Discrete Mathematics 343 (2020) 111663

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

L))

Check for
updates

Spanning bipartite graphs with high degree sum in graphs

Guantao Chen?, Shuya Chiba®, Ronald J. Gould ¢, Xiaofeng Gu ¢, Akira Saito
Masao Tsugaki, Tomoki Yamashita '

@ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States of America
b Applied Mathematics, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1

Kurokami, Kumamoto 860-8555, Japan

¢ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, United States of America
d Department of Mathematics, University of West Georgia, Carrollton, GA 30118, United States of America

€ Department of Information Science, Nihon University, Sakurajosui 3-25-40, Setagaya-Ku, Tokyo 156-8550, Japan

f Department of Science, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

ARTICLE INFO ABSTRACT

Article history: The classical Ore’s Theorem states that every graph G of order n > 3 with 03(G) > n
Received 14 April 2018 is hamiltonian, where 0,(G) = min{dg(x) + dc(¥):x,y € V(G),x # y,xy ¢ E(G)}.
Received in revised form 31 August 2019 Recently, Ferrara, Jacobson and Powell (Discrete Math. 312 (2012), 459-461) extended

Accepted 5 September 2019

Available online 9 October 2019 the Moon-Moser Theorem and characterized the non-hamiltonian balanced bipartite

graphs H of order 2n > 4 with partite sets X and Y satisfying o11(H) > n, where

Keywords: o01.1(H) = min{dy(x)+du(y):x € X,y € Y, xy ¢ E(H)}. Though the latter result apparently
Hamiltonian cycle deals with a narrower class of graphs, we prove in this paper that it implies Ore’s
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1. Introduction

In this paper, we only consider finite simple graphs. For standard graph-theoretic notation and terminology not
explained in this paper, we refer the reader to [1]. For v € V(G), let Ng(v) and dg(v) denote the neighborhood and the
degree of v in G, respectively. If H is a subgraph of G, we write H C G. For a graph G and X C V(G), we denote by G[X]
the subgraph of G induced by X.

Let X and Y be disjoint sets of vertices in G. Then let Eg(X, Y) denote the set of edges e = xy withx e X andy € Y,
and let eg(X, Y) = |Eg(X, Y)|. Furthermore, G[X, Y] is the graph defined by V(G[X, Y]) = XUY and E(G[X, Y]) = Eg(X, Y).
Note that G[X, Y] is a bipartite graph with partite sets X and Y.

When no confusion results, we often identify a singleton set with its element. For example, if x € V(G), we write
ec(x, Y) instead of ec({x}, Y). I, in addition, Y = {y}, we write eg(x, y) instead of eg({x}, {y}). Note that the value of es(x, y)
is either 0 or 1 since we only consider simple graphs.

Degree sum is a topic which has been studied actively in the theory of hamiltonicity. It deals with the minimum sum
of degrees of vertices in certain independent sets and relates with hamiltonian properties of graphs. One of the most
well-known results in this topic is Ore’s Theorem. For a non-complete graph G, we define o,(G) by

03(G) = min{dg(x) + do(y): X,y € V(G), x #y, xy ¢ E(G)}.
If G is a complete graph, we define 0,(G) = +oc.
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Fig. 1. Graphs of type 1 and type 2.

Theorem A (Ore’s Theorem [4]). For n > 3, every graph G of order n with o,(G) > n is hamiltonian.

Moon and Moser [3] investigated a degree sum condition for hamiltonicity in bipartite graphs. A bipartite graph is said
to be balanced if its partite sets have the same order. Trivially, a bipartite graph contains a hamiltonian cycle only if it
is balanced. Also, according to the spirit of Ore’s Theorem, it may not be appropriate to incorporate the degree sum of
vertices chosen from the same partite set. Actually, Moon and Moser only considered the degree sum of pairs of vertices
taken from different partite sets. Let G be a bipartite graph with partite sets X and Y. If G is not a complete bipartite
graph, we define o4,1(G) by

01.1(G) = min{dg(x) + de(y):x € X,y € Y, xy ¢ E(G)}.
If G is a complete bipartite graph, we define o 1(G) = +o0.

Theorem B (Moon and Moser [3]). For n > 2, every balanced bipartite graph G of order 2n with o1 1(G) > n+ 1 is hamiltonian.

