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a b s t r a c t

The classical Ore’s Theorem states that every graph G of order n ≥ 3 with σ2(G) ≥ n
is hamiltonian, where σ2(G) = min{dG(x) + dG(y): x, y ∈ V (G), x ̸= y, xy /∈ E(G)}.
Recently, Ferrara, Jacobson and Powell (Discrete Math. 312 (2012), 459–461) extended
the Moon–Moser Theorem and characterized the non-hamiltonian balanced bipartite
graphs H of order 2n ≥ 4 with partite sets X and Y satisfying σ1,1(H) ≥ n, where
σ1,1(H) = min{dH (x)+dH (y): x ∈ X, y ∈ Y , xy /∈ E(H)}. Though the latter result apparently
deals with a narrower class of graphs, we prove in this paper that it implies Ore’s
Theorem for graphs of even order.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider finite simple graphs. For standard graph-theoretic notation and terminology not
explained in this paper, we refer the reader to [1]. For v ∈ V (G), let NG(v) and dG(v) denote the neighborhood and the
degree of v in G, respectively. If H is a subgraph of G, we write H ⊆ G. For a graph G and X ⊆ V (G), we denote by G[X]

the subgraph of G induced by X .
Let X and Y be disjoint sets of vertices in G. Then let EG(X, Y ) denote the set of edges e = xy with x ∈ X and y ∈ Y ,

and let eG(X, Y ) = |EG(X, Y )|. Furthermore, G[X, Y ] is the graph defined by V (G[X, Y ]) = X ∪ Y and E(G[X, Y ]) = EG(X, Y ).
Note that G[X, Y ] is a bipartite graph with partite sets X and Y .

When no confusion results, we often identify a singleton set with its element. For example, if x ∈ V (G), we write
eG(x, Y ) instead of eG({x}, Y ). If, in addition, Y = {y}, we write eG(x, y) instead of eG({x}, {y}). Note that the value of eG(x, y)
is either 0 or 1 since we only consider simple graphs.

Degree sum is a topic which has been studied actively in the theory of hamiltonicity. It deals with the minimum sum
of degrees of vertices in certain independent sets and relates with hamiltonian properties of graphs. One of the most
well-known results in this topic is Ore’s Theorem. For a non-complete graph G, we define σ2(G) by

σ2(G) = min{dG(x) + dG(y): x, y ∈ V (G), x ̸= y, xy /∈ E(G)}.

If G is a complete graph, we define σ2(G) = +∞.
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Fig. 1. Graphs of type 1 and type 2.

Theorem A (Ore’s Theorem [4]). For n ≥ 3, every graph G of order n with σ2(G) ≥ n is hamiltonian.

Moon and Moser [3] investigated a degree sum condition for hamiltonicity in bipartite graphs. A bipartite graph is said
to be balanced if its partite sets have the same order. Trivially, a bipartite graph contains a hamiltonian cycle only if it
is balanced. Also, according to the spirit of Ore’s Theorem, it may not be appropriate to incorporate the degree sum of
vertices chosen from the same partite set. Actually, Moon and Moser only considered the degree sum of pairs of vertices
taken from different partite sets. Let G be a bipartite graph with partite sets X and Y . If G is not a complete bipartite
graph, we define σ1,1(G) by

σ1,1(G) = min{dG(x) + dG(y): x ∈ X, y ∈ Y , xy /∈ E(G)}.

If G is a complete bipartite graph, we define σ1,1(G) = +∞.

Theorem B (Moon and Moser [3]). For n ≥ 2, every balanced bipartite graph G of order 2n with σ1,1(G) ≥ n+1 is hamiltonian.

Observing Theorems A and B, we may want to relax the condition σ1,1(G) ≥ n + 1 in Theorem B to σ1,1(G) ≥ n.
However, we cannot do it without allowing exceptions. Let n and t be integers with n ≥ 2 and 1 ≤ t ≤ n − 1. Then
following [2], we define Ht,n−t to be the graph formed from Kt,t ∪ Kn−t,n−t by selecting one partite set of each complete
bipartite graph and adding all possible edges between these sets. Then every graph G with Kt,t ∪ Kn−t,n−t ⊆ G ⊆ Ht,n−t is
a bipartite graph of order 2n and satisfies σ1,1(G) = n, but it is not hamiltonian. Also, let G1 and G2 be the graphs depicted
in Fig. 1. Then Gi (i = 1, 2) is a bipartite graph of order 8 and satisfies σ1,1(Gi) = 4, but it is not hamiltonian.

The above graphs arise as counterexamples if we relax the degree sum condition σ1,1(G) ≥ n + 1 to σ1,1(G) ≥ n.
However, Ferrara, Jacobson and Powell [2] proved that these are the only exceptions.

Theorem C ([2]). Let n be an integer with n ≥ 2 and let G be a balanced bipartite graph of order 2n with σ1,1(G) ≥ n. Then
one of the following holds.

(1) G is hamiltonian.
(2) Kt,t ∪ Kn−t,n−t ⊆ G ⊆ Ht,n−t for some integer t with 1 ≤ t ≤ n − 1.
(3) G is isomorphic to G1 or G2.

In this paper, we study the relationship between Ore’s Theorem and Theorem C. Theorem C only deals with bipartite
graphs, while Ore’s Theorem handles both bipartite and non-bipartite graphs. Apparently, Ore’s Theorem concerns a
broader class of graphs. However, we prove that Theorem C implies Ore’s Theorem. If a graph G of order 2n satisfies
Kt,t ∪ Kn−t,n−t ⊆ G ⊆ Ht,n−t for some t with 1 ≤ t ≤ n − 1, we call G a graph of type 1. Also, we say that a graph G is of
type 2 if G is isomorphic to either G1 or G2. See Fig. 1, where the symbol ‘+ ’ means that every vertex on the left is joined
to every vertex on the right by an edge, while ‘⊕’ means that there may exist an edge joining a vertex on the left and a
vertex on the right.

Theorem 1. Let n be an integer with n ≥ 2 and let G be a graph of order 2n. If σ2(G) ≥ 2n, then G contains a spanning
balanced bipartite graph H such that

(1) σ1,1(H) ≥ n, and
(2) H is of neither type 1 nor type 2.

For a graph of even order satisfying Ore’s condition, Theorem 1 gives more detailed information than the existence of
a hamiltonian cycle.

In the next section, we give a proof to Theorem 1. In Section 3, we give concluding remarks.

2. Proof of Theorem 1

In the subsequent arguments, we frequently use the following observations. The proof is an easy calculation and we
omit it.
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Lemma 2. Let G be a graph and let X and Y be disjoint nonempty subsets of V (G). Let x ∈ X and y ∈ Y . Then

(1) eG(X \ {x}, Y ∪ {x}) = eG(X, Y ) − eG(x, Y ) + eG(x, X \ {x}) and
(2) eG

(
(X \ {x}) ∪ {y}, (Y \ {y}) ∪ {x}

)
= eG(X, Y ) − eG(x, Y ) − eG(y, X) + eG(x, X \ {x}) + eG(y, Y \ {y}) + 2eG(x, y).

A partition {X, Y } of the vertex set V (G) of a graph G of even order is said to be balanced if |X | = |Y | =
1
2 |V (G)|. A

balanced partition {X, Y } is said to be a maximal partition of G if eG(X ′, Y ′) ≤ eG(X, Y ) holds for every balanced partition
{X ′, Y ′

} of V (G). The next lemma acts as a basis of our proof.

Lemma 3. Let G be a graph of even order. Then σ1,1(G[X, Y ]) ≥
1
2σ2(G) holds for every maximal partition {X, Y } of G.

Proof. Let {X, Y } be a maximal partition of G, and let H = G[X, Y ]. Since there is nothing to prove if H is a complete
bipartite graph, we assume that H is not a complete bipartite graph. Let x ∈ X and y ∈ Y with xy /∈ E(H) and
dH (x) + dH (y) = σ1,1(H). Note dH (x) = eG(x, Y ) and dH (y) = eG(y, X).

Let X ′
= (X \ {x}) ∪ {y} and Y ′

= (Y \ {y}) ∪ {x}. By Lemma 2 (2),

eG(X ′, Y ′) = eG(X, Y ) + eG(x, X \ {x}) + eG(y, Y \ {y}) − eG(x, Y ) − eG(y, X).

Since dG(x) = eG(x, X \ {x})+ eG(x, Y ) = eG(x, X \ {x})+ dH (x) and dG(y) = eG(y, Y \ {y})+ eG(y, X) = eG(y, Y \ {y})+ dH (y),
it follows that eG(X ′, Y ′)− eG(X, Y ) = dG(x)+ dG(y)− 2(dH (x)+ dH (y)). Moreover, since {X, Y } is a maximal partition of G,
we have eG(X ′, Y ′) ≤ eG(X, Y ). Therefore, dG(x) + dG(y) − 2(dH (x) + dH (y)) ≤ 0, which yields

2σ1,1(H) = 2(dH (x) + dH (y)) ≥ dG(x) + dG(y) ≥ σ2(G). □

By Lemma 3, if G is a graph of order 2n with σ2(G) ≥ 2n, then σ1,1(G[X, Y ]) ≥ n holds for every maximal partition
{X, Y } of G.

In the proof of Theorem 1, we will find a required graph as G[X, Y ] for some balanced partition {X, Y }. The next lemma
says that when we deal with maximal partitions in the proof, a graph of type 2 does not arise.

Lemma 4. Let G be a graph of order 8 with σ2(G) ≥ 8. Then G[X, Y ] is not a graph of type 2 for any maximal partition {X, Y }

of G.

Proof. Assume G[X, Y ] is a graph of type 2 for some maximal partition {X, Y } of G. Let H = G[X, Y ]. Label the vertices of H
as in G1 in Fig. 1, where possibly the edge x4y4 exists as in G2. We may assume X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4}.

Claim. For each pair of distinct indices i and j with {i, j} ⊆ {1, 2, 3}, eG(xi, X \ {xi}) + eG(yj, Y \ {yj}) = 4.

Proof. Note xiyj /∈ E(G) and eG(xi, Y ) = eG(yj, X) = 2. Let X ′
= (X \ {xi}) ∪ {yj} and Y ′

= (Y \ {yj}) ∪ {xi}. By Lemma 2 (2),

eG(X ′, Y ′) = eG(X, Y ) − eG(xi, Y ) − eG(yj, X) + eG(xi, X \ {xi}) + eG(yj, Y \ {yj})
= eG(X, Y ) + eG(xi, X \ {xi}) + eG(yj, Y \ {yj}) − 4.

Since {X, Y } is a maximal partition, we have eG(X ′, Y ′) ≤ eG(X, Y ), which implies eG(xi, X \ {xi}) + eG(yj, Y \ {yj}) ≤ 4.
Since σ2(G) ≥ 8 and xiyj /∈ E(G), we have dG(xi) + dG(yj) ≥ 8. On the other hand,

dG(xi) + dG(yj) = eG(xi, X \ {xi}) + eG(xi, Y ) + eG(yj, Y \ {yj}) + eG(yj, X)
= eG(xi, X \ {xi}) + eG(yj, Y \ {yj}) + 4.

These imply eG(xi, X \ {xi}) + eG(yj, Y \ {y1}) ≥ 4. Therefore, we have eG(xi, X \ {xi}) + eG(yj, Y \ {yj}) = 4. □

By applying Claim with (i, j) = (1, 2) and (i, j) = (3, 1), we have eG(x1, X \ {x1}) + eG(y2, Y \ {y2}) = 4 and
eG(x3, X \ {x3}) + eG(y1, Y \ {y1}) = 4. By adding them, we have

eG(x1, X \ {x1}) + eG(y1, Y \ {y1}) + eG(x3, X \ {x3}) + eG(y2, Y \ {y2}) = 8.

On the other hand, eG(x3, X \ {x3})+ eG(y2, Y \ {y2}) = 4 by Claim with (i, j) = (3, 2). Therefore, we have eG(x1, X \ {x1})+
eG(y1, Y \ {y1}) = 4.

Now let X ′′
= (X \ {x1}) ∪ {y1} and Y ′′

= (Y \ {y1}) ∪ {x1}, and apply Lemma 2 (2) to (X ′′, Y ′′). Since x1y1 ∈ E(G), we
have

eG(X ′′, Y ′′) = eG(X, Y ) − eG(x1, Y ) − eG(y1, X) + eG(x1, X \ {x1}) + eG(y1, Y \ {y1}) + 2
= eG(X, Y ) − 2 − 2 + 4 + 2 = eG(X, Y ) + 2.

This contradicts the maximality of {X, Y }, and hence the lemma follows. □

We now prove Theorem 1. By Lemmas 3 and 4, if we take a maximal partition {X, Y } in a graph G of order 2n with
σ2(G) ≥ 2n, then σ1,1(G[X, Y ]) ≥ n and G[X, Y ] is not a graph of type 2. Based on this observation, in the proof of
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Fig. 2. Proof of Claim 2.

Theorem 1, we first try to find a maximal partition {X, Y } such that G[X, Y ] is not a graph of type 1. If we find one,
G[X, Y ] is a required spanning subgraph of G. However, in some cases, we fail to find such a maximal partition. If it
happens, we will search for a required partition {X, Y } in the broader set of balanced partitions. In this case, Lemmas 3
and 4 do not help us, and we will give a specific proof to confirm that G[X, Y ] has the required property.

Proof of Theorem 1. Let G be a graph of order 2n with σ2(G) ≥ 2n, and assume G does not satisfy the conclusion. Then
for every balanced partition {X, Y } of G, either σ1,1(G[X, Y ]) < n or G[X, Y ] is a graph of either type 1 or type 2.

Take a maximal partition {X, Y } of G. Then by Lemmas 3 and 4, G[X, Y ] is a graph of type 1, which means Kt,t∪Kn−t,n−t ⊆

G[X, Y ] ⊆ Ht,n−t for some t with 1 ≤ t ≤ n − t . Let X1 and Y1 be the partite sets of Kt,t and X2 and Y2 be the partite sets
of Kn−t,n−t . By symmetry, we may assume EG(Y1, X2) ⊆ E(Ht,n−t ) (see Fig. 1). Then we have

(C1) xy ∈ E(G) for every x ∈ X1 and y ∈ Y1,
(C2) xy ∈ E(G) for every x ∈ X2 and y ∈ Y2, and
(C3) EG(X1, Y2) = ∅.

We may assume X = X1 ∪ X2 and Y = Y1 ∪ Y2.
Now we take arbitrary vertices x1 ∈ X1 and y2 ∈ Y2 and fix them. Also we define X ′, Y ′, X−

1 and Y−

2 by

X ′
=

(
X \ {x1}

)
∪ {y2},

Y ′
=

(
Y \ {y2}

)
∪ {x1},

X−

1 = X1 \ {x1} and
Y−

2 = Y2 \ {y2}.

We will prove a series of claims.

Claim 1. eG(x1, X \ {x1}) + eG(y2, Y \ {y2}) = n, and {X ′, Y ′
} is a maximal partition.

Proof. Note x1y2 /∈ E(G) by (C3). Hence dG(x1)+dG(y2) ≥ 2n by the hypothesis. Also note eG(x1, Y ) = t and eG(y2, X) = n−t
by (C1), (C2), and (C3). Therefore,

eG(x1, X \ {x1}) + eG(y2, Y \ {y2}) = dG(x1) − eG(x1, Y ) + dG(y2) − eG(y2, X)
≥ 2n − t − (n − t) = n.

On the other hand, by Lemma 2 (2),

eG(X ′, Y ′) = eG(X, Y ) − eG(x1, Y ) − eG(y2, X) + eG(x1, X \ {x1}) + eG(y2, Y \ {y2})
= eG(X, Y ) − t − (n − t) + eG(x1, X \ {x1}) + eG(y2, Y \ {y2})
= eG(X, Y ) − n + eG(x1, X \ {x1}) + eG(y2, Y \ {y2}).

Since {X, Y } is a maximal partition, eG(X ′, Y ′) ≤ eG(X, Y ) and hence we have eG(x1, X \ {x1}) + eG(y2, Y \ {y2}) ≤ n. Thus,
we have eG(x1, X \ {x1}) + eG(y2, Y \ {y2}) = n and eG(X ′, Y ′) = eG(X, Y ). In particular, {X ′, Y ′

} is a maximal partition. □

Claim 2. eG(X1, X2) = 0 or eG(Y1, Y2) = 0.

Proof. Assume eG(X1, X2) > 0 and eG(Y1, Y2) > 0. Then there exist vertices u1 ∈ X1, u2 ∈ X2, v1 ∈ Y1 and v2 ∈ Y2 with
u1u2, v1v2 ∈ E(G). Let X̂ = X1 ∪ Y2, Ŷ = Y1 ∪ X2 and Ĥ = G[X̂, Ŷ ]. Note that {X̂, Ŷ } is a balanced partition of V (G) though
we do not know whether it is a maximal partition of G (see Fig. 2).

Take x̂ ∈ X̂ and ŷ ∈ Ŷ with x̂ŷ /∈ E(Ĥ). By (C1) and (C2), Ĥ[X1, Y1] = H[X1, Y1] and Ĥ[Y2, X2] = H[X2, Y2] are balanced
complete bipartite graphs of order 2t and 2(n − t), respectively. Therefore, {x̂, ŷ} ̸⊆ X1 ∪ Y1 and {x̂, ŷ} ̸⊆ X2 ∪ Y2, which
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Fig. 3. H∗ .

imply {x̂, ŷ} ∩ (X1 ∪ Y1) ̸= ∅ and {x̂, ŷ} ∩ (X2 ∪ Y2) ̸= ∅. Hence we have dĤ (x̂) + dĤ (ŷ) ≥ t + (n − t) = n, which implies
σ1,1(Ĥ) ≥ n. Moreover, Ĥ[Xi, Yi] contains a hamiltonian path Pi joining ui and vi for i ∈ {1, 2}. Then u1P1v1v2P2u2u1 is a
hamiltonian cycle in Ĥ . Thus, Ĥ is of neither type 1 nor type 2. This is a contradiction. □

By Claim 2 and the symmetry, we may assume

eG(X1, X2) = 0. (∗)

Claim 3. We have eG(x1, X−

1 ) ≥ 1 and eG(y2, Y1) ≥ 2. In particular, |X1| ≥ 2.

Proof. By Claim 1, eG(x1, X \ {x1}) + eG(y2, Y \ {y2}) = n. Since |Y \ {y2}| = n − 1, we have eG(y2, Y \ {y2}) ≤ n − 1.
Therefore, since eG(X1, X2) = 0 by (∗), eG(x1, X−

1 ) = eG(x1, X \ {x1}) = n − eG(y2, Y \ {y2}) ≥ 1.
Since eG(x1, X \ {x1}) = eG(x1, X1 \ {x1}) ≤ |X1| − 1 = t − 1 and eG(y2, Y2 \ {y2}) ≤ |Y2| − 1 = n − t − 1, we have

n = eG(x1, X \ {x1}) + eG(y2, Y \ {y2})
= eG(x1, X \ {x1}) + eG(y2, Y1) + eG(y2, Y2 \ {y2})
≤ t − 1 + (n − t − 1) + eG(y2, Y1) = n − 2 + eG(y2, Y1),

which yields eG(y2, Y1) ≥ 2. □

For a pair of distinct vertices y1, v1 in Y1, we call (y1, v1) a violating pair if it satisfies the following two conditions (P1)
and (P2), where X∗

= (X \ {x1}) ∪ {y1}, Y ∗
= (Y \ {y1}) ∪ {x1} and H∗

= G[X∗, Y ∗
].

(P1) Y2 ⊆ NG(y1) and X2 ⊆ NG(v1).
(P2) dH∗ (x1) + dH∗ (x∗) ≥ n for any x∗

∈ X∗
\ {y1} with x1x∗

̸∈ E(G).

Claim 4. There does not exist a violating pair.

Proof. Assume that Y1 contains a violating pair (y1, v1). Let X∗
= (X \{x1})∪{y1}, Y ∗

= (Y \{y1})∪{x1} and H∗
= G[X∗, Y ∗

].
Note that {X∗, Y ∗

} is a balanced partition of V (G) though we do not know whether it is a maximal partition of G.
By (C2) and (P1), Y2 ∪ {v1} ⊆ NG(x∗

2) for each x∗

2 ∈ X2 and X2 ∪ {y1} ⊆ NG(y∗

2) for each y∗

2 ∈ Y2. In particular, we have

• dH∗ (x∗

2) ≥ n − t + 1 for each x∗

2 ∈ X2, and
• dH∗ (y∗

2) ≥ n − t + 1 for each y∗

2 ∈ Y2.

Moreover, by (C1) x1 ∈ NG(y1) and hence, by (P1), Y2 ∪ {x1} ⊆ NG(y1). In particular.

• dH∗ (y1) ≥ n − t + 1.

We claim σ1,1(H∗) ≥ n. Take x∗
∈ X∗ and y∗

∈ Y ∗ with x∗y∗ /∈ E(H∗). Note X∗
= (X1 \ {x1}) ∪ X2 ∪ {y1} and

Y ∗
= (Y1 \ {y1}) ∪ Y2 ∪ {x1} (see Fig. 3).
If y∗

∈ Y1 \ {y1}, then since X1 \ {x1} ⊆ NG(y∗) by (C1), dH∗ (y∗) ≥ t − 1 and x∗ /∈ X1 \ {x1}. Hence x∗
∈ X2 ∪ {y1}, which

implies dH∗ (x∗) ≥ n − t + 1. Thus, we have dH∗ (x∗) + dH∗ (y∗) ≥ n.
If y∗

∈ Y2, then dH∗ (y∗) ≥ n−t+1. Moreover, since X2 ⊆ NG(y∗) by (C2) and Y2 ⊆ NG(y1) by (P1), we have x∗ /∈ X2∪{y1},
which implies x∗

∈ X1 \ {x1}. Then Y1 \ {y1} ⊆ NG(x∗) and hence dH∗ (x∗) ≥ t − 1. Thus, we have dH∗ (x∗) + dH∗ (y∗) ≥ n.
Finally, if y∗

= x1, then since y1 ∈ NG(x1), we have x∗
̸= y1. Then dH∗ (x∗) + dH∗ (y∗) = dH∗ (x∗) + dH∗ (x1) ≥ n by (P2).

Therefore, we have σ1,1(H∗) ≥ n.
Take x2 ∈ X2. By (P1), {y1y2, v1x2} ⊆ E(G) and hence {y1y2, v1x2} ⊆ E(H∗). Also, x1y1 ∈ E(H∗) by (C1). By Claim 3, there

exists a vertex u1 ∈ X1 \ {x1} with u1x1 ∈ E(G), which implies u1x1 ∈ E(H∗).
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Fig. 4. Proof of Claim 5.

Since H∗
[X1\{x1}, Y1\{y1}] = G[X1\{x1}, Y1\{y1}] is a balanced complete bipartite graph, it contains a hamiltonian path

P1 joining u1 and v1. Also since H∗
[X2, Y2] = G[X2, Y2] is a balanced complete bipartite graph, it contains a hamiltonian

path P2 joining x2 and y2. Then u1P1v1x2P2y2y1x1u1 is a hamiltonian cycle of H∗. This implies that H∗ is of neither type 1
nor type 2, which is a contradiction. □

Claim 5. |Y2| ≥ 2.

Proof. Assume the contrary. Then Y2 = {y2} and t = |X1| = n − 1. Let X2 = {x2}.
Assume NG(x2) ∩ Y1 = ∅. Let X̂ = X1 ∪ {y2} =

(
X \ {x2}

)
∪ {y2} and Ŷ = Y1 ∪ {x2} =

(
Y \ {y2}

)
∪ {x2}. Then {X̂, Ŷ } is a

balanced partition of V (G). We have eG(x2, Y ) = eG(x2, y2) = 1 by the assumption, eG(y2, X) = eG(y2, x2) = 1 by (C2) and
(C3), eG(x2, X \{x2}) = eG(x2, X1) = 0 by (∗) and eG(y2, Y \{y2}) = eG(y2, Y1) ≥ 2 by Claim 3. Then by applying Lemma 2 (2)
to X̂ and Ŷ , we have

eG(X̂, Ŷ ) = eG(X, Y ) − eG(x2, Y ) − eG(y2, X) + eG(x2, X \ {x2}) + eG(y2, Y \ {y2}) + 2eG(x2, y2)
≥ eG(X, Y ) − 1 − 1 + 0 + 2 + 2 = eG(X, Y ) + 2.

This contradicts the maximality of {X, Y }. Hence we have NG(x2)∩ Y1 ̸= ∅. Take v1 ∈ NG(x2)∩ Y1. By Claim 3, we can take
y1 ∈ NG(y2) ∩ (Y1 \ {v1}) (see Fig. 4).

We claim that (y1, v1) is a violating pair. Since X2 = {x2} and Y2 = {y2}, y1 and v1 satisfy (P1). Let X∗
=

(
X \{x1}

)
∪{y1},

Y ∗
=

(
Y \ {y1}

)
∪ {x1} and H∗

= G[X∗, Y ∗
]. By Claim 3, NG(x1) ∩ (X1 \ {x1}) ̸= ∅. We also have x1y1 ∈ E(G) by (C1) and

hence dH∗ (x1) ≥ 2.
Let x∗

∈ X∗
\ {y1} = X \ {x1} =

(
X1 \ {x1}

)
∪ {x2} with x1x∗ /∈ E(G). If x∗

∈ X1 \ {x1}, then dH∗ (x∗) ≥ |Y1 \ {y1}| = n − 2
by (C1) and dH∗ (x1) + dH∗ (x∗) ≥ 2 + (n − 2) = n.

Suppose x∗
= x2. Then by (∗), x1x2 /∈ E(G) and hence dG(x1)+dG(x2) ≥ 2n since σ2(G) ≥ 2n. On the other hand, by (C1)

and (C3), eG(x1, Y \ {y1}) = eG(x1, Y1 \ {y1}) = |Y1| − 1 = n − 2, and by (∗), eG(x2, (X1 \ {x1}) ∪ {y1}) = eG(x2, y1) ≤ 1.
Therefore,

dH∗ (x1) + dH∗ (x2) = dG(x1) − eG(x1, Y \ {y1}) + dG(x2) − eG(x2, (X1 \ {x1}) ∪ {y1})
≥ 2n − (n − 2) − 1 = n + 1.

Thus, (P2) is satisfied and hence {y1, v1} is a violating pair. This contradicts Claim 4, and the claim follows. □

Recall X ′
=

(
X \ {x1}

)
∪{y2} and Y ′

=
(
Y \ {y2}

)
∪{x1}. Since {X ′, Y ′

} is a maximal partition of G by Claim 1, G[X ′, Y ′
] is

a graph of type 1 by the assumption. Thus, Ks,s ∪ Kn−s,n−s ⊆ G[X ′, Y ′
] ⊆ Hs,n−s for some s with 1 ≤ s ≤ n − 1. Let X ′

1 and
Y ′

1 be the partite sets of Ks,s and X ′

2 and Y ′

2 be the partite sets of Kn−s,n−s, where EG(Y ′

1, X
′

2) ⊆ E(Hs,n−s) and EG(X ′

1, Y
′

2) = ∅.
Thus, we can apply (C1), (C2) and (C3) to (X ′

1, Y
′

1, X
′

2, Y
′

2) instead of (X1, Y1, X2, Y2). We may assume X ′
= X ′

1 ∪ X ′

2 and
Y ′

= Y ′

1 ∪ Y ′

2.

Claim 6. We have X−

1 ⊆ X ′

2, X
′

1 ⊆ X2 ∪ {y2}, Y−

2 ⊆ Y ′

1, and Y ′

2 ⊆ Y1 ∪ {x1}.

Proof. Note X = (X ′
\ {y2}) ∪ {x1} and Y = (Y ′

\ {x1}) ∪ {y2}.
We first prove the following subclaim.

Subclaim. X ′

1 ∩ X−

1 = ∅.

Proof. Assume X ′

1 ∩ X−

1 ̸= ∅, and take x′

1 ∈ X ′

1 ∩ X−

1 . We investigate the inclusion relationships between {X−

1 , Y1, X2, Y−

2 }

and {X ′

1, Y
′

1, X
′

2, Y
′

2}.
Take v1 ∈ Y1. Then v1 ̸= y2 and hence v1 ∈ Y ′

= Y ′

1 ∪Y ′

2. Since x′

1 ∈ X1, we have x′

1v1 ∈ E(G) by (C1) for (X1, Y1, X2, Y2).
On the other hand, x′

1 ∈ X ′

1 and hence NG(x′

1) ∩ Y ′

2 = ∅ by (C3) for (X ′

1, Y
′

1, X
′

2, Y
′

2). Therefore, we have v1 /∈ Y ′

2 and hence
v1 ∈ Y ′

1. This proves Y1 ⊆ Y ′

1.
Take v2 ∈ Y−

2 . Then v2 ∈ Y ′
= Y ′

1 ∪ Y ′

2. Since x′

1 ∈ X1, v2 /∈ NG(x′

1) by (C3) for (X1, Y1, X2, Y2). On the other hand, since
x′

1 ∈ X ′

1, we have Y ′

1 ⊆ NG(x′

1) by (C1) for (X ′

1, Y
′

1, X
′

2, Y
′

2). These imply v2 /∈ Y ′

1 and hence v2 ∈ Y ′

2. This proves Y−

2 ⊆ Y ′

2.
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Fig. 5. Proof of Subclaim.

By Claim 5, |Y2| ≥ 2 and hence Y−

2 ̸= ∅. Take y′

2 ∈ Y−

2 .
Take u1 ∈ X−

1 . Then u1 ∈ X ′
= X ′

1 ∪ X ′

2. Since u1 ∈ X1 and y′

2 ∈ Y2, u1 /∈ NG(y′

2) by (C3) for (X1, Y1, X2, Y2). On the other
hand, since Y−

2 ⊆ Y ′

2, we have X ′

2 ⊆ NG(y′

2) by (C2) for (X ′

1, Y
′

1, X
′

2, Y
′

2). Therefore, we have u1 /∈ X ′

2 and hence u1 ∈ X ′

1. This
proves X−

1 ⊆ X ′

1.
Take u2 ∈ X2. Then since u2 ̸= x1, u2 ∈ X ′

= X ′

1 ∪X ′

2. Since y′

2 ∈ Y2, u2 ∈ NG(y′

2) by (C2) for (X1, Y1, X2, Y2). On the other
hand, since Y−

2 ⊆ Y ′

2, we have X ′

1 ∩ NG(y′

2) = ∅ by (C3) for (X ′

1, Y
′

1, X
′

2, Y
′

2). Therefore, we have u2 /∈ X ′

1 and hence u2 ∈ X ′

2.
This proves X2 ⊆ X ′

2.
By the definition of Y ′, x1 ∈ Y ′

= Y ′

1∪Y ′

2. Also, by Claim 3, NG(x1)∩X−

1 ̸= ∅, and since X−

1 ⊆ X ′

1, we have NG(x1)∩X ′

1 ̸= ∅.
On the other hand, since EG(X ′

1, Y
′

2) = ∅ by (C3) for (X ′

1, Y
′

1, X
′

2, Y
′

2), we have x1 /∈ Y ′

2. This implies x1 ∈ Y ′

1 (see Fig. 5).
At this stage, we have Y1 ∪ {x1} ⊆ Y ′

1 and Y−

2 ⊆ Y ′

2. Since Y ′

1 ∪ Y ′

2 = Y ′
= Y1 ∪ {x1} ∪ Y−

2 , these yield Y ′

1 = Y1 ∪ {x1}
and Y ′

2 = Y−

2 . In particular, |Y ′

2| = |Y−

2 | = n − t − 1. On the other hand, since X2 ⊆ X ′

2, we have |X ′

2| ≥ |X2| = n − t ,
and hence G[X ′

2, Y
′

2] is not a balanced bipartite graph. This contradicts the fact that X ′

2 and Y ′

2 are the partite sets of the
balanced bipartite graph Kn−s,n−s. Hence the subclaim follows. □

Since X−

1 ⊆ X \ {x1} ⊆ X ′
= X ′

1 ∪ X ′

2 and X ′

1 ∩ X−

1 = ∅ by Subclaim, we have X−

1 ⊆ X ′

2. Furthermore, since
X ′

1 ⊆ X ′
= X−

1 ∪ X2 ∪ {y2} and X−

1 ∩ X ′

1 = ∅, we have X ′

1 ⊆ X2 ∪ {y2}.
Assume Y ′

2 ∩ Y−

2 ̸= ∅ and take y′

2 ∈ Y ′

2 ∩ Y−

2 . Note X−

1 ̸= ∅ by Claim 3. Take u1 ∈ X−

1 . Then since X−

1 ⊆ X ′

2, u1 ∈ X ′

2.
However, since y′

2 ∈ Y−

2 and u1 ∈ X−

1 , u1y′

2 /∈ E(G) by (C3) for (X1, Y1, X2, Y2), while since y′

2 ∈ Y ′

2 and u1 ∈ X ′

2, u1y′

2 ∈ E(G)
by (C2) for (X ′

1, Y
′

1, X
′

2, Y
′

2). This is a contradiction, and hence we have Y ′

2 ∩ Y−

2 = ∅.
Since Y−

2 ⊆ Y \ {y2} ⊆ Y ′
= Y ′

1 ∪ Y ′

2 and Y−

2 ∩ Y ′

2 = ∅, we have Y−

2 ⊆ Y ′

1. Furthermore, since Y ′

2 ⊆ Y ′
= Y1 ∪ Y−

2 ∪ {x1}
and Y−

2 ∩ Y ′

2 = ∅, we have Y ′

2 ⊆ Y1 ∪ {x1}. □

Claim 7. x1 ∈ Y ′

2 and y2 ∈ X ′

1.

Proof. Assume x1 /∈ Y ′

2. Since x1 ∈ Y ′
= Y ′

1 ∪ Y ′

2, we have x1 ∈ Y ′

1. Then we have X ′

1 ⊆ NG(x1) by (C1) for (X ′

1, Y
′

1, X
′

2, Y
′

2).
Since X ′

1 ⊆ X2 ∪ {y2} by Claim 6, this yields NG(x1) ∩ (X2 ∪ {y2}) ̸= ∅. On the other hand, since eG(X1, X2) = 0 by (∗) and
EG(X1, Y2) = ∅ by (C3) for (X1, Y1, X2, Y2), NG(x1) ∩ (X2 ∪ {y2}) = ∅. This is a contradiction, and we have x1 ∈ Y ′

2.
Note y2 ∈ X ′

= X ′

1 ∪ X ′

2. Since EG(X1, Y2) = ∅ by (C3) for (X1, Y1, X2, Y2), we have y2 /∈ NG(x1). On the other hand, since
x1 ∈ Y ′

2, X
′

2 ⊆ NG(x1) by (C2) for (X ′

1, Y
′

1, X
′

2, Y
′

2), This implies y2 /∈ X ′

2 and hence y2 ∈ X ′

1. □

Claim 8. X ′

1 = X2 ∪ {y2} and X ′

2 = X−

1 .

Proof. Since x1 ∈ Y ′

2 by Claim 7, we have X ′

2 ⊆ NG(x1) by (C2) for (X ′

1, Y
′

1, X
′

2, Y
′

2). On the other hand, since eG(X1, X2) = 0
by (∗) and x1 ∈ X1, NG(x1) ∩ X2 = ∅. These imply X ′

2 ∩ X2 = ∅.
Note X ′

1 ∪ X ′

2 = X ′
= X−

1 ∪ X2 ∪ {y2}. Then since X−

1 ⊆ X ′

2 by Claim 6, y2 ∈ X ′

1 by Claim 7 and X ′

2 ∩ X2 = ∅, we have
X ′

2 = X−

1 and X ′

1 = X2 ∪ {y2}. □

Claim 9. We have |NG(y2) ∩ Y1| = 2. Moreover, NG(x) ∩ Y1 = NG(y2) ∩ Y1 for each x ∈ X2.

