

Hamiltonicity of edge-chromatic critical graphs

Yan Cao ^a, Guantao Chen ^{a,1}, Suyun Jiang ^{b,1,*}, Huiqing Liu ^{c,1}, Fuliang Lu ^{d,1}

^a Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States

^b Institute for Interdisciplinary Research, Jianghan University, Wuhan, Hubei 430056, China

^c Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistic, Hubei University, Wuhan, Hubei 430062, China

^d School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China

ARTICLE INFO

Article history:

Received 8 November 2017

Received in revised form 26 January 2020

Accepted 23 February 2020

Available online 4 March 2020

Keywords:

Edge- k -coloring

Edge-critical graphs

Hamiltonicity

ABSTRACT

Given a graph G , denote by $\Delta(G)$ and $\chi'(G)$ the maximum degree and the chromatic index of G , respectively. A simple graph G is called *edge- Δ -critical* if $\Delta(G) = \Delta$, $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ for every proper subgraph H of G . We prove that every edge- Δ -critical graph of order n with maximum degree at least $\frac{2n}{3} + 12$ is Hamiltonian.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Denote by $\Delta(G)$, $\delta(G)$ and $\alpha(G)$ the maximum degree, the minimum degree and the independence number of G , respectively. An *edge- k -coloring* of G is a mapping $\varphi : E(G) \rightarrow \{1, 2, \dots, k\}$ such that $\varphi(e) \neq \varphi(f)$ for any two adjacent edges e and f . The codomain $\{1, 2, \dots, k\}$ is called the *color set* of φ . Denote by $\mathcal{C}^k(G)$ the set of all edge- k -colorings of G . The *chromatic index* $\chi'(G)$ is the least integer $k \geq 0$ such that $\mathcal{C}^k(G) \neq \emptyset$. We call graph G *class one* if $\chi'(G) = \Delta(G)$ and *class two* otherwise. Vizing [13] proved $\chi'(G) = \Delta(G) + 1$ if G is class two. An edge e of G is called *critical* if $\chi'(G - e) < \chi'(G)$, where $G - e$ is the subgraph obtained from G by removing the edge e . A graph G is called *(edge-) Δ -critical* if $\Delta(G) = \Delta$, $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ for any proper subgraph H of G . Clearly, if G is Δ -critical, then G is connected and $\chi'(G - e) = \Delta(G)$ for any $e \in E(G)$.

In 1965, Vizing [14] proposed the following conjecture about structure properties of Δ -critical graphs.

Conjecture 1 (Vizing [14]). *Every Δ -critical graph with chromatic index at least 3 contains a 2-factor.*

In 1968, Vizing [15] proposed a weaker conjecture on the independence number of Δ -critical graphs as follows.

Conjecture 2 (Vizing [15]). *For every Δ -critical graph G of order n , $\alpha(G) \leq \frac{n}{2}$.*

* Corresponding author.

E-mail addresses: ycao17@gsu.edu (Y. Cao), gchen@gsu.edu (G. Chen), jiang.suyun@163.com (S. Jiang), hql_2008@163.com (H. Liu), flianglu@163.com (F. Lu).

¹ Partially supported by NSF, United States grant DMS-1855716 and NSFC of China (Nos. 11671232, 11901246, 11571096, 11971158, 11671186).

Conjecture 2 was verified by Luo and Zhao [9] for Δ -critical graphs of order n with maximum degree at least $\frac{n}{2}$, and by Grünwald and Steffen [6] for Δ -critical graphs with many edges, including all overfull graphs.

Chen and Shan [5] verified **Conjecture 1** for Δ -critical graphs of order n with maximum degree at least $\frac{n}{2}$. Obviously, if a graph is Hamiltonian, then it contains a 2-factor. Luo and Zhao [10] proved that a Δ -critical graph G of order n with $\Delta(G) \geq \frac{6n}{7}$ is Hamiltonian. Furthermore, Luo, Miao and Zhao [8] showed that a Δ -critical graph G of order n with $\Delta(G) \geq \frac{4n}{5}$ is Hamiltonian. Recently, Chen, Chen and Zhao [3] improved the lower bound to $\Delta(G) \geq \frac{3n}{4}$. In this paper, we give the following result about the Hamiltonicity of Δ -critical graphs.

Theorem 1. *If G is a Δ -critical graph of order n with $\Delta(G) \geq \frac{2n}{3} + 12$, then G is Hamiltonian.*

It would be nice to know the minimum number α ($0 < \alpha < 1$) such that every Δ -critical graph G of order n with $\Delta(G) \geq \alpha n$ is Hamiltonian. Our main techniques applied to prove **Theorem 1** are the following: (1) extending Woodall's Lemma ($q = 2\Delta(G) - d(x) - d(y) + 2$, see [Lemma 3](#)) to an arbitrary q with $q \leq \Delta(G) - 10$ (see [Lemma 4](#)); (2) extending Woodall's Lemma (consider the neighbor of a vertex x , see [Lemma 3](#)) to [Lemma 5](#) (consider the neighbor of two adjacent vertices).

Let G be a graph and x be a vertex of G . Denote by $N_G(x)$ and $d_G(x)$ the neighborhood and degree of x in G , respectively. We always drop the subscript G and simply write $N(x)$ and $d(x)$ if there is no ambiguity. For any nonnegative integer k , we call a vertex x a k -vertex if $d(x) = k$, a ($< k$)-vertex if $d(x) < k$, and a ($> k$)-vertex if $d(x) > k$. Similarly, we call a neighbor y of x a k -neighbor, a ($< k$)-neighbor and a ($> k$)-neighbor if $d(y) = k$, $< k$ and $> k$, respectively. Denote by $V_{\geq k}(G)$ the subset of $V(G)$ of vertices with degree at least k . Let k be a positive integer and e_0 an edge of G such that $c^k(G - e_0) \neq \emptyset$, and let $\varphi \in c^k(G - e_0)$ and $v \in V(G)$. Let $\varphi(v) = \{\varphi(e) : e \text{ is incident with } v\}$ and $\bar{\varphi}(v) = \{1, \dots, k\} \setminus \varphi(v)$. We call $\varphi(v)$ the set of colors seen by v and $\bar{\varphi}(v)$ the set of colors missing at v . A set $X \subseteq V(G)$ is called *elementary* with respect to φ if $\bar{\varphi}(u) \cap \bar{\varphi}(v) = \emptyset$ for every two distinct vertices $u, v \in X$. For any color α , let E_α denote the set of edges assigned color α . Clearly, E_α is a matching of G . For any two colors α and β , the components of the spanning subgraph of G with edge set $E_\alpha \cup E_\beta$, named (α, β) -chains, are even cycles and paths with alternating colors α and β . For a vertex v of G , we denote by $P_v(\alpha, \beta, \varphi)$ the unique (α, β) -chain that contains the vertex v . Let $\varphi/P_v(\alpha, \beta, \varphi)$ denote the edge- k -coloring obtained from φ by switching colors α and β on the edges on $P_v(\alpha, \beta, \varphi)$. If v is not incident with any edge of color α or β , then $P_v(\alpha, \beta, \varphi) = \{v\}$ (a path of length 0), and $\varphi/P_v(\alpha, \beta, \varphi) = \varphi$.

We will give a few technical lemmas in [Section 2](#) and prove **Theorem 1** in [Section 3](#). Due to the length of the proofs of [Lemmas 4](#) and [5](#), we will prove [Lemmas 4](#) and [5](#) in [Section 4](#).

2. Lemmas

Let q be a positive number, G be a Δ -critical graph and $x \in V(G)$. For each $y \in N(x)$, let $\sigma_q(x, y) = |\{z \in N(y) \setminus \{x\} : d(z) \geq q\}|$, the number of neighbors of y (except x) with degree at least q . Vizing studied the case $q = \Delta$ and obtained the following result.

Lemma 1 (Vizing's Adjacency Lemma [14]). *Let G be a Δ -critical graph. Then $\sigma_\Delta(x, y) \geq \Delta - d(x) + 1$ for every $xy \in E(G)$.*

Woodall [16] studied $\sigma_q(x, y)$ for the case $q = 2\Delta - d(x) - d(y) + 2$ and obtained the following two results. For convenience, we let $\sigma(x, y) = \sigma_q(x, y)$ when $q = 2\Delta - d(x) - d(y) + 2$.

Lemma 2 (Woodall [16]). *Let xy be an edge in a Δ -critical graph G . Then there are at least $\Delta - \sigma(x, y) \geq \Delta - d(y) + 1$ vertices $z \in N(x) \setminus \{y\}$ such that $\sigma(x, z) \geq 2\Delta - d(x) - \sigma(x, y)$.*

Furthermore, Woodall defined the following two parameters.

$$p_{\min}(x) := \min_{y \in N(x)} \sigma(x, y) - \Delta + d(x) - 1 \quad \text{and}$$

$$p(x) := \min\{ p_{\min}(x), \left\lfloor \frac{d(x)}{2} \right\rfloor - 1 \}.$$

Clearly, $p(x) \leq d(x)/2 - 1$. As a corollary, the following lemma shows that there are at least $d(x)/2$ neighbors y of x such that $\sigma(x, y) \geq \Delta/2$.

Lemma 3 (Woodall [16]). *Every vertex x in a Δ -critical graph has at least $d(x) - p(x) - 1$ neighbors y for which $\sigma(x, y) \geq \Delta - p(x) - 1$.*

Our proof of **Theorem 1** uses the following two lemmas, which will be proved in [Section 4](#).

Lemma 4. *Let G be a Δ -critical graph. For a vertex $x \in V(G)$ and a positive number q , if $d(x) < \frac{\Delta}{2}$ and $q \leq \Delta - 10$, then for any $y \in N(x)$, there exists another neighbor z of x such that $\sigma_q(x, y) + \sigma_q(x, z) > 2\Delta - d(x) - \frac{2(d(x)-1)}{\Delta-q} - \lceil \frac{4(d(x)-1)}{\Delta-q} \rceil + \frac{8(d(x)-1)}{(\Delta-q)^2}$.*

Lemma 5. Let G be a Δ -critical graph and q be a positive number such that $q \leq \Delta - 10$ and minimum degree $\delta(G) > \frac{\Delta}{2} - 2$. For an edge $x_1x_2 \in E(G)$, if $d(x_1) + d(x_2) \leq \frac{3}{2}\Delta - 2$, then there exist two distinct vertices $z, y \in V(G) \setminus \{x_1, x_2\}$ with $z \in N(x_1)$ and $y \in N(x_2)$ such that $\sigma_q(x_1, z) + \sigma_q(x_2, y) > 3\Delta - d(x_1) - d(x_2) - \frac{2(d(x_1) + d(x_2) - \Delta - 2)}{\Delta - q} - \lceil \frac{4(d(x_1) + d(x_2) - \Delta + 2)}{\Delta - q} + \frac{8(d(x_1) + d(x_2) - \Delta - 2)}{(\Delta - q)^2} \rceil - 2$.

Our approach is inspired by the recent development of the Tashkinov tree technique for multigraphs. Let G be a multigraph without loops, e_1 be an edge of G with endvertices y_0 and y_1 and $\varphi \in \mathcal{C}^k(G - e_1)$. A Tashkinov tree T with respect to G, e_1 and φ is an alternating sequence $T = (y_0, e_1, y_1, \dots, e_p, y_p)$ with $p \geq 1$ consisting of edges e_1, e_2, \dots, e_p and vertices y_0, y_1, \dots, y_p such that the following two conditions hold.

- (1) The vertices y_0, y_1, \dots, y_p are distinct and $e_i = y_r y_i$ for each $1 \leq i \leq p$, where $r < i$;
- (2) For every edge e_i with $2 \leq i \leq p$, there is a vertex y_h with $0 \leq h < i$ such that $\varphi(e_i) \in \bar{\varphi}(y_h)$.

Clearly, a Tashkinov tree is indeed a tree of G . Tashkinov [12] proved that if G is k -critical with $k \geq \Delta(G) + 1$, then $V(T)$ is elementary. In the above definition, if we change condition (1) to say that the edges e_1, e_2, \dots, e_p are distinct and $e_i = y_0 y_i$ for every i , then T is called a *multi-fan*, as defined in [11]. Stiebitz et al. [11] showed that the vertex set of a multi-fan is elementary. In the definition of Tashkinov tree, if $e_i = y_{i-1} y_i$ for every i , i.e., T is a path with endvertices y_0 and y_p , then T is called a *Kierstead path*, which was introduced by Kierstead [7]. Kierstead proved that for every Kierstead path P the set $V(P)$ is elementary if G is k -critical with $k \geq \Delta(G) + 1$. For simple graphs, following Kierstead's proof, Zhang [17] noticed the following Lemma.

Lemma 6 (Kierstead [7], Zhang [17]). Let G be a class two graph with maximum degree Δ . If $e_1 \in E(G)$ is a critical edge and $K = (y_0, e_1, y_1, \dots, y_{p-1}, e_p, y_p)$ is a Kierstead path with respect to e_1 and a coloring $\varphi \in \mathcal{C}^\Delta(G - e_1)$ such that $d(y_j) < \Delta$ for $j = 2, \dots, p$, then $V(K)$ is elementary with respect to φ .

Kostochka and Stiebitz considered elementary property of Kierstead paths with four vertices and showed the following Lemma.

Lemma 7 (Kostochka and Stiebitz [11]). Let G be a class two graph with maximum degree Δ . Let e_1 be a critical edge of G and $\varphi \in \mathcal{C}^\Delta(G - e_1)$. If $K = (y_0, e_1, y_1, e_2, y_2, e_3, y_3)$ is a Kierstead path with respect to e_1 and φ , then the following statements hold:

- (1) $\bar{\varphi}(y_0) \cap \bar{\varphi}(y_1) = \emptyset$;
- (2) if $d(y_2) < \Delta$, then $V(K)$ is elementary with respect to φ ;
- (3) if $d(y_1) < \Delta$, then $V(K)$ is elementary with respect to φ ;
- (4) $|\bar{\varphi}(y_3) \cap (\bar{\varphi}(y_0) \cup \bar{\varphi}(y_1))| \leq 1$.

In the definition of Tashkinov tree $T = (y_0, e_1, y_1, e_2, y_2, \dots, y_p)$, we call T a *broom* if $e_2 = y_1 y_2$ and for each $i \geq 3$, $e_i = y_2 y_i$, i.e., y_2 is one of the endvertices of e_i for each $i \geq 3$. Moreover, we call a broom T a *simple broom* if $\varphi(e_i) \in \bar{\varphi}(y_0) \cup \bar{\varphi}(y_1)$ for each $i \geq 3$, i.e., $(y_0, e_1, y_1, e_2, y_2, e_i, y_i)$ is a Kierstead path.

Lemma 8 (Chen, Chen and Zhao [3]). Let G be a Δ -critical graph, $e_1 = y_0 y_1 \in E(G)$ and $\varphi \in \mathcal{C}^\Delta(G - e_1)$. Let $B = \{y_0, e_1, y_1, e_2, y_2, \dots, e_p, y_p\}$ be a simple broom with respect to e_1 and φ . If $|\bar{\varphi}(y_0) \cup \bar{\varphi}(y_1)| \geq 4$ and $\min\{d(y_1), d(y_2)\} < \Delta$, then $V(B)$ is elementary with respect to φ .

The *circumference* of a graph is the length of longest cycles of the graph.

Lemma 9 (Brandt and Veldman [2]). Let $G \neq K_{1, n-1}$ be a graph of order n . If $d(x) + d(y) \geq n$ for every edge xy of G , then the circumference of G is $n - \max\{|S| - |N(S)| + 1, 0\}$, where S is an independent set of G with $S \cup N(S) \neq V(G)$.

Using Lemma 9, Chen, Chen and Zhao obtained the following result.

Lemma 10 (Chen, Chen and Zhao [3]). Let G be a Δ -critical graph of order n . If $d(x) + d(y) \geq n$ for every edge xy of G , then G is Hamiltonian.

The *Bondy-Chvátal closure* $C(G)$ of a graph G with order n , defined by Bondy and Chvátal [1], is the maximal graph obtained from G by consecutively adding the edges xy if the degree sum of x and y is at least n . They proved that $C(G)$ is well-defined and $C(G)$ is Hamiltonian if and only if G is Hamiltonian.

Lemma 11 (Chen, Ellingham, Saito and Shan [4]). Let G be a bipartite graph with partite sets X and Y . If for every $S \subseteq X$, $|N(S)| \geq \frac{3|S|}{2}$, then G has a subgraph H covering X such that for every $x \in X$, $d_H(x) = 2$ and for every $y \in Y$, $d_H(y) \leq 2$.

3. Proof of Theorem 1

Suppose on the contrary that there exists a non-Hamiltonian Δ -critical graph G of order n with maximum degree $\Delta \geq \frac{2}{3}n + 12$. Solving $n > \Delta \geq \frac{2}{3}n + 12$, we get $\Delta > 36$. Recall that $C(G)$ is the Bondy–Chvátal closure of G .

Before proceeding with the proof, we give a brief outline of our proof strategy. We first show that there is a positive number $r_1 := r_1(\Delta)$ such that $|V_{\geq r_1}(G)| \geq \frac{n}{2}$. We then show that there is another positive number $r_2 := r_2(\Delta)$, which is smaller than r_1 , such that for any $u \in V_{>r_2}(G)$ and any $v \in V_{\geq r_1}(G)$, we have that $d_{C(G)}(u) + d_{C(G)}(v) \geq n$, which in turn shows that $d_{C(G)}(u) \geq |V_{\geq r_1}(G)| \geq \frac{n}{2}$. So $V_{>r_2}(G)$ is a clique in $C(G)$. We finally show that $V_{\leq r_2}(G)$ is an independent set of G and is covered by paths intersecting $V_{>r_2}(G)$ and all endvertices of these paths are in $V_{>r_2}(G)$, which shows that $C(G)$ is Hamiltonian, so does G .

We first prove a general result.

Claim 3.1. *Let q be a positive number with $q \leq \Delta - 10$. Then*

$$|V_{\geq q}(G)| > \begin{cases} \frac{3\Delta}{4} - \frac{3\Delta-18}{2(\Delta-q)} - \frac{2\Delta-12}{(\Delta-q)^2} + \frac{1}{2} & \text{if } \delta(G) \leq \frac{\Delta}{2} - 2; \\ \frac{3\Delta}{4} - \frac{3\Delta-110}{2(\Delta-q)} - \frac{2\Delta-84}{(\Delta-q)^2} + 8 & \text{if } \delta(G) > \frac{\Delta}{2} - 2. \end{cases}$$

Consequently, we have

$$|V_{\geq q}(G)| > \frac{3\Delta}{4} - \frac{3\Delta}{2(\Delta-q)} - \frac{2\Delta}{(\Delta-q)^2}.$$

Proof. Assume first that $\delta(G) \leq \frac{\Delta}{2} - 2$, and let x be a vertex such that $d(x) = \delta(G)$. By Lemma 4, there exists a vertex $y \in N(x)$ such that

$$\sigma_q(x, y) > \Delta - \frac{d(x)}{2} - \frac{3(d(x) - 1)}{\Delta - q} - \frac{4(d(x) - 1)}{(\Delta - q)^2} - \frac{1}{2}. \quad (1)$$

Clearly, $|V_{\geq q}(G)| \geq \sigma_q(x, y)$. Using $d(x) \leq \frac{\Delta}{2} - 2$ in (1), we obtain the lower bound.

Assume now that $\delta(G) > \frac{\Delta}{2} - 2$. Note that $n \leq \frac{3}{2}\Delta - 18$ since $\Delta \geq \frac{2n}{3} + 12$. Let xy be an edge of G such that $d(x) + d(y) \leq n - 1 < \frac{3}{2}\Delta - 2$, such an edge exists as otherwise G would be Hamiltonian by Lemma 10. Applying Lemma 5, we may assume that there exists a neighbor z of x such that

$$\sigma_q(x, z) > \frac{3\Delta - d(x) - d(y) - 3}{2} - \frac{3(d(x) + d(y) - \Delta) + 2}{\Delta - q} - \frac{4(d(x) + d(y) - \Delta - 2)}{(\Delta - q)^2}.$$

Since $d(x) + d(y) \leq n - 1 \leq \frac{3}{2}\Delta - 19$, we get the desired lower bound. \square

Applying Claim 3.1 to $q = \Delta - 17 < \Delta - 10$, we obtain the following inequality

$$|V_{\geq \Delta-17}(G)| > \frac{3\Delta}{4} - \frac{3\Delta}{34} - \frac{2\Delta}{17^2} = \frac{757}{1156}\Delta. \quad (2)$$

Let

$$r_1 := r_1(\Delta) = \begin{cases} \Delta - 17 & \text{if } \Delta \leq 94; \\ (1 - \frac{179}{1156})\Delta & \text{if } \Delta \geq 95. \end{cases}$$

Claim 3.2. $|V_{\geq r_1}(G)| \geq \frac{n}{2}$.

Proof. If $\Delta \leq 94$, then by (2) we have $|V_{\geq r_1}(G)| = |V_{\geq \Delta-17}(G)| > \frac{757}{1156}\Delta > \frac{3}{4}\Delta - 9 \geq \frac{3}{4}(\frac{2}{3}n + 12) - 9 = \frac{n}{2}$.

Suppose $\Delta \geq 95$. Let $q = (1 - \frac{179}{1156})\Delta < \Delta - 10$. If $\delta(G) > \frac{\Delta}{2} - 2$, then by Claim 3.1 we have

$$|V_{\geq (1 - \frac{179}{1156})\Delta}(G)| > \frac{3\Delta}{4} - \frac{3 \cdot 1156\Delta}{2 \cdot 179\Delta} - \frac{2 \cdot 1156^2\Delta}{179^2\Delta^2} + 8 > \frac{n}{2} + 9 + 8 - 10 - 2 > \frac{n}{2},$$

where we use the following inequalities $\frac{3}{4}\Delta \geq \frac{n}{2} + 9$, $\frac{3 \cdot 1156}{2 \cdot 179} = \frac{3468}{358} < 10$, $\Delta > 9^2$, and $\frac{2 \cdot 1156^2}{179^2\Delta} < 2(\frac{1156}{1611})^2 < 2$. If $\delta(G) \leq \frac{\Delta}{2} - 2$, then by Claim 3.1,

$$\begin{aligned} |V_{\geq (1 - \frac{179}{1156})\Delta}(G)| &> \frac{3\Delta}{4} - \frac{1156(3\Delta - 18)}{2 \cdot 179\Delta} - \frac{1156^2(2\Delta - 12)}{179^2\Delta^2} + \frac{1}{2} \\ &\geq \frac{n}{2} + 9 + \frac{1}{2} - \frac{1734}{179} + \left(\frac{1156 \cdot 9}{179\Delta} - \frac{1156^2 \cdot 2}{179^2\Delta} \right) + \frac{1156^2 \cdot 12}{179^2\Delta^2} \\ &= \frac{n}{2} - A - B(\Delta), \end{aligned}$$

where $A = -9 - \frac{1}{2} + \frac{1734}{179} = \frac{67}{358} < 0.2$, and

$$B(\Delta) = \frac{1156}{179^2} \left(\frac{-179 \cdot 9 + 1156 \cdot 2}{\Delta} - \frac{1156 \cdot 12}{\Delta^2} \right) = \frac{1156}{179^2} \left(\frac{701}{\Delta} - \frac{13872}{\Delta^2} \right).$$

As a function of Δ , $B(\Delta)$ has a unique maximum at $\frac{2 \cdot 13872}{701}$, which is less than 94, and so, for $\Delta \geq 95$,

$$B(\Delta) < B(94) = \frac{1156}{179^2} \cdot \frac{52022}{94^2} < \frac{1200}{170^2} \cdot \frac{170^2 \cdot 2}{90^2} < 0.3.$$

Thus $|V_{\geq(1-\frac{179}{1156})\Delta}(G)| > \frac{n}{2} - 0.2 - 0.3 = \frac{n-1}{2}$, and so, being an integer, $|V_{\geq(1-\frac{179}{1156})\Delta}(G)| \geq \frac{n}{2}$. \square

Let $r_2 := r_2(\Delta) = \frac{\Delta}{2} - 2$.

Claim 3.3. For any $u \in V_{>r_2}(G)$ and any $v \in V_{\geq r_1}(G)$, $d_{C(G)}(u) + d_{C(G)}(v) \geq n$.

Proof. If $\Delta \leq 94$, we have $r_1 = \Delta - 17$, and so $d_{C(G)}(u) + d_{C(G)}(v) \geq d(u) + d(v) > \frac{3\Delta}{2} - 19 \geq n - 1$.

Suppose $\Delta \geq 95$. For any vertex $w \in V_{\geq \Delta-17}(G)$, we have $d(u) + d(w) > \frac{3\Delta}{2} - 19 \geq n - 1$. So $uw \in E(C(G))$. Thus by (2) we have $d_{C(G)}(u) \geq |V_{\geq \Delta-17}(G)| > \frac{757}{1156}\Delta$. Then

$$d_{C(G)}(u) + d_{C(G)}(v) \geq d_{C(G)}(u) + d(v) > \frac{757}{1156}\Delta + (1 - \frac{179}{1156})\Delta = \frac{3}{2}\Delta > n.$$

This completes the proof of Claim 3.3. \square

By Claims 3.2 and 3.3, we have $d_{C(G)}(u) \geq |V_{\geq r_1}(G)| \geq \frac{n}{2}$. So $V_{>r_2}(G)$ is a clique in $C(G)$.

Claim 3.4. $|N(X)| \geq 2|X|$ for any $X \subseteq V_{<\frac{\Delta}{2}+1}(G)$.

Proof. Let X be a subset of $V_{<\frac{\Delta}{2}+1}(G)$. Since G is Δ -critical, each edge uv of G has $d(u) + d(v) \geq \Delta + 2$. Thus X is an independent set of G , so $X \cap N(X) = \emptyset$. Let H be the bipartite graph induced by the edges with one endvertex in X and the other in $N(X)$. For each $x \in X$, let $N_1(x) = \{y \in N(x) : \sigma(x, y) \geq \Delta - p(x) - 1\}$ and $N_2(x) = N(x) \setminus N_1(x)$, where $p(x)$ is defined before Lemma 3.

Let $x \in X$. By Lemma 3, x has at least $d(x) - p(x) - 1$ neighbors y for which $\sigma(x, y) \geq \Delta - p(x) - 1$. Thus $|N_1(x)| \geq d(x) - p(x) - 1$. Since $2\Delta - d(x) - d(y) + 2 > \frac{\Delta}{2} + 1$, we have $\sigma(x, y) \leq \sigma_{\frac{\Delta}{2}+1}(x, y) \leq d(y) - d_H(y)$. Thus for each $y \in N_1(x)$ we have

$$d_H(y) \leq d(y) - \sigma(x, y) \leq d(y) - (\Delta - p(x) - 1) \leq p(x) + 1,$$

and for each $y \in N(x)$ we have

$$d_H(y) \leq d(y) - \sigma(x, y) \leq d(y) - (\Delta - d(x) + p(x) + 1) \leq d(x) - p(x) - 1.$$

For each edge $xy \in E(H)$ with $x \in X$ and $y \in N(X)$, we define $M(x, y) = \frac{1}{d_H(y)}$. Then we have

$$\sum_{xy \in E(H)} M(x, y) = \sum_{y \in N(X)} \sum_{x \in N(y)} \frac{1}{d_H(y)} = \sum_{y \in N(X)} 1 = |N(X)|.$$

On the other hand,

$$\begin{aligned} \sum_{xy \in E(H)} M(x, y) &= \sum_{x \in X} \sum_{y \in N(x)} \frac{1}{d_H(y)} = \sum_{x \in X} \left(\sum_{y \in N_1(x)} \frac{1}{d_H(y)} + \sum_{y \in N_2(x)} \frac{1}{d_H(y)} \right) \\ &\geq \sum_{x \in X} \left(\frac{d(x) - p(x) - 1}{p(x) + 1} + \frac{p(x) + 1}{d(x) - p(x) - 1} \right) \geq \sum_{x \in X} 2 = 2|X|. \end{aligned}$$

Therefore $|N(X)| \geq 2|X|$. \square

By Claim 3.4 and Lemma 11, G has a subgraph H covering $V_{\leq r_2}(G)$ such that for every $x \in V_{\leq r_2}(G)$, $d_H(x) = 2$ and for every $y \in V_{>r_2}(G)$, $d_H(y) \leq 2$. That is, there exist some vertex-disjoint paths P_1, \dots, P_s covering $V_{\leq r_2}(G)$ such that the endvertices of P_i belong to $V_{>r_2}(G)$ for all $1 \leq i \leq s$. Therefore, we can insert each vertex of $V_{\leq r_2}(G)$ into the subgraph induced by $V_{>r_2}(G)$. Since $V_{>r_2}(G)$ is a clique of $C(G)$, $C(G)$ is Hamiltonian. So G is Hamiltonian, a contradiction.

4. Proofs of Lemmas 4 and 5

4.1. Proof of Lemma 4

Lemma 4. Let G be a Δ -critical graph. For a vertex $x \in V(G)$ and a positive number q , if $d(x) < \frac{\Delta}{2}$ and $q \leq \Delta - 10$, then for any $y \in N(x)$, there exists another neighbor z of x such that $\sigma_q(x, y) + \sigma_q(x, z) > 2\Delta - d(x) - \frac{2(d(x)-1)}{\Delta-q} - \lceil \frac{4(d(x)-1)}{\Delta-q} + \frac{8(d(x)-1)}{(\Delta-q)^2} \rceil$.

Proof. Let y be a neighbor of x . A vertex $z \in N(x) \setminus \{y\}$ is called *feasible* if there exists a coloring $\varphi \in \mathcal{C}^\Delta(G - xy)$ such that $\varphi(xz) \in \bar{\varphi}(y)$, and such a coloring φ is called *z -feasible*. Denote by \mathcal{C}_z the set of all z -feasible colorings. For each feasible vertex z and each z -feasible coloring $\varphi \in \mathcal{C}_z$, let

$$\begin{aligned} Z(\varphi) &= \{v \in N(z) \setminus \{x\} : \varphi(vz) \in \bar{\varphi}(x) \cup \bar{\varphi}(y)\}, \\ C_z(\varphi) &= \{\varphi(vz) : v \in Z(\varphi) \text{ and } d(v) < q\}, \\ Y(\varphi) &= \{v \in N(y) \setminus \{x\} : \varphi(vy) \in \bar{\varphi}(x) \cup \bar{\varphi}(z)\}, \text{ and} \\ C_y(\varphi) &= \{\varphi(vy) : v \in Y(\varphi) \text{ and } d(v) < q\}. \end{aligned}$$

Note that $Z(\varphi)$ and $Y(\varphi)$ are vertex sets while $C_z(\varphi)$ and $C_y(\varphi)$ are color sets. Clearly, $C_z(\varphi) \subseteq \bar{\varphi}(x) \cup \bar{\varphi}(y)$ and $C_y(\varphi) \subseteq \bar{\varphi}(x) \cup \bar{\varphi}(z)$. For each color $\alpha \in \varphi(z)$, let $z_\alpha \in N(z)$ such that $\varphi(zz_\alpha) = \alpha$. For each color $\beta \in \varphi(y)$, let $y_\beta \in N(y)$ such that $\varphi(yy_\beta) = \beta$. Let

$$T_0(\varphi) = \{\alpha \in \varphi(x) \cap \varphi(y) \cap \varphi(z) : d(y_\alpha) < q \text{ and } d(z_\alpha) < q\}.$$

Since $(\varphi(x) \cap \varphi(y)) \cap (\bar{\varphi}(x) \cup \bar{\varphi}(y)) = \emptyset$ and $(\varphi(x) \cap \varphi(z)) \cap (\bar{\varphi}(x) \cup \bar{\varphi}(z)) = \emptyset$, we obtain that $T_0(\varphi) \cap (C_z(\varphi) \cup C_y(\varphi)) = \emptyset$.

