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Abstract

A family of finite sets is called union-closed if it contains the union of any two sets
in it. The Union-Closed Sets Conjecture of Frankl from 1979 states that each union-
closed family contains an element that belongs to at least half of the members of
the family. In this paper, we study structural properties of union-closed families. It is
known that under the inclusion relation, every union-closed family forms a lattice. We
call two union-closed families isomorphic if their corresponding lattices are isomor-
phic. Let F be a union-closed family and | J. 7 F be the universe of F. Among all
union-closed families isomorphic to F, we develop an algorithm to find one with a
maximum universe, and an algorithm to find one with a minimum universe. We also
study properties of these two extremal union-closed families in connection with the
Union-Closed Set Conjecture. More specifically, a lower bound of sizes of sets of a
minimum counterexample to the dual version of the Union-Closed Sets Conjecture is
obtained.
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1 Introduction

In this paper, we use calligraphic letters A, B, ... to denote families of sets, capital
letters A, B, ... to denote set members of a set family, and lowercase letters a, b, . . .
to denote elements in a set. Let F be a family of sets. The universe X r of F is
Uper F. A family of sets is called finite if | X r| < oo, which in turn gives |F| < oco.
We call F union-closed if A U B € F whenever A, B € F. Forany x € X,
let 7y = {F € F : x € F} be the subfamily of sets containing x. The following
conjecture is commonly attributed to Frankl in 1979 [7].

Conjecture 1 (Union-closed sets Conjecture [7]) For any finite union-closed family F
with F # {0}, there is an element x € X F such that |F,| > |F|/2.

The conjecture has drawn a lot of attention recently and is still wide open. Knill
[8] proved that for any union-closed family F with |F| = m, there is some element
contained in at least log”; — members of 7. Wojcik [11] improved this by a multiplicative
constant. Reimer [9] proposed an up compression argument to obtain a sharp lower
bound on the average set size of F, as a function of | F|. Roberts and Simpson [10]
showed that if F is a counterexample with | X #| minimum, then |F| > 4|X | — 1.
Bruhn, Charbit, and Telle [2] showed that Frankl’s conjecture is equivalent to the
conjecture that in a finite non-trivial bipartite graph there are two adjacent vertices
each belonging to at most half of the maximal stable sets. They also showed that
some special class of bipartite graphs satisfies this bipartite graph property. Bruhn
and Schaudt [3] showed that for every fixed edge-probability, almost every random
bipartite graph almost surely satisfies Frankl’s conjecture. Balla, Bollob4s, and Eccles
[1] determined the minimum average size of a union-closed family consisting of m
subsets of a universe with n elements precisely, verifying a conjecture of Czédli, Mar6ti
and Schmidt [5]. Consequently, they proved that the Union-Closed Sets Conjecture
holds if m > %2". Falgas-Ravry [6] improved Reimer’s bound with the help of some
additional information about X 7. We refer to Bruhn and Schaudt [4] for literature and
recent results on the conjecture.

If in a family F of sets, there are two elements x and y such that 7, = F,, then we
can remove x or y to simplify our consideration. We call F separating if F, # F, for
any two distinct elements x, y € X r. In this paper, we consider separating families
of sets that contain the empty set .

In his work on improving Knill’s lower bound, Wéjcik [11] considered the dual of
a union-closed family. Given a family of sets 3, we denote by (3) the union-closed
family generated by B, i.e.,

(BY ={A : A = UpgcB for some C C B}.

Given a union-closed family F, the union-closed family 7* = ({F, : x € X r})U{0J}
is called the dual family of F, where F, is viewed as a set and the sets in F, are viewed
as elements when considering the fual family. For each X € F, let fg x={refr:

F ¢ X}. Notice that the Fy sets are distinct since F, = F) would contradict the
assumption that F is separating. For each x € Xz, let Fx = Upcr. ¢ F. Since
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¥ e F, F, is well defined. Since F is union-closed, F) is the maximal set of F not
containing x. By the maximality of F, we have F; = .7-'¢_ F, - Moreover, we will show
in Sect. 3 that the dual F* = {ng : F € F}. Combining with ¥ € F, we have
| X 7+| = |F| — 1. Thus, |F*| = |F| = | X «| + 1. Based on this observation, we call
a union-closed family F normal if | F| = | X | + 1.

A set G in a union-closed family F is called a generator if G is not the union of two
proper subsets in F. We denote by G (F) the family of all generators in F. Following
Bruhn and Schaudt [4], we call a generator G of a union-closed family F abundant
if |G| > |F|/2. Wéjcik made the following conjecture and showed its equivalence to
Conjecture 1.

Conjecture 2 Every normal union-closed family F contains an abundant generator

The inclusion relation of a family F of sets yields a poset on F. Moreover, if the
family is union-closed, the generated poset is a lattice—a poset in which every pair of
elements A and B has a unique least upper bound A Vv B and a unique greatest lower
bound A A B. More specifically, for every pair of sets A and B in any given separating
union-closed family 7, we have AV B =AU B and AA B = Upcr.rcangF. Two
union-closed families F and H are isomorphic if their corresponding generated lattices
are isomorphic. We will show that, under isomorphism, a union-closed family F is
normal if and only if | X | is maximum. We call a union-closed family F irreducible
if | X | is minimum among all isomorphic union-closed families. In Sect. 2, we show
that by adding new elements to some sets, we can transform, up to isomorphism, a
union-closed set to a normal family, and by deleting some elements from some sets,
we can transform, up to isomorphism, a union-closed set to an irreducible family.
In Sect. 3, we study the relationship between a union-closed family and its dual. In
Sect. 4, we will show some properties of minimum counterexamples to the dual version
of Conjecture 1. We start with some elementary properties of a union-closed family
in the next section.

2 Enlarging and Reducing Universes

Let F be a separating union-closed family. Recall that for each x € Xz, F\ is the
unique maximal set in F not containing x. Let fr be the mapping from X r to F
defined by fr(x) = F, forall x € Xz. As F is separating, Fy # F) for any two
distinct elements x, y € X r. So, fr is injective.

For any two sets F', G € F, we call G aparent of F and F achild of Gift F C G
and H € F with F € H C G implies that either H = F or H = G. Clearly, every
F € Fwith F # X r has a parent. A set F' € F is called a single-parent set if it has
only one parent.

Lemma1 Let F be a union-closed family. If F is a single-parent set and G is the

parent of F, then |G — F| = 1. Moreover, if x is the unique element in G — F, then
F =F,.
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Proof Suppose to the contrary that there are two distinct elements x, y € G — F. Then
Fy = F). For otherwise there exists aset X € F suchthatx € X and y ¢ X, or there
exists a set X € F such that y € X and x ¢ X; we may assume the former. Clearly,
XUF D F.Sincey e Gandy ¢ X, wehave G € X U F. So, F has another parent
H C XