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Abstract
A family of finite sets is called union-closed if it contains the union of any two sets
in it. The Union-Closed Sets Conjecture of Frankl from 1979 states that each union-
closed family contains an element that belongs to at least half of the members of
the family. In this paper, we study structural properties of union-closed families. It is
known that under the inclusion relation, every union-closed family forms a lattice. We
call two union-closed families isomorphic if their corresponding lattices are isomor-
phic. Let F be a union-closed family and

⋃
F∈F F be the universe of F . Among all

union-closed families isomorphic to F , we develop an algorithm to find one with a
maximum universe, and an algorithm to find one with a minimum universe. We also
study properties of these two extremal union-closed families in connection with the
Union-Closed Set Conjecture. More specifically, a lower bound of sizes of sets of a
minimum counterexample to the dual version of the Union-Closed Sets Conjecture is
obtained.
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1 Introduction

In this paper, we use calligraphic letters A,B, . . . to denote families of sets, capital
letters A, B, . . . to denote set members of a set family, and lowercase letters a, b, . . .
to denote elements in a set. Let F be a family of sets. The universe XF of F is
∪F∈F F . A family of sets is called finite if |XF | < ∞, which in turn gives |F | < ∞.
We call F union-closed if A ∪ B ∈ F whenever A, B ∈ F . For any x ∈ XF ,
let Fx = {F ∈ F : x ∈ F} be the subfamily of sets containing x . The following
conjecture is commonly attributed to Frankl in 1979 [7].

Conjecture 1 (Union-closed sets Conjecture [7]) For any finite union-closed familyF
with F �= {∅}, there is an element x ∈ XF such that |Fx | ≥ |F |/2.

The conjecture has drawn a lot of attention recently and is still wide open. Knill
[8] proved that for any union-closed family F with |F | = m, there is some element
contained in at least m

log2 m
members ofF .Wójcik [11] improved this by amultiplicative

constant. Reimer [9] proposed an up compression argument to obtain a sharp lower
bound on the average set size of Fx as a function of |F |. Roberts and Simpson [10]
showed that if F is a counterexample with |XF | minimum, then |F | ≥ 4|XF | − 1.
Bruhn, Charbit, and Telle [2] showed that Frankl’s conjecture is equivalent to the
conjecture that in a finite non-trivial bipartite graph there are two adjacent vertices
each belonging to at most half of the maximal stable sets. They also showed that
some special class of bipartite graphs satisfies this bipartite graph property. Bruhn
and Schaudt [3] showed that for every fixed edge-probability, almost every random
bipartite graph almost surely satisfies Frankl’s conjecture. Balla, Bollobás, and Eccles
[1] determined the minimum average size of a union-closed family consisting of m
subsets of a universewith n elements precisely, verifying a conjecture ofCzédli,Maróti
and Schmidt [5]. Consequently, they proved that the Union-Closed Sets Conjecture
holds if m ≥ 2

32
n . Falgas-Ravry [6] improved Reimer’s bound with the help of some

additional information about XF . We refer to Bruhn and Schaudt [4] for literature and
recent results on the conjecture.

If in a familyF of sets, there are two elements x and y such thatFx = Fy , then we
can remove x or y to simplify our consideration. We callF separating ifFx �= Fy for
any two distinct elements x , y ∈ XF . In this paper, we consider separating families
of sets that contain the empty set ∅.

In his work on improving Knill’s lower bound, Wójcik [11] considered the dual of
a union-closed family. Given a family of sets B, we denote by 〈B〉 the union-closed
family generated by B, i.e.,

〈B〉 = {A : A = ∪B∈CB for some C ⊆ B}.

