) = {β}. By Claim E1, there exist distinct colors
i, j ∈ (ϕ̄(x1)∪ ϕ̄(x2))\R′

= (ϕ̄′(x1)∪ ϕ̄′(x2))\R′(ϕ′) such that i ∈ ϕ̄(zk), j ∈ ϕ̄(yk), and β /∈ {i, j}. Since α /∈ (ϕ̄(x1)∪ ϕ̄(x2))\R′,
it follows that α /∈ {i, j}. Thus i ∈ ϕ̄′(zk) and j ∈ ϕ̄′(yk). Since also β ∈ ϕ̄′(u) = ϕ̄′(yk), the result follows with l = β . □

For convenience, let X = (ϕ̄(x1) ∪ ϕ̄(x2)) \ R′; then |X | ≥ 2∆ − d(x1) − d(x2) − |R|. Recall that the statement I states
that for any ϕ ∈ Czy we have |Cz(ϕ) \ {ϕ(zx2)}| <

d(x1)+d(x2)−∆−2
∆−q and |Cy(ϕ) \ {ϕ(yx1)}| <

d(x1)+d(x2)−∆−2
∆−q , so that

|R| <
2(d(x1) + d(x2) − ∆ − 2)

∆ − q
+ 2. (12)

Since |T | = ⌈
4(d(x1)+d(x2)−∆+2)

∆−q +
8(d(x1)+d(x2)−∆−2)

(∆−q)2
⌉, we have

(∆ − q)|T |

2
> 2(d(x1) + d(x2) − ∆ + 2) + 2(|R| − 2) ≥ 2(∆ − |X |), (13)

where the first inequality uses (12). Since d(x1) + d(x2) ≤
3
2∆ − 2 and q ≤ ∆ − 10, we have |T | ≤

4( 12 ∆)
10 +

8( 12 ∆−4)
100 + 1 =

∆
5 +

∆−8
25 + 1 =

6∆+17
25 . By (12) again, we have

|X | > 2∆ − d(x1) − d(x2) −
2(d(x1) + d(x2) − ∆ − 2)

∆ − q
− 2

≥
1
2
∆ + 2 −

2( 12∆ − 4)
10

− 2 =
2∆ + 4

5
,

2(∆−|X |)
∆−q−1 < 2

9 (
3∆−4

5 ) =
6∆−8
45 , and |T | +

2(∆−|X |)
∆−q−1 ≤

6∆+17
25 +

6∆−8
45 =

84∆+113
225 . Since 84∆+113

225 < 2∆+4
5 and 2(6∆−8)

45 + 2 < 2∆+4
5

as ∆ ≥ 7, we have

|X | > |T | +
2(∆ − |X |)
∆ − q − 1

, (14)

and

|X | > 2
(
2(∆ − |X |)
∆ − q − 1

)
+ 2. (15)

Claim G1. There exist an optimal zy-feasible coloring ϕ′ and a color k ∈ T ⊆ T ′

0(ϕ
′) for which the following holds: there are

three distinct colors i, j, l ∈ (ϕ̄′(x1) ∪ ϕ̄′(x2)) \ R′(ϕ′) such that i ∈ ϕ̄′(zk) and j, l ∈ ϕ̄′(yk).

Proof. We consider the following two cases, according to the value of |EM |.
Case 1: |EM | ≤ |T | +

2(∆−|X |)
∆−q−1 . Since |CM | ≤ |EM |, it follows from (14) that there exists a color β ∈ X \ CM .

First we claim that |EM | > |T |. If not, then |EM | ≤ |T |, which implies that |EW | ≥ |T | since |EM | + |EW | = 2|T |.
Thus |W | ≥

|T |

2 . By the definition of T0, we have d(v) < q for every vertex v ∈ V (T , ϕ), which includes all v ∈ W . So∑
v∈W |ϕ̄(v)| > (∆ − q) |T |

2 > 2(∆ − |X |), by (13). By the definition of W , ϕ̄(v) ∩ X = ∅ for every v ∈ W . So, by the
Pigeonhole Principle, there exist three vertices u1, u2, u3 ∈ W and a color α /∈ X such that α ∈ ϕ̄(u1) ∩ ϕ̄(u2) ∩ ϕ̄(u3). But
this contradicts Claim F1(a).

So we may assume that |EM | = |T | + p, so that |EW | = |T | − p, where p > 0. Since |EM | = |T | + p, it follows that
|YM | ≥ p. We may assume that |ϕ̄(yk) ∩ X | = 1 for all yk ∈ YM , as otherwise the result holds by Claim E1(c). Thus
|ϕ̄(v) \ X | = |ϕ̄(v)| − 1 > ∆ − q − 1 for all v ∈ YM , while |ϕ̄(v) \ X | = |ϕ̄(v)| > ∆ − q for all v ∈ W . Since |W | ≥ |EW |/2,
|EW | = |T | − p, and ∆ − q > 2, we have

∑
v∈W∪YM

|ϕ̄(v) \ X | > (∆ − q) |T |−p
2 + (∆ − q − 1)p > (∆ − q) |T |

2 > 2(∆ − |X |),
by (13). Hence there exist three vertices u1, u2, u3 ∈ W ∪ YM and a color α /∈ X such that α ∈ ϕ̄(u1)∩ ϕ̄(u2)∩ ϕ̄(u3). Since
β /∈ CM , the result follows from Claim F1(b).

Case 2: |EM | > |T | +
2(∆−|X |)
∆−q−1 .

Since |EM | > |T | +
2(∆−|X |)
∆−q−1 , it follows that |YM | >

2(∆−|X |)
∆−q−1 . We may assume that |ϕ̄(yk) ∩ X | = 1 for all yk ∈

YM , as otherwise the result holds by Claim E1(c). Let Y ′ be a subset of YM with |Y ′
| =

⌈
2(∆−|X |)
∆−q−1

⌉
. Then we have∑

v∈Y ′ |ϕ̄(v) \ X | > (∆ − q − 1)|Y ′
| ≥ 2(∆ − |X |). Thus there exist three vertices u1, u2, u3 ∈ Y ′ and a color α /∈ X
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such that α ∈ ϕ̄(u1) ∩ ϕ̄(u2) ∩ ϕ̄(u3). Clearly, |CM (Y ′)| ≤ 2|Y ′
|. By (15), we have |X | > 2|Y ′

| ≥ |CM (Y ′)|, thus there exists a
color β ∈ X \ CM (Y ′), and the result follows from Claim F1(b). □

Let k, i, j, l, ϕ′ be as stated in Claim G1 and assume d(x2) ≤ d(x1). Since d(x1) + d(x2) ≤
3
2∆ − 2, d(x2) ≤ d(x1) and

q ≤ ∆ − 10, we have

|ϕ̄′(x2) \ (R(ϕ′) ∪ {1})| ≥ ∆ − d(x2) − |Cz(ϕ′) \ {ϕ′(zx2)}| − |Cy(ϕ′)|

> ∆ − d(x2) −
2(d(x1) + d(x2) − ∆ − 2)

∆ − q
− 1

≥
∆

4
+ 1 −

∆ − 8
10

− 1 =
3∆ + 16

20
≥ 2,

where the second inequality follows from I and the last inequality holds because ∆ ≥ 8. Thus

|ϕ̄′(x2) \ (R(ϕ′) ∪ {1})| ≥ 3. (16)

First we claim that

there exists an optimal zy-feasible coloring ϕ∗, such that i, j, l ∈ ϕ̄∗(x2) \ (R(ϕ∗) ∪ {1}), k ∈ T ⊆ T ′

0(ϕ
∗), i ∈ ϕ̄∗(zk)

and j, l ∈ ϕ̄∗(yk).

For otherwise, by Claim G1, at least one of i, j and l must be in ϕ̄′(x1) \ (R(ϕ′) ∪ {2}) rather than in ϕ̄′(x2) \ (R(ϕ′) ∪ {1}).
Suppose first that i ∈ ϕ̄′(x1) \ (R(ϕ′) ∪ {2}). By (16), there exists a color δ ∈ ϕ̄′(x2) \ (R(ϕ′) ∪ {1}) such that δ /∈ {j, l}.
Note that Px1 (i, δ, ϕ

′) = Px2 (i, δ, ϕ
′) by Claim A1(b). Then zk /∈ V (Px1 (i, δ, ϕ

′)) as i ∈ ϕ̄′(zk). Let ϕ′

1 = ϕ′/Px1 (i, δ, ϕ
′). Then

i ∈ ϕ̄1
′(x2) \ (R(ϕ′

1) ∪ {1}) and i ∈ ϕ̄1
′(zk). Since {i, δ} ∩ (R′(ϕ′) ∪ {j, l}) = ∅, we have j, l ∈ ϕ̄1