Since G is Δ -critical and φ is z -feasible, $\{x, y, z\}$ is elementary with respect to φ . So $\bar{\varphi}(x)$, $\bar{\varphi}(y)$, $\bar{\varphi}(z)$ and $\varphi(x) \cap \varphi(y) \cap \varphi(z)$ are mutually exclusive. It is not difficult to see that

$$|Z(\varphi)| = |\bar{\varphi}(x)| + |\bar{\varphi}(y)| - 1 \text{ and } |Y(\varphi)| = |\bar{\varphi}(x)| + |\bar{\varphi}(z)|. \quad (3)$$

Also,

$$\bar{\varphi}(x) \cup \bar{\varphi}(y) \cup \bar{\varphi}(z) \cup (\varphi(x) \cap \varphi(y) \cap \varphi(z)) = \{1, 2, \dots, \Delta\}. \quad (4)$$

Recall that $\sigma_q(x, y)$ and $\sigma_q(x, z)$ are the numbers of vertices with degree at least q in $N(y) \setminus \{x\}$ and $N(z) \setminus \{x\}$, respectively. So, by Eqs. (3) and (4), we have

$$\begin{aligned} &\sigma_q(x, y) + \sigma_q(x, z) \\ &\geq |Y(\varphi)| - |C_y(\varphi)| + |Z(\varphi)| - |C_z(\varphi)| + |\varphi(x) \cap \varphi(y) \cap \varphi(z)| - |T_0(\varphi)| \\ &= |\bar{\varphi}(x)| + |\bar{\varphi}(z)| + |\bar{\varphi}(x)| + |\bar{\varphi}(y)| - 1 + |\varphi(x) \cap \varphi(y) \cap \varphi(z)| \\ &\quad - |C_y(\varphi)| - |C_z(\varphi)| - |T_0(\varphi)| \\ &= \Delta + |\bar{\varphi}(x)| - 1 - |C_y(\varphi)| - |C_z(\varphi)| - |T_0(\varphi)| \\ &= 2\Delta - d(x) - |C_y(\varphi)| - |C_z(\varphi)| - |T_0(\varphi)|. \end{aligned}$$

So, Lemma 4 follows from the two statements below.

- I. For any $\varphi \in \mathcal{C}_z$, $|C_z(\varphi)| < \frac{d(x)-1}{\Delta-q}$ and $|C_y(\varphi)| < \frac{d(x)-1}{\Delta-q}$;
- II. there exists a $\varphi \in \mathcal{C}_z$ such that $|T_0(\varphi)| \leq \lceil \frac{4(d(x)-1)}{\Delta-q} + \frac{8(d(x)-1)}{(\Delta-q)^2} \rceil$.

For every z -feasible coloring $\varphi \in \mathcal{C}^\Delta(G - xy)$, let $\varphi^d \in \mathcal{C}^\Delta(G - xz)$ be obtained from φ by uncoloring edge xz and assigning $\varphi(xz)$ to edge xy , and keeping all colors on other edges unchanged. Clearly, φ^d is y -feasible and $Z(\varphi^d) = Z(\varphi)$, $Y(\varphi^d) = Y(\varphi)$, $C_z(\varphi^d) = C_z(\varphi)$ and $C_y(\varphi^d) = C_y(\varphi)$. We call φ^d the *dual coloring* of φ . Considering dual colorings, we see that some properties that hold for vertex z also hold for vertex y .

Let $z \in N(x) \setminus \{y\}$ be a feasible vertex and $\varphi \in \mathcal{C}_z$ be a corresponding coloring. By the definition of $Z(\varphi)$, $\{y, x, z\} \cup Z(\varphi)$ is the vertex set of a simple broom. Since $1 \leq d(x) < \frac{\Delta}{2}$, we have $|\bar{\varphi}(x) \cup \bar{\varphi}(y)| \geq \Delta - d(x) + 2 \geq 4$. Thus by Lemma 8 the set $\{y, x, z\} \cup Z(\varphi)$ is elementary with respect to φ . Counting the number of missing colors of vertices in the set $\{y, x, z\} \cup Z(\varphi)$, since y may be a vertex of $Z(\varphi)$, we obtain $(\Delta - q)|C_z(\varphi)| + |\bar{\varphi}(x)| < \sum_{v \in \{y, x, z\} \cup Z(\varphi)} |\bar{\varphi}(v)| \leq \Delta$, which implies that $|C_z(\varphi)| < \frac{d(x)-1}{\Delta-q}$. By considering its dual coloring φ^d , we have $|C_y(\varphi)| = |C_y(\varphi^d)| < \frac{d(x)-1}{\Delta-q}$. Hence, I holds.

The proof of II is much more complicated and will be placed in a separate section. A coloring $\varphi \in \mathcal{C}_z$ is called *optimal* if over all z -feasible colorings the following hold:

1. $|C_z(\varphi)| + |C_y(\varphi)|$ is maximum;
2. subject to 1, $|C_z(\varphi) \cap C_y(\varphi)|$ is minimum.

Note that a z -feasible coloring φ is optimal if and only if its dual coloring φ^d is an optimal y -feasible coloring.

4.1.1. Proof of Statement II

Suppose to the contrary that $|T_0(\varphi)| > \lceil \frac{4(d(x)-1)}{\Delta-q} + \frac{8(d(x)-1)}{(\Delta-q)^2} \rceil$ for every $\varphi \in \mathcal{C}_z$. For each z -feasible coloring φ , let $R(\varphi) = C_z(\varphi) \cup C_y(\varphi)$, $T_0(\varphi) = \{k_1, \dots, k_{|T_0(\varphi)|}\}$ and

$$V(T_0(\varphi)) = \{z_{k_i} \in N(z) : k_i \in T_0(\varphi)\} \cup \{y_{k_i} \in N(y) : k_i \in T_0(\varphi)\}.$$

Let φ be an optimal z -feasible coloring and assume, without loss of generality, $\varphi(xz) = 1$. For convenience, we let $Z = Z(\varphi)$, $Y = Y(\varphi)$, $C_z = C_z(\varphi)$, $C_y = C_y(\varphi)$, $T_0 = T_0(\varphi)$ and $R = R(\varphi)$. Note that $1 \notin R \cup T_0$ and $R \cap T_0 = \emptyset$.

Claim A. For each $i \in \bar{\varphi}(x) \setminus R$ and $k \in T_0$, $P_x(i, k, \varphi)$ contains both y and z .

Proof. We first show that $z \in V(P_x(i, k, \varphi))$. Otherwise, $P_z(i, k, \varphi)$ is disjoint from $P_x(i, k, \varphi)$. Let $\varphi' = \varphi/P_z(i, k, \varphi)$. Since $1 \notin \{i, k\}$, φ' is also z -feasible. Note that $\varphi'(zz_k) = \varphi(zz_i) = i$. Since $d(z_k) < q$ and $i \in \bar{\varphi}(x) \setminus R$, we have $i \in C_z(\varphi') \setminus C_z$. Since neither i nor k is in R , we have $C_z(\varphi') \supseteq C_z \cup \{i\}$ and $C_y(\varphi') \supseteq C_y$, giving a contradiction to the maximality of $|C_y| + |C_z|$. By considering the dual coloring φ^d , we can verify that $y \in V(P_x(i, k, \varphi))$. \square

Claim B. Suppose that there exist three vertices $u_1, u_2, u_3 \in V(T_0) \setminus \{y, z\}$ and two distinct colors α, β with $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$ and $\beta \in \bar{\varphi}(x) \setminus R$. Then there exists a vertex $u \in \{u_1, u_2, u_3\}$ with $x \notin V(P_u(\alpha, \beta, \varphi))$ such that the coloring $\varphi' = \varphi/P_u(\alpha, \beta, \varphi)$ is z -feasible and optimal and has the following properties: $\varphi'(x) = \varphi(x)$, $C_y(\varphi') = C_y$, $C_z(\varphi') = C_z$, $R(\varphi') = R$, $T_0(\varphi') \supseteq T_0$ and $\beta \in \bar{\varphi}'(u)$.

Proof. For each $i \in \{1, 2, 3\}$, let $P_i = P_{u_i}(\alpha, \beta, \varphi)$ and $\varphi_i = \varphi/P_i$. Clearly none of u_1, u_2, u_3, x can be an internal vertex (of degree 2) in an (α, β) -chain, and so there are at least two values of i such that $x \notin V(P_i)$; let $i = 1$ be one of them. For each i such that $x \notin V(P_i)$, we have the following observations.

- $\varphi_i(x) = \varphi(x)$ since $x \notin V(P_i)$.
- $\beta \in \bar{\varphi}(u_i)$ since $\alpha \in \bar{\varphi}(u_i)$.
- All the conclusions of **Claim B** hold (with $\varphi' = \varphi_i$ and $T_0(\varphi_i) = T_0$) if $V(P_i) \cap \{x, y, z\} = \emptyset$.
- Since $\beta \notin T_0$, we have $T_0(\varphi_i) \supseteq T_0$ if $\alpha \notin T_0$. But if $\alpha \in T_0$ then it follows from **Claim A** that $V(P_i) \cap \{x, y, z\} = \emptyset$, and so $T_0(\varphi_i) = T_0$.
- Since $\beta \neq 1$, we have $\varphi_i(xz) = 1 \in \bar{\varphi}_i(y)$ if $\alpha \neq 1$, and so φ_i is z -feasible. But $y \in P_x(1, \beta, \varphi)$, as otherwise we could get an edge- Δ -coloring of G from $\varphi/P_x(1, \beta, \varphi)$ by coloring xy with 1; thus if $\alpha = 1$ then $V(P_i) \cap \{x, y, z\} = \emptyset$ and all the conclusions hold.

Thus it suffices to assume $\alpha \neq 1$ and to prove that there exists a number $i \in \{1, 2, 3\}$ such that $x \notin V(P_i)$, $C_y(\varphi_i) = C_y$ and $C_z(\varphi_i) = C_z$, as these imply that φ_i is optimal and $R(\varphi_i) = R$. We consider the following four cases.

Case 1: $\alpha \in \bar{\varphi}(x) \setminus R$ and $\alpha \neq 1$.

Since $\alpha, \beta \notin R = C_y \cup C_z$, it follows that $C_y(\varphi_1) \supseteq C_y$ and $C_z(\varphi_1) \supseteq C_z$. Since φ is optimal, $C_y(\varphi_1) = C_y$ and $C_z(\varphi_1) = C_z$, which is all we need to prove.

Case 2: $\alpha \in \bar{\varphi}(x) \cap R$.

Assume first $\alpha \in C_y$. By the definition of C_y , $\alpha \in \bar{\varphi}(z)$. If $z \notin V(P_x(\alpha, \beta, \varphi))$ then we could get an edge- Δ -coloring of G from $\varphi^d/P_x(\alpha, \beta, \varphi)$ by coloring xz with α . Thus $P_x(\alpha, \beta, \varphi) = P_z(\alpha, \beta, \varphi)$, and so $x, z \notin V(P_i)$ for all $i \in \{1, 2, 3\}$. Note that there exists a path P_j ($j \in \{1, 2, 3\}$) such that $y \notin V(P_j)$. So $V(P_j) \cap \{x, y, z\} = \emptyset$, which is all we need.

If $\alpha \in C_z$, then by interchanging y and z in the above argument, and replacing φ^d by φ in the second line, we get the same conclusion.

Case 3: $\alpha \in \bar{\varphi}(x) \setminus (C_y \cap C_z)$.

Since $\{x, y, z\}$ is an elementary set with respect to φ , $\alpha, \beta \in \bar{\varphi}(x) \cap \varphi(y) \cap \varphi(z)$. Since $\alpha \notin C_y \cap C_z$ and $\beta \notin R$, either $\alpha, \beta \notin C_y$ or $\alpha, \beta \notin C_z$ (or both). Without loss of generality, we assume $\alpha, \beta \notin C_y$ (the other case is similar). Then the neighbors y_α and y_β of y both have degree at least q . Clearly $x \notin V(P_i)$ for all $i \in \{1, 2, 3\}$, and so we can choose P_j ($j \in \{1, 2, 3\}$) so that $z \notin V(P_j)$. Then $C_y(\varphi_j) = C_y$ and $C_z(\varphi_j) = C_z$, regardless of whether or not $y \in V(P_j)$.

Case 4: $\alpha \in C_z \cap C_y$.

In this case, $\alpha \in \bar{\varphi}(x)$. Clearly $x \notin V(P_i)$ for all $i \in \{1, 2, 3\}$. We claim that $P_z(\alpha, \beta, \varphi) = P_y(\alpha, \beta, \varphi)$. For otherwise, let $\varphi_0 = \varphi/P_z(\alpha, \beta, \varphi)$. Since $\alpha, \beta \in \bar{\varphi}(x)$, $P_x(\alpha, \beta, \varphi) = \{x\}$, which is disjoint from $P_z(\alpha, \beta, \varphi)$, and so $\varphi_0(x) = \varphi(x)$. Since $\alpha \in C_z$ and $\beta \in \bar{\varphi}(x) \setminus R$, we have $d(z_\alpha) < q$ and $d(z_\beta) \geq q$, so $C_z(\varphi_0) = (C_z \cup \{\beta\}) \setminus \{\alpha\}$ and $C_y(\varphi_0) = C_y$, which implies that $|C_z(\varphi_0)| + |C_y(\varphi_0)| = |C_z| + |C_y|$ and $|C_z(\varphi_0) \cap C_y(\varphi_0)| = |C_z \cap C_y| - 1$, which contradicts the minimality of $|C_z \cap C_y|$. Thus $P_z(\alpha, \beta, \varphi) = P_y(\alpha, \beta, \varphi)$. So we can choose P_j ($j \in \{1, 2, 3\}$) so that $V(P_j) \cap \{x, y, z\} = \emptyset$, which is all we need. \square

Let $t = \lceil \frac{4(d(x)-1)}{\Delta-q} + \frac{8(d(x)-1)}{(\Delta-q)^2} \rceil$. Recall that we have assumed $|T_0(\varphi)| > t$. If $yz \in E(G)$, then let $T'_0(\varphi) = T_0(\varphi) \setminus \{\varphi(yz)\}$, otherwise, let $T'_0(\varphi) = T_0(\varphi)$. Clearly, $|T'_0(\varphi)| \geq t$. For each t -element subset T of $T'_0(\varphi)$, say $T = \{k_1, \dots, k_t\}$, let

$$\begin{aligned} V(T, \varphi) &= \{z_{k_1}, z_{k_2}, \dots, z_{k_t}\} \cup \{y_{k_1}, y_{k_2}, \dots, y_{k_t}\}, \\ W(T, \varphi) &= \{u \in V(T, \varphi) : \bar{\varphi}(u) \cap (\bar{\varphi}(x) \setminus R(\varphi)) = \emptyset\}, \\ M(T, \varphi) &= \{u \in V(T, \varphi) : \bar{\varphi}(u) \cap (\bar{\varphi}(x) \setminus R(\varphi)) \neq \emptyset\}, \\ E(T, \varphi) &= \{zz_{k_1}, zz_{k_2}, \dots, zz_{k_t}, yy_{k_1}, yy_{k_2}, \dots, yy_{k_t}\}, \\ E_W(T, \varphi) &= \{e \in E(T, \varphi) : e \text{ is incident with a vertex in } W(T, \varphi)\}, \text{ and} \\ E_M(T, \varphi) &= \{e \in E(T, \varphi) : e \text{ is incident with a vertex in } M(T, \varphi)\}. \end{aligned}$$

Clearly, $V(T, \varphi) = W(T, \varphi) \uplus M(T, \varphi)$ and $E(T, \varphi) = E_W(T, \varphi) \uplus E_M(T, \varphi)$, where \uplus denotes disjoint union. For convenience, we let $W = W(T, \varphi)$, $M = M(T, \varphi)$, $E_W = E_W(T, \varphi)$ and $E_M = E_M(T, \varphi)$ if T and φ are clear. Note that $\{z_{k_1}, \dots, z_{k_t}\} \cap \{y_{k_1}, \dots, y_{k_t}\}$ may not be empty, but $|T| \leq |V(T, \varphi)| \leq |E(T, \varphi)| = 2|T|$, $\frac{|E_W|}{2} \leq |W| \leq |E_W|$ and $\frac{|E_M|}{2} \leq |M| \leq |E_M|$.

We assume that $|E_M(T, \varphi)|$ is maximum over all optimal z -feasible colorings φ and all t -element subsets T of $T'_0(\varphi)$. Let $Y_M = \{y_k : k \in T \text{ and } z_k, y_k \in M\}$. For any $Y' \subseteq Y_M$, let $Z(Y') = \{z_k : y_k \in Y'\}$, and let $C_M(Y')$ be the union of all single-element sets of the form $\bar{\varphi}(v) \cap (\bar{\varphi}(x) \setminus R)$ with $v \in Y' \cup Z(Y')$, ignoring any sets of this form with more than one element. Moreover, let C_M be the union of all single-element sets of the form $\bar{\varphi}(v) \cap (\bar{\varphi}(x) \setminus R)$ with $v \in M$. Clearly, $|C_M(Y_M)| \leq |C_M| \leq |M|$.

Claim C. The following three statements hold.

- (a) If $k \in T_0$, $i, j \in \bar{\varphi}(x) \setminus R$, $i \in \bar{\varphi}(z_k)$ and $j \in \bar{\varphi}(y_k)$, then $i \neq j$.
- (b) If $y_k \in Y_M$ then there exist distinct colors i, j as in (a).
- (c) If $y_k \in Y_M$ and $|\bar{\varphi}(y_k) \cap (\bar{\varphi}(x) \setminus R)| \geq 2$, then there exist distinct colors $i, j, l \in \bar{\varphi}(x) \setminus R$ such that $i \in \bar{\varphi}(z_k)$ and $j, l \in \bar{\varphi}(y_k)$.

Proof. If $i \in \bar{\varphi}(y_k) \cap \bar{\varphi}(z_k)$, then neither y_k nor z_k can be an internal vertex (with degree 2) of $P_x(i, k, \varphi)$, whereas **Claim A** implies that at least one of y_k and z_k must be an internal vertex of this path. Thus $i \neq j$, which proves (a). (b) follows because, by the definitions of Y_M and M , there exist colors $i, j \in \bar{\varphi}(x) \setminus R$ such that $i \in \bar{\varphi}(z_k)$ and $j \in \bar{\varphi}(y_k)$; and (c) holds for the same reason. \square

Claim D. The following two statements hold.

- (a) The hypotheses of **Claim B** cannot hold with $u_1, u_2, u_3 \in W$ and $\beta \notin C_M$.
- (b) If the hypotheses of **Claim B** hold, and u and $\varphi' = \varphi/P_u(\alpha, \beta, \varphi)$ are given by **Claim B**, then
 - (i) if $\beta \notin C_M$ then $u \notin W$;
 - (ii) if $\alpha \in \varphi(x) \cup R$, $u \in Y_M$ and $\beta \notin C_M(\{u\})$, then there is a color $k \in T \subseteq T'_0(\varphi')$ for which the following holds: there are three distinct colors $i, j, l \in \bar{\varphi}'(x) \setminus R(\varphi')$ such that $i \in \bar{\varphi}'(z_k)$ and $j, l \in \bar{\varphi}'(y_k)$.

Proof. Clearly (a) follows from (b)(i).

By **Claim B**, $\varphi'(x) = \varphi(x)$, $R(\varphi') = R$, $T_0 \subseteq T_0(\varphi')$, and $\beta \in \bar{\varphi}'(u)$. As we remarked in the proof of **Claim B**, $\beta \notin T_0$, and if $\alpha \in T_0$ then $V(P_u(\alpha, \beta, \varphi)) \cap \{x, y, z\} = \emptyset$. Thus $T'_0(\varphi') \supseteq T'_0(\varphi) \supseteq T$ and for each $k \in T$ we have $\varphi'(yy_k) = \varphi'(zz_k) = \varphi(yy_k) = \varphi(zz_k) = k$.

To prove (b)(i), suppose that $\beta \notin C_M$ and $u \in W$. Since $\beta \in \bar{\varphi}(x) \setminus R = \bar{\varphi}'(x) \setminus R(\varphi')$ and $u \in W$, it follows that $u \in M(T, \varphi') \setminus M$. To avoid the contradiction $|E_M(T, \varphi')| > |E_M|$, it must be that $P_u(\alpha, \beta, \varphi)$ ends with an edge of color α at a vertex $v \in M$ such that β is the unique color in $\bar{\varphi}(v) \cap (\bar{\varphi}(x) \setminus R)$, so that $v \notin M(T, \varphi')$. But then $\beta \in C_M$, which is a contradiction.

To prove (b)(ii), suppose that $u = y_k \in Y_M$, where $k \in T \subseteq T'_0(\varphi')$. Since $\beta \notin C_M(\{u\}) = C_M(\{y_k\})$, it is not possible that $\bar{\varphi}(z_k) \cap (\bar{\varphi}(x) \setminus R) = \{\beta\}$ or $\bar{\varphi}(y_k) \cap (\bar{\varphi}(x) \setminus R) = \{\beta\}$. By **Claim C**, there exist distinct colors $i, j \in \bar{\varphi}(x) \setminus R = \bar{\varphi}'(x) \setminus R(\varphi')$ such that $i \in \bar{\varphi}(z_k)$, $j \in \bar{\varphi}(y_k)$, and $\beta \notin \{i, j\}$. Since $\alpha \in \varphi(x) \cup R$, it follows that $\alpha \notin \{i, j\}$. Thus $i \in \bar{\varphi}'(z_k)$ and $j \in \bar{\varphi}'(y_k)$. Since also $\beta \in \bar{\varphi}'(u) = \bar{\varphi}'(y_k)$, the result follows with $l = \beta$. \square

Recall that the statement **I** states that for any $\varphi \in C_z$ we have $|C_z(\varphi)| < \frac{d(x)-1}{\Delta-q}$ and $|C_y(\varphi)| < \frac{d(x)-1}{\Delta-q}$. Since $|T| = \lceil \frac{4(d(x)-1)}{\Delta-q} + \frac{8(d(x)-1)}{(\Delta-q)^2} \rceil$, we have

$$\frac{(\Delta-q)|T|}{2} \geq 2d(x) - 2 + \frac{4(d(x)-1)}{\Delta-q} > 2|\varphi(x) \cup R|, \quad (5)$$

where the second inequality follows from **I**. Since $d(x) < \frac{\Delta}{2}$ and $q \leq \Delta - 10$, the second inequality of (5) implies $2|\varphi(x) \cup R| < \frac{6\Delta-12}{5}$. By **I** again, we have $|\bar{\varphi}(x) \setminus R| > \Delta - d(x) + 1 - 2(\frac{d(x)-1}{\Delta-q}) > \frac{2\Delta+6}{5}$, and $|T| + \frac{2|\varphi(x) \cup R|}{\Delta-q-1} < \frac{\Delta-2}{5} + \frac{\Delta-2}{25} + \frac{6\Delta-12}{45} + 1 = \frac{84\Delta+57}{225}$. Since $\frac{2\Delta+6}{5} > \frac{84\Delta+57}{225}$ and $\frac{2\Delta+6}{5} > \frac{2(6\Delta-12)}{45} + 2$ as $\Delta > 2$, we have

$$|\bar{\varphi}(x) \setminus R| > |T| + \frac{2|\varphi(x) \cup R|}{\Delta-q-1} \quad (6)$$

and

$$|\bar{\varphi}(x) \setminus R| > \frac{4|\varphi(x) \cup R|}{\Delta - q - 1} + 2. \quad (7)$$

Claim E. *There exist an optimal z -feasible coloring φ' and a color $k \in T \subseteq T_0'(\varphi')$ for which the following holds: there are three distinct colors $i, j, l \in \bar{\varphi}'(x) \setminus R(\varphi')$ such that $i \in \bar{\varphi}'(z_k)$ and $j, l \in \bar{\varphi}'(y_k)$.*

Proof. We consider the following two cases, according to the value of $|E_M|$.

Case 1: $|E_M| \leq |T| + \frac{2|\varphi(x) \cup R|}{\Delta - q - 1}$.

Since $|C_M| \leq |E_M|$, it follows from (6) that there exists a color $\beta \in \bar{\varphi}(x) \setminus (R \cup C_M)$.

We first claim that $|E_M| > |T|$. If not, then $|E_M| \leq |T|$, which in turn gives $|E_W| \geq |T|$ since $|E_M| + |E_W| = 2|T|$. Thus $|W| \geq \frac{|T|}{2}$. By the definition of T_0 , we have $d(v) < q$ for every vertex $v \in V(T, \varphi)$, which includes all $v \in W$. So $\sum_{v \in W} |\bar{\varphi}(v)| > (\Delta - q) \frac{|T|}{2} > 2|\varphi(x) \cup R|$, by (5). By the definition of W , $\bar{\varphi}(v) \subseteq \varphi(x) \cup R$ for every $v \in W$. By the Pigeonhole Principle, there exist three vertices $u_1, u_2, u_3 \in W$ and a color $\alpha \in \varphi(x) \cup R$ such that $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$. But this contradicts **Claim D(a)**.

So we may assume that $|E_M| = |T| + p$, so that $|E_W| = |T| - p$, where $p > 0$. Since $|E_M| = |T| + p$, it follows that $|Y_M| \geq p$. We may assume that $|\bar{\varphi}(y_k) \cap (\bar{\varphi}(x) \setminus R)| = 1$ for all $y_k \in Y_M$, as otherwise the result holds by **Claim C(c)**. Thus $|\bar{\varphi}(v) \cap (\varphi(x) \cup R)| = |\bar{\varphi}(v)| - 1 > \Delta - q - 1$ for all $v \in Y_M$, while $|\bar{\varphi}(v) \cap (\varphi(x) \cup R)| = |\bar{\varphi}(v)| > \Delta - q$ for all $v \in W$. Since $|W| \geq |E_W|/2$, $|E_W| = |T| - p$, and $\Delta - q > 2$, we have $\sum_{v \in W \cup Y_M} |\bar{\varphi}(v) \cap (\varphi(x) \cup R)| > (\Delta - q) \frac{|T| - p}{2} + (\Delta - q - 1)p > (\Delta - q) \frac{|T|}{2} > 2|\varphi(x) \cup R|$, by (5). Hence there exist three vertices $u_1, u_2, u_3 \in W \cup Y_M$ and a color $\alpha \in \varphi(x) \cup R$ such that $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$. Since $\beta \notin C_M$, the result follows from **Claim D(b)**.

Case 2: $|E_M| > |T| + \frac{2|\varphi(x) \cup R|}{\Delta - q - 1}$.

Since $|E_M| > |T| + \frac{2|\varphi(x) \cup R|}{\Delta - q - 1}$, it follows that $|Y_M| > \frac{2|\varphi(x) \cup R|}{\Delta - q - 1}$. We may assume that $|\bar{\varphi}(y_k) \cap (\bar{\varphi}(x) \setminus R)| = 1$ for all $y_k \in Y_M$, as otherwise the result holds by **Claim C(c)**. Let Y' be a subset of Y_M with $|Y'| = \left\lceil \frac{2|\varphi(x) \cup R|}{\Delta - q - 1} \right\rceil$. Then we have $\sum_{v \in Y'} |\bar{\varphi}(v) \cap (\varphi(x) \cup R)| > (\Delta - q - 1)|Y'| \geq 2|\varphi(x) \cup R|$. Thus there exist three vertices $u_1, u_2, u_3 \in Y'$ and a color $\alpha \in \varphi(x) \cup R$ such that $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$. Clearly, $|C_M(Y')| \leq 2|Y'|$. By (7), we have $|\bar{\varphi}(x) \setminus R| > 2|Y'| \geq |C_M(Y')|$, thus there exists a color $\beta \in \bar{\varphi}(x) \setminus (R \cup C_M(Y'))$, and the result follows from **Claim D(b)**. \square

Let k, i, j, l, φ' be as stated in **Claim E**. By the proofs of **Claim B**, **D** and **E**, we know that $\varphi'(x) = \varphi(x)$, $\varphi'(xz) = 1 \in \bar{\varphi}'(y)$, $C_y(\varphi') = C_y$ and $C_z(\varphi') = C_z$. Clearly, $l \neq 1$. So $P_x(l, 1, \varphi') = P_y(l, 1, \varphi')$, and they are disjoint from $P_{y_k}(l, 1, \varphi')$. If $1 \notin \bar{\varphi}'(y_k)$, we consider the coloring $\varphi'/P_{y_k}(l, 1, \varphi')$, and rename it as φ' . So we may assume $1 \in \bar{\varphi}'(y_k)$.

By **Claim A**, the paths $P_x(i, k, \varphi')$ and $P_x(j, k, \varphi')$ both contain y, z . Since $\varphi'(yy_k) = \varphi'(zz_k) = k$, these two paths also contain y_k, z_k . Since $i \in \bar{\varphi}'(z_k)$, x and z_k are the two endvertices of $P_x(i, k, \varphi')$. So, $i \in \varphi'(y) \cap \varphi'(z) \cap \varphi'(y_k)$. Similarly, $j \in \varphi'(y) \cap \varphi'(z) \cap \varphi'(z_k)$. We now consider the following sequence of colorings of $G - xy$.

Let φ_1 be obtained from φ' by assigning $\varphi_1(yy_k) = 1$. Since 1 was missing at both y and y_k , φ_1 is an edge- Δ -coloring of $G - xy$. Now k is missing at y and y_k , and i is still missing at x and z_k . Note that $P_x(i, k, \varphi_1) = P_y(i, k, \varphi_1)$, as otherwise we could get an edge- Δ -coloring of G from $\varphi_1/P_x(i, k, \varphi_1)$ by coloring xy with k . Furthermore, $z_k, y_k \notin V(P_x(i, k, \varphi_1))$ since either i or k is missing at these two vertices, which in turn shows that $z \notin V(P_x(i, k, \varphi_1))$ since $\varphi_1(zz_k) = k$.

Let $\varphi_2 = \varphi_1/P_x(i, k, \varphi_1)$. We have $k \in \bar{\varphi}_2(x)$, $i \in \bar{\varphi}_2(y) \cap \bar{\varphi}_2(z_k)$ and $j \in \bar{\varphi}_2(x) \cap \bar{\varphi}_2(y_k)$. Since G is not edge- Δ -colorable, $P_x(i, j, \varphi_2) = P_y(i, j, \varphi_2)$ which contains neither y_k nor z_k .

Let $\varphi_3 = \varphi_2/P_x(i, j, \varphi_2)$. Then $k \in \bar{\varphi}_3(x)$ and $j \in \bar{\varphi}_3(y) \cap \bar{\varphi}_3(y_k)$.

Let φ_4 be obtained from φ_3 by recoloring yy_k with j . Then $\varphi_4(xz) = 1 \in \bar{\varphi}_4(y)$ and $\varphi_4(zz_k) = k \in \bar{\varphi}_4(x)$; the first of these implies that φ_4 is z -feasible, and the second implies that $k \in C_z(\varphi_4)$, since $d(z_k) < q$. Since $1, i, j, k \notin R = C_y \cup C_z$, the colors in R are unchanged during this sequence of recolorings, and so $C_y(\varphi_4) \supseteq C_y$ and $C_z(\varphi_4) \supseteq C_z \cup \{k\}$. Therefore, $|C_y(\varphi_4)| + |C_z(\varphi_4)| \geq |C_y| + |C_z| + 1$, giving a contradiction. So **II** holds. \square

4.2. Proof of **Lemma 5**

The proof of **Lemma 5** has a similar structure to that of **Lemma 4**, but the differences are sufficiently great that we include it in full.

Lemma 5. *Let G be a Δ -critical graph and q be a positive number such that $q \leq \Delta - 10$ and minimum degree $\delta(G) > \frac{\Delta}{2} - 2$. For an edge $x_1x_2 \in E(G)$, if $d(x_1) + d(x_2) \leq \frac{3}{2}\Delta - 2$, then there exist two distinct vertices $z, y \in V(G) \setminus \{x_1, x_2\}$ with $z \in N(x_1)$ and $y \in N(x_2)$ such that $\sigma_q(x_1, z) + \sigma_q(x_2, y) > 3\Delta - d(x_1) - d(x_2) - \frac{2(d(x_1) + d(x_2) - \Delta - 2)}{\Delta - q} - \lceil \frac{4(d(x_1) + d(x_2) - \Delta + 2)}{\Delta - q} + \frac{8(d(x_1) + d(x_2) - \Delta - 2)}{(\Delta - q)^2} \rceil - 2$.*

Proof. Let edge $x_1x_2 \in E(G)$ be defined as in **Lemma 5**. A pair of distinct vertices $z, y \in V(G) \setminus \{x_1, x_2\}$ with $z \in N(x_1)$ and $y \in N(x_2)$ is called *feasible* if there exists a coloring $\varphi \in \mathcal{C}^\Delta(G - x_1x_2)$ such that $\varphi(x_1z) \in \bar{\varphi}(x_2)$ and $\varphi(x_2y) \in \bar{\varphi}(x_1)$, and

such a coloring φ is called *zy-feasible*. Denote by \mathcal{C}_{zy} the set of all zy-feasible colorings. For each pair of feasible vertices z, y and each zy-feasible coloring $\varphi \in \mathcal{C}_{zy}$, let

$$\begin{aligned} Z(\varphi) &= \{v \in N(z) \setminus \{x_1\} : \varphi(vz) \in \bar{\varphi}(x_1) \cup \bar{\varphi}(x_2) \cup \bar{\varphi}(y)\}, \\ C_z(\varphi) &= \{\varphi(vz) : v \in Z(\varphi) \text{ and } d(v) < q\}, \\ Y(\varphi) &= \{v \in N(y) \setminus \{x_2\} : \varphi(vy) \in \bar{\varphi}(x_1) \cup \bar{\varphi}(x_2) \cup \bar{\varphi}(z)\}, \text{ and} \\ C_y(\varphi) &= \{\varphi(vy) : v \in Y(\varphi) \text{ and } d(v) < q\}. \end{aligned}$$

Note that $Z(\varphi)$ and $Y(\varphi)$ are vertex sets while $C_z(\varphi)$ and $C_y(\varphi)$ are color sets. Clearly, $C_z(\varphi) \subseteq \bar{\varphi}(x_1) \cup \bar{\varphi}(x_2) \cup \bar{\varphi}(y)$ and $C_y(\varphi) \subseteq \bar{\varphi}(x_1) \cup \bar{\varphi}(x_2) \cup \bar{\varphi}(z)$. For each color $\alpha \in \varphi(z)$, let $z_\alpha \in N(z)$ such that $\varphi(zz_\alpha) = \alpha$. For each color $\beta \in \varphi(y)$, let $y_\beta \in N(y)$ such that $\varphi(yy_\beta) = \beta$. Let

$$T_0(\varphi) = \{\alpha \in \varphi(x_1) \cap \varphi(x_2) \cap \varphi(y) \cap \varphi(z) : d(y_\alpha) < q \text{ and } d(z_\alpha) < q\}.$$

Since $d(x_1) + d(x_2) \leq \frac{3}{2}\Delta - 2$ and $\delta(G) > \frac{\Delta}{2} - 2$, we have $d(x_1) < \Delta$ and $d(x_2) < \Delta$. We assume that $\varphi(x_1z) = 1 \in \bar{\varphi}(x_2)$ and $\varphi(x_2y) = 2 \in \bar{\varphi}(x_1)$.

First, we claim that $\bar{\varphi}(x_1), \bar{\varphi}(x_2), \bar{\varphi}(y), \bar{\varphi}(z)$ and $\varphi(x_1) \cap \varphi(x_2) \cap \varphi(y) \cap \varphi(z)$ are mutually exclusive. Let φ_0 be a coloring obtained from φ by uncoloring x_1z and coloring x_1x_2 with 1. In the new coloring φ_0 , we have $\bar{\varphi}_0(z) = \bar{\varphi}(z) \cup \{1\}$, $\bar{\varphi}_0(x_1) = \bar{\varphi}(x_1)$, $\bar{\varphi}_0(x_2) = \bar{\varphi}(x_2) \setminus \{1\}$ and $\bar{\varphi}_0(y) = \bar{\varphi}(y)$. Since $\varphi_0(x_1x_2) = 1 \in \bar{\varphi}_0(z)$ and $\varphi_0(x_2y) = 2 \in \bar{\varphi}_0(x_1)$, $\{z, x_1, x_2, y\}$ forms a Kierstead path with respect to φ_0 . By Lemma 7, $\{z, x_1, x_2, y\}$ is elementary with respect to φ_0 as $d(x_1) < \Delta$. It follows that $\bar{\varphi}_0(x_1), \bar{\varphi}_0(x_2), \bar{\varphi}_0(y)$ and $\bar{\varphi}_0(z)$ are mutually exclusive. Clearly, $\bar{\varphi}(x_1), \bar{\varphi}(x_2), \bar{\varphi}(y)$ and $\bar{\varphi}(z)$ also are mutually exclusive, and then the claim holds.

It is not difficult to see that

$$|Z(\varphi)| = |\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| + |\bar{\varphi}(y)| - 1, \quad |Y(\varphi)| = |\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| + |\bar{\varphi}(z)| - 1, \quad (8)$$

and $T_0(\varphi) \cap (C_z(\varphi) \cup C_y(\varphi)) = \emptyset$. Also,

$$\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2) \cup \bar{\varphi}(y) \cup \bar{\varphi}(z) \cup (\varphi(x_1) \cap \varphi(x_2) \cap \varphi(y) \cap \varphi(z)) = \{1, 2, \dots, \Delta\}. \quad (9)$$

Recall that $\sigma_q(x_2, y)$ and $\sigma_q(x_1, z)$ are the numbers of vertices with degree at least q in $N(y) \setminus \{x_2\}$ and $N(z) \setminus \{x_1\}$, respectively. So, by Eqs. (8) and (9), we have

$$\begin{aligned} &\sigma_q(x_2, y) + \sigma_q(x_1, z) \\ &\geq |Y(\varphi)| - |C_y(\varphi)| + |Z(\varphi)| - |C_z(\varphi)| + |\varphi(x_1) \cap \varphi(x_2) \cap \varphi(y) \cap \varphi(z)| - |T_0(\varphi)| \\ &= |\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| + |\bar{\varphi}(z)| - 1 + |\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| + |\bar{\varphi}(y)| - 1 \\ &\quad + |\varphi(x_1) \cap \varphi(x_2) \cap \varphi(y) \cap \varphi(z)| - |C_y(\varphi)| - |C_z(\varphi)| - |T_0(\varphi)| \\ &= \Delta + |\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| - |C_y(\varphi)| - |C_z(\varphi)| - |T_0(\varphi)| - 2 \\ &= 3\Delta - d(x_1) - d(x_2) - |C_y(\varphi)| - |C_z(\varphi)| - |T_0(\varphi)|. \end{aligned}$$

For any edge $e \notin E(G)$, we let $\{\varphi(e)\} = \emptyset$. So, Lemma 5 follows from the two statements below as $T_0(\varphi) \cap (C_z(\varphi) \cup C_y(\varphi)) = \emptyset$.

- I. For any $\varphi \in \mathcal{C}_{zy}$, $|C_z(\varphi) \setminus \{\varphi(zx_2)\}| < \frac{d(x_1)+d(x_2)-\Delta-2}{\Delta-q}$ and $|C_y(\varphi) \setminus \{\varphi(yx_1)\}| < \frac{d(x_1)+d(x_2)-\Delta-2}{\Delta-q}$;
- II. there exists a $\varphi \in \mathcal{C}_{zy}$ such that $|T_0(\varphi) \setminus \{\varphi(zx_2), \varphi(yx_1)\}| \leq \lceil \frac{4(d(x_1)+d(x_2)-\Delta+2)}{\Delta-q} + \frac{8(d(x_1)+d(x_2)-\Delta-2)}{(\Delta-q)^2} \rceil$.

To prove statements I and II, we first give the following claim.

Claim A1. Under a coloring $\varphi \in \mathcal{C}_{zy}$, the following two statements hold.

(a) $\{z, x_1, x_2, y\}$ is elementary with respect to φ .

(b) Assume $\varphi(x_1z) = 1 \in \bar{\varphi}(x_2)$ and $\varphi(x_2y) = 2 \in \bar{\varphi}(x_1)$. For every two distinct vertices $w_1, w_2 \in \{z, x_1, x_2, y\}$ and two distinct colors α, β with $\alpha \in \bar{\varphi}(w_1)$ and $\beta \in \bar{\varphi}(w_2)$,

- (i) if $\{\alpha, \beta\} \cap \{1, 2\} = \emptyset$, then $P_{w_1}(\alpha, \beta, \varphi) = P_{w_2}(\alpha, \beta, \varphi)$;
- (ii) if $\{\alpha, \beta\} \cap \{1, 2\} \neq \emptyset$, $w_1 = x_1$ and $w_2 = x_2$, then $P_{x_1}(\alpha, \beta, \varphi) = P_{x_2}(\alpha, \beta, \varphi)$.

Proof. Note that $\bar{\varphi}(x_1), \bar{\varphi}(x_2), \bar{\varphi}(y)$ and $\bar{\varphi}(z)$ are mutually exclusive. By the definition of elementary, (a) holds.

To prove (b)(i), suppose that $P_{w_1}(\alpha, \beta, \varphi) \neq P_{w_2}(\alpha, \beta, \varphi)$. Let $\varphi_1 = \varphi / P_{w_1}(\alpha, \beta, \varphi)$. Then $\beta \in \bar{\varphi}_1(w_1) \cap \bar{\varphi}_1(w_2)$. Let φ_2 be obtained from φ_1 by uncoloring zx_1 and coloring x_1x_2 with 1. Then $\varphi_2(x_1x_2) = 1 \in \bar{\varphi}_2(z)$, $\varphi_2(x_2y) = 2 \in \bar{\varphi}_2(x_1)$ and $\beta \in \bar{\varphi}_2(w_1) \cap \bar{\varphi}_2(w_2)$. Thus $\{z, x_1, x_2, y\}$ forms a Kierstead path, and by Lemma 7, $\{z, x_1, x_2, y\}$ is elementary with respect to φ_2 as $d(x_1) < \Delta$. This contradicts the fact that $\beta \in \bar{\varphi}_2(w_1) \cap \bar{\varphi}_2(w_2)$.

To prove (b)(ii), if $P_{x_1}(\alpha, \beta, \varphi) \neq P_{x_2}(\alpha, \beta, \varphi)$, then we could get an edge- Δ -coloring of G from $\varphi_1 = \varphi / P_{x_1}(\alpha, \beta, \varphi)$ by coloring x_1x_2 with color β , a contradiction. \square

4.2.1. Proof of Statement I

First we prove the following claim.

Claim B1. For every $\varphi \in \mathcal{C}_{zy}$, the sets $\{x_2, x_1, z\} \cup Z(\varphi)$ and $\{x_1, x_2, y\} \cup Y(\varphi)$ are both elementary with respect to φ .

Proof. Let φ be an arbitrary coloring in \mathcal{C}_{zy} . Since y and z are symmetric, we only need to show that $\{x_2, x_1, z\} \cup Z(\varphi)$ is elementary with respect to φ , that is, we only need to prove that

$$\text{for any } v \in Z(\varphi) \setminus \{x_2\}, \{x_2, x_1, z, v\} \text{ is elementary with respect to } \varphi, \quad (10)$$

and

$$\bar{\varphi}(v) \cap \bar{\varphi}(v') = \emptyset \text{ for every two distinct vertices } v, v' \in Z(\varphi) \setminus \{x_2\}. \quad (11)$$

We first show that (10) holds. If $\varphi(vz) \in \bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)$, then $\{x_2, x_1, z, v\}$ forms a Kierstead path as $\varphi(zx_1) \in \bar{\varphi}(x_2)$. Since $d(x_1) < \Delta$, by Lemma 7, $\{x_2, x_1, z, v\}$ is elementary with respect to φ , so (10) holds. Then we suppose that $k = \varphi(vz) \in \varphi(x_1) \cap \varphi(x_2) \cap \bar{\varphi}(y)$. Clearly, $d(y) < \Delta$. By Claim A1(a), $\{x_2, x_1, z\}$ is elementary with respect to φ . So if (10) does not hold, then there exists a color η in $\bar{\varphi}(v) \cap (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2) \cup \bar{\varphi}(z))$. We can choose η to satisfy one of the following three cases.

Case 1: $\eta \in \bar{\varphi}(v) \cap \bar{\varphi}(x_1) \setminus \{2\}$.

Note that $k \in \bar{\varphi}(y)$ and $\{\eta, k\} \cap \{1, 2\} = \emptyset$. By Claim A1(b)(i), $P_{x_1}(\eta, k, \varphi) = P_y(\eta, k, \varphi)$. Since v is an endvertex of an (η, k) -chain, $P_{x_1}(\eta, k, \varphi)$ is disjoint from $P_v(\eta, k, \varphi)$. Let $\varphi_1 = \varphi / P_{x_1}(\eta, k, \varphi)$. Then $k \in \bar{\varphi}_1(x)$ and $\eta \in \bar{\varphi}_1(y) \cap \bar{\varphi}_1(v)$. Let φ_2 be obtained from φ_1 by uncoloring vz , zx_1 and coloring zx_1, x_1x_2 with $k, 1$, respectively. Then $\eta \in \bar{\varphi}_2(y) \cap \bar{\varphi}_2(v)$, $\varphi_2(zx_1) = k \in \bar{\varphi}_2(v)$, $\varphi_2(x_1x_2) = 1 \in \bar{\varphi}_2(z)$ and $\varphi_2(x_2y) = 2 \in \bar{\varphi}_2(x_1)$. It follows that $\{v, z, x_1, x_2, y\}$ forms a Kierstead path with respect to φ_2 . Since x_1, x_2, y are $(< \Delta)$ -vertices, by Lemma 6, the set $\{v, z, x_1, x_2, y\}$ is elementary with respect to φ_2 , contradicting the fact that $\eta \in \bar{\varphi}_2(y) \cap \bar{\varphi}_2(v)$.

Case 2: $\eta \in \{1, 2\}$ and $\bar{\varphi}(v) \cap \bar{\varphi}(x_1) \setminus \{2\} = \emptyset$.

By Claim A1(b)(ii), $P_{x_1}(1, 2, \varphi) = P_{x_2}(1, 2, \varphi)$. Since $\varphi(zx_1) = 1$ and $\varphi(x_2y) = 2$, $V(P_v(1, 2, \varphi)) \cap \{z, x_1, x_2, y\} = \emptyset$. If $\eta = 2$, let $\varphi' = \varphi / P_v(1, 2, \varphi)$, then $1 \in \bar{\varphi}'(v)$. So we may assume that $\eta = 1$. Since $d(x_1) < \Delta$ and colors $1, k \in \varphi(x_1)$, there exists a color $\delta \in \bar{\varphi}(x_1)$ such that $\delta \notin \{1, 2, k\}$. By Claim A1(b)(ii), $P_{x_1}(1, \delta, \varphi) = P_{x_2}(1, \delta, \varphi)$. So $P_{x_1}(1, \delta, \varphi)$ is disjoint from $P_v(1, \delta, \varphi)$. Let $\varphi_1 = \varphi / P_v(1, \delta, \varphi)$. Then $\delta \in \bar{\varphi}_1(v) \cap \bar{\varphi}_1(x_1) \setminus \{2\}$. By the similar argument of Case 1 (replace η by δ in Case 1), we are done.

Case 3: $\eta \in \bar{\varphi}(v) \cap (\bar{\varphi}(x_2) \cup \bar{\varphi}(z)) \setminus \{1\}$ and $\bar{\varphi}(v) \cap \bar{\varphi}(x_1) = \emptyset$.

Recall that $d(x_1) < \Delta$ and colors $1, k \in \varphi(x_1)$, and $\eta \in \varphi(x_1)$ since $\bar{\varphi}(v) \cap \bar{\varphi}(x_1) = \emptyset$. Thus there exists a color $\delta \in \bar{\varphi}(x_1)$ such that $\delta \notin \{1, 2, k, \eta\}$. Since $\eta \in \bar{\varphi}(x_2) \cup \bar{\varphi}(z) \setminus \{1\}$, by Claim A1(b)(i), $P_z(\delta, \eta, \varphi) = P_{x_1}(\delta, \eta, \varphi)$ or $P_{x_2}(\delta, \eta, \varphi) = P_{x_1}(\delta, \eta, \varphi)$. So $P_{x_1}(\delta, \eta, \varphi)$ is disjoint from $P_v(\delta, \eta, \varphi)$. Let $\varphi_1 = \varphi / P_v(\delta, \eta, \varphi)$. Then $\delta \in \bar{\varphi}_1(x_1) \cap \bar{\varphi}_1(v) \setminus \{2\}$. By the similar argument of Case 1, we are done.

We now show that (11) holds. If not, let $\alpha \in \bar{\varphi}(v) \cap \bar{\varphi}(v')$. By (10) and the fact that $1 \in \bar{\varphi}(x_2)$ and $2 \in \bar{\varphi}(x_1)$, we have $\alpha \notin \{1, 2, \varphi(vz), \varphi(v'z)\}$. Since $d(x_1) + d(x_2) \leq \frac{3}{2}\Delta - 2$ and $\Delta \geq q + 10 > 10$, we have $|\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| \geq 2\Delta - (\frac{3}{2}\Delta - 2) + 2 = \frac{1}{2}\Delta + 4 > 9$, which implies that for some $i \in \{1, 2\}$ there exists a color $\beta \in \bar{\varphi}(x_i)$ such that $\beta \notin \{1, 2, \varphi(vz), \varphi(v'z)\}$. Clearly, each of v, v', x_i must be an endvertex in an (α, β) -chain, so there exists a vertex in $\{v, v'\}$, assume v , not in the path $P_{x_i}(\alpha, \beta, \varphi)$. Let $\varphi_1 = \varphi / P_{x_i}(\alpha, \beta, \varphi)$. Then $\alpha \in \bar{\varphi}_1(v) \cap \bar{\varphi}_1(x_i)$. On the other hand, we will show that $\bar{\varphi}_1(v) \cap \bar{\varphi}_1(x_i) = \emptyset$. Since $\alpha, \beta \notin \{1, 2, \varphi(vz), \varphi(v'z)\}$, we have $v \in Z(\varphi_1) \setminus \{x_2\}$ and φ_1 is zy-feasible. Therefore, $\{v, z, x_1, x_2\}$ is elementary with respect to φ_1 by (10), a contradiction.

This completes the proof of Claim B1. \square

Note that x_2 may be a vertex of $Z(\varphi)$ and x_1 may be a vertex of $Y(\varphi)$. By Claim B1 and the definitions of $C_y(\varphi)$ and $C_z(\varphi)$, we have

$$(\Delta - q)|C_z(\varphi) \setminus \{\varphi(zx_2)\}| + |\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| < \sum_{v \in \{x_1, x_2, z\} \cup Z(\varphi)} |\bar{\varphi}(v)| \leq \Delta$$

and

$$(\Delta - q)|C_y(\varphi) \setminus \{\varphi(yx_1)\}| + |\bar{\varphi}(x_1)| + |\bar{\varphi}(x_2)| < \sum_{v \in \{x_1, x_2, y\} \cup Y(\varphi)} |\bar{\varphi}(v)| \leq \Delta.$$

It follows that $|C_z(\varphi) \setminus \{\varphi(zx_2)\}| < \frac{d(x_1) + d(x_2) - \Delta - 2}{\Delta - q}$ and $|C_y(\varphi) \setminus \{\varphi(yx_1)\}| < \frac{d(x_1) + d(x_2) - \Delta - 2}{\Delta - q}$. Hence, I holds.

4.2.2. Proof of Statement II

Suppose to the contrary that for every $\varphi \in \mathcal{C}_{zy}$ we have $|T_0(\varphi) \setminus \{\varphi(zx_2), \varphi(yx_1)\}| > \lceil \frac{4(d(x_1) + d(x_2) - \Delta + 2)}{\Delta - q} + \frac{8(d(x_1) + d(x_2) - \Delta - 2)}{(\Delta - q)^2} \rceil$. For each coloring $\varphi \in \mathcal{C}_{zy}$, let $R(\varphi) = C_z(\varphi) \cup C_y(\varphi)$, $R'(\varphi) = R(\varphi) \cup \{1, 2\}$, $T_0(\varphi) = \{k_1, \dots, k_{|T_0(\varphi)|}\}$ and

$$V(T_0(\varphi)) = \{z_{k_i} \in N(z) : k_i \in T_0(\varphi)\} \cup \{y_{k_i} \in N(y) : k_i \in T_0(\varphi)\}.$$

Note that $\{x_1, x_2\} \cap V(T_0(\varphi))$ may not be empty. If x_1 (x_2) is in $V(T_0(\varphi))$, then $yx_1 \in E(G)$ ($zx_2 \in E(G)$).

A coloring $\varphi \in \mathcal{C}_{zy}$ is called *optimal* if over all zy-feasible colorings the followings hold:

1. $|C_z(\varphi)| + |C_y(\varphi)|$ is maximum;
2. subject to 1, $|C_z(\varphi) \cap C_y(\varphi)|$ is minimum.

Let φ be an optimal zy-feasible coloring and assume that $\varphi(x_1z) = 1 \in \bar{\varphi}(x_2)$ and $\varphi(x_2y) = 2 \in \bar{\varphi}(x_1)$. For convenience, we let $Z = Z(\varphi)$, $Y = Y(\varphi)$, $C_z = C_z(\varphi)$, $C_y = C_y(\varphi)$, $T_0 = T_0(\varphi)$, $R = R(\varphi)$ and $R' = R'(\varphi)$. Note that $1 \notin C_z \cup T_0$, $2 \notin C_y \cup T_0$ and $R \cap T_0 = \emptyset$.

Claim C1. *Let k be an arbitrary color in T_0 . For each $i \in \bar{\varphi}(x_2) \setminus (R \cup \{1\})$, $P_{x_2}(i, k, \varphi)$ contains both y and z ; and for each $i \in \bar{\varphi}(x_1) \setminus (R \cup \{2\})$, $P_{x_1}(i, k, \varphi)$ contains both y and z .*

Proof. Since x_1 and x_2 are symmetric, we only show the first part of the statement. Let $\{u, v\} = \{y, z\}$. Suppose that $u \notin V(P_{x_2}(i, k, \varphi))$. Then $P_u(i, k, \varphi)$ is disjoint from $P_{x_2}(i, k, \varphi)$. Let $\varphi' = \varphi/P_u(i, k, \varphi)$. Since $\{i, k\} \cap \{1, 2\} = \emptyset$, φ' is also zy-feasible. Note that $\varphi'(uu_k) = \varphi(uu_i) = i$. Since $d(u_k) < q$ and $i \in \bar{\varphi}(x_2) \setminus (R \cup \{1\})$, we have $i \in C_u(\varphi') \setminus C_u$. Since $k \in T_0$, $R \cap T_0 = \emptyset$ and $i \notin R$, the colors in R are unchanged, it follows that $C_u(\varphi') \supseteq C_u \cup \{i\}$ and $C_v(\varphi') \supseteq C_v$, giving a contradiction to the maximality of $|C_y| + |C_z|$. Thus $P_{x_2}(i, k, \varphi)$ contains both y and z . \square

Let φ^0 be obtained from φ by interchanging the colors 1 and 2 on all $(1, 2)$ -chains except the one connecting x_1 to x_2 . Since $\{z, x_1, x_2, y\} \subseteq V(P_{x_2}(1, 2, \varphi))$, we have $\varphi^0(v) = \varphi(v)$ for every vertex $v \in \{z, x_1, x_2, y\}$. It is easy to see that φ^0 is an optimal zy-feasible coloring if and only if φ is an optimal zy-feasible coloring. Recall that $R' = C_y \cup C_z \cup \{1, 2\}$.

Claim D1. *Suppose that there exist three vertices $u_1, u_2, u_3 \in V(T_0) \setminus \{z, x_1, x_2, y\}$ and two distinct colors α, β with $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$ and $\beta \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'$. For a vertex $u \in \{u_1, u_2, u_3\}$, let $\varphi'_u = \varphi^0/P_u(i, \beta, \varphi^0)$ if $\beta \in \bar{\varphi}(x_i) \setminus R'$ and $\alpha = j$, where $\{i, j\} = \{1, 2\}$, and let $\varphi'_u = \varphi/P_u(\alpha, \beta, \varphi)$ otherwise. Then there exists a vertex $u \in \{u_1, u_2, u_3\}$ with $\{x_1, x_2\} \not\subseteq V(P_u(\alpha, \beta, \varphi))$ such that the coloring $\varphi' = \varphi'_u$ is zy-feasible and optimal and has the following properties: $\varphi'(x_1) = \varphi(x_1)$, $\varphi'(x_2) = \varphi(x_2)$, $C_y(\varphi') = C_y$, $C_z(\varphi') = C_z$, $R(\varphi') = R$, $T_0(\varphi') \supseteq T_0$ and $\beta \in \bar{\varphi}'(u)$.*

Proof. Since $\bar{\varphi}(x_1) \cap \bar{\varphi}(x_2) = \emptyset$ and x_1 and x_2 are symmetric, we assume $\beta \in \bar{\varphi}(x_1) \setminus R'$ and therefore $\beta \in \varphi(x_2)$. For $i \in \{1, 2, 3\}$, let $P_i = P_{u_i}(\alpha, \beta, \varphi)$ and $\varphi_i = \varphi/P_i$. Clearly none of u_1, u_2, u_3, x_1 can be an internal vertex (of degree 2) in an (α, β) -chain, and so there are at least two values of i such that $x_1 \notin V(P_i)$; let $i = 1$ be one of them. For each i such that $x_1 \notin V(P_i)$, we have the following observations.

- $\varphi_i(x_1) = \varphi(x_1)$ since $x_1 \notin V(P_i)$.
- $\varphi_i(x_2) = \varphi(x_2)$. This is obvious if $\alpha \in \varphi(x_2)$, since $\beta \in \varphi(x_2)$. And if $\alpha \in \bar{\varphi}(x_2)$ then $P_{x_1}(\alpha, \beta, \varphi) = P_{x_2}(\alpha, \beta, \varphi)$ by [Claim A1\(b\)](#), and so $x_2 \notin V(P_i)$.
- $\beta \in \bar{\varphi}_i(u_i)$ since $\alpha \in \bar{\varphi}(u_i)$.
- All the conclusions of [Claim D1](#) hold (with $\varphi' = \varphi'_{u_i}$ and $T_0(\varphi'_{u_i}) = T_0$) if $V(P_i) \cap \{x_1, y, z\} = \emptyset$.
- Since $\beta \notin T_0$, we have $T_0(\varphi'_{u_i}) \supseteq T_0$ if $\alpha \notin T_0$. But if $\alpha \in T_0$ then it follows from [Claim C1](#) that $V(P_i) \cap \{x_1, y, z\} = \emptyset$, and so $T_0(\varphi'_{u_i}) = T_0$.
- The result holds if $\alpha = 1$. For, by [Claim A1\(b\)](#) and the fact that $\varphi(x_1z) = 1$, we have $P_z(1, \beta, \varphi) = P_{x_1}(1, \beta, \varphi) = P_{x_2}(1, \beta, \varphi)$. So if we choose j so that $y \notin P_j$, then $V(P_j) \cap \{x_1, x_2, y, z\} = \emptyset$, which is more than we need.
- The result holds if $\alpha = 2$. In this case $\varphi' = \varphi^0/P_u(1, \beta, \varphi^0)$ by definition, where $u \in \{u_1, u_2, u_3\}$. Note that $1 \in \bar{\varphi}^0(u_j)$ for all $j \in \{1, 2, 3\}$, and $\varphi^0(v) = \varphi(v)$ for every vertex $v \in \{z, x_1, x_2, y\}$, and so the result follows by applying the case $\alpha = 1$ to φ^0 .

Thus it suffices to assume $\alpha \notin \{1, 2\}$ and to prove that there exists a number $i \in \{1, 2, 3\}$ such that $x_1 \notin V(P_i)$, $C_y(\varphi_i) = C_y$ and $C_z(\varphi_i) = C_z$, as these imply that φ_i is optimal and $R(\varphi_i) = R$. Note that φ_i is zy-feasible, since $\{\alpha, \beta\} \cap \{1, 2\} = \emptyset$. We consider the following four cases.

Case 1: $\alpha \in (\bar{\varphi}(x_1) \cap \bar{\varphi}(x_2)) \setminus R'$.

Since $\alpha, \beta \notin R' = C_y \cup C_z \cup \{1, 2\}$, it follows that $C_y(\varphi_1) \supseteq C_y$ and $C_z(\varphi_1) \supseteq C_z$. Since φ is optimal, $C_y(\varphi_1) = C_y$ and $C_z(\varphi_1) = C_z$, which is all we need to prove.

Case 2: $\alpha \in \varphi(x_1) \cap \varphi(x_2) \cap R'$.