Given a union-closed familyF , the union-closed familyF∗ = 〈{Fx : x ∈ XF }〉∪{∅}
is called the dual family ofF , whereFx is viewed as a set and the sets inFx are viewed
as elements when considering the fual family. For each X ∈ F , let F�X = {F ∈ F :
F � X}. Notice that the Fx sets are distinct since Fx = Fy would contradict the
assumption that F is separating. For each x ∈ XF , let Fx = ⋃

F∈F : x /∈F F . Since
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∅ ∈ F , Fx is well defined. Since F is union-closed, Fx is the maximal set of F not
containing x . By the maximality of Fx , we haveFx = F�Fx . Moreover, we will show
in Sect. 3 that the dual F∗ = {F�F : F ∈ F}. Combining with ∅ ∈ F , we have

|XF∗ | = |F | − 1. Thus, |F∗| = |F | = |XF∗ | + 1. Based on this observation, we call
a union-closed family F normal if |F | = |XF | + 1.

A setG in a union-closed familyF is called a generator ifG is not the union of two
proper subsets in F . We denote by G(F) the family of all generators in F . Following
Bruhn and Schaudt [4], we call a generator G of a union-closed family F abundant
if |G| ≥ |F |/2. Wójcik made the following conjecture and showed its equivalence to
Conjecture 1.

Conjecture 2 Every normal union-closed family F contains an abundant generator

The inclusion relation of a family F of sets yields a poset on F . Moreover, if the
family is union-closed, the generated poset is a lattice—a poset in which every pair of
elements A and B has a unique least upper bound A ∨ B and a unique greatest lower
bound A∧ B. More specifically, for every pair of sets A and B in any given separating
union-closed family F , we have A ∨ B = A ∪ B and A ∧ B = ∪F∈F :F⊆A∩B F . Two
union-closed familiesF andH are isomorphic if their corresponding generated lattices
are isomorphic. We will show that, under isomorphism, a union-closed family F is
normal if and only if |XF | is maximum. We call a union-closed family F irreducible
if |XF | is minimum among all isomorphic union-closed families. In Sect. 2, we show
that by adding new elements to some sets, we can transform, up to isomorphism, a
union-closed set to a normal family, and by deleting some elements from some sets,
we can transform, up to isomorphism, a union-closed set to an irreducible family.
In Sect. 3, we study the relationship between a union-closed family and its dual. In
Sect. 4, wewill show some properties ofminimumcounterexamples to the dual version
of Conjecture 1. We start with some elementary properties of a union-closed family
in the next section.

2 Enlarging and Reducing Universes

Let F be a separating union-closed family. Recall that for each x ∈ XF , Fx is the
unique maximal set in F not containing x . Let fF be the mapping from XF to F
defined by fF (x) = Fx for all x ∈ XF . As F is separating, Fx �= Fy for any two
distinct elements x, y ∈ XF . So, fF is injective.

For any two sets F,G ∈ F , we call G a parent of F and F a child of G if F � G
and H ∈ F with F ⊆ H ⊆ G implies that either H = F or H = G. Clearly, every
F ∈ F with F �= XF has a parent. A set F ∈ F is called a single-parent set if it has
only one parent.

Lemma 1 Let F be a union-closed family. If F is a single-parent set and G is the
parent of F, then |G − F | = 1. Moreover, if x is the unique element in G − F, then
F = Fx .
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Proof Suppose to the contrary that there are two distinct elements x, y ∈ G−F . Then
Fx = Fy . For otherwise there exists a set X ∈ F such that x ∈ X and y /∈ X , or there
exists a set X ∈ F such that y ∈ X and x /∈ X ; we may assume the former. Clearly,
X ∪ F ⊃ F . Since y ∈ G and y /∈ X , we have G � X ∪ F . So, F has another parent
H ⊆ X∪F , different fromG. This contradicts the assumption that F is a singe-parent
set.

Let x be the unique element in G − F . Since x /∈ F , F ⊆ Fx . Then F = Fx . For
otherwise F has a parent H with x /∈ H . So, F has two parentsG and H , contradicting
that F is a single-parent set. ��

Let F be a union-closed family. Denote by ΦF the subfamily of all single-parent
sets. By Lemma 1, |XF | ≥ |ΦF |. So, if |XF | = |ΦF |, then |XF | is minimum among
all union-closed families isomorphic to F . In this case, we call F irreducible. On the
other hand, if F is normal, then |XF | = |F | − 1. So, for every F ∈ F with F �= XF ,
there exists an x ∈ XF such that F = Fx . Clearly, in this case, |XF | is maximum
among all union-closed families isomorphic to F . If F is not a normal family, then
there exists a set A ∈ F such that A �= Fx for all x /∈ XF . The following result
provides an algorithm that adds a new element to XF and maintains the same laddice
structure until the family becomes normal.

Theorem 1 Let F be a non-normal union-closed family and let A ∈ F such that
A �= Fx for all x ∈ XF . Let y be an element not in XF . IfH is a family consisting of
F ∈ F if F ⊆ A and F ∪ {y} otherwise, then,H is a union-closed family isomorphic
to F .

Proof LetH be a family consisting of F ∈ F if F ⊆ A and F∪{y}otherwise.Weclaim
that G ∪ H ∈ H for any two sets G, H ∈ H by considering two cases. Suppose first
that y /∈ G∪H . In this case, we have both G, H ∈ F , which in turn gives G∪H ∈ F
sinceF is union-closed. By the definition ofH, we haveG∪H ∈ H since y /∈ G∪H .
Suppose next that y ∈ G∪H . SinceG− y, H − y ∈ F , (H− y)∪(G− y) ∈ F . Since
y ∈ G∪ H , by symmetry we may assume y ∈ H . By the definition ofH, H − y � A,
so G ∪ H − y = (G − y) ∪ (H − y) � A. Hence, G ∪ H = (G − y) ∪ (H − y) ∪ {y}
is a set inH.

Moreover, it is easy to verify that G ⊂ H if and only if G − y ⊂ H − y since
y /∈ XF . Hence, the lattices generated by F and H are isomorphic. We note that
A = Hy , which is the maximal set not containing y in H. So, H is a separating
union-closed set family. ��

We now turn our attention to reducing the universe of a union-closed family. For
a union-closed family F and an element x ∈ XF , let F−x = {F − {x} : F ∈ F}.
The following theorem provides an algorithm that deletes elements and maintains
the same laddice structure until the family becomes irreducible. For example, let
F = {∅, {1}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}. Clearly, F4 = {1} is not a single-parent
set. F−4 = {∅, {1}, {1, 2, }, {1, 3, }, {1, 2, 3, }} is isomophic to F , and irreducible.

Theorem 2 If a union-closed family F is not irreducible, then there exists an element
x ∈ XF such that F−x is isomorphic to F .
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Proof Since F is not irreducible, there exists an x ∈ XF such that Fx is not a single-
parent set, i.e., Fx /∈ ΦF .We claim thatF−x is isomorphic toF . Letψ be themapping
from F to F−x defined by ψ(F) = F − x for every F ∈ F . We will show that ψ is
a bijection and preserves the inclusion relation of F .

We first show that ψ is a bijection. Clearly, ψ is an onto mapping, so we only need
to show it is an injection. Suppose on the contrary that there exist A, B ∈ F with
A �= B such that A − x = B − x . Then, we have either A = B − x or B = A − x .
By symmetry, we assume A = B − x . Since x /∈ A, A ⊆ Fx by the maximality of
Fx . Since B = A∪ {x}, we have Fx ∪ B = Fx ∪ (A∪ {x}) = Fx ∪ {x} ∈ F , which in
turn shows that Fx ∪ B is a parent of Fx . Since Fx /∈ ΦF , it has another parent G. By
the definition of parent, we have Fx ⊂ G and Fx ∪ {x} �⊂ G. So, x /∈ G, which gives
a contradiction to the maximality of Fx .

We now show that ψ preserves the inclusion relation of F . For any two distinct
sets A, B ∈ F , we will show that A � B if and only if A − x � B − x . We first
assume A � B, which gives A − x ⊆ B − x . Since ψ is a bijection, the equality
does not hold, so A − x � B − x . Conversely, suppose A − x � B − x . In this case,
if A �⊂ B, then we have x ∈ A and x /∈ B. Since x /∈ B, we have B ⊆ Fx . Since
A−x � B ⊆ Fx , Fx ∪{x} = (Fx ∪(A−x))∪{x} = Fx ∪ A. SinceF is union-closed,
we have Fx ∪{x} ∈ F . So, Fx ∪{x} is a parent of Fx . Since Fx /∈ ΦF , Fx has another
parent G. If x ∈ G, then G ⊃ Fx ∪{x}, contradicting G is a parent of F . Thus, x /∈ G,
contradicting that Fx is the maximum set in F not containing x . ��
Corollary 1 A union-closed family F can be reduced to an irreducible isomorphic
union-closed family Γ by consecutively removing vertices x ∈ XF with Fx /∈ ΦF .

3 Duality and Normality

Let F be a union-closed family. Recall that the dual F∗ of F is the union-closed
family generated by {Fx : x ∈ XF }, where Fx = {F ∈ F : x ∈ F} for x ∈ XF . In
this section, we give a complete description of the sets in F∗ and use this to give a
characterization of normal families in terms of its dual families, as well as in terms of
generators. Recall that, under the inclusion relation, a union-closed family F forms a
lattice, where A ∧ B denotes the greatest lower bound of A and B for any A, B ∈ F .
Clearly, A ∧ B = ∪F∈F :F⊆A∩B F . Since we assume ∅ ∈ F , A ∧ B is well-defined.
As noticed before, by the maximality of Fx , Fx = F�Fx .

Lemma 2 If F is a union-closed family, then for any F, G ∈ F , F�F ∪ F�G

= F�F∧G. This implies that {F⊆F : F ∈ F} is union-closed since F ∧ G ∈ F .

Proof Let H = F ∧ G. Since H ⊆ F and H ⊆ G, we have F�H ⊇ F�F ∪
F�G . To prove equality, suppose for a contradiction that there exists a set A ∈ F�H

− F�F ∪ F�G . Since A ∈ F�H , A � H . So, A ∪ H contains H as a proper subset.
Since A /∈ F�F ∪ F�G , we have A ⊆ F and A ⊆ G, that is, A ⊆ F ∩ G. So,
A ∪ H ⊆ F ∩ G, contradicting that H = F ∧ G. ��
Theorem 3 For any union-closed family F , we have F∗ = {F�F : F ∈ F}.
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Proof LetH = {F�F : F ∈ F}. By Lemma 2,H is union-closed. Since F�XF = ∅,
we have ∅ ∈ H. Since Fx = F�Fx for every x ∈ XF and F∗ = 〈{Fx : x ∈ XF }〉, by
Lemma 2, F∗ ⊆ H. We will show that equality holds.

Let F ∈ F and X = {x : F ⊆ Fx }. We claim F = ∧x∈X Fx , which in turn shows
F�F = ∪x∈XF�Fx ∈ F∗ and completes the proof.

Let Y = XF −X . For each y ∈ Y , since F � Fy , we have y ∈ F by themaximality
of Fy . So, Y ⊆ F . On the other hand, for each z ∈ F , we have F � Fz , so z ∈ Y .
Hence, F = Y . Since F ⊆ Fx for each x ∈ F , we have F ⊆ ∧x∈X Fx . On the
other hand, for each x ∈ X , since x /∈ Fx , we have x /∈ ∧z∈X Fz . Consequently,
Y ⊇ ∧x∈X Fx . So, F = Y = ∧x∈X Fx . ��

Corollary 2 A union-closed family F is normal if and only if F∗ = {Fx : x ∈ XF } ∪
{∅}.

Proof By Theorem 3, we have |F∗| = |{F�F : F ∈ F}| = |F |. By the definition
of normal families, {Fx : x ∈ XF } ∪ {∅} ⊆ F∗. So, equality holds if and only if
|XF | + 1 = |F |, i.e., if and only if F is normal. ��

Recall that a generator G of F is a set in F that cannot be expressed as the union
of two proper subsets in F , and that G(F) denotes the subfamily of all generators of
F . For each x ∈ XF , let G(F)x denote the family of all generators containing x .