Proof of Claim 9. Note Y ′

1 ∪ Y ′

2 = Y ′
= Y1 ∪ Y−

2 ∪ {x1}. Since Y−

2 ⊆ Y ′

1 by Claim 6 and x1 ∈ Y ′

2 by Claim 7, we have
Y ′

1 = Y−

2 ∪ (Y1 ∩ Y ′

1) and Y ′

2 =
(
Y1 \ (Y1 ∩ Y ′

1)
)
∪ {x1}.

Take x ∈ X2. Note X2 ∪ {y2} = X ′

1 by Claim 8, and hence {x, y2} ⊆ X ′

1. By (C1) and (C3) for (X ′

1, Y
′

1, X
′

2, Y
′

2),
Y ′

1 ⊆ NG(x) ∩ NG(y2) and Y ′

2 ∩
(
NG(x) ∪ NG(y2)

)
= ∅. Since Y1 ⊆ Y ′

1 ∪ Y ′

2, it follows that NG(x) ∩ Y1 = NG(y2) ∩ Y1 = Y1 ∩ Y ′

1.
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Moreover, since X ′

2 = X−

1 by Claim 8, we have

n = |Y ′

1| + |X ′

2| = |Y−

2 | + |Y1 ∩ Y ′

1| + |X−

1 |

= (|Y2| − 1) + |Y1 ∩ Y ′

1| + (|X1| − 1) = |X1| + |Y2| + |Y1 ∩ Y ′

1| − 2
= n + |Y1 ∩ Y ′

1| − 2,

which yields |Y1 ∩ Y ′

1| = 2. Since NG(x) ∩ Y1 = NG(y2) ∩ Y1 = Y1 ∩ Y ′

1, we obtain the desired conclusion. □

Claim 10. X−

1 ⊆ NG(x1) and Y−

2 ⊆ NG(y2)

Proof. Take u1 ∈ X−

1 and v2 ∈ Y−

2 . Then by Claim 6, u1 ∈ X ′

2 and by Claim 7, x1 ∈ Y ′

2. Hence we have x1u1 ∈ E(G) by (C2)
for (X ′

1, Y
′

1, X
′

2, Y
′

2). Moreover, by Claim 6, v2 ∈ Y ′

1 and by Claim 7, y2 ∈ X ′

1. Hence y2v2 ∈ E(G) by (C1) for (X ′

1, Y
′

1, X
′

2, Y
′

2). □

Since x1 and y2 are arbitrarily chosen from X1 and Y2, respectively, under the assumption of (∗), Claim 10 tells us that
both G[X1] and G[Y2] are complete graphs.

By Claim 9, |NG(y2) ∩ Y1| = 2. Hence we let NG(y2)∩Y1 = {y1, v1}. Then NG(x)∩Y1 = {y1, v2} for every x ∈ X2. Moreover,
since y2 is arbitrarily chosen from Y2 under the assumption of (∗), we can apply Claim 9 to a vertex in X2 and arbitrary
vertex in Y2 and obtain NG(v) ∩ Y1 = {y1, v1} for every vertex v in Y2. Therefore, X2 ∪ Y2 ⊆ NG(y1) ∩ NG(v1).

We now prove that (y1, v1) is a violating pair. Since X2 ∪Y2 ⊆ NG(y1)∩NG(v1), it satisfies (P1). Let X∗
= (X \{x1})∪{y1},

Y ∗
= (Y \ {y1}) ∪ {x1} and H∗

= G[X∗, Y ∗
].

Take x∗
∈ X∗

\ {y1} = X \ {x1} =
(
X1 \ {x1}

)
∪ X2 with x∗x1 /∈ E(G). Since G[X1] is a complete graph, X1 \ {x1} ⊆ NH∗ (x1).

This implies x∗ /∈ X1 \ {x1} and hence x∗
∈ X2. Moreover, since x1y1 ∈ E(H∗), dH∗ (x1) ≥ |X1 \ {x1}| + 1 = t . On the other

hand, by (C2), Y2 ⊆ NH∗ (x∗), which implies dH∗ (x∗) ≥ n − t . Thus, we have dH∗ (x∗) + dH∗ (x1) ≥ (n − t) + t = n and hence
(P2) holds. Therefore, (y1, v1) is a violating pair. However, this contradicts Claim 4, and the theorem follows. □

3. Concluding remarks

In this paper, we have investigated two degree sum conditions for the existence of a hamiltonian cycle. One of them
is the classical Ore’s Theorem. The other is an extension of the Moon–Moser Theorem, which was proved in [2]. Though
the latter only concerns bipartite graphs, we have proved that it implies Ore’s Theorem.

We do not know the relationship between the Moon–Moser Theorem itself and Ore’s Theorem. Hence we raise the
following question.

Question. For a positive integer n, does every graph G of order 2n with σ2(G) ≥ 2n contain a spanning bipartite subgraph
H with σ1,1(H) ≥ n + 1?

We believe that the answer to this question is negative. However, we have not found such an example.
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