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1. Introduction

All graphs in this paper are finite and simple. Let G be a graph with vertex set V(G) and edge set E(G). Denote by
A(G), 8(G) and «(G) the maximum degree, the minimum degree and the independence number of G, respectively. An
edge-k-coloring of G is a mapping ¢ : E(G) — {1, 2, ..., k} such that ¢(e) # ¢(f) for any two adjacent edges e and f. The
codomain {1, 2, ..., k} is called the color set of ¢. Denote by C¥(G) the set of all edge-k-colorings of G. The chromatic index
%'(G) is the least integer k > 0 such that cX(G) # @. We call graph G class one if x'(G) = A(G) and class two otherwise.
Vizing [13] proved x'(G) = A(G)+ 1 if G is class two. An edge e of G is called critical if x'(G —e) < x'(G), where G — e is
the subgraph obtained from G by removing the edge e. A graph G is called (edge-)A-critical if A(G) = A, x'(G) = A+ 1
and x'(H) < A for any proper subgraph H of G. Clearly, if G is A-critical, then G is connected and x'(G — e) = A(G) for
any e € E(G).

In 1965, Vizing [14] proposed the following conjecture about structure properties of A-critical graphs.

Conjecture 1 (Vizing [14]). Every A-critical graph with chromatic index at least 3 contains a 2-factor.

In 1968, Vizing [15] proposed a weaker conjecture on the independence number of A-critical graphs as follows.

Conjecture 2 (Vizing [15]). For every A-critical graph G of order n, a(G) < 3.
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Conjecture 2 was verified by Luo and Zhao [9] for A-critical graphs of order n with maximum degree at least 2, and
by Griinewald and Steffen [6] for A-critical graphs with many edges, including all overfull graphs.
Chen and Shan [5] verified Conjecture 1 for A-critical graphs of order n with maximum degree at least 5. Obviously,
if a graph is Hamiltonian, then it contains a 2-factor. Luo and Zhao [10] proved that a A-critical graph G of order n
with A(G) > 57" is Hamiltonian. Furthermore, Luo, Miao and Zhao [8] showed that a A-critical graph G of order n with
4n

A(G) > %' is Hamiltonian. Recently, Chen, Chen and Zhao [3] improved the lower bound to A(G) > %”. In this paper, we

give the following result about the Hamiltonicity of A-critical graphs.

Theorem 1. If G is a A-critical graph of order n with A(G) > 2?” + 12, then G is Hamiltonian.

It would be nice to know the minimum number « (0 < o < 1) such that every A-critical graph G of order n with
A(G) > «n is Hamiltonian. Our main techniques applied to prove Theorem 1 are the following: (1) extending Woodall’s
Lemma (q = 2A(G) — d(x) — d(y) + 2, see Lemma 3) to an arbitrary q with ¢ < A(G) — 10 (see Lemma 4); (2) extending
Woodall's Lemma (consider the neighbor of a vertex x, see Lemma 3) to Lemma 5 (consider the neighbor of two adjacent
vertices).

Let G be a graph and x be a vertex of G. Denote by N¢(x) and dg(x) the neighborhood and degree of x in G, respectively.
We always drop the subscript G and simply write N(x) and d(x) if there is no ambiguity. For any nonnegative integer k, we
call a vertex x a k-vertex if d(x) = k, a (< k)-vertex if d(x) < k, and a (> k)-vertex if d(x) > k. Similarly, we call a neighbor
y of x a k-neighbor, a (< k)-neighbor and a (> k)-neighbor if d(y) = k, < k and > k, respectively. Denote by V5,(G) the
subset of V(G) of vertices with degree at least k. Let k be a positive integer and ey an edge of G such that c¥(G — eg) # @,
and let ¢ € CK(G — ep) and v € V(G). Let p(v) = {g(e) : e is incident with v} and @(v) = {1, ..., k} \ ¢(v). We call ¢(v)
the set of colors seen by v and @(v) the set of colors missing at v. A set X C V(G) is called elementary with respect to ¢ if
o(u) N @(v) = @ for every two distinct vertices u, v € X. For any color «, let E, denote the set of edges assigned color «.
Clearly, E, is a matching of G. For any two colors @ and 8, the components of the spanning subgraph of G with edge set
E, U Eg, named («, B)-chains, are even cycles and paths with alternating colors « and B. For a vertex v of G, we denote
by P,(«, B, ¢) the unique («, 8)-chain that contains the vertex v. Let ¢ /P,(, B, ¢) denote the edge-k-coloring obtained
from ¢ by switching colors @ and g8 on the edges on P,(«, B, ¢). If v is not incident with any edge of color « or 8, then
Py(a, B, ¢) = {v} (a path of length 0), and ¢/P,(«, B, ¢) = ¢.

We will give a few technical lemmas in Section 2 and prove Theorem 1 in Section 3. Due to the length of the proofs
of Lemmas 4 and 5, we will prove Lemmas 4 and 5 in Section 4.

2. Lemmas

Let g be a positive number, G be a A-critical graph and x € V(G). For each y € N(x), let oy(x,y) =
{z € N(y)\ {x} : d(z) > q}|, the number of neighbors of y (except x) with degree at least g. Vizing studied the case
q = A and obtained the following result.

Lemma 1 (Vizing’s Adjacency Lemma [14]). Let G be a A-critical graph. Then oa(x,y) > A — d(x) 4+ 1 for every xy € E(G).

Woodall [16] studied oy(x, y) for the case g = 2A — d(x) — d(y) + 2 and obtained the following two results. For
convenience, we let o(x, y) = og(x,y) when g = 2A — d(x) — d(y) + 2.

Lemma 2 (Woodall [16]). Let xy be an edge in a A-critical graph G. Then there are at least A — o(x,y) > A —d(y) + 1
vertices z € N(x) \ {y} such that o(x,z) > 2A — d(x) — o(x, y).
Furthermore, Woodall defined the following two parameters.

Pmin(X) = min o(x,y)— A+d(x)—1 and
YeEN(x)

d
p(x) := min{ pmin(x), sz)J -1}

Clearly, p(x) < d(x)/2 — 1. As a corollary, the following lemma shows that there are at least d(x)/2 neighbors y of x such
that o(x,y) > A/2.
Lemma 3 (Woodall [16]). Every vertex x in a A-critical graph has at least d(x) — p(x) — 1 neighbors y for which o(x,y) >
A—px)—1.

Our proof of Theorem 1 uses the following two lemmas, which will be proved in Section 4.

Lemma 4. Let G be a A-critical graph. For a vertex x € V(G) and a positive number q, if d(x) < 2 and q < A — 10, then for

any y € N(x), there exists another neighbor z of x such that oy4(x, y) + o4(x,z) > 2A —d(x) — z(dA(Xf;U - (‘“‘ﬁ{’;” + 8((1(2521)1.
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Lemma 5. Let G be a A-critical graph and q be a positive number such that ¢ < A — 10 and minimum degree §(G) > % -2
For an edge x1x, € E(G), if d(x1)+d(x2) < 2 A—2, then there exist two distinct vertices z, y € V(G)\{x1, xo} with z € N(x1) and

y € N(x;) such that o4(x1, 2)+0g(xz, y) > 34 —d(x1) = d(x,) — Xakieal=a=d) _ pAdpdio) 442 4 Sdbldoay 22y

Our approach is inspired by the recent development of the Tashkinov tree technique for multigraphs. Let G be a
multigraph without loops, e; be an edge of G with endvertices yo and y; and ¢ € c¥(G — e;). A Tashkinov tree T with
respect to G, ey and ¢ is an alternating sequence T = (yo, €1, 1, . .., €p, ¥p) With p > 1 consisting of edges e, ez, ..., e,
and vertices yo, y1, . .., ¥p such that the following two conditions hold.

(1) The vertices yo, ¥1, ..., Y, are distinct and e; = y,y; for each 1 <i < p, where r < i;
(2) For every edge e; with 2 <i < p, there is a vertex y, with 0 < h < i such that ¢(e;) € ¢(yh).

Clearly, a Tashkinov tree is indeed a tree of G. Tashkinov [12] proved that if G is k-critical with k > A(G)+ 1, then V(T) is
elementary. In the above definition, if we change condition (1) to say that the edges e, e,, ..., e, are distinct and e; = yoy;
for every i, then T is called a multi-fan, as defined in [11]. Stiebitz et al. [11] showed that the vertex set of a multi-fan is
elementary. In the definition of Tashkinov tree, if e; = y;_1y; for every i, i.e,, T is a path with endvertices yo and yp, then T
is called a Kierstead path, which was introduced by Kierstead [7]. Kierstead proved that for every Kierstead path P the set
V(P) is elementary if G is k-critical with k > A(G) + 1. For simple graphs, following Kierstead’s proof, Zhang [17] noticed
the following Lemma.

Lemma 6 (Kierstead [7], Zhang [17]). Let G be a class two graph with maximum degree A. If e; € E(G) is a critical edge and
K = (Yo, €1, Y1, - - - » Yp—1, €, ¥p) is a Kierstead path with respect to e, and a coloring ¢ € C(G — e;) such that d(y;) < A for
j=2,...,p, then V(K) is elementary with respect to ¢.

Kostochka and Stiebitz considered elementary property of Kierstead paths with four vertices and showed the following
Lemma.

Lemma 7 (Kostochka and Stiebitz [11]). Let G be a class two graph with maximum degree A. Let eq be a critical edge of G and
@ € CAG —eq). IfK = (yo, e1, y1, €2, 2, €3, ¥3) is a Kierstead path with respect to e; and ¢, then the following statements
hold:

(1) ¢(yo) N o(y1) = B;
(2) if d(y,) < A, then V(K) is elementary with respect to ¢;
(3) if d(y1) < A, then V(K) is elementary with respect to ¢;

(4) 1@(y3) N (o) U e(y1))l = 1.