Lemma 3 Let F be a union-closed family and let x, y and z be three elements of XF .
Then, Fz = Fx ∪ Fy if and only if G(F)z = G(F)x ∪ G(F)y .

Proof We first show the “only if part”. Suppose Fz = Fx ∪ Fy . Then for every
F ∈ F , z ∈ F if and only if x ∈ F or y ∈ F . This especially holds for every generator
F ∈ G(F), so G(F)z = G(F)x ∪ G(F)y .

To show the “if” part, we assume G(F)z = G(F)x ∪G(F)y , so G(F)z ⊇ G(F)x
and G(F)z ⊇ G(F)y . We claim Fz ⊆ Fx . Suppose not. Then x ∈ Fz . Let G ⊆ Fz
be a generator with x ∈ G. Then, G ∈ G(F)x − G(F)z giving a contradiction
to G(F)z ⊆ G(F)x . Similarly, we have Fz ⊆ Fy . So, Fz ⊆ Fx ∧ Fy . We claim
that equality holds. Suppose not. Then Fz ⊂ Fx ∧ Fy . By the maximality of Fz ,
we have z ∈ Fx ∧ Fy . So, there is a generator G ⊆ Fx ∩ Fy containing z. Since
G ⊆ Fx ∧ Fy ⊆ Fx ∩ Fy , x, y /∈ G. So G /∈ G(F)x ∪ G(F)y . Since z ∈ G, we have
G ∈ G(F)z , giving a contradiction to G(F)z = G(F)x ∪G(F)y . On the other hand,
by Lemma 2, Fz = Fx ∪ Fy if and only if Fz = Fx ∧ Fy . The proof is completed. ��

Theorem 4 A union-closed familyF is normal if and only if {G(F)x : x ∈ XF }∪{∅}
is union-closed.

Proof By Corollary 2,F is normal if and only ifF∗ = {Fx : x ∈ XF }∪ {∅}, which is
equivalent to that {Fx : x ∈ XF }∪{∅} is union-closed. By Lemma 3, this is equivalent
to {G(F)x : x ∈ XF } ∪ {∅} is union-closed. ��
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4 Generators in Minimal Counterexamples to Conjecture 2

Conjecture 2 claims that every nontrivial normal union-closed family has an abundant
generator. As mentioned in the introduction, the sizes |F | and |XF | of minimal coun-
terexamples to Conjecture 1 have been actively studied. In this section, we study the
size of nontrivial sets in a minimum counterexample to Conjecture 2.

Theorem 5 IfF is a counterexample toConjecture2with |XF |minimum, then |F | ≥ 7
for all F ∈ F with F �= ∅.
Proof Let F be a union-closed family with no heavy generator and |XF | is the min-
imum under this assumption. Denote F = {F1, F2, . . . , Fn+1} such that Fi is the
maximal set in F not containing i for each i = 1, 2, . . . , n + 1, where F1 = ∅ and
Fn+1 = XF = {1, 2, . . . , n}. Moreover, we assume that F2 = [1, k + 1] − {2} is an
arbitrary generator. We will show that k ≥ 7, which will complete the proof.

Recall F⊇F2 = {F ∈ F : F ⊇ F2}. Clearly, F⊇F2 = {Fi : i /∈ F2 ∪ {2}}. Let
L = {F − F2 : F ∈ F⊇F2}. We have |L| = n+ 1− k and F2 becomes the empty set.
Since (Fi −F2)∪(Fj −F2) = Fi ∪Fj −F2 for any two Fi , Fj ∈ F ,L is union-closed.
Moreover, for any two distinct sets Fi , Fj ⊇ F2, we have Fi − F2 �= Fi − F2. So, L
is normalized.

By the minimality of F , L has a generator G with |G| ≥ n+1−k
2 . Let G ′ = G ∪ F2.

If G ′ is a generator in F , then we are done. So, it is not.

Claim There is j ∈ F2 such that G ′ = F2 ∪ Fj . Moreover, one can choose such j
with the property that Fj is a generator in F .

Proof Since G ′ is not a generator in F , there are incomparable sets B1, B2 ∈ F such
that G ′ = B1 ∪ B2. Furthermore, since G is a generator in L, we may assume that
B2 /∈ F⊇F2 .

Case 1: B1 /∈ F⊇F2 . For j = 1, 2, let C j = F2 ∪ Bj . Since B1, B2 ⊆ G ′ and
F2 ⊂ G ′, C1,C2 ⊆ G ′. If at least one of C1 and C2 is G ′, then we are done.
Otherwise, G = (C1 − F2) ∪ (C2 − F2), giving a contradiction to the fact
that G is a generator in L.

Case 2: B1 ∈ F⊇F2 − {F2}. Let C2 = F2 ∪ B2. If C2 = G ′, then we are done.
Otherwise, Y = (B1 − F2) ∪ (C2 − F2), giving a contradiction to the fact
that G is a generator in L.

This proves that there is j ∈ F2 such that G ′ = F2∪ Fj . Among all such Fj choose
one of the smallest size. If it is a generator in F , then we are done. Otherwise, there
are noncomparable B1, B2 /∈ F⊇F2 such that Fj = B1 ∪ B2. For j = 1, 2, let C j

= F2∪Bj . By theminimality of |Fj |,C1 �= G ′ �= C2. ThenG = (C1−F2)∪(C2∪F2),
giving a contradiction to the fact that it is a generator in F⊇F2 . ��

Since F − F⊇F2 contains Fj not contained in F2, k ≥ 2. Let F3 be a largest
generator Fj not contained in F⊇F2 such that G ′ = F2 ∪ Fj . Since 1 ∈ F3, |F3|
≥ 1 + |G| ≥ n−k+3

2 . Since F is a counterexample, −k + 3 ≤ 0, i.e. k ≥ 3.

Claim k ≥ 5.
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If |F3 ∩ F2| ≥ 2, then |F3| ≥ 2 + |G| ≥ n−k+5
2 , which yields k ≥ 5. So, suppose

F3 ∩ F2 = {1}. Then, for each j ∈ F2 − {1, 3}, F3 ⊂ Fj . Since k ≥ 3, there exists at
least one such set Fj . So, the smallest among such sets Fj is a generator in F and has
size at least |F3| + 1 ≥ n−k+5

2 , which again yields k ≥ 5. ��
Claim k ≥ 7.

Proof If |F3 ∩ F2| ≥ 3, then |F3| ≥ 3 + |G| ≥ n−k+7
2 , which yields k ≥ 7. So,

1 ≤ |F3 ∩ F2| ≤ 2.

Case 1: |F3 ∩ F2| = 2. We may assume F3 ∩ F2 = {1, 4} and |F5| ≤ · · · ≤ |Fk+1|.
Since 5 /∈ F3, F3 ⊂ F5. So |F5| ≥ 1 + |F3| ≥ 3 + |G| ≥ n−k+7

2 . Thus
if k ≤ 6, then F5 is not a generator. By its choice, the only possibility is
that F5 = F3 ∪ F4. Since k ≥ 5, set F6 exists and is not the union of any
two of F3, F4 and F5. Then F6 is a generator in F of size at least 1 + |F3|
≥ 3 + |G| ≥ n−k+7

2 .
Case 2: F3 ∩ F2 = {1}. Then every member of F − F⊇F2 − F1 − F3 contains F3.

LetM′
2 consist of the inclusion minimal members of F −F⊇F2 − F1 − F3,

and let F4 ∈ M′
2. Then F4 is a generator in F . By construction, 3 ∈ F4. If

F4 = F3 ∪ {3}, then F4 ⊂ F ′, giving a contradiction to the maximality of
F3. So, |F4| ≥ 2 + |F3| ≥ 3 + |G| ≥ n−k+7

2 , which yields k ≥ 7. ��
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