′(yk), Cz(ϕ′

1) = Cz(ϕ′), Cy(ϕ′

1) =

Cy(ϕ′) and ϕ′

1 is zy-feasible, which implies that ϕ′

1 is an optimal zy-feasible coloring. Note that ϕ̄′

1(x2) = (ϕ̄′(x2) \ {δ})∪ {i},
and so |ϕ̄′

1(x2) \ (R(ϕ′

1) ∪ {1})| ≥ 3 by (16). Using the same method above twice again, we can find an optimal zy-feasible
coloring ϕ∗ such that i, j, l ∈ ϕ̄∗(x2) \ (R(ϕ∗) ∪ {1}), k ∈ T ⊆ T ′

0(ϕ
∗), i ∈ ϕ̄∗(zk), and j, l ∈ ϕ̄∗(yk).

If 2 ∈ ϕ̄∗(yk), we let ϕ1 = ϕ∗. Otherwise, we let ϕ1 be obtained from ϕ∗ by interchanging the colors 2 and l on all
(2, l)-chains except Px2 (2, l, ϕ

∗). Note that Px1 (2, l, ϕ
∗) = Px2 (2, l, ϕ

∗) by Claim A1(b) and l ∈ ϕ̄∗(yk). Thus 2 ∈ ϕ̄1(yk). If
2 ∈ Cz(ϕ∗) and Px2 (2, l, ϕ

∗) does not pass through z, then Cz(ϕ1) ⊇ (Cz(ϕ∗) ∪ {l}) \ {2}; otherwise, Cz(ϕ1) ⊇ Cz(ϕ∗). Also,
Cy(ϕ1) ⊇ Cy(ϕ∗). It follows from the optimality of ϕ∗ that equality holds and ϕ1 is an optimal zy-feasible coloring.

Let ϕ2 be the coloring obtained from ϕ1 by uncoloring x2y and coloring x1x2 with color 2. Then 2 ∈ ϕ̄2(y).
Let ϕ3 be obtained from ϕ2 by assigning ϕ3(yyk) = 2. Now k is missing at y and yk and i is still missing at zk and x2.

Note that Px2 (i, k, ϕ3) = Py(i, k, ϕ3), as otherwise we could get an edge-∆-coloring of G from ϕ3/Py(i, k, ϕ3) by coloring
x2y with i. Furthermore, zk, yk /∈ Px2 (i, k, ϕ3) since either i or k is missing at these two vertices, which additionally shows
that z /∈ Px2 (i, k, ϕ3) since ϕ3(zzk) = k.

Let ϕ4 = ϕ3/Px2 (i, k, ϕ3). We have k, j ∈ ϕ̄4(x2) ∩ ϕ̄4(yk) and i ∈ ϕ̄4(y) ∩ ϕ̄4(zk). Since G is not edge-∆-colorable,
Px2 (i, j, ϕ4) = Py(i, j, ϕ4) which contains neither zk nor yk.

Let ϕ5 = ϕ4/Px2 (i, j, ϕ4). Then k ∈ ϕ̄5(x2) and j ∈ ϕ̄5(y) ∩ ϕ̄5(yk).
Let ϕ6 be obtained from ϕ5 by recoloring yyk with j. Then 2 ∈ ϕ̄6(y).
Let ϕ7 be the coloring obtained from ϕ6 by uncoloring x1x2 and coloring x2y with color 2. Then ϕ7(x1z) = 1 ∈ ϕ̄7(x2),

ϕ7(x2y) = 2 ∈ ϕ̄7(x1), and ϕ7(zzk) = k ∈ ϕ̄7(x2). Thus ϕ7 is zy-feasible, and k ∈ Cz(ϕ7) since d(zk) < q. Since i, j, k /∈ R(ϕ1)
and ϕ7(x2y) = ϕ1(x2y) = 2, the colors in R(ϕ1) are unchanged as a result of this sequence of recolorings, and so
Cz(ϕ7) ⊇ Cz(ϕ1)∪ {k} and Cy(ϕ7) ⊇ Cy(ϕ1). It follows that |Cy(ϕ7)| + |Cz(ϕ7)| ≥ |Cy(ϕ1)| + |Cz(ϕ1)| + 1, and this contradicts
the optimality of ϕ1. So II holds.

This completes the proof of Lemma 5, and hence of Theorem 1. □
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