In the definition of Tashkinov tree T = (yo, €1,¥1,€2,¥2,...,¥p), we call T a broom if e; = yqy, and for each
i > 3, e = y ie., y, is one of the endvertices of e; for each i > 3. Moreover, we call a broom T a simple broom if
o(e;)) € p(yo) U @(y1) for each i > 3, i.e., (¥o, €1, Y1, €2, Y2, €, i) is a Kierstead path.

Lemma 8 (Chen, Chen and Zhao [3]). Let G be a A-critical graph, e; = yoy; € E(G) and ¢ € C4(G — e;). Let B =
{¥o, €1, ¥1,€2,¥2, ..., €y, Yp} be a simple broom with respect to e; and ¢. If |p(yo) U @(y1)| = 4 and min{d(y1), d(y2)} < A4,
then V(B) is elementary with respect to ¢.

The circumference of a graph is the length of longest cycles of the graph.

Lemma 9 (Brandt and Veldman [2]). Let G # K1 ,—1 be a graph of order n. If d(x) + d(y) > n for every edge xy of G, then the
circumference of G is n — max{|S| — |N(S)| + 1, 0}, where S is an independent set of G with S U N(S) # V(G).

Using Lemma 9, Chen, Chen and Zhao obtained the following result.

Lemma 10 (Chen, Chen and Zhao [3]). Let G be a A-critical graph of order n. If d(x) + d(y) > n for every edge xy of G, then
G is Hamiltonian.

The Bondy-Chvadtal closure C(G) of a graph G with order n, defined by Bondy and Chvatal [1], is the maximal graph
obtained from G by consecutively adding the edges xy if the degree sum of x and y is at least n. They proved that C(G) is
well-defined and C(G) is Hamiltonian if and only if G is Hamiltonian.

Lemma 11 (Chen, Ellingham, Saito and Shan [4]). Let G be a bipartite graph with partite sets X and Y. If for every S C X,

IN(S)| > % then G has a subgraph H covering X such that for every x € X, dy(x) = 2 and for every y € Y, dy(y) < 2.
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3. Proof of Theorem 1

Suppose on the contrary that there exists a non-Hamiltonian A-critical graph G of order n with maximum degree
A > %n + 12. Solving n > A > %n + 12, we get A > 36. Recall that C(G) is the Bondy-Chvatal closure of G.

Before proceeding with the proof, we give a brief outline of our proof strategy. We first show that there is a positive
number r; := ry(4) such that |V~ (G)| > g We then show that there is another positive number r, := r,(A), which is
smaller than ry, such that for any u € V.,(G) and any v € Vs, (G), we have that d¢()(u) + de(v) = n, which in turn
shows that dc(g)(u) > [V=r, (G)] = % So V., (G) is a clique in C(G). We finally show that V., (G) is an independent set of
G and is covered by paths intersecting V., (G) and all endvertices of these paths are in V.,(G), which shows that C(G) is
Hamiltonian, so does G.

We first prove a general result.

Claim 3.1. Let q be a positive number with ¢ < A — 10. Then

37A_3A718_2Al§+7 lf8()<é—2

4 2(A—q) (A—q)
IV=4(C)l > 34 34-110 2A 84 . A

Consequently, we have
Vo (G) 3A 3A 2A
> > — — — .
= 4 2AA-q (A—qP

Proof. Assume first that §(G) < % — 2, and let x be a vertex such that d(x) = §(G). By Lemma 4, there exists a vertex
y € N(x) such that
dix) 3(dx)—1) 4dx)—1) 1
oolx,y) > A= =2 — - = (1
2 A—q (A—-q) 2
Clearly, [V>4(G)| > oq4(x, y). Using d(x) < % — 2 in (1), we obtain the lower bound.
Assume now that §(G) > 4 — 2. Note that n < 3A — 18 since A > Z' + 12. Let xy be an edge of G such that
dx)+dly) <n—1 < %A — 2, such an edge exists as otherwise G would be Hamiltonian by Lemma 10. Applying
Lemma 5, we may assume that there exists a neighbor z of x such that

3A —d(x)—dy)—3 B 3(d(x)+dy)— A)+ 2 B Ad(x)+dy) — A —2)
2 A—q (A—qy
Sinced(x) +dy)<n—1< %A — 19, we get the desired lower bound. O

oq(x,z) >

Applying Claim 3.1 to g = A — 17 < A — 10, we obtain the following inequality
v ©) 34 34 2A 757 A 2)
SA— >— = — - — = —=A.
=aml 4 34 172 1156

Let

(1—123)A if A > 95.

{A —17 if A <94;
1156

Claim 3.2. |V, (G)| = 2.

Proof. If A < 94, then by (2) we have V., (G)| = [Vox—17(G)| > A > 3A—9> 2(3n+12) -9 =

Suppose A > 95. Let g = (1 — $2%)A < A — 10.1f §(G) > § — 2, then by Claim 3.1 we have

v ©)l 3A  3-11564 2-1156%A 438 n+9+8 10—2 n
> — — — > = —10—-2> -,

=(1-7f5g)4 4 21794 179242 2 2

where we use the following inequalities 24 > 2 +9, 3116 — 38 _ 10 A > 92 and 21;32‘1 < 20328y < 2.0f

8(G) < 4 — 2, then by Claim 3.1,

3A  1156(3A —18)  11562(24 — 12)
v G) > = — - +
2

n
2-

>(1*W)A( 4 2-179A 1792 A2
1 1734 1156-9 11562
2 179 1794 17924

—A—B(A),

1
2

11562 - 12
) 1792 A2

2
n
2
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where A= -9 — - + ]177394 = ﬁ < 0.2, and

1156 (—179-9+1156-2 1156-12) 1156 (701 13872)

B(A) =

1792 A Y T 1792 A2

As a function of A, B(A) has a unique maximum at 13822 which is less than 94, and so, for A > 95,

1156 52022 1200 170%-2
B(A) < B(94) = . < . < 0.3.
1792 942 1702 902

n

Thus |V>(1 19, A(G)] > 5 —0.2—0.3 = -, and so, being an integer, |V>(1 19 )A(G)l >

n
E'D

Letry :=ry(A)= 4 —2.

Claim 3.3. Forany u € V.,(G) and any v € V>, (G), dc)(u) + de(v) = n

Proof. If A <94, we have r; = A — 17, and so d¢(g)(u) + dc(g)(v) > d(u) 4 d(v) > % —19>n-1.
Suppose A > 95. For any vertex w € V>,_17(G), we have d(u) + d(w) > % —19 > n — 1. So uw € E(C(G)). Thus by
(2) we have dc)(u) > |Vop—17(G)] > L A. Then

1156
757 179 3
A1 -a=2a>n

deey(u) + deey(v) = deey(u) + d(v) > 1156 +( 1156) 74 =>n

This completes the proof of Claim 3.3. O

By Claims 3.2 and 3.3, we have dc()(u) > Vs, (G)| = 5. So V.,(G) is a clique in C(G).
Claim 34. |N(X)| > 2|X| for any X C V<§+](G).

Proof. Let X be a subset of V_, ,(G). Since G is A-critical, each edge uv of G has d(u) + d(v) > A + 2. Thus X is an
independent set of G, so X N N()Z( ) = @. Let H be the bipartite graph induced by the edges with one endvertex in X and
the other in N(X). For each x € X, let Ny(x) = {y € N(x) : o(x,y) > A — p(x) — 1} and N,(x) = N(x) \ N1(x), where p(x) is
defined before Lemma 3.

Let x € X. By Lemma 3, x has at least d(x) — p(x) — 1 neighbors y for which o(x,y) > A — p(x) — 1. Thus
IN1(x)] > d(x) — p(x) — 1. Since 2A — d(x) — d(y) + 2 > £ + 1, we have o(x,y) < oa,,(x,y) < d(y) — du(y). Thus
for each y € N¢(x) we have 2t

du(y) =d(y) —o(x,y) =dy) — (A —plx) — 1) < p(x) + 1,
and for each y € N(x) we have

dy(y) = d(y) —o(x,y) = d(y) — (A —d(x) + p(x) + 1) < d(x) — p(x) — 1.

For each edge xy € E(H) with x € X and y € N(X), we define M(x, y) = Then we have
DM = ) 1=INX)L
xyeE(H) yeN(X) xeN( y) yeN(X)

On the other hand,

> om zzd,, S

1
Z du(y)

xyeE(H) xeX yeN(x) xeX \yeNq(x) dH(y YEN;(x)
-1 p( )
=2 + D_2=2KXI.
xeX ( p(x + 1 d(X xeX

Therefore |[N(X)| > 2|X|. O

By Claim 3.4 and Lemma 11, G has a subgraph H covering V., (G) such that for every x € V., (G), dy(x) = 2 and for
every y € V., (G), dy(y) < 2. That is, there exist some vertex-disjoint paths Py, ..., Py covering V.., (G) such that the
endvertices of P; belong to V...,(G) for all 1 < i < s. Therefore, we can insert each vertex of V., (G) into the subgraph
induced by V.., (G). Since V.., (G) is a clique of C(G), C(G) is Hamiltonian. So G is Hamiltonian, a contradiction.
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4. Proofs of Lemmas 4 and 5
4.1. Proof of Lemma 4

Lemma 4. Let G be a A-critical graph. For a vertex x € V(G) and a positive number q, if d(x) and q < A — 10, then for

PR
any y € N(x), there exists another neighbor z of x such that o4(x,y) + o4(x, z) > 2A —d(x) — ‘g\ ; (‘“‘Z"jq )y Sgi(f)q)z)l

Proof. Let y be a neighbor of x. A vertex z € N(x)\ {y} is called feasible if there exists a coloring ¢ € C*(G — xy) such that
¢(xz) € @(y), and such a coloring ¢ is called z-feasible. Denote by C, the set of all z-feasible colorings. For each feasible
vertex z and each z-feasible coloring ¢ € C;, let

Z(p) = {v € N(2)\ {x} : p(vz) € p(x) U ()},

CG(p) = {e(vz) : v € Z(p) and d(v) < q},

Y(p) = {ve NW)\ {x} : o(vy) € p(x) U ¢(z)}, and
Gy(

@) = {p(vy) : v e Y(p)andd(v) < q}.

Note that Z(¢) and Y(gp) are vertex sets while C;(¢) and C,(¢) are color sets. Clearly, C;(¢) € ¢(x) U
@(x) U @(z). For each color o € ¢(z), let z, € N(z) such that ¢(zz,) = «. For each color 8 € go( ), let

o(yyp) = B. Let
To(p) = {o € p(x) No(y) N () : d(ys) < q and d(z,) < q}.

Since (p(x) Ne(y)) N (o(x) U @(y)) = ¥ and (p(x) N ¢(2)) N (¢(x) U ¢(z)) = ¥, we obtain that To(¢) N (C(¢) U Gy(g)) = 4.
Since G is A-critical and ¢ is z-feasible, {x, y, z} is elementary with respect to ¢. So ¢(x), @(y), ¢(z) and @(x)Ne(y)Ne(z)
are mutually exclusive. It is not difficult to see that

1Z(@)l = lp(x)] + lo(y)l — 1 and [Y(@)| = lpX)] + |@(2)I. (3)
Also,

@(y) and Gy(p) C
¥p € N(y) such that

Px)Up(y)Up(2)U(e(x)Ney)Ne(z)) ={1,2,..., A}. (4)
Recall that oy(x, ¥) and oy(x, z) are the numbers of vertices with degree at least q in N(y)\ {x} and N(z)\ {x}, respectively.
So, by Egs. (3) and (4), we have

oq(X,y) + o¢(x, 2)

= [Y(@)l — IG(@)l + 1Z(9)] — IC(@)] + lo(x) N e(y) N @(2)] — [To()]
lp(xX)| + [@(2)] + [e(X)] + [eW)] — 1+ lp(x) N e(y) N ¢(2)]
—1G(@)l — IC@)l — [To(e)l
= A+ o) — 1= 1G() — 1G(p)] — |To(e)l
= 2A —d(x) — |G(@)l — IG(@) — ITo(@)l.

So, Lemma 4 follows from the two statements below.

I. For any ¢ € C,, |G,(¢)| < d(AX)_*q] and |G,(p)| < d(AX):q]:

IL. there exists a ¢ € C, such that |To(@)| < [ d(") LS (i(")q);)l
For every z-feasible coloring ¢ € C4(G — xy), let ¢ € c4(G — xz) be obtained from ¢ by uncoloring edge xz and
assigning ¢(xz) to edge xy, and keeping all colors on other edges unchanged. Clearly, ¢ is y-feasible and Z(¢%) = Z(yp),
Y(¢?) = Y(¢), G(p?) = C,(¢) and Cy((pd) = Gy(p). We call ¢? the dual coloring of ¢. Considering dual colorings, we see
that some properties that hold for vertex z also hold for vertex y.
Let z € N(x) \ {y} be a feasible vertex and ¢ € C, be a corresponding coloring. By the definition of Z(¢), {y, x, z} UZ(¢)
is the vertex set of a simple broom. Since 1 < d(x) < %, we have |p(x) U @(y)] = A — d(x) + 2 > 4. Thus by Lemma 8
the set {y,x,z} U Z(¢) is elementary with respect to ¢. Counting the number of missing colors of vertices in the set
{y, x,z} U Z(p), since y may be a vertex of Z(¢), we obtain (A — q)|C(¢)| + |p(x)| < sz{yxz}UZ(w) lp(v)] < A, which
implies that |C,(¢)| < " By considering its dual coloring ¢¢, we have IG(@)l = IG(¢ Yl < d(")_ ! Hence, I holds.
The proof of II is much more complicated and will be placed in a separate section. A colorlng <p € C, is called optimal
if over all z-feasible colorings the followings hold:
1. |G(@)l + 1G(@)] is maximum;
2. subject to 1, |C,(¢) N Cy(¢)| is minimum.
Note that a z-feasible coloring ¢ is optimal if and only if its dual coloring ¢ is an optimal y-feasible coloring.
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4.1.1. Proof of Statement I
Suppose to the contrary that |To(p)| > [HdX=D d(") Doy
R(p) = G(p) U Gl@), Tol@) = {ki1, - - -, Ky} and "

S(d x) )21)1 for every ¢ € C,. For each z-feasible coloring ¢, let

V(To(g)) = {z; € N(2) : ki € To(@)} U {y; € N(y) : ki € To(g)}.

Let ¢ be an optimal z-feasible coloring and assume, without loss of generality, ¢(xz) = 1. For convenience, we let Z = Z(¢p),
Y =Y(¢) G = C(p), G, = G(¢), To = To(p) and R = R(¢). Note that 1 ¢ RUTy and RN Ty = 0.

Claim A. For eachi € ¢(x)\ R and k € Ty, Px(i, k, ¢) contains both y and z.

Proof. We first show that z € V(Py(i, k, ¢)). Otherwise, P,(i, k, ¢) is disjoint from Py(i, k, ¢). Let ¢’ = ¢/P,(i, k, ¢). Since
1 ¢ {i, k}, ¢’ is also z-feasible. Note that ¢'(zz;) = ¢(zz;) = i. Since d(zx) < g and i € @(x)\ R, we have i € C,(¢')\ C,. Since
neither i nor k is in R, we have Cz( ) 2 G, U{i} and G,(¢') 2 G, giving a contradiction to the maximality of |G| + |C,|.
By considering the dual coloring ¢, we can verify that y € V(P(i, k, )). O

Claim B. Suppose that there exist three vertices uq, up, u3 € V(Tp) \ {y, z} and two distinct colors «, 8 with @ € ¢(u1) N
o(uz) N@(us) and B € @(x) \ R. Then there exists a vertex u € {uq, uy, us} with x ¢ V(P,(«, B, ¢)) such that the coloring
¢ = ¢/Pua, B, @) is z-feasible and optimal and has the following properties: ¢'(x) = @(x), G(¢') = G, G(¢') = G,
R(¢") =R To(¢') 2 Tp and B € ¢'(u).

Proof. For eachi € {1, 2, 3}, let P; = P,(c, B, ¢) and ¢; = ¢/P;. Clearly none of uy, u,, us, x can be an internal vertex (of
degree 2) in an («, f)-chain, and so there are at least two values of i such that x ¢ V(P;); let i = 1 be one of them. For
each i such that x ¢ V(P;), we have the following observations.

e ¢i(x) = @(x) since x ¢ V(P;).

e B € ¢i(u;) since o € p(u;).

o All the conclusions of Claim B hold (with ¢’ = ¢; and To(¢;) = To) if V(P;) N {x, y, z} = @.

e Since 8 ¢ Ty, we have To(¢;) 2 Tp if @ ¢ Tp. But if @ € Ty then it follows from Claim A that V(P;) N {x,y, z} = @, and
so To(¢;) = To.

e Since B # 1, we have ¢;(xz) = 1 € ¢i(y) if @ # 1, and so ¢; is z-feasible. But y € P(1, 8, ¢), as otherwise we could
get an edge-A-coloring of G from ¢/Py(1, B, ¢) by coloring xy with 1; thus if « = 1 then V(P;) N {x,y,z} = @ and
all the conclusions hold.

Thus it suffices to assume o # 1 and to prove that there exists a number i € {1, 2, 3} such that x ¢ V(P;), G,(¢i) = G
and G (¢;) = G, as these imply that ¢; is optimal and R(¢;) = R. We consider the following four cases.

Case 1: ¢ € p(x)\Rand o # 1.

Since «, B ¢ R = C, U G, it follows that Cy(¢1) 2 C;, and G,(¢1) 2 C,. Since ¢ is optimal, C,(¢1) = C, and C,(¢1) =,
which is all we need to prove.

Case 2: o € p(x)NR.

Assume first & € C,. By the definition of C,, a € ¢(z). If z ¢ V(P(a, B, ¢)) then we could get an edge-A-coloring of
G from ¢ /P(a, B, ¢) by coloring xz with «. Thus Py(a, 8, ¢) = P,(«a, B, ¢), and so x,z ¢ V(P;) for all i € {1, 2, 3}. Note

that there exists a path P; (j € {1, 2, 3}) such that y ¢ V(P;). So V(P;) N {x,y,z} =0, Wthh is all we need.
If @ € G, then by interchanging y and z in the above argument, and replacing ¢¢ by ¢ in the second line, we get the

same conclusion.

Case 3: a € p(x)\ (G NG).

Since {x, y, z} is an elementary set with respect to ¢, a, 8 € @(x) N ¢(y) N @(z). Since o ¢ C, NG, and B ¢ R, either
a,B ¢ Cyora, B ¢ C, (or both). Without loss of generality, we assume «, 8 ¢ C, (the other case is similar). Then the
neighbors y, and yg of y both have degree at least q. Clearly x ¢ V(P;) for all i € {1,2, 3}, and so we can choose P;
( € {1, 2,3}) so that z ¢ V(P;). Then C,(¢;) = C, and C,(¢;) = C,, regardless of whether or not y € V(FP;).

Case 4: @ € ;NG

In this case, o € @(x). Clearly x ¢ V(P;) for all i € {1, 2, 3}. We claim that P,(«, 8, ¢) = Py(«, B, ¢). For otherwise, let
wo = ¢/P,(a, B, ). Since «, B € @(x), Px(c, B, ¢) = {x}, which is disjoint from P,(«, B, ¢), and so ¢g(x) = ¢(x). Since
a € (G, and B € ¢(x) \ R, we have d(z,) < q and d(zg) > q, so C,(¢o) = (G, U {B}) \ {@} and C;(¢o) = Cy, which implies
that |G (o)l + |C(@o)l = IC;| + |G| and |C,(¢o) N Cy(@o)l = |C; N G| — 1, which contradicts the minimality of |C, N C|.
Thus P;(«, B, ¢) = P)(a, B, ). So we can choose P; (j € {1, 2, 3}) so that V(P;) N {x, y, z} = ¥, which is all we need. O
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Let t = f“(qu” + 8((d X)q)l)1 Recall that we have assumed |To(¢)| > t. If yz € E(G), then let Tj(¢) = To(p) \ {p(yz)},

otherwise, let Tj(¢) = To(¢). Clearly, |Tj(¢)| > t. For each t-element subset T of T((¢), say T = {ky, ..., k}, let

V(T, ¢) = {zky» Ziys -5 Zie U Vg Vigs -+ 5 Yie s

W(T, ¢) = {u e V(T, ¢) : o(u)N(p(x)\ R(p)) = 7},
M(T, ¢) = {u € V(T, ¢) : @(u) N (@(x) \ R(p)) # 9},
E(T, ¢) = {zzky, ZZkys - - - s 22k s YViy» YWy -+ - » YVke )
Ew(T,¢) = {e € E(T, ¢) : eis incident with a vertex in W(T, ¢)}, and
En(T, ) = {e € E(T, ¢) : eis incident with a vertex in M(T, ¢)}.
Clearly, V(T, ¢) = W(T, ¢)WM(T, ¢) and E(T, ¢) = Ew(T, ¢)WEy(T, ¢), where & denotes disjoint union. For convenience,
we let W = W(T, ¢),M = M(T, ¢), Ew = Ew(T, ¢) and Eyy = En(T, ¢) if T and ¢ are clear. Note that {z,,...,z,} N
Wiy - » Vi } may not be empty, but [T| < [V(T, )| < |E(T, )| = 2|T|, B < |W| < |Ey| and Bl < M| < |Ey|.

We assume that |Ey(T, ¢)| is maximum over all optimal z-feasible colorings ¢ and all t-element subsets T of T;(¢).
Let Yy = {yx : k € T and z,y, € M}. For any Y’ C Yy, let Z(Y') = {z; : yx € Y’'}, and let Cy(Y’) be the union of
all single-element sets of the form @(v) N (¢(x) \ R) with v € Y" U Z(Y"), ignoring any sets of this form with more than
one element. Moreover, let Cy; be the union of all single-element sets of the form @(v) N (@(x) \ R) with v € M. Clearly,
ICu(Ym)l < [Cul < IM].

Claim C. The following three statements hold.
(a)Ifk e Ty, i,j € p(x) \ R i € p(zx) and j € @(yy), then i # j.
(b) If yi € Y\ then there exist distinct colors i, j as in (a).
(c)Ifyx € Yy and |@(yi) N (@(x) \ R)| > 2, then there exist distinct colors i, j, | € p(x)\R such thati € ¢(zx) and j, | € @(yi).

Proof. If i € p(yr) N @(zx), then neither y, nor z, can be an internal vertex (with degree 2) of Py(i, k, ¢), whereas Claim A
implies that at least one of y, and z, must be an internal vertex of this path. Thus i # j, which proves (a). (b) follows
because, by the definitions of Yy, and M, there exist colors i, j € @(x) \ R such that i € ¢(z) and j € ¢(yx); and (c) holds
for the same reason. O

Claim D. The following two statements hold.

(a) The hypotheses of Claim B cannot hold with uq, u;, us € W and 8 ¢ Cy.

(b) If the hypotheses of Claim B hold, and u and ¢’ = ¢/P,(«, B, @) are given by Claim B, then

(i)if B ¢ Cy thenu ¢ W;

(ii) if o € p(x) UR, u € Yy and B ¢ Cy({u}), then there is a color k € T C Ty(¢') for which the following holds: there are
three distinct colors i, j,1 € ¢'(x) \ R(¢’) such that i € ’'(z;) and j, 1 € @'(yy).

Proof. Clearly (a) follows from (b)(i).

By Claim B, ¢'(x) = o¢(x), R(¢/) = R, Ty € To(¢'), and B
B ¢ Ty, and if « € Ty then V(Py(a, B, @) N {x,y,z} = B. T
@' (Vyi) = ¢'(zz1) = e(yyi) = p(zz¢) = k.

To prove (b)(i), suppose that 8 ¢ Cy and u € W. Since 8 € ¢(x) \ R = ¢'(x) \ R(¢’) and u € W, it follows that
u € M(T, ¢') \ M. To avoid the contradiction |Ey(T, ¢’)| > |Ey|, it must be that Pu(cx B, ¢) ends with an edge of color «
at a vertex v € M such that 8 is the unique color in @(v) N (@(x) \ R), so that v ¢ M(T, ¢’). But then 8 € Cy, which is a
contradiction.

To prove (b)(ii), suppose that u = y; € Yy, where k € T C T}(¢’). Since B ¢ Cu({u}) = Cu({yk}), it is not possible that
(k) N (p(x)\ R) = {B} or @(yx) N (p(x)\ R) = {B}. By Claim C, there exist distinct colors i, j € ¢(x)\ R = ¢'(x) \ R(¢’) such
that i € ¢(zx),j € @(yx), and B ¢ {i,j}. Since @ € @(x) UR, it follows that « ¢ {i, j}. Thus i € ¢'(z) and] € ¢'(yx). Since
also B € ¢'(u) = ¢'(yx), the result follows with [ = 8. O

€ ¢'(u). As we remarked in the proof of Claim B,
hus Tj(¢’) 2 Ti(¢) 2 T and for each k € T we have

Recall that the statement I states that for any ¢ € C, we have |G (¢) < d(A")_’q] and [G(@)l < d(AX)_’q]. Since
IT| = [45252 + F921, we have

ﬂ >2d(x)—2+u__q]) > 2lp(x) UR|, ®

2 - A
A

where the second inequality follows from L Since d(x) < 5 and ¢ < A — 10, the second inequality of (5) implies

2|(p(x)UR| < %4-12 By I again, we have [p(x)\R| > A —d(x) + 1 — 2(%) > 2448 and |T| + M

+ 25 + GA 12 +1= 842Az+57 Since 2A+6 = 842A24;57 and 2A5+6 > 2(6?15—12) +2as A>2, we have
2lp(x) UR|

| ()\R|>|T|+ﬁ (6)
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and

4 R
po\R > 202 2 )

Claim E. There exist an optimal z-feasible coloring ¢’ and a color k € T C Ty(¢") for which the following holds: there are
three distinct colors i,j, 1 € ¢'(x) \ R(¢") such that i € ¢'(z;) and j, | € ¢'(yk).

Proof. We consider the followmg two cases, according to the value of |Ej|.

Case 1: [Ey| < |T| + 2R

Since |Cy| < |Eum], it follows from (6) that there exists a color 8 € @(x) \ (RU Cy).

We first claim that |Ey| > |T|. If not, then |Ey| < |T|, which in turn gives |Ew| > |T| since |Ey| + |[Ew| = 2|T]|.
Thus |W| > @ By the definition of Ty, we have d(v) < q for every vertex v € V(T, ), which includes all v € W. So
D vew @) > (A —q)'g—‘ > 2|¢(x) UR|, by (5). By the definition of W, ¢(v) € ¢(x)UR for every v € W. By the Pigeonhole
Principle, there exist three vertices uy, u;, u3 € W and a color o € ¢(x) UR such that o € ¢(u1) N @(uz) N @(us). But this
contradicts Claim D(a).

So we may assume that |Ey| = |T| + p, so that |Ew| = |T| — p, where p > 0. Since |Ey| = |T| + p, it follows that
|Ym| > p. We may assume that |p(yx) N (@(x) \ R)| = 1 for all y, € Yy, as otherwise the result holds by Claim C(c). Thus
[p(v) N (p(x) UR)| = |p(v)|—1 > A—q—1forall v € Yy, while |p(v) N (¢(x) UR)| = |@(v)] > A —q for all v € W. Since
\W| > |Ewl/2, [Ew| = IT| — p,and A —q > 2, we have 3"y, [8(0) N (@(X)UR)| > (A — )52 + (A —q—1)p >
(A— q)% > 2|@(x) UR|, by (5). Hence there exist three vertices uq, u,, u3 € W U Yy and a color @ € ¢(x) U R such that
a € p(ug) N @(uy) N @(us). Since B ¢ Gy, the result follows from Claim D(b).

Case 2: [Ey| > |T| + 240K
2R 5t follows that Y| > 2R e may assume that |@(y) N (@(x) \ R)] = 1 for all

A—q—-1" A—q—-1"
Yk € Yu, as otherwise the result holds by Claim C(c). Let Y’ be a subset of Yy with |Y'| = %q)ff‘

D vey @) N (@(X)UR)| > (A —q — 1D|Y'| = 2|p(x) UR|. Thus there exist three vertices uy, u;,u3 € Y’ and a color
o € ¢(x) UR such that o € @(uq) N @(uy) N p(us). Clearly, |Cy(Y')| < 2]Y’|. By (7), we have |p(x) \ R| > 2|Y'| > |Cu(Y’)I,
thus there exists a color B € ¢(x) \ (RU Cy(Y’)), and the result follows from Claim D(b). O

Since |Ey| > |T| +

—‘. Then we have

Let k, i,], [, ¢’ be as stated in Claim E. By the proofs of Claim B, D and E, we know that ¢'(x) = ¢(x), ¢'(xz) = 1 € ¢'(y),
G(¢') =G and G,(¢') = G,. Clearly, | # 1. So Py(I, 1, ¢") = Py(I, 1, ¢’), and they are disjoint from Py, (I, 1, ¢'). If 1 ¢ ¢'(y),
we consider the coloring ¢’/Py, (I, 1, ¢’), and rename it as ¢’. So we may assume 1 € ¢'(yi).

By Claim A, the paths Py(i, k, ¢’) and P(j, k, ¢’) both contain y, z. Since ¢'(yyx) = ¢'(zzx) = k, these two paths also
contain yy, z,. Since i € @'(z;), x and z; are the two endvertices of Py(i, k, ¢’). So, i € ¢'(y) N ¢'(z) N ¢'(yk). Similarly,
je @' y)N¢'(z) N ¢'(z¢). We now consider the following sequence of colorings of G — xy.

Let @1 be obtained from ¢’ by assigning ¢1(yyx) = 1. Since 1 was missing at both y and yy, q)l is an edge-A-coloring
of G — xy. Now k is missing at y and yi, and i is still missing at x and z. Note that Py(i, k, ¢1) = Py(i, k, ¢1), as otherwise
we could get an edge-A-coloring of G from ¢1/Py(i, k, ¢1) by coloring xy with k. Furthermore, z, yx ¢ V(Px(i, k, ¢1)) since
either i or k is missing at these two vertices, which in turn shows that z ¢ V(Px(i, k, ¢1)) since ¢1(zz) = k.

Let @2 = @1/Px(i, k, ¢1). We have k € ¢,(x),i € g2(y) N ¢2(zr) and j € @2(x) N @2(yk). Since G is not edge-A-colorable,
Pu(i,j, ¢2) = Py(i, j, ¢2) which contains neither y; nor z.

Let p3 = @2/Px(i, J, p2). Then k € ¢3(x) and j € ¢3(y) N @3(y)-

Let ¢, be obtained from ¢3 by recoloring yy, with j. Then ¢4(xz) = 1 € @4(y) and @4(zzx) = k € @4(x); the first of
these implies that ¢4 is z-feasible, and the second implies that k € C,(¢4), since d(z) < q. Since 1,i,j,k ¢ R=C, UG(,
the colors in R are unchanged during this sequence of recolorings, and so C,(¢4) 2 C, and C,(ps4) 2 C, U {k}. Therefore,
[Cy(@a)l + |C(@a)l = |G| + |G| + 1, giving a contradiction. So II holds. O

4.2. Proof of Lemma 5

The proof of Lemma 5 has a similar structure to that of Lemma 4, but the differences are sufficiently great that we
include it in full.

Lemma 5. Let G be a A-critical graph and q be a positive number such that g < A— 10 and minimum degree 5(G) > % —2. For
an edge x1x, € E(G), if d(x1) + d(x2) < 2A — 2, then there exist two distinct vertices z,y € V(G)\ {1, X2} with z € N(x;) and

y € N(x2) such that o4(x1, 2) +0y(Xs, ¥) > 34 —d(x1) = d(xy) — 2A0H=A-2) _ pAdlu)idbo) At | Slbabdea)-4-2)7 )

Proof. Let edge x1x, € E(G) be defined as in Lemma 5. A pair of distinct vertices z,y € V(G) \ {x1, X2} with z € N(x;) and
y € N(x,) is called feasible if there exists a coloring ¢ € C4(G — x1x;) such that ¢(x1z) € @(x,) and ¢(x,y) € @(x1), and
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such a coloring ¢ is called zy-feasible. Denote by C,, the set of all zy-feasible colorings. For each pair of feasible vertices
z,y and each zy-feasible coloring ¢ € C,, let

Z(p) = {v € N(2)\ {x1} : @(vz) € p(x1) U @(x2) U 0(y)},
G(p) = {p(vz) : v € Z(p) and d(v) < q},

Y(p) = {v e N\ {x2} : p(vy) € o(x1) U ¢(x2) U ¢(2)}, and
Gyle) = {p(vy) : v € Y(p) and d(v) < q}.

Note that Z(¢) and Y(¢) are vertex sets while C,(¢) and C,(¢) are color sets. Clearly, G,(¢) € ¢(x1) U ¢(x2) U ¢(y) and
G(@) € @(x1) U @(x2) U @(2). For each color a € ¢(z), let z, € N(z) such that ¢(zz,) = «. For each color 8 € ¢(y), let
¥p € N(y) such that p(yyg) = B. Let

To(g) = {a € p(x1) No(x2) N@(¥) N (2) : d(yy) < q and d(z.) < q}.

Since d(xq)+d(xy) < 3A 2 and §(G) > % —2,we have d(x1) < A and d(x;) < A. We assume that p(x1z) = 1 € ¢(x3)
and ¢(x2y) = 2 € ¢(x1).

First, we claim that ¢(x1), ¢(x2), @(¥), ¢(z) and ¢(x1) N @(x2) N @(¥) N ¢(z) are mutually exclusive. Let ¢q be a coloring
obtained from ¢ by uncoloring x,z and coloring x1x, with 1. In the new coloring ¢y, we have ¢g(z) = @(z) U {1},
@o(x1) = @(x1), Po(X2) = @(x2) \ {1} and @o(y) = @(¥). Since go(x1%2) = 1 € @o(z) and @o(X2y) = 2 € @o(x1), {Z, X1, X2, ¥}
forms a Kierstead path with respect to ¢o. By Lemma 7, {z, x1, X2, y} is elementary with respect to ¢g as d(x;) < A. It
follows that ¢g(x1), @o(X2), @o(y¥) and ¢o(z) are mutually exclusive. Clearly, ¢(x1), @(x2), @(y) and @(z) also are mutually
exclusive, and then the claim holds.

It is not difficult to see that

1Z(0)l = |@p(x1)| + lox)| + [ — 1, [Y(@)| = [@(x1)] + |@(x2) + |9(2)] — 1, (8)
and To(p) N (G(e) U Gy(e)) = @. Also,
P(x1) U o(x2) Up(y) U p(2) U (p(x1) Np(x2) No(y) Ng(2)) = (1,2,..., A}. 9)

Recall that oy(x;,y) and o,4(x1, z) are the numbers of vertices with degree at least g in N(y) \ {x2} and N(z) \ {x1},
respectively. So, by Eqgs. (8) and (9), we have
Uq(XZa )+ Uq(xl’ z)
= [Y(@)l = 1G(o)l + 1Z(@)] — IG(@)] + le(x1) N e(x2) N e(y) N @(2)] — [To(e)l
= lo(x1)l + @)l + 1@(2)] — 1+ [@(x1)] + lo(x2)] + o) — 1
+e(x1) Ne(x2) Ne(y) N e(2)] — 1G(e)l — IG(@)] — [To(e)l
= A+ p(x1)l + [o(x2)] — IG(@)] — |G(9)] — [To(e)] — 2
= 3A —d(x1) — d(x2) — IG(@)] — 1C(@)] — [To(e)I.

For any edge e ¢ E(G), we let {¢(e)} = @. So, Lemma 5 follows from the two statements below as To(¢)N(C,(9)UCy(¢)) =

L For any ¢ € Cy, [G(9) \ {p(2x2)}] < LEU=A=2 and |C(p) \ {p(yx )} < Lokrdala=2,

IL there exists a ¢ € C,y such that [To(¢) \ {p(zx2), p(yxy)}| < [ 2L+ XZ) At2) 4 8(‘1("5&‘1 qu)) A-2)q.

To prove statements I and II, we first give the following claim.

Claim A1. Under a coloring ¢ € C,, the following two statements hold.

(a) {z, x1, x2, y} is elementary with respect to ¢.

(b) Assume ¢(x1z) = 1 € @(x3) and p(x,y) = 2 € @(x1). For every two distinct vertices w1, wy € {z, X1, X2, y} and two
distinct colors «,  with o € ¢(w1) and B € @(w,),

(i) if {a, By N {1,2} = O, then P, (r, B, ¢) = Py, (@, B, ¢);

(it) if {o, B} N {1, 2} # 0, wy = % and wy = Xy, then Py (a, B, @) = Py, (e, B, ¢).

Proof. Note that ¢(x1), @(x2), @(y) and ¢(z) are mutually exclusive. By the definition of elementary, (a) holds.

To prove (b)(i), suppose that Py, (a, B, ¢) # Pu,(a, B, ¢). Let 91 = ¢/Py,(, B, ). Then f € ¢1(w1) N @1(w2). Let ¢,
be obtained from ¢; by uncoloring zx; and coloring x;x, with 1. Then ¢y(x1%2) = 1 € ¢2(2), 2(x2y) = 2 € @o(x1) and
B € ga(w1) N @a(w>). Thus {z, X1, xo, y} forms a Kierstead path, and by Lemma 7, {z, x1, X2, ¥} is elementary with respect
to ¢, as d(x1) < A. This contradicts the fact that 8 € @y(wq) N @a(wy).

To prove (b)(ii), if Py, (a, B, ) # Px,(c, B, ¢), then we could get an edge-A-coloring of G from ¢ = ¢ /Py, («, B, ¢) by
coloring x1x, with color B, a contradiction. O
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4.2.1. Proof of Statement I
First we prove the following claim.

Claim B1. For every ¢ € Cyy, the sets {x, X1, 2} UZ(p) and {x1, X», ¥} U Y(¢@) are both elementary with respect to ¢.

Proof. Let ¢ be an arbitrary coloring in C,. Since y and z are symmetric, we only need to show that {x,, x1, z} U Z(¢) is
elementary with respect to ¢, that is, we only need to prove that

for any v € Z(¢) \ {x2}, {x2, X1, z, v} is elementary with respect to ¢, (10)
and
()N @(v') =@ for every two distinct vertices v, v’ € Z(¢) \ {x2}. (11)

We first show that (10) holds. If p(vz) € @(x1) U @(x3), then {x3, X1, z, v} forms a Kierstead path as ¢(zx1) € @(x3).
Since d(x1) < A, by Lemma 7, {x3, X1, 2z, v} is elementary with respect to ¢, so (10) holds. Then we suppose that
k = o(vz) € p(x1) N @(x) N @(y). Clearly, d(y) < A. By Claim Al(a), {x2, x1, z} is elementary with respect to ¢. So if
(10) does not hold, then there exists a color n in @(v) N (¢(x1) U @(x2) U @(z)). We can choose 7 to satisfy one of the
following three cases.