Observing Theorems A and B, we may want to relax the condition o1,1(G) > n + 1 in Theorem B to o1,1(G) > n.
However, we cannot do it without allowing exceptions. Let n and t be integers withn > 2and 1 <t < n — 1. Then
following [2], we define H; ,_; to be the graph formed from K; ; U K,_; ,— by selecting one partite set of each complete
bipartite graph and adding all possible edges between these sets. Then every graph G with K; UKyt n—t € G C H; p—¢ is
a bipartite graph of order 2n and satisfies o1 1(G) = n, but it is not hamiltonian. Also, let G; and G, be the graphs depicted
in Fig. 1. Then G; (i = 1, 2) is a bipartite graph of order 8 and satisfies o7 1(G;) = 4, but it is not hamiltonian.

The above graphs arise as counterexamples if we relax the degree sum condition o;1(G) > n + 1 to 011(G) > n.
However, Ferrara, Jacobson and Powell [2] proved that these are the only exceptions.

Theorem C ([2]). Let n be an integer with n > 2 and let G be a balanced bipartite graph of order 2n with o1 1(G) > n. Then
one of the following holds.

(1) G is hamiltonian.
(2) Ket UKq—tn—t S G C H; y_ for some integer t with 1 <t <n—1.
(3) G is isomorphic to Gy or G,.

In this paper, we study the relationship between Ore’s Theorem and Theorem C. Theorem C only deals with bipartite
graphs, while Ore’s Theorem handles both bipartite and non-bipartite graphs. Apparently, Ore’s Theorem concerns a
broader class of graphs. However, we prove that Theorem C implies Ore’s Theorem. If a graph G of order 2n satisfies
Ket UKy—tn—t € G C H; ¢ for some t with 1 <t <n — 1, we call G a graph of type 1. Also, we say that a graph G is of
type 2 if G is isomorphic to either G; or G,. See Fig. 1, where the symbol ‘4 ' means that every vertex on the left is joined
to every vertex on the right by an edge, while ‘@’ means that there may exist an edge joining a vertex on the left and a
vertex on the right.

Theorem 1. Let n be an integer with n > 2 and let G be a graph of order 2n. If 05(G) > 2n, then G contains a spanning
balanced bipartite graph H such that

(1) 01,1(H) = n, and
(2) H is of neither type 1 nor type 2.

For a graph of even order satisfying Ore’s condition, Theorem 1 gives more detailed information than the existence of
a hamiltonian cycle.
In the next section, we give a proof to Theorem 1. In Section 3, we give concluding remarks.

2. Proof of Theorem 1

In the subsequent arguments, we frequently use the following observations. The proof is an easy calculation and we
omit it.
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Lemma 2. Let G be a graph and let X and Y be disjoint nonempty subsets of V(G). Let x € X and y € Y. Then

(1) ec(X\ {x}, Y U {x}) = ec(X, Y) — ec(x, Y) + ec(x, X \ {x}) and
(2) ec((X\ (XD UL (Y \ (YH U {x}) = ec(X, Y) — ec(x, Y) — ec(y, X) + ec(x, X \ {x}) + ec(y, Y \ {¥}) + 2ec(x, ).
A partition {X, Y} of the vertex set V(G) of a graph G of even order is said to be balanced if |X| = |Y| = %lV(G)|. A

balanced partition {X, Y} is said to be a maximal partition of G if eg(X’, Y') < eq(X, Y) holds for every balanced partition
{X’, Y’} of V(G). The next lemma acts as a basis of our proof.

Lemma 3. Let G be a graph of even order. Then o1 1(G[X, Y]) > 502(G) holds for every maximal partition {X, Y} of G.

1
2

Proof. Let {X, Y} be a maximal partition of G, and let H = G[X, Y]. Since there is nothing to prove if H is a complete
bipartite graph, we assume that H is not a complete bipartite graph. Let x € X and y € Y with xy ¢ E(H) and
dy(x) + du(y) = o1,1(H). Note dy(x) = ec(x, Y) and dy(y) = eg(y, X).

Let X’ =X\ {x})U{y} and Y = (Y \ {y}) U {x}. By Lemma 2 (2),

ec(X', Y') = ec(X, V) + ec(x, X \ {x}) + ec(y, Y \ {¥}) — ec(x, Y) — ec(y, X).

Since dg(x) = ec(x, X \ {x}) + ec(x, Y) = ec(x, X \ {x}) + du(x) and dc(y) = ec(y, Y \ {y}) + ec(y, X) = ec(y, Y \ {y}) + du(y),
it follows that eg(X’, Y') — eg(X, Y) = dg(x) + dg(y) — 2(dy(x) + dy(y)). Moreover, since {X, Y} is a maximal partition of G,
we have eq(X’, Y') < ec(X, Y). Therefore, dg(x) + dc(y) — 2(dy(x) + du(y)) < 0, which yields

201,1(H) = 2(du(x) + du(y)) = de(x) + d(y) = 02(G). O

By Lemma 3, if G is a graph of order 2n with 03(G) > 2n, then o7 1(G[X, Y]) > n holds for every maximal partition
{X,Y} of G.

In the proof of Theorem 1, we will find a required graph as G[X, Y] for some balanced partition {X, Y}. The next lemma
says that when we deal with maximal partitions in the proof, a graph of type 2 does not arise.

Lemma 4. Let G be a graph of order 8 with o,(G) > 8. Then G[X, Y] is not a graph of type 2 for any maximal partition {X, Y}
of G.

Proof. Assume G[X, Y] is a graph of type 2 for some maximal partition {X, Y} of G. Let H = G[X, Y]. Label the vertices of H
as in G in Fig. 1, where possibly the edge x4y, exists as in G,. We may assume X = {x1, X2, X3, X4} and Y = {y1, ¥2, V3, Y4}.

Claim. For each pair of distinct indices i and j with {i,j} C {1, 2, 3}, ec(x:, X \ {x:}) +ec(y;, Y \ {yj}) = 4

Proof. Note x;y; ¢ E(G) and ec(x;, Y) = ec(yj, X) = 2. Let X' = (X \ {x;}) U {y;} and Y’ = (Y \ {y;}) U {x;}. By Lemma 2 (2),
ec(X', Y') = ec(X, Y) — ec(xi, Y) — ec(yj, X) + ec(xi, X \ {xi}) + ec(y;, Y \ {y;})
= ec(X, Y) +ec(xi, X \ {xi}) + ec(y;, Y \ {y;}) — 4.
Since {X, Y} is a maximal partition, we have e¢(X’, Y') < eq(X, Y), which implies eq(x;, X \ {x;}) + ec(y;, Y \ {y;}) < 4
Since o3(G) > 8 and x;y; ¢ E(G), we have dg(x;) + d¢(y;) > 8. On the other hand,
do(xi) + de(y;) = ec(xi, X \ {xi}) + ec(xi, Y) + ec(y;, Y \ }) + ec(y;, X)
= ec(xi, X \ {x:}) +ec(y;, Y \ (yj}) + 4.
These imply eq(x;, X \ {xi}) + ec(y;, Y \ {y1}) > 4. Therefore, we have eg(x;, X \ {x;}) +ec(y;, Y\ {yj}) =4. O
By applying Claim with (i,j) = (1,2) and (i,j) = (3, 1), we have eg(x1,X \ {x1}) + ec(¥2, Y \ {y2}) = 4 and
ec(x3, X \ {x3}) +ec(y1, Y \ {y1}) = 4. By adding them, we have
ec(x1, X \ {x1}) + ec(y1, Y \ (y1}) + ec(x3, X \ {x3}) + ec(y2, Y \ {y2}) = 8.

On the other hand, eg(x3, X \ {x3}) + ec(y2, Y \ {y2}) = 4 by Claim with (i, j) = (3, 2). Therefore, we have eg(x1, X \ {x1}) +

ec(y1, Y\ {y1}) =4.
Now let X" = (X \ {x;})U{y1} and Y = (Y \ {y1}) U {x1}, and apply Lemma 2 (2) to (X", Y”). Since x1y; € E(G), we
have

ec(X", Y") = ec(X,Y) — ec(x1, Y) — ec(y1. X) + ec(x1, X \ {x1}) + ec(y1. Y \ {y1}) + 2
ZGG(X,Y)—2—2+4+2 ZGG(X,Y)+2
This contradicts the maximality of {X, Y}, and hence the lemma follows. O

We now prove Theorem 1. By Lemmas 3 and 4, if we take a maximal partition {X, Y} in a graph G of order 2n with
02(G) = 2n, then 011(G[X,Y]) > n and G[X, Y] is not a graph of type 2. Based on this observation, in the proof of
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Fig. 2. Proof of Claim 2.

Theorem 1, we first try to find a maximal partition {X, Y} such that G[X, Y] is not a graph of type 1. If we find one,
G[X, Y] is a required spanning subgraph of G. However, in some cases, we fail to find such a maximal partition. If it
happens, we will search for a required partition {X, Y} in the broader set of balanced partitions. In this case, Lemmas 3
and 4 do not help us, and we will give a specific proof to confirm that G[X, Y] has the required property.

Proof of Theorem 1. Let G be a graph of order 2n with 0,(G) > 2n, and assume G does not satisfy the conclusion. Then
for every balanced partition {X, Y} of G, either o1 1(G[X, Y]) < n or G[X, Y] is a graph of either type 1 or type 2.

Take a maximal partition {X, Y} of G. Then by Lemmas 3 and 4, G[X, Y] is a graph of type 1, which means K; ;UK n—+ €
G[X, Y] € H; n— for some ¢t with 1 <t <n —t. Let X; and Y; be the partite sets of K; ; and X, and Y, be the partite sets
of Kyt n—¢. By symmetry, we may assume Eq(Y7, X2) € E(H; 5—¢) (see Fig. 1). Then we have

(C1) xy € E(G) for every x € X; and y € Yj,
(C2) xy € E(G) for every x € X; and y € Y5, and
(C3) Eg(X1, Y2) = 0.

We may assume X =X;UX; and Y =Y, U Ys.
Now we take arbitrary vertices x; € X; and y, € Y, and fix them. Also we define X', Y/, X; and Y, by

= (X \ {x1}) U {y2},
= (Y \ {y2}) U {x1},
X; =X1\ {x1} and
Y, =Y\ {32}

We will prove a series of claims.
Claim 1. eg(x1, X \ {x1}) + ec(y2, Y \ {¥2}) = n, and {X’, Y’} is a maximal partition.

Proof. Note x1y, ¢ E(G) by (C3). Hence d¢(x1)+dc(y2) > 2n by the hypothesis. Also note eg(x1, Y) = t and eg(y,, X) = n—t
by (C1), (C2), and (C3). Therefore,
ec(x1, X \ {x1}) + ec(y2, Y \ {y2}) = do(x1) — ec(x1, Y) + dg(y2) — ec(y2, X)
>2n—t—(n—t)=
On the other hand, by Lemma 2 (2),

ecX',Y) =ec(X,Y) —ec(x1,Y) — ec(y2, X) + ec(x1, X \ {x1}) + ec(y2, Y \ {y2})
=ec(X,Y)—t —(n—1t)+ecx1, X\ {x1}) + ec(y2, Y \ {y2})
=ec(X,Y) —n+ec(x1, X\ {x1}) + ec(y2, Y \ {y2}).

Since {X, Y} is a maximal partition, ec(X’, Y') < ec(X, Y) and hence we have ec(x1, X \ {x1}) + ec(y2, Y \ {¥2}) < n. Thus,
we have eg(x1, X \ {x1}) + ec(y2, Y \ {y2}) = n and eg(X’, Y') = eg(X, Y). In particular, {X’, Y’} is a maximal partition. O

Claim 2. eG(X1,X2) =0or EG(Y], YZ) =0.

Proof. Assume ec(X1,X2) > 0 and eg(Y1, Y2) > 0. Then there exist vertices u; € Xy, u; € X3, v1 € Yy and v, € Y with
Uqly, v1v2 € E(G). Let X = X1 UYs,, Y = Y1 UX; and A= G[X Y] Note that {X Y} is a balanced partition of V(G) though
we do not know whether it is a maximal partition of G (see Fig. 2). .

Take X € X and y € Y with Xy ¢ E(H). By (C1) and (C2), H[X1, Y1] = H[X1, Y1] and H[Y;, Xo] = H[X;, Y»] are balanced
complete bipartite graphs of order 2t and 2(n — t), respectively. Therefore, {X, y} € X; UY; and {%, J} Z X, U Y,, which
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Fig. 3. H*.

imply (X7} N (X1 UYy) # @ and {%, 7} N (X2 UY,) # . Hence we have d;(X) + d; () > t + (n — t) = n, which implies

01.1(H) > n. Moreover, I:I[Xi, Y;] contains a hamiltonian path P; joining u; and v; for i € {1, 2}. Then u;Pjvivo,Prusuy is a
hamiltonian cycle in H. Thus, H is of neither type 1 nor type 2. This is a contradiction. O

By Claim 2 and the symmetry, we may assume

ec(X1,X;) =0. ()
Claim 3. We have eg(x1,X; ) = 1 and eg(y, Y1) = 2. In particular, |Xq| > 2.

Proof. By Claim 1, eg(x1, X \ {x1}) + ec(y2, Y \ {y2}) = n. Since |Y \ {y»}| = n — 1, we have eg(y,, Y \ {y2}) < n— 1
Therefore, since eg(X1, X2) = 0 by (x), ec(x1, X7 ) = ec(x1, X \ {x1}) =n—ec(y2, Y \ {y2}) > 1.
Since eg(x1, X \ {x1}) = ec(x1, X1 \ {x1}) < [X1] = 1=t — 1 and eg(y2, Y2 \ {y2}) < |Y2| =1 =n—1t — 1, we have

n=ec(x1, X \ {x1}) + ec(y2, Y \ {y2})
= ec(x1, X \ {x1}) + ec(y2, Y1) + ec(y2, Y2 \ {y2})
<t—1+m—t—1)+ec(y2, Y1) =n—2+ec(y2, Y1),
which yields eg(y., Y1) > 2. O

For a pair of distinct vertices yq, v in Y, we call (y1, vq) a violating pair if it satisfies the following two conditions (P1)
and (P2), where X* = (X \ {x1}) U {y1}, Y* = (Y \ {1}) U {x1} and H* = G[X*, Y*].

(P1) Y2 € Ng(y1) and X5 C Ng(v1).
(P2) dy+(x1) + dy=(x*) > n for any x* € X* \ {y1} with x1x* & E(G).

Claim 4. There does not exist a violating pair.

Proof. Assume that Y; contains a violating pair (y1, v1). Let X* = (X\ {x:DU{y1}, Y* = (Y\{y1})U{x1} and H* = G[X*, Y*].
Note that {X*, Y*} is a balanced partition of V(G) though we do not know whether it is a maximal partition of G.
By (C2) and (P1), Y, U {v1} € Ng(x3) for each x5 € X, and X; U {y1} € Ng(y3) for each y; € Y,. In particular, we have

o dy+(x3) > n—t + 1 for each x5 € X3, and
o dyx(y3) >n—t+1foreach yj € Y.

Moreover, by (C1) x; € Ng(y1) and hence, by (P1), Y, U {x;} € Ng(y1). In particular.
L] dH*(yl) >n—t+1.

We claim o4,1(H*) > n. Take x* € X* and y* e Y* with x*y* ¢ E(H*). Note X* = (X; \ {x1}) U Xy U {y1} and
Y* = (Y1 \ 1) U Y2 U {x} (see Fig. 3).

If y* € Y1\ {¥1}, then since X; \ {x;} € Ng(y*) by (C1), dy=(y*) >t — 1 and x* ¢ X; \ {x1}. Hence x* € X; U {y;}, which
implies dy+(x*) > n — t + 1. Thus, we have dy+(x*) + dy+(y*) > n.

Ify* € Yo, then dy«(y*) > n—t+ 1. Moreover, since X, € Ng(y*) by (C2) and Y> € Ng(y1) by (P1), we have x* ¢ X, U{y,},
which implies x* € X; \ {x1}. Then Y7 \ {y1} € Ng(x*) and hence dy«(x*) > t — 1. Thus, we have dy«(x*) + dy=(y*) > n.

Finally, if y* = x;, then since y; € Ng(x1), we have x* # y;. Then dy«(x*) + dy+(y*) = dy=(x*) 4+ dy=(x1) > n by (P2).
Therefore, we have o7 1(H*) > n.

Take x; € X5. By (P1), {y1y2, vix2} € E(G) and hence {y1y,, v1x2} € E(H*). Also, x1y, € E(H*) by (C1). By Claim 3, there
exists a vertex u; € Xp \ {x1} with uyx; € E(G), which implies uix; € E(H*).
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Fig. 4. Proof of Claim 5.

Since H*[X1\ {x1}, Y1\ {y1}] = G[Xq1\{x1}, Y1\ {y1}] is a balanced complete bipartite graph, it contains a hamiltonian path
P; joining u; and vy. Also since H*[X5, Y2] = G[Xy, Y] is a balanced complete bipartite graph, it contains a hamiltonian
path P, joining x, and y,. Then u{Pyv1x,P2y,y1x1U is a hamiltonian cycle of H*. This implies that H* is of neither type 1
nor type 2, which is a contradiction. O

Claim 5. Y| > 2.

Proof. Assume the contrary. Then Y, = {y2} and t = [X;| = n — 1. Let X = {xa}. L

Assume Ng(x2) Y1 = 0. Let X = X; U {y2} = (X \ {x2}) U{y2} and Y = Y1 U {x5} = (Y \ {y2}) U {x2}. Then {X, Y} is a
balanced partition of V(G). We have eg(x,, Y) = eg(X2, y2) = 1 by the assumption, eg(y2, X) = eg(y2, x2) = 1 by (C2) and
(C3), ec(x2, X\ {x2}) = ec(x2, X1) = 0 by (%) and ec(y2, Y \ {y2}) = ec(y2, Y1) > 2 by Claim 3. Then by applying Lemma 2 (2)
to X and Y, we have

ec(X,Y) = ec(X, Y) — ec(x2, Y) — ec(y2, X) + ec(x2, X \ {x2}) + ec(v2, Y \ {¥2}) + 2ec(x2, )
>ec(X,Y)—1—-14+04+2+2=r¢c(X,Y)+2.

This contradicts the maximality of {X, Y}. Hence we have Ng(x;) NY; # (. Take v; € Ng(x2) N Y;. By Claim 3, we can take
¥1 € No(y2) N (Y1 \ {v1}) (see Fig. 4).

We claim that (yq, v1) is a violating pair. Since X, = {x,} and Y, = {y,}, y1 and v satisfy (P1). Let X* = (X\ {x1}) U{yi},
Y* = (Y \ {y1}) U {x1} and H* = G[X*, Y*]. By Claim 3, Ng(x;) N (X1 \ {x1}) # @. We also have x;y; € E(G) by (C1) and
hence dH*(X1) > 2.

Let x* € X* \ {y1} = X \ {x1} = (X1 \ {x1}) U {x2} with x;x* ¢ E(G). If x* € X1 \ {x1}, then dy=(x*) > Y1 \ {y1}| =n —2
by (C1) and dy+(x1) + dy+(x*) > 2+ (n—2)=n.

Suppose x* = x,. Then by (), x1x, ¢ E(G) and hence d¢(x1)+ dc(x2) > 2n since 02(G) > 2n. On the other hand, by (C1)
and (C3), e(x1, Y \ {(y1}) = ec(x1, Y1\ {(1}) = [Y1] — 1 = n — 2, and by (x), e(x2, (X1 \ {*1}) U {y1}) = ec(x2,y1) < 1.
Therefore,

dy+(X1) + dy=(x2) = dg(x1) — ec(x1, Y \ {¥1}) + dc(x2) — ec(x2, (X1 \ {x1}) U {y1})
>2n—(n—2)—1=n+1.

Thus, (P2) is satisfied and hence {y;, v¢} is a violating pair. This contradicts Claim 4, and the claim follows. O

Recall X' = (X \ {x1}) U{y,} and Y’ = (Y \ {y2}) U {x1}. Since {X’, Y} is a maximal partition of G by Claim 1, G[X', Y'] is
a graph of type 1 by the assumption. Thus, K s U K, n—s € G[X', Y] € H, n_s for some s with 1 <s <n — 1. Let X] and
Y] be the partite sets of K, ; and X; and Y] be the partite sets of K,_; ,_s, where E¢(Y7, X;) € E(H; 5—s) and E¢(X], Y;) = 0.
Thus, we can apply (C1), (C2) and (C3) to (X}, Y], X;, Y;) instead of (Xq, Y1, Xz, Y2). We may assume X' = X] U X; and
Y =Y,UY)

Claim 6. We have X[ C X, X; S X, U{y2}, Y, C Y], and YJ C Y7 U {xq}.

Proof. Note X = (X' \ {y2})U{x1}and Y = (Y'\ {x1}) U {y2}.
We first prove the following subclaim.

Subclaim. X; N X = 0.

Proof. Assume X; NX; # #, and take x; € X] N X; . We investigate the inclusion relationships between {X;", Y1, X5, Y;'}
and {X;, Y], X), Y;}.

Take v € Y. Then vy # y, and hence v; € Y/ = Y] UY). Since x| € X;, we have x{v; € E(G) by (C1) for (X3, Y1, Xz, Y2).
On the other hand, x| € X{ and hence N¢(x}) N'Y; = @ by (C3) for (X}, Y7, X, Y;). Therefore, we have v; ¢ Y; and hence
vy € Y;. This proves Y; C Y].