Clearly, $\alpha \notin \{1, 2\}$. Assume first $\alpha \in C_y$. By the definition of C_y , $\alpha \in \bar{\varphi}(z)$. It follows that $P_{x_1}(\alpha, \beta, \varphi) = P_z(\alpha, \beta, \varphi)$ by [Claim A1\(b\)](#). So $x_1, z \notin V(P_i)$ for all $i \in \{1, 2, 3\}$. Note that there exists a path P_j ($j \in \{1, 2, 3\}$) such that $y \notin V(P_j)$. So $V(P_j) \cap \{x_1, y, z\} = \emptyset$, which is all we need.

If $\alpha \in C_z$, then by interchanging y and z in the above argument, we get the same conclusion.

Case 3: $\alpha \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus (C_y \cap C_z)$ and $\alpha \notin \{1, 2\}$.

By [Claim A1\(a\)](#), $\{z, x_1, x_2, y\}$ is elementary with respect to φ . Then $\alpha, \beta \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \cap \varphi(y) \cap \varphi(z)$. Since $\alpha \notin C_y \cap C_z$ and $\beta \notin R$, either $\alpha, \beta \notin C_y$ or $\alpha, \beta \notin C_z$ (or both). Without loss of generality, we assume $\alpha, \beta \notin C_y$ (the other

case is similar). Then the neighbors y_α and y_β of y both have degree at least q . Note that by [Claim A1\(b\)](#) we have $P_{x_1}(\alpha, \beta, \varphi) = P_{x_2}(\alpha, \beta, \varphi)$ if $\alpha \in \bar{\varphi}(x_2)$, and $P_{x_1}(\alpha, \beta, \varphi) = \{x_1\}$ if $\alpha \in \bar{\varphi}(x_1)$. It follows that $x_1 \notin V(P_i)$ for all $i \in \{1, 2, 3\}$, and so we can choose P_j ($j \in \{1, 2, 3\}$) so that $z \notin V(P_j)$. Then $C_y(\varphi_j) = C_y$ and $C_z(\varphi_j) = C_z$, regardless of whether or not $y \in V(P_j)$.

Case 4: $\alpha \in C_z \cap C_y$ and $\alpha \notin \{1, 2\}$.

In this case, $\alpha \in \bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)$. By the same argument as in Case 3, $x_1 \notin V(P_i)$ for all $i \in \{1, 2, 3\}$. Since $\alpha \in C_z \cap C_y$ and $\beta \in \bar{\varphi}(x_1) \setminus R \subseteq \varphi(y) \cap \varphi(z)$, the vertices y_α and z_α have degree less than q and the vertices y_β and z_β have degree at least q . Let $\varphi_0 = \varphi/P_z(\alpha, \beta, \varphi)$. Then either $\varphi_0(x_1) = \varphi(x_1)$ and $\varphi_0(x_2) = \varphi(x_2)$ (if $\alpha \in \bar{\varphi}(x_1)$ or $P_{x_1}(\alpha, \beta, \varphi)$ does not pass through z), or else $\varphi_0(x_1) = (\varphi(x_1) \cup \{\beta\}) \setminus \{\alpha\}$ and $\varphi_0(x_2) = (\varphi(x_2) \cup \{\alpha\}) \setminus \{\beta\}$ (if $\alpha \in \bar{\varphi}(x_2)$ and $P_{x_1}(\alpha, \beta, \varphi)$ passes through z). So $\alpha, \beta \in \bar{\varphi}_0(x_1) \cup \bar{\varphi}_0(x_2) = \bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)$, $Z(\varphi_0) = Z(\varphi)$, and $Y(\varphi_0) = Y(\varphi)$. If $P_z(\alpha, \beta, \varphi)$ does not pass through y , then $C_z(\varphi_0) = (C_z \cup \{\beta\}) \setminus \{\alpha\}$ and $C_y(\varphi_0) = C_y$, which implies that $|C_z(\varphi_0)| + |C_y(\varphi_0)| = |C_z| + |C_y|$ and $|C_z(\varphi_0) \cap C_y(\varphi_0)| = |C_z \cap C_y| - 1$; this contradicts the minimality of $|C_z \cap C_y|$, and this contradiction shows that $P_z(\alpha, \beta, \varphi) = P_y(\alpha, \beta, \varphi)$. So we can choose j so that P_j does not pass through y or z , and then $V(P_j) \cap \{x_1, y, z\} = \emptyset$, which is all we need. \square

Let $t = \lceil \frac{4(d(x_1) + d(x_2) - \Delta + 2)}{\Delta - q} + \frac{8(d(x_1) + d(x_2) - \Delta - 2)}{(\Delta - q)^2} \rceil$. Recall that $|T_0(\varphi) \setminus \{\varphi(zx_2), \varphi(yx_1)\}| > t$. Let $T'_0(\varphi) = T_0(\varphi) \setminus \{\varphi(yz), \varphi(yx_1), \varphi(zx_2)\}$. Note that yz may not be an edge of G . It follows that $|T'_0(\varphi)| \geq |T_0(\varphi) \setminus \{\varphi(zx_2), \varphi(yx_1)\}| - 1$. Thus $|T'_0(\varphi)| \geq t$. For each t -element subset $T = \{k_1, \dots, k_t\}$ of $T'_0(\varphi)$, let

$$V(T, \varphi) = \{z_{k_1}, z_{k_2}, \dots, z_{k_t}\} \cup \{y_{k_1}, y_{k_2}, \dots, y_{k_t}\},$$

$$W(T, \varphi) = \{u \in V(T, \varphi) : \bar{\varphi}(u) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'(\varphi)) = \emptyset\},$$

$$M(T, \varphi) = \{u \in V(T, \varphi) : \bar{\varphi}(u) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'(\varphi)) \neq \emptyset\},$$

$$E(T, \varphi) = \{zz_{k_1}, zz_{k_2}, \dots, zz_{k_t}, yy_{k_1}, yy_{k_2}, \dots, yy_{k_t}\},$$

$$E_W(T, \varphi) = \{e \in E(T, \varphi) : e \text{ is incident with a vertex in } W(T, \varphi)\}, \text{ and}$$

$$E_M(T, \varphi) = \{e \in E(T, \varphi) : e \text{ is incident with a vertex in } M(T, \varphi)\}.$$

Clearly, $V(T, \varphi) = W(T, \varphi) \uplus M(T, \varphi)$ and $E(T, \varphi) = E_W(T, \varphi) \uplus E_M(T, \varphi)$, where \uplus denotes disjoint union. For convenience, we let $W = W(T, \varphi)$, $M = M(T, \varphi)$, $E_W = E_W(T, \varphi)$ and $E_M = E_M(T, \varphi)$ if T and φ are clear. Note that $\{z_{k_1}, \dots, z_{k_t}\} \cap \{y_{k_1}, \dots, y_{k_t}\}$ may not be empty, but $|T| \leq |V(T, \varphi)| \leq |E(T, \varphi)| = 2|T|$, $\frac{|E_W|}{2} \leq |W| \leq |E_W|$ and $\frac{|E_M|}{2} \leq |M| \leq |E_M|$.

We assume that $|E_M(T, \varphi)|$ is maximum over all optimal zy-feasible colorings φ and all t -element subsets T of $T'_0(\varphi)$. Let $Y_M = \{y_k : k \in T \text{ and } z_k, y_k \in M\}$. For any $Y' \subseteq Y_M$, let $Z(Y') = \{z_k : y_k \in Y'\}$, and let $C_M(Y')$ be the union of all single-element sets of the form $\bar{\varphi}(v) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R')$ with $v \in Y' \cup Z(Y')$, ignoring any sets of this form with more than one element. Moreover, let C_M be the union of all single-element sets of the form $\bar{\varphi}(v) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R')$ with $v \in M$. Clearly, $|C_M(Y_M)| \leq |C_M| \leq |M|$.

Claim E1. *The following three statements hold.*

- (a) If $k \in T'_0(\varphi)$, $i, j \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'$, $i \in \bar{\varphi}(z_k)$ and $j \in \bar{\varphi}(y_k)$, then $i \neq j$.
- (b) If $y_k \in Y_M$ then there exist distinct colors i, j as in (a).
- (c) If $y_k \in Y_M$ and $|\bar{\varphi}(y_k) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R')| \geq 2$, then there exist distinct colors $i, j, l \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'$ such that $i \in \bar{\varphi}(z_k)$ and $j, l \in \bar{\varphi}(y_k)$.

Proof. If $i \in \bar{\varphi}(y_k) \cap \bar{\varphi}(z_k)$, then neither y_k nor z_k can be an internal vertex (with degree 2) of $P_{x_1}(i, k, \varphi)$ or $P_{x_2}(i, k, \varphi)$, whereas [Claim C1](#) implies that at least one of y_k and z_k must be an internal vertex of one of these paths. Thus $i \neq j$, which proves (a). (b) follows because, by the definitions of Y_M and M , there exist colors $i, j \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'$ such that $i \in \bar{\varphi}(z_k)$ and $j \in \bar{\varphi}(y_k)$; and (c) holds for the same reason. \square

Recall that φ^0 is obtained from φ by interchanging the colors 1 and 2 on all (1, 2)-chains except the one connecting x_1 to x_2 . Since $1, 2 \notin T_0(\varphi)$, it follows that $T_0(\varphi^0) = T_0(\varphi)$ and $T \subseteq T'_0(\varphi^0) = T'_0(\varphi)$. Hence $V(T, \varphi^0) = V(T, \varphi)$. It is clear that $R(\varphi^0)$ is the same as $R(\varphi)$ except possibly for changing 1 to 2 or vice versa, and so $R'(\varphi^0) = R'(\varphi) = R(\varphi) \cup \{1, 2\}$. Thus, for each vertex $v \in V(T, \varphi)$, $\bar{\varphi}^0(v) \cap ((\bar{\varphi}^0(x_1) \cup \bar{\varphi}^0(x_2)) \setminus R'(\varphi^0)) = \bar{\varphi}(v) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R')$.

Claim F1. *The following two statements hold.*

- (a) The hypotheses of [Claim D1](#) cannot hold with $u_1, u_2, u_3 \in W$ and $\beta \notin C_M$.
- (b) Assume that the hypotheses of [Claim D1](#) hold, and u and φ' are given by [Claim D1](#), where $\varphi' = \varphi/P_u(\alpha, \beta, \varphi)$, $\varphi^0/P_u(1, \beta, \varphi^0)$ or $\varphi^0/P_u(2, \beta, \varphi^0)$ as appropriate. Then
 - (i) if $\beta \notin C_M$ then $u \notin W$;
 - (ii) if $\alpha \notin (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'$, $u \in Y_M$ and $\beta \notin C_M(\{u\})$, then there is a color $k \in T \subseteq T'_0(\varphi')$ for which the following holds: there are three distinct colors $i, j, l \in (\bar{\varphi}'(x_1) \cup \bar{\varphi}'(x_2)) \setminus R'(\varphi')$ such that $i \in \bar{\varphi}'(z_k)$ and $j, l \in \bar{\varphi}'(y_k)$.

Proof. Clearly (a) follows from (b)(i). In the rest of this proof we will assume by symmetry that $\beta \in \bar{\varphi}(x_1) \setminus R'$.

By **Claim D1**, $\varphi'(x_1) = \varphi(x_1)$, $\varphi'(x_2) = \varphi(x_2)$, $R(\varphi') = R$, $T_0 \subseteq T_0(\varphi')$, and $\beta \in \bar{\varphi}'(u)$. As we remarked in the proof of **Claim D1**, $\beta \notin T_0$, and if $\alpha \in T_0$ then $V(P_u(\alpha, \beta, \varphi)) \cap \{x_1, y, z\} = \emptyset$. Thus $T_0(\varphi') \supseteq T_0(\varphi) \supseteq T$ and for each $k \in T$ we have $\varphi'(yy_k) = \varphi'(zz_k) = \varphi(yy_k) = \varphi(zz_k) = k$.

To prove (b)(i), suppose that $\beta \notin C_M$ and $u \in W$. Since $\beta \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R' = (\bar{\varphi}'(x_1) \cup \bar{\varphi}'(x_2)) \setminus R'(\varphi')$ and $u \in W$, it follows that $u \in M(T, \varphi') \setminus M$. To avoid the contradiction $|E_M(T, \varphi')| > |E_M|$, it must be that $P_u(\alpha, \beta, \varphi)$ or $P_u(1, \beta, \varphi')$ ends with an edge of color α at a vertex $v \in M$ such that β is the unique color in $\bar{\varphi}(v) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R')$, so that $v \notin M(T, \varphi')$. But then $\beta \in C_M$, which is a contradiction.

To prove (b)(ii), suppose that $u = y_k \in Y_M$, where $k \in T \subseteq T_0(\varphi')$. Since $\beta \notin C_M(\{u\}) = C_M(\{y_k\})$, it is not possible that $\bar{\varphi}(z_k) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R') = \{\beta\}$ or $\bar{\varphi}(y_k) \cap ((\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R') = \{\beta\}$. By **Claim E1**, there exist distinct colors $i, j \in (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R' = (\bar{\varphi}'(x_1) \cup \bar{\varphi}'(x_2)) \setminus R'(\varphi')$ such that $i \in \bar{\varphi}(z_k)$, $j \in \bar{\varphi}(y_k)$, and $\beta \notin \{i, j\}$. Since $\alpha \notin (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'$, it follows that $\alpha \notin \{i, j\}$. Thus $i \in \bar{\varphi}'(z_k)$ and $j \in \bar{\varphi}'(y_k)$. Since also $\beta \in \bar{\varphi}'(u) = \bar{\varphi}'(y_k)$, the result follows with $l = \beta$. \square

For convenience, let $X = (\bar{\varphi}(x_1) \cup \bar{\varphi}(x_2)) \setminus R'$; then $|X| \geq 2\Delta - d(x_1) - d(x_2) - |R|$. Recall that the statement **I** states that for any $\varphi \in C_{zy}$ we have $|C_z(\varphi) \setminus \{\varphi(zx_2)\}| < \frac{d(x_1)+d(x_2)-\Delta-2}{\Delta-q}$ and $|C_y(\varphi) \setminus \{\varphi(yx_1)\}| < \frac{d(x_1)+d(x_2)-\Delta-2}{\Delta-q}$, so that

$$|R| < \frac{2(d(x_1) + d(x_2) - \Delta - 2)}{\Delta - q} + 2. \quad (12)$$

Since $|T| = \lceil \frac{4(d(x_1)+d(x_2)-\Delta+2)}{\Delta-q} + \frac{8(d(x_1)+d(x_2)-\Delta-2)}{(\Delta-q)^2} \rceil$, we have

$$\frac{(\Delta-q)|T|}{2} > 2(d(x_1) + d(x_2) - \Delta + 2) + 2(|R| - 2) \geq 2(\Delta - |X|), \quad (13)$$

where the first inequality uses (12). Since $d(x_1) + d(x_2) \leq \frac{3}{2}\Delta - 2$ and $q \leq \Delta - 10$, we have $|T| \leq \frac{4(\frac{1}{2}\Delta)}{10} + \frac{8(\frac{1}{2}\Delta-4)}{100} + 1 = \frac{\Delta}{5} + \frac{\Delta-8}{25} + 1 = \frac{6\Delta+17}{25}$. By (12) again, we have

$$\begin{aligned} |X| &> 2\Delta - d(x_1) - d(x_2) - \frac{2(d(x_1) + d(x_2) - \Delta - 2)}{\Delta - q} - 2 \\ &\geq \frac{1}{2}\Delta + 2 - \frac{2(\frac{1}{2}\Delta - 4)}{10} - 2 = \frac{2\Delta + 4}{5}, \end{aligned}$$

$\frac{2(\Delta-|X|)}{\Delta-q-1} < \frac{2}{9}(\frac{3\Delta-4}{5}) = \frac{6\Delta-8}{45}$, and $|T| + \frac{2(\Delta-|X|)}{\Delta-q-1} \leq \frac{6\Delta+17}{25} + \frac{6\Delta-8}{45} = \frac{84\Delta+113}{225}$. Since $\frac{84\Delta+113}{225} < \frac{2\Delta+4}{5}$ and $\frac{2(6\Delta-8)}{45} + 2 < \frac{2\Delta+4}{5}$ as $\Delta \geq 7$, we have

$$|X| > |T| + \frac{2(\Delta - |X|)}{\Delta - q - 1}, \quad (14)$$

and

$$|X| > 2 \left(\frac{2(\Delta - |X|)}{\Delta - q - 1} \right) + 2. \quad (15)$$

Claim G1. There exist an optimal zy -feasible coloring φ' and a color $k \in T \subseteq T_0(\varphi')$ for which the following holds: there are three distinct colors $i, j, l \in (\bar{\varphi}'(x_1) \cup \bar{\varphi}'(x_2)) \setminus R'(\varphi')$ such that $i \in \bar{\varphi}'(z_k)$ and $j, l \in \bar{\varphi}'(y_k)$.

Proof. We consider the following two cases, according to the value of $|E_M|$.

Case 1: $|E_M| \leq |T| + \frac{2(\Delta-|X|)}{\Delta-q-1}$. Since $|C_M| \leq |E_M|$, it follows from (14) that there exists a color $\beta \in X \setminus C_M$.

First we claim that $|E_M| > |T|$. If not, then $|E_M| \leq |T|$, which implies that $|E_W| \geq |T|$ since $|E_M| + |E_W| = 2|T|$. Thus $|W| \geq \frac{|T|}{2}$. By the definition of T_0 , we have $d(v) < q$ for every vertex $v \in V(T, \varphi)$, which includes all $v \in W$. So $\sum_{v \in W} |\bar{\varphi}(v)| > (\Delta - q) \frac{|T|}{2} > 2(\Delta - |X|)$, by (13). By the definition of W , $\bar{\varphi}(v) \cap X = \emptyset$ for every $v \in W$. So, by the Pigeonhole Principle, there exist three vertices $u_1, u_2, u_3 \in W$ and a color $\alpha \notin X$ such that $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$. But this contradicts **Claim F1(a)**.

So we may assume that $|E_M| = |T| + p$, so that $|E_W| = |T| - p$, where $p > 0$. Since $|E_M| = |T| + p$, it follows that $|Y_M| \geq p$. We may assume that $|\bar{\varphi}(y_k) \cap X| = 1$ for all $y_k \in Y_M$, as otherwise the result holds by **Claim E1(c)**. Thus $|\bar{\varphi}(v) \setminus X| = |\bar{\varphi}(v)| - 1 > \Delta - q - 1$ for all $v \in Y_M$, while $|\bar{\varphi}(v) \setminus X| = |\bar{\varphi}(v)| > \Delta - q$ for all $v \in W$. Since $|W| \geq |E_W|/2$, $|E_W| = |T| - p$, and $\Delta - q > 2$, we have $\sum_{v \in W \cup Y_M} |\bar{\varphi}(v) \setminus X| > (\Delta - q) \frac{|T|-p}{2} + (\Delta - q - 1)p > (\Delta - q) \frac{|T|}{2} > 2(\Delta - |X|)$, by (13). Hence there exist three vertices $u_1, u_2, u_3 \in W \cup Y_M$ and a color $\alpha \notin X$ such that $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$. Since $\beta \notin C_M$, the result follows from **Claim F1(b)**.

Case 2: $|E_M| > |T| + \frac{2(\Delta-|X|)}{\Delta-q-1}$.

Since $|E_M| > |T| + \frac{2(\Delta-|X|)}{\Delta-q-1}$, it follows that $|Y_M| > \frac{2(\Delta-|X|)}{\Delta-q-1}$. We may assume that $|\bar{\varphi}(y_k) \cap X| = 1$ for all $y_k \in Y_M$, as otherwise the result holds by **Claim E1(c)**. Let Y' be a subset of Y_M with $|Y'| = \lceil \frac{2(\Delta-|X|)}{\Delta-q-1} \rceil$. Then we have $\sum_{v \in Y'} |\bar{\varphi}(v) \setminus X| > (\Delta - q - 1)|Y'| \geq 2(\Delta - |X|)$. Thus there exist three vertices $u_1, u_2, u_3 \in Y'$ and a color $\alpha \notin X$

such that $\alpha \in \bar{\varphi}(u_1) \cap \bar{\varphi}(u_2) \cap \bar{\varphi}(u_3)$. Clearly, $|C_M(Y')| \leq 2|Y'|$. By (15), we have $|X| > 2|Y'| \geq |C_M(Y')|$, thus there exists a color $\beta \in X \setminus C_M(Y')$, and the result follows from [Claim F1\(b\)](#). \square

Let k, i, j, l, φ' be as stated in [Claim G1](#) and assume $d(x_2) \leq d(x_1)$. Since $d(x_1) + d(x_2) \leq \frac{3}{2}\Delta - 2$, $d(x_2) \leq d(x_1)$ and $q \leq \Delta - 10$, we have

$$\begin{aligned} |\bar{\varphi}'(x_2) \setminus (R(\varphi') \cup \{1\})| &\geq \Delta - d(x_2) - |C_z(\varphi') \setminus \{\varphi'(zx_2)\}| - |C_y(\varphi')| \\ &> \Delta - d(x_2) - \frac{2(d(x_1) + d(x_2) - \Delta - 2)}{\Delta - q} - 1 \\ &\geq \frac{\Delta}{4} + 1 - \frac{\Delta - 8}{10} - 1 = \frac{3\Delta + 16}{20} \geq 2, \end{aligned}$$

where the second inequality follows from **I** and the last inequality holds because $\Delta \geq 8$. Thus

$$|\bar{\varphi}'(x_2) \setminus (R(\varphi') \cup \{1\})| \geq 3. \quad (16)$$

First we claim that

there exists an optimal zy-feasible coloring φ^* , such that $i, j, l \in \bar{\varphi}^*(x_2) \setminus (R(\varphi^*) \cup \{1\})$, $k \in T \subseteq T'_0(\varphi^*)$, $i \in \bar{\varphi}^*(z_k)$ and $j, l \in \bar{\varphi}^*(y_k)$.

For otherwise, by [Claim G1](#), at least one of i, j and l must be in $\bar{\varphi}'(x_1) \setminus (R(\varphi') \cup \{2\})$ rather than in $\bar{\varphi}'(x_2) \setminus (R(\varphi') \cup \{1\})$. Suppose first that $i \in \bar{\varphi}'(x_1) \setminus (R(\varphi') \cup \{2\})$. By (16), there exists a color $\delta \in \bar{\varphi}'(x_2) \setminus (R(\varphi') \cup \{1\})$ such that $\delta \notin \{j, l\}$. Note that $P_{x_1}(i, \delta, \varphi') = P_{x_2}(i, \delta, \varphi')$ by [Claim A1\(b\)](#). Then $z_k \notin V(P_{x_1}(i, \delta, \varphi'))$ as $i \in \bar{\varphi}'(z_k)$. Let $\varphi'_1 = \varphi'/P_{x_1}(i, \delta, \varphi')$. Then $i \in \bar{\varphi}'_1(x_2) \setminus (R(\varphi'_1) \cup \{1\})$ and $i \in \bar{\varphi}'_1(z_k)$. Since $\{i, \delta\} \cap (R(\varphi') \cup \{j, l\}) = \emptyset$, we have $j, l \in \bar{\varphi}'_1(y_k)$, $C_z(\varphi'_1) = C_z(\varphi')$, $C_y(\varphi'_1) = C_y(\varphi')$ and φ'_1 is zy-feasible, which implies that φ'_1 is an optimal zy-feasible coloring. Note that $\bar{\varphi}'_1(x_2) = (\bar{\varphi}'(x_2) \setminus \{\delta\}) \cup \{i\}$, and so $|\bar{\varphi}'_1(x_2) \setminus (R(\varphi'_1) \cup \{1\})| \geq 3$ by (16). Using the same method above twice again, we can find an optimal zy-feasible coloring φ^* such that $i, j, l \in \bar{\varphi}^*(x_2) \setminus (R(\varphi^*) \cup \{1\})$, $k \in T \subseteq T'_0(\varphi^*)$, $i \in \bar{\varphi}^*(z_k)$, and $j, l \in \bar{\varphi}^*(y_k)$.

If $2 \in \bar{\varphi}^*(y_k)$, we let $\varphi_1 = \varphi^*$. Otherwise, we let φ_1 be obtained from φ^* by interchanging the colors 2 and l on all $(2, l)$ -chains except $P_{x_2}(2, l, \varphi^*)$. Note that $P_{x_1}(2, l, \varphi^*) = P_{x_2}(2, l, \varphi^*)$ by [Claim A1\(b\)](#) and $l \in \bar{\varphi}^*(y_k)$. Thus $2 \in \bar{\varphi}_1(y_k)$. If $2 \in C_z(\varphi^*)$ and $P_{x_2}(2, l, \varphi^*)$ does not pass through z , then $C_z(\varphi_1) \supseteq (C_z(\varphi^*) \cup \{l\}) \setminus \{2\}$; otherwise, $C_z(\varphi_1) \supseteq C_z(\varphi^*)$. Also, $C_y(\varphi_1) \supseteq C_y(\varphi^*)$. It follows from the optimality of φ^* that equality holds and φ_1 is an optimal zy-feasible coloring.

Let φ_2 be the coloring obtained from φ_1 by uncoloring x_2y and coloring x_1x_2 with color 2. Then $2 \in \bar{\varphi}_2(y)$.

Let φ_3 be obtained from φ_2 by assigning $\varphi_3(yy_k) = 2$. Now k is missing at y and y_k and i is still missing at z_k and x_2 . Note that $P_{x_2}(i, k, \varphi_3) = P_y(i, k, \varphi_3)$, as otherwise we could get an edge- Δ -coloring of G from $\varphi_3/P_y(i, k, \varphi_3)$ by coloring x_2y with i . Furthermore, $z_k, y_k \notin P_{x_2}(i, k, \varphi_3)$ since either i or k is missing at these two vertices, which additionally shows that $z \notin P_{x_2}(i, k, \varphi_3)$ since $\varphi_3(zz_k) = k$.

Let $\varphi_4 = \varphi_3/P_{x_2}(i, k, \varphi_3)$. We have $k, j \in \bar{\varphi}_4(x_2) \cap \bar{\varphi}_4(y_k)$ and $i \in \bar{\varphi}_4(y) \cap \bar{\varphi}_4(z_k)$. Since G is not edge- Δ -colorable, $P_{x_2}(i, j, \varphi_4) = P_y(i, j, \varphi_4)$ which contains neither z_k nor y_k .

Let $\varphi_5 = \varphi_4/P_{x_2}(i, j, \varphi_4)$. Then $k \in \bar{\varphi}_5(x_2)$ and $j \in \bar{\varphi}_5(y) \cap \bar{\varphi}_5(y_k)$.

Let φ_6 be obtained from φ_5 by recoloring yy_k with j . Then $2 \in \bar{\varphi}_6(y)$.

Let φ_7 be the coloring obtained from φ_6 by uncoloring x_1x_2 and coloring x_2y with color 2. Then $\varphi_7(x_1z) = 1 \in \bar{\varphi}_7(x_2)$, $\varphi_7(x_2y) = 2 \in \bar{\varphi}_7(x_1)$, and $\varphi_7(zz_k) = k \in \bar{\varphi}_7(x_2)$. Thus φ_7 is zy-feasible, and $k \in C_z(\varphi_7)$ since $d(z_k) < q$. Since $i, j, k \notin R(\varphi_1)$ and $\varphi_7(x_2y) = \varphi_1(x_2y) = 2$, the colors in $R(\varphi_1)$ are unchanged as a result of this sequence of recolorings, and so $C_z(\varphi_7) \supseteq C_z(\varphi_1) \cup \{k\}$ and $C_y(\varphi_7) \supseteq C_y(\varphi_1)$. It follows that $|C_y(\varphi_7)| + |C_z(\varphi_7)| \geq |C_y(\varphi_1)| + |C_z(\varphi_1)| + 1$, and this contradicts the optimality of φ_1 . So **II** holds.

This completes the proof of [Lemma 5](#), and hence of [Theorem 1](#). \square

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We would like to thank the reviewers for their helpful and valuable comments on an earlier version of this paper.

References

- [1] J.A. Bondy, V. Chvátal, A method in graph theory, *Discrete Math.* 15 (2) (1976) 111–135.
- [2] S. Brandt, H.J. Veldman, Degree sums for edges and cycle lengths in graphs, *J. Graph Theory* 25 (4) (1997) 253–256.
- [3] G. Chen, X. Chen, Y. Zhao, Hamiltonianicity of edge chromatic critical graph, *Discrete Math.* 340 (12) (2017) 3011–3015.
- [4] G. Chen, M.N. Ellingham, A. Saito, S. Shan, Spanning trails with maximum degree at most 4 in $2K_2$ -free graphs, *Graphs Combin.* 33 (5) (2017) 1095–1101.

- [5] G. Chen, S. Shan, Vizing's 2-factor conjecture involving large maximum degree, *J. Graph Theory* 86 (4) (2017) 422–438.
- [6] S. Grünwald, E. Steffen, Independent sets and 2-factors in edge-chromatic-critical graphs, *J. Graph Theory* 45 (2) (2004) 113–118.
- [7] H.A. Kierstead, On the chromatic index of multigraphs without large triangles, *J. Combin. Theory Ser. B* 36 (2) (1984) 156–160.
- [8] R. Luo, Z. Miao, Y. Zhao, Hamiltonian cycles in critical graphs with large maximum degree, *Graphs Combin.* 32 (5) (2016) 2019–2028.
- [9] R. Luo, Y. Zhao, A note on vizing's independence number conjecture of edge chromatic critical graphs, *Discrete Math.* 306 (15) (2006) 1788–1790.
- [10] R. Luo, Y. Zhao, A sufficient condition for edge chromatic critical graphs to be Hamiltonian—an approach to Vizing's 2-factor conjecture, *J. Graph Theory* 73 (4) (2013) 469–482.
- [11] M. Stiebitz, D. Scheide, B. Toft, L.M. Favrholdt, *Graph Edge-Coloring: Vizing's Theorem and Goldberg's Conjecture*, Wiley, 2012.
- [12] V.A. Tashkinov, On an algorithm for the edge coloring of multigraphs, *Diskretn. Anal. Issled. Oper. Ser. 1* 7 (3) (2000) 72–85 (in Russian).
- [13] V.G. Vizing, On an estimate of the chromatic class of a p -graph, *Diskret. Analiz.* 3 (1964) 25–30 (in Russian).
- [14] V.G. Vizing, Critical graphs with a given chromatic class, *Diskret. Analiz.* 5 (1965) 9–17 (in Russian).
- [15] V.G. Vizing, Some unsolved problems in graph theory, *Uspekhi Mat. Nauk* 23 (6) (1968) 117–134 (in Russian).
- [16] D.R. Woodall, The average degree of an edge-chromatic critical graph. II, *J. Graph Theory* 56 (3) (2007) 194–218.
- [17] L. Zhang, Every planar graph with maximum degree 7 is of class 1, *Graphs Combin.* 16 (4) (2000) 467–495.