Case 1: n € p(v) N @(x1) \ {2}.

Note that k € ¢(y) and {n, k} N {1, 2} = @. By Claim A1(b)(i), Py, (1, k, @) = Py(n, k, ). Since v is an endvertex of
an (n, k)-chain, Py,(n, k, ¢) is disjoint from P,(n, k, ¢). Let @1 = ¢/Px,(n, k, ¢). Then k € ¢1(x) and n € @1(y) N @1(v).
Let ¢, be obtained from ¢; by uncoloring vz, zx; and coloring zx{, x1x, with k, 1, respectively. Then n € @,(y) N ¢2(v),
02(zx1) = k € @a(v), p2(x1X%2) = 1 € ¢a(z) and @a(x2y) = 2 € @a(x1). It follows that {v, z, X1, X2, y} forms a Kierstead path
with respect to ¢,. Since xq, X5, y are (< A)-vertices, by Lemma 6, the set {v, z, X1, X2, ¥} is elementary with respect to
¢, contradicting the fact that n € @(y) N @2(v).

Case 2: n € {1,2} and @(v) N @(xq) \ {2} = 0.

By Claim A1(b)(ii), Py, (1,2, ¢) = Px,(1, 2, ¢). Since ¢(zx;) = 1 and ¢(xzy) = 2, V(P,(1,2,9)) N {z, X1, %2, y} = @. If
n=2lety =¢/P,(1,2,¢) then 1 € ¢'(v). So we may assume that n = 1. Since d(x;) < A and colors 1, k € ¢(x1), there
exists a color § € ¢(x;) such that § ¢ {1, 2, k}. By Claim A1(b)(ii), Px,(1, 8, ¢) = Py, (1, 8, ¢). So Px,(1, 8, ¢) is disjoint from
P,(1,6, p). Let o1 = ¢/Py(1, 8, ¢). Then § € ¢1(v) Np1(x1)\ {2}. By the similar argument of Case 1 (replace n by é in Case
1), we are done.

Case 3: 1 € p(v) N (@(x2) U ¢(2)) \ {1} and ¢(v) N @(x1) = 4.

Recall that d(x;) < A and colors 1,k € ¢(x1), and n € @(x;) since ¢(v) N @(x;) = . Thus there exists a color
d € @(xq) such that § ¢ {1,2,k,n}. Since n € @(xz) U ¢(z) \ {1}, by Claim Al(b)(i), P;(8,n,¢) = Px,(8,n,¢) or
Py, (8,1, @) = Py, (8, n, @). So Py, (8, n, ¢) is disjoint from P,(3, n, ¢). Let 91 = ¢/Py(3, n, ¢). Then8 < $1(x1) N g1(v) \ {2}
By the similar argument of Case 1, we are done.

We now show that (11) holds. If not, let « € ¢(v) N @(v'). By (10) and the fact that 1 € ¢(x,) and 2 € ¢(x;), we have
a ¢ {1,2, (vz), p(v'z)}. Since d(x1)+d(x;) < 3A—2and A > g+10 > 10, we have [g(x1)|+]@(x2)| > 2A—(34—2)+2 =
%A + 4 > 9, which implies that for some i € {1, 2} there exists a color 8 € @(x;) such that 8 ¢ {1, 2, ¢(vz), p(v'z)}.
Clearly, each of v, v/, x; must be an endvertex in an («, 8)-chain, so there exists a vertex in {v, v'}, assume v, not in the
path Py («, B, ¢). Let 1 = ¢/Py(a, B, ¢). Then a € ¢1(v)Ng1(x;). On the other hand, we will show that ¢;(v)Ney(x;) = @.
Since a, 8 ¢ {1, 2, p(vz), p(v'z)}, we have v € Z(¢1)\ {x2} and ¢y is zy-feasible. Therefore, {v, z, X1, X} is elementary with
respect to ¢, by (10), a contradiction.

This completes the proof of Claim B1. O

Note that x, may be a vertex of Z(¢) and x; may be a vertex of Y(¢). By Claim B1 and the definitions of C,(¢) and
C,(¢), we have

(A = QIG(e) \ {p(zx2)} + l@(x1)] + |@(x2)] < Z lp(v)l < A
ve{xy,x,z}UZ(p)
and

(A = DIG(P) \ {eyxi)} + 19(x1)l + [@(x2)] < > )l < A

ve(x1,x2,y1UY(9)
It follows that |C,(¢) \ {¢(zx2)}] < %_zq)—ﬂ—z and |Gy(9) \ {p(yx1)}| < %ZJM Hence, I holds.

4.2.2. Proof of Statement Il
Suppose to the contrary that for every ¢ € C,, we have |To(¢) \ {@(2x2), (yx1)}| > [4(d(x1)+§83)_A+2) + ”’(x”(:‘“ff)g 4 2)1

For each coloring ¢ € ¢, let R(¢) = C,(¢) U G (p), R(¢) = R(p) U {1, 2}, To(qz) = {ki1, ..., kiy(e) ) and
V(To(g)) = {2z, € N(z) : ki € To(@)} U {yk, € N(y) : ki € To(g)}.
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Note that {x1, x2} N V(To(¢)) may not be empty. If x; (x3) is in V(To(¢)), then yx; € E(G) (zx, € E(G)).

A coloring ¢ € C,y is called optimal if over all zy-feasible colorings the followings hold:

1. |G(@)] + 1G(@)] is maximum;

2. subject to 1, |C,(¢) N Cy(¢)| is minimum.

Let ¢ be an optimal zy-feasible coloring and assume that ¢(x1z) = 1 € @(x3) and ¢(x,y) = 2 € @(x;1). For convenience,
we let Z =Z(p), Y =Y(¢), G; = G(¢), C, = G(p), To = To(¢), R=R(¢) and R = R'(¢). Note that 1 ¢ C,UTy, 2 ¢ G, UTy
and RNTy = 4.

Claim C1. Let k be an arbitrary color in Ty. For each i € ¢(x;) \ (RU {1}), Py, (i, k, ) contains both y and z; and for each
i € @(x1)\ (RU{2}), Py, (i, k, ¢) contains both y and z.

Proof. Since x; and x, are symmetric, we only show the first part of the statement. Let {u, v} = {y, z}. Suppose that
u ¢ V(Py(i, k, ¢)). Then Py(i, k, ¢) is disjoint from Py, (i, k, ). Let ¢" = ¢/Py(i, k, ¢). Since {i, k} N {1,2} = @, ¢’ is also
zy-feasible. Note that ¢'(uuy) = ¢(uy;) = i. Since d(uy) < q and i € p(x2) \ (RU {1}), we have i € Cy,(¢’) \ G,. Since k € Ty,
RNTy =@ and i ¢ R, the colors in R are unchanged, it follows that C,(¢") 2 C, U{i} and C,(¢’) 2 C,, giving a contradiction
to the maximality of |Cy| 4+ |C;|. Thus Py, (i, k, ¢) contains both y and z. O

Let ¢° be obtained from ¢ by interchanging the colors 1 and 2 on all (1, 2)-chains except the one connecting x; to x».
Since {z, x1, X2, ¥} € V(Py,(1, 2, ¢)), we have ©%(v) = @(v) for every vertex v € {z, X1, X2, y}. It is easy to see that ¢° is an
optimal zy-feasible coloring if and only if ¢ is an optimal zy-feasible coloring. Recall that R = C, U C, U {1, 2}.

Claim D1. Suppose that there exist three vertices uy, u,uz € V(Tp) \ {z, X1, X2,y} and two distinct colors «, 8 with
@ € @(u) N @(uz) N @(us) and B € (p(x1) U @(x2)) \ R. For a vertex u € {u, up, us}, let ¢, = ¢°/Py(i, B, ¢°) if
B € p(x;)\R and o = j, where {i, j} = {1, 2}, and let |, = ¢ /P,(«, B, ¢) otherwise. Then there exists a vertex u € {u, u, us}
with {x1, %} ¢ V(Py(e, B, 9)) such that the coloring ¢’ = ¢, is zy-feasible and optimal and has the following properties:
@'(x1) = @(x1), ¢'(x2) = p(x2), G(¢") = Gy, C(¢) = G, R(¢") = R, To(g') 2 To and B € ¢'(u).

Proof. Since ¢(x1) N @(x2) = @ and x; and x, are symmetric, we assume 8 € @(x;) \ R and therefore 8 € ¢(x;). For
ie({1,2,3},let P; = Py(a, B, @) and ¢; = ¢/P;. Clearly none of uy, up, us, x; can be an internal vertex (of degree 2) in an
(e, B)-chain, and so there are at least two values of i such that x; ¢ V(P;); let i = 1 be one of them. For each i such that
x1 ¢ V(P;), we have the following observations.

o ¢i(x1) = p(x;) since x; ¢ V(P).

® ¢i(x2) = @(xy). This is obvious if & € ¢(xy), since B € ¢(x2). And if @ € @(x;) then Py, («, B, ¢) = Px,(a, B, ¢) by
Claim A1(b), and so x, ¢ V(P;).

e B € ¢i(u;) since @ € p(u;).

o All the conclusions of Claim D1 hold (with ¢" = ¢, and To(g, ) = To) if V(P;)) N {x1,y, 2} = 0.

e Since 8 ¢ Ty, we have TO(‘/’{q) D Ty if o ¢ Tp. But if @ € Ty then it follows from Claim C1 that V(P;) N {x1,y,z} = 0,
and so TO(‘P&,-) = To.

e The result holds if o = 1. For, by Claim A1(b) and the fact that ¢(x;z) = 1, we have P,(1, B, ¢) = Py, (1, 8,¢) =
P, (1, B, ¢). So if we choose j so thaty ¢ P;, then V(P;) N {x1, X2, ¥, z} = ¥, which is more than we need.

o The result holds if & = 2. In this case ¢’ = ¢°/Py(1, B, ¢°) by definition, where u € {uy, uz, u3}. Note that 1 € ¢°(u;)
for all j € {1, 2,3}, and ¢°v) = ¢(v) for every vertex v € {z, X1, X2, ¥}, and so the result follows by applying the
case o = 1 to ¢°.