Take v, € Y5 . Then v, € Y/ = Y; UY;. Since x| € Xy, v ¢ Ng(x]) by (C3) for (X;, Y1, X2, Y2). On the other hand, since
X7 € X1, we have Y| € Ng(x]) by (C1) for (X7, Y1, X5, 7). These imply v, ¢ Y; and hence v, € Y;. This proves Y;” C Y.
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Fig. 5. Proof of Subclaim.

By Claim 5, |Y,| > 2 and hence Y, # . Take y, € Y, .

Take u; € X; . Then uy € X’ = X; UX]. Since uy € Xy and y,, € Y, uq ¢ Ng(y5) by (C3) for (X3, Y1, X, Y2). On the other
hand, since Y; C Y;, we have X; € Ng(v,) by (C2) for (X1, Y1, X5, Y;). Therefore, we have u; ¢ XJ and hence u; € X. This
proves X, C Xj.

Take u, € X,. Then since uy # X1, u € X' = X[ UXJ. Since y;, € Y,, uy € Ng(y5;) by (C2) for (X1, Y1, Xz, Y2). On the other
hand, since Y, C Y, we have X; N N¢(y,) = @ by (C3) for (X7, Y, X}, Y7). Therefore, we have u, ¢ X; and hence u, € X.
This proves X, C X.

By the definition of Y/, x; € Y’ = Y]UY]. Also, by Claim 3, Ng(x1)NX; # ¢, and since X;” € X}, we have Ng(x1)NX] # @.
On the other hand, since E¢(X7, Y;) = ¥ by (C3) for (X7, Y1, X}, Y;), we have x; ¢ Y;. This implies x; € Y; (see Fig. 5).

At this stage, we have Y U {x;} C Y] and Y; C Y;.Since YUY, =Y =Y; U {x;} UY;, these yield Y; = Y; U {x;}
and Y; = Y, . In particular, |Y;] = |Y; | = n —t — 1. On the other hand, since X, C X;, we have |X/| > [X;] = n —t,
and hence G[X, Y;] is not a balanced bipartite graph. This contradicts the fact that X; and Y] are the partite sets of the
balanced bipartite graph K,_s ,—s. Hence the subclaim follows. O

Since X; € X\ {x} € X' = X{UX] and X{ N X; = @ by Subclaim, we have X; < XJ. Furthermore, since
X] S X' =X; UX; U{y,} and X; NX| =@, we have X; € X, U {y,}.

Assume Y NY; # @ and take y, € Y, NY, . Note X; # ¢ by Claim 3. Take u; € X . Then since X; € X}, u; € Xj.
However, since y, € Y, and uy € X, u1y, ¢ E(G) by (C3) for (X1, Y1, X2, Y2), while since y, € Y; and u; € X}, u1y, € E(G)
by (C2) for (X7, Y7, X5, YJ). This is a contradiction, and hence we have Y, NY, = {.

Since Y, CY\{y,} CY' =Y{UY;and Y; NY] =, we have Y, C Y]. Furthermore, since Y, CY' =Y, UY, U {x{}
and Y; NY, =¢, wehave Y, CY{U{x;}. O

Claim 7. x; €Y, andy, € X].

Proof. Assume x; ¢ YJ. Since x; € Y/ = Y; UY;, we have x; € Y;. Then we have X] € Ng(x1) by (C1) for (X7, Y7, X3, Y5).
Since X; € X, U {y,} by Claim 6, this yields Ng(x1) N (X2 U {y2}) # ¥. On the other hand, since e¢(X;, X;) = 0 by () and
Ec(Xy, Y2) = @ by (C3) for (X1, Y1, Xs, Y2), Ne(x1) N (X2 U {y2}) = @. This is a contradiction, and we have x; € Y..

Note y, € X' = X; UXJ. Since Eg(X1, Y2) = @ by (C3) for (X;, Y1, Xz, Y2), we have y, ¢ Ng(x1). On the other hand, since
x1 € Y}, XJ € Ng(xq) by (C2) for (X, Yy, X, Y5), This implies y, ¢ X and hence y, € X{. O

Claim 8. X| =X, U {y,} and X; = X].

Proof. Since x; € Y; by Claim 7, we have X C Ng(x1) by (C2) for (X1, Y;, X5, Y3). On the other hand, since eg(X;,X2) =0
by () and xy € X3, Ng(x1) N X, = @. These imply X; N X, = ¢.

Note X; UX, = X’ = X; UX, U {y,}. Then since X; € X} by Claim 6, y, € X{ by Claim 7 and X, N X, = @, we have
X;=X; and X; =X, U{y,}. O

Claim 9. We have |Ng(y2) N Yy| = 2. Moreover, Ng(x) N'Y7; = Ng(y2) N'Yq for each x € X,.

Proof of Claim 9. Note Y{UY, =Y’ = Y, UY; U {xq}. Since Y; C Y; by Claim 6 and x; € Y; by Claim 7, we have
Y=Y, U(YinYy))and Y, = (Y \ (Y1 NY])) U fx}.

Take x € X,. Note X, U {yo} = Xj by Claim 8, and hence {x,y,} < Xj. By (C1) and (C3) for (X;, Y{,X;,Y,),
Y] € No(x) N Ng(y2) and Y, N (NG(X) U NG(yz)) = . Since Y; C Y; UYJ, it follows that Ng(x) N Y7 = Ng(y2) N Yy =Y NY].
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Moreover, since X;, = X;” by Claim 8, we have
n=Yil+ X3l = 1Y, [+ Y1 O Y]]+ X[ ]
= (Y2l =D+ YiNY + (X = 1) = Xl + V2| + [Y1 N Y| =2
=n+l|Y;NY[—2,

which yields |Y; N Y]] = 2. Since Ng(x) N Yy = Ng(y2) NY1 = Y1 NY], we obtain the desired conclusion. O
Claim 10. X; € Ng(x1) and Y, € Ng(y2)

Proof. Take u; € X; and v, € Y; . Then by Claim 6, u; € X; and by Claim 7, x; € Y;. Hence we have x;u; € E(G) by (C2)
for (X1, Y1, X3, Y;). Moreover, by Claim 6, v, € Y; and by Claim 7, y, € X]. Hence y,v, € E(G) by (C1) for (X{, Y;, X}, Y;). O

Since x; and y, are arbitrarily chosen from X; and Y5, respectively, under the assumption of (x), Claim 10 tells us that
both G[X;] and G[Y>] are complete graphs.

By Claim 9, [Ng(y2) N Y1| = 2. Hence we let Ng(y2)NY1 = {¥1, v1}. Then Ng(x)NY; = {y1, vy} for every x € X,. Moreover,
since y, is arbitrarily chosen from Y, under the assumption of (x), we can apply Claim 9 to a vertex in X, and arbitrary
vertex in Y, and obtain Ng(v) N Y; = {y;, v1} for every vertex v in Y. Therefore, X; U Yo € Ng(¥1) N Ng(v1).

We now prove that (y, v1) is a violating pair. Since X, UY, C Ng(y1)NNg(vy), it satisfies (P1). Let X* = (X \ {x:})U{y1},
Y* =(Y\{y1})U{x1} and H* = G[X*, Y*].

Take x* e X*\ {y1} =X\ {x1} = (X1 \{xl}) U X, with x*x; ¢ E(G). Since G[X;] is a complete graph, X; \ {x1} € Ny+(x1).
This implies x* ¢ X; \ {x1} and hence x* € X,. Moreover, since x1y; € E(H*), dy«(x1) > |X1 \ {x1}| + 1 = t. On the other
hand, by (C2), Yo € Ny=(x*), which implies dy+(x*) > n — t. Thus, we have dy+(x*) + dy+(x1) > (n — t) + t = n and hence
(P2) holds. Therefore, (y4, v{) is a violating pair. However, this contradicts Claim 4, and the theorem follows. O

3. Concluding remarks

In this paper, we have investigated two degree sum conditions for the existence of a hamiltonian cycle. One of them
is the classical Ore’s Theorem. The other is an extension of the Moon-Moser Theorem, which was proved in [2]. Though
the latter only concerns bipartite graphs, we have proved that it implies Ore’s Theorem.

We do not know the relationship between the Moon-Moser Theorem itself and Ore’s Theorem. Hence we raise the
following question.

Question. For a positive integer n, does every graph G of order 2n with 0»(G) > 2n contain a spanning bipartite subgraph
H with O']ﬁ](H) >n+1?

We believe that the answer to this question is negative. However, we have not found such an example.
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