Thus it suffices to assume « ¢ {1,2} and to prove that there exists a number i € {1,2, 3} such that x; ¢ V(P;),
G(ei) = G and G(¢i)) = G, as these imply that ¢; is optimal and R(¢;) = R. Note that ¢; is zy-feasible, since
{a, B} N {1, 2} = @. We consider the following four cases.

Case 1: o € (p(x1) N @(x2)) \ R.

Since o, B ¢ R = C, U G, U {1, 2}, it follows that C,(¢1) 2 C, and G,(¢1) 2 C,. Since ¢ is optimal, C,(¢1) = C, and
C,(¢1) = G, which is all we need to prove.

Case 2: o € p(x1)Np(x)NR.

Clearly, o ¢ {1, 2}. Assume first @ € C,. By the definition of G, « € ¢(z). It follows that Py, (a, B, ¢) = P;(c, B, ¢) by
Claim A1(b). So x4,z ¢ V(P;) for all i € {1, 2, 3}. Note that there exists a path P; (j € {1, 2, 3}) such that y ¢ V(P;). So
V(P;) N {x1,y, z} = ¥, which is all we need.

If o € C, then by interchanging y and z in the above argument, we get the same conclusion.

Case 3: 0 € (p(x1) U @(x))\ (GG NG)and « ¢ {1, 2}.

By Claim A1(a), {z, X1, X2, y} is elementary with respect to . Then o, 8 € (¢(x1)U@(x2))Ne(y)Ne(z). Since o ¢ C,NC,
and 8 ¢ R, either o, 8 ¢ C, or a, 8 ¢ C, (or both). Without loss of generality, we assume «, 8 ¢ C, (the other
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case is similar). Then the neighbors y, and yg of y both have degree at least q. Note that by Claim A1(b) we have
Py, (a, B, @) = Py,(a, B, @) if a € ¢(x2), and Py, (a, B, ¢) = {x1} if & € @(x7). It follows that x; ¢ V(P;) for all i € {1, 2, 3},
and so we can choose P; (j € {1, 2, 3}) so that z ¢ V(P;). Then C,(¢;) = G, and G,(¢;) = G, regardless of whether or not
y € V(P).

Case4d: v € (;NC and o ¢ (1,2).

In this case, @ € ¢(x1) U ¢(x,). By the same argument as in Case 3, x; ¢ V(P;) for all i € {1,2,3}. Since o € (; NG,
and B € @(x1) \ R € ¢(¥) N ¢(z), the vertices y, and z, have degree less than q and the vertices yz and zz have degree
at least q. Let g9 = ¢/P;(a, B, ¢). Then either go(x1) = @(x1) and go(x2) = @(x2) (if @ € @(x1) or Py, (a, B, ¢) does not
pass through z), or else go(x1) = (¢(x1) U {B}) \ {a} and go(x2) = (p(x2) U {a}) \ {B} (if & € @(x;) and Py, (e, B, ¢)
passes through z). So «, 8 € @o(x1) U @o(X2) = @(x1) U @(x2), Z(po) = Z(¢), and Y(¢o) = Y(¢). If P,(«, B, ¢) does not
pass through y, then G(¢o) = (G, U {B}) \ {a} and Cy(¢o) = C,, which implies that |G,(¢o)| + [C(@o)l = |G| + |G|
and |C,(¢o) N Cylgo)l = |G, NCy| — 1; this contradicts the minimality of |C; N G|, and this contradiction shows that
P,(a, B, ¢) = Py(a, B, ¢). So we can choose j so that P; does not pass through y or z, and then V(P;)) N {x1,y,z} = ¥,
which is all we need. O

Let ¢ = [Adalrfolard) o SAHA=2 Recall that [Tolp) \ {p(z0), ovx)}l > & Let Tilp) = To(e) \
{e(yz), (yx1), p(zx2)}. Note that yz may not be an edge of G. It follows that |Tj(¢)| > |To(¢) \ {¢(2X2), ¢(yx1)}| — 1. Thus
|Ty(¢)| = t. For each t-element subset T = {kq, ..., k;} of Tj(¢), let

V(T, 9) = {zkys Zkys -5 Zle } Y Wkys Yiegs -+ -5 Ve )
W(T, @) = {u e V(T, 9) : pu)N((¢(x1)U@(x2)) \ R (¢)) = @},
M(T, ¢) = {u e V(T, ¢) : o(u) N ((¢(x1) U §(x2)) \ R(¢)) # 9},
E(T, 0) = {zz1y, 22y - - -+ 22k s YVk1» Yy - -+ > YWkt )
Ew(T, ) = {e € E(T, ¢) : eis incident with a vertex in W(T, ¢)}, and
Eu(T, ¢) = {e € E(T, ¢) : e is incident with a vertex in M(T, ¢)}.
(T,

Clearly, = W(T,¢)w M(T, ¢) and E(T,¢) = Ew(T, @) W Ey(T, ¢), where & denotes disjoint union. For
convenience, we let W = W(T,¢9),M = M(T, ¢), Ew = Ew(T,¢) and Eyy = Ey(T, @) if T and @ are clear. Note that
{Zkys ooy Zke ) O Yigs - -5 Yie} May not be empty, but [T| < |V(T, )| < [E(T,¢) = 2|T|, W' < |W| < |Ew| and
Bl < M| < |Ewl.

We assume that |Ey(T, ¢)| is maximum over all optimal zy-feasible colorings ¢ and all t-element subsets T of Ty(¢).
Let Yy = {yx : k € T and z,y, € M}. For any Y’ C Yy, let Z(Y') = {zx : yx € Y’}, and let Cy(Y’) be the union of all
single-element sets of the form ¢(v) N ((¢(x1) U @(x2)) \ R") with v € Y' U Z(Y’), ignoring any sets of this form with more
than one element. Moreover, let C; be the union of all single-element sets of the form @(v) N ((@(x1) U ¢(x2)) \ R’) with
v € M. Clearly, |Cy(Yn)| < |Cul < [M].

Claim E1. The following three statements hold.

(@) Ifk € To(p). i,J € (p(x1) Up(x2)) \ R, i € ¢(z) and j € ¢(yi), then i # j.

(b) Ifyx € YM then there exist distinct colors i, j as in (a).

(c) If yx € Yy and |@(yi) N ((@(x1) U @p(x2)) \ R')| > 2, then there exist distinct colors i, j,l € (¢(x1) U p(x2)) \ R’ such that
i€ ¢(z) and j, | € p(yx)-

Proof. If i € p(yx) N @(zx), then neither y; nor z, can be an internal vertex (with degree 2) of Py, (i, k, ¢) or Py, (i, k, ¢),
whereas Claim C1 implies that at least one of y, and z; must be an internal vertex of one of these paths. Thus i # j,
which proves (a). (b) follows because, by the definitions of Yy, and M, there exist colors i, j € (¢(x1)U @(x2))\ R’ such that
i€ ¢(z¢) and j € ¢(yx); and (c) holds for the same reason. O

Recall that ¢° is obtained from ¢ by interchanging the colors 1 and 2 on all (1, 2)-chains except the one connecting x;
to x,. Since 1,2 ¢ To(g), it follows that To(¢®) = To(g) and T C Ty(¢°) = Ty(¢). Hence V(T, ¢°) = V(T, ¢). It is clear that
R(¢°) is the same as R(¢) except possibly for changing 1 to 2 or vice versa, and so R'(¢°) = R'(¢) = R(¢) U {1, 2}. Thus,
for each vertex v € V(T, ¢), #°(v) N ((¢°(x1) U ¢°(x2)) \ R(¢°)) = (v) N (($(x1) U p(x2)) \ R').

Claim F1. The following two statements hold.

(a) The hypotheses of Claim D1 cannot hold with uq, uy, us € W and 8 ¢ Cy.

(b) Assume that the hypotheses of Claim D1 hold, and u and ¢’ are given by Claim D1, where ¢’ = ¢/Py(«, B, ¢),
©°/P,(1, B, ¢°) or °/P,(2, B, ¢°) as appropriate. Then

(i)if B ¢ Cy thenu ¢ W;

(i) ifa ¢ (p(x1) U p(x2))\ R, u € Yy and B ¢ Cy({u}), then there is a color k € T € Ty(¢’) for which the following holds:
there are three distinct colors i,j,1 € (¢'(x1) U @'(x2)) \ R'(¢) such that i € ¢'(z;) and j, | € ¢'(yk).
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Proof. Clearly (a) follows from (b)(i). In the rest of this proof we will assume by symmetry that 8 € ¢(x;) \ R'.

By Claim D1, ¢'(x1) = @(X1), ¢'(x2) = @(x2), R(¢') = R, Tg C To(¢'), and B € ¢'(u). As we remarked in the proof of
Claim D1, B ¢ To, and if & € Ty then V(Py(e, B8, ¢)) N {x1,y,z} = @. Thus Tj(¢’) 2 Ti(¢) 2 T and for each k € T we have
@' k) = ¢'(zz1) = p(yyr) = p(zz¢) = k.

To prove (b)(i), suppose that 8 ¢ Cy and u € W. Since 8 € (@(x1) U @(x2)) \ R' = (¢'(x1) U @'(x2)) \ R'(¢') and u € W,
it follows that u € M(T, ¢’) \ M. To avoid the contradiction |Ey(T, ¢')| > |Eum|, it must be that P,(«, 8, @) or P,(1, 8, ¢°)
ends with an edge of color « at a vertex v € M such that g is the unique color in @(v) N ((¢(x1) U ¢(x2)) \ R'), so that
v ¢ M(T, ¢'). But then 8 € Cy, which is a contradiction.

To prove (b)(ii), suppose that u = y, € Yy, where k € T C Té((p’). Since 8 ¢ Cy({u}) = Cu({yx}), it is not possible
that @(zx) N ((@(x1) U @(x2)) \ R') = {B} or p(yr) N ((@(x1) U @(x2)) \ R') = {B}. By Claim ET, there exist distinct colors
1,j € (@(x1)UP(x2))\ R = (@'(x1)U@'(x2))\ R (¢') such that i € ¢(z),j € ¢(yk), and B ¢ {i, j}. Since o ¢ (p(x1)Up(x2))\ R,
it follows that o ¢ {i, j}. Thus i € ¢'(z¢) and j € ¢'(yx). Since also B € ¢'(u) = ¢'(yx), the result follows with [ = 8. O

For convenience, let X = (@(x1) U p(x2)) \ R’; then |X| > 2A — d(x;) — d(x2) — |R|. Recall that the statement I states
that for any ¢ € ¢, we have |G,(¢) \ {p(zx2)}| < %};7“2 and |Gy(@) \ {p(yx1)} < M , so that

2(d(x1) +d(x2) — A —2)

R 2. 12
Rl < . + (12)
Since [T| = |—4(d(x1)+d(fz) At2) | 8 )(—i—AdEx;))z—A—Z)L we have

A —q)|T

AT ado) + dxa) — 442+ 2RI = 2) 2 24— XD, (13)

41a 8(1a-4
( >+ (2100 )i 1=

where the first inequality uses (12). Since d(x{) + d(x;) < % —2and g < A — 10, we have |T| <
2 4+ 428 + 1 = 8447 By (12) again, we have

2(d(x1) + d(x2) — A —2)

X| > 24 —d(xq) — d(x3) — -2
A—q
1 201a -4 2A+4
= 7A+2—¥—2= + ,
2 10 5
2(A—1X]) 34-4 2(A—IX]) 6A+l7 6A—8 __ 84A+113 8444113 2A+4 Z(GA 8) 2A+4
A—g-1 9( 5 )= 45' AqlS + % = T35 - Since =55 and +2 < 5==
as A > 7, we have
2(A —1X])
IX| > |T|+7, (14)
—q—1
and
2(A —|X
1X| > 2 AA = XD +2. (15)
A—q—1

Claim G1. There exist an optimal zy-feasible coloring ¢' and a color k € T € Ty(¢') for which the following holds: there are
three distinct colors i,j,1 € (§'(x1) U @'(x2)) \ R'(¢’) such that i € '(z;) and j, 1 € ¢'(yy).

Proof. We consider the following two cases, according to the value of |Ey|.

Case 1: |[Ey| < |T| + Zﬁ;qﬁ'). Since |Cy| < |Eum|, it follows from (14) that there exists a color 8 € X \ Cy.

First we claim that |Ey| > |T|. If not, then |Ey| < |T|, which implies that |Ey| > |T| since |Ey| + |[Ew| = 2|T|.
Thus W] > ‘zﬂ By the definition of Ty, we have d(v) < q for every vertex v € V(T, ¢), which includes all v € W. So
S ew 18(0)] > (A — )2 > 2(A — |X]), by (13). By the definition of W, $(v) N X = ¥ for every v € W. So, by the
Pigeonhole Princ1p1e there exist three vertices uq, Uy, u3 € W and a color a ¢ X such that « € @(u;) N @(uz) N @(us). But
this contradicts Claim F1(a).

So we may assume that |Ey| = |T| 4 p, so that |Ey| = |T| — p, where p > 0. Since |Ey| = |T| + p, it follows that
|[Ym| > p. We may assume that |p(yx) N X| = 1 for all y, € Yp, as otherwise the result holds by Claim E1(c). Thus
lp(v)\ X] =1@(v)| = 1> A —q—1forall v € Yy, while |p(v) \ X| = [¢(v)| > A —q for all v € W. Since |[W| > |Ew|/2,
|Ew| = IT| —p,and A — g > 2, we have 3_, iy, 18()\X| > (A = 52 +(A —g—1)p > (A —q)F > 2(A - |x]),
by (13). Hence there exist three vertices uq, u,, u3 € W UY) and a color @ ¢ X such that o € g(u;)N (p(uz) N @(us). Since
B ¢ Cy, the result follows from Claim F1(b).

Case 2: |Ey| > |T| + 24-XD

A—q—] :
Since |Ey| > |T| + %, it follows that |Yy| > ZZA—;L;B(P' We may assume that |p(y,)NX| = 1 for all y, €
Yy, as otherwise the result holds by Claim E1(c). Let Y’ be a subset of Yy with |Y'| = 22{;(12(1\) . Then we have

Y opey [@WI\X] > (A —q— 1|Y'| = 2(A — |X]). Thus there exist three vertices uy, u;,u3 € Y' and a color ¢ X



Y. Cao, G. Chen, S. Jiang et al. / Discrete Mathematics 343 (2020) 111881 15
such that @ € @(u;) N @(uz) N @(us). Clearly, |Cy(Y')| < 2|Y’|. By (15), we have |X| > 2|Y’| > |Cy(Y)|, thus there exists a
color B € X \ Cy(Y’), and the result follows from Claim F1(b). O

Let k,1i,j, 1, ¢’ be as stated in Claim G1 and assume d(x;) < d(x1). Since d(x1) + d(x3) < %A — 2, d(x3) < d(xq) and
qg < A — 10, we have

19'(x2) \ (R(¢") U {1})]

%

A~ d(x) — |G\ [@' (2] — IGy ()]
A dixy ) o) A=)
A-q
A A—8 3A 416
= 1= 1=""—>2

10 20
where the second inequality follows from I and the last inequality holds because A > 8. Thus

19'(x2) \ (R(g") U {1})] = 3. (16)

First we claim that

there exists an optimal zy-feasible coloring ¢*, such that i,j, I € @*(x2) \ (R(¢*) U {1}), k € T C Tj(¢*), i € ¢*(z)
and j, I € @*(yx).

For otherwise, by Claim G1, at least one of i,j and [ must be in @(x1) \ (R(¢’) U {2}) rather than in ¢'(x3) \ (R(¢") U {1}).
Suppose first that i € @'(x1) \ (R(¢’) U {2}). By (16), there exists a color § € ¢'(x2) \ (R(¢") U {1}) such that § ¢ {j, I}.
Note that Py, (i, 8, ¢') = Py, (i, §, ¢') by Claim A1(b). Then z; ¢ V(Py,(i, 8, ¢")) as i € ¢'(z). Let ¢} = ¢'/Px,(i, 8, ¢’). Then
i€ ¢1'(x2)\ (Rlpy) U {1}) and i € ¢1'(z). Since {i, 8} N (R'(¢") U {j, I}) = 8, we have j, | € ¢1'(y«), C:(p7) = Go(¢'), Gy()) =
G(¢’) and ¢ is zy-feasible, which implies that ¢ is an optimal zy-feasible coloring. Note that ¢/ (x,) = (¢'(x2)\ {8}) U {i},
and so |@7(x2) \ (R(¢}) U {1})] = 3 by (16). Using the same method above twice again, we can find an optimal zy-feasible
coloring ¢* such that i, j, I € ¢*(x2) \ (R(¢*)U {1}), k € T C Ti(¢*), i € ¢*(z), and j, | € ¢*(yi).

If 2 € ¢*(yx), we let ¢ = ¢*. Otherwise, we let ¢; be obtained from ¢* by interchanging the colors 2 and [ on all
(2, I)-chains except Py, (2, 1, ¢*). Note that Py, (2,1, ¢*) = Py, (2,1, ¢*) by Claim Al(b) and | € ¢*(yx). Thus 2 € @q(yx). If
2 € G(¢*) and Py,(2, I, ¢*) does not pass through z, then C,(¢1) 2 (G,(¢*) U {I}) \ {2}; otherwise, C;(¢1) 2 C,(¢*). Also,
Cy(@1) 2 Gy(¢™*). It follows from the optimality of ¢* that equality holds and ¢, is an optimal zy-feasible coloring.

Let ¢, be the coloring obtained from ¢; by uncoloring x,y and coloring x;x, with color 2. Then 2 € @,(y).

Let ¢35 be obtained from ¢, by assigning ¢3(yyx) = 2. Now k is missing at y and y, and i is still missing at z; and x;.
Note that Py, (i, k, ¢3) = Py(i, k, ¢3), as otherwise we could get an edge-A-coloring of G from ¢3/P,(i, k, ¢3) by coloring
X,y with i. Furthermore, z, yx ¢ P, (i, k, ¢3) since either i or k is missing at these two vertices, which additionally shows
that z ¢ Py, (i, k, ¢3) since @3(zz;) = k.

Let @4 = @3/Py,(i, k, @3). We have k,j € @4(x2) N @a(yx) and i € @4(y) N @a(z;). Since G is not edge-A-colorable,
Py, (i, j, ¢4) = Py(i, j, ¢4) which contains neither z; nor yj.

Let 5 = @4/Px, (i, j, p4). Then k € @s(x2) and j € ¢s5(y) N @5(y).

Let ¢ be obtained from ¢5 by recoloring yy, with j. Then 2 € gg(y).

Let ¢; be the coloring obtained from ¢g by uncoloring x;x, and coloring x,y with color 2. Then ¢;(x1z) = 1 € ¢7(x2),
07(x2y) = 2 € p7(x1), and @7(zzx) = k € @7(x2). Thus @7 is zy-feasible, and k € C,(¢;) since d(zx) < q. Since i, j, k ¢ R(¢1)
and @7(x2y) = @1(x2y) = 2, the colors in R(gq) are unchanged as a result of this sequence of recolorings, and so
C(¢7) 2 G(p1) Uk} and Gy(¢7) 2 Gy(g1). It follows that |Gy (¢7) + |G(¢7)l = |G(@1)l + |C(¢1)l + 1, and this contradicts
the optimality of ¢1. So II holds.

This completes the proof of Lemma 5, and hence of Theorem 1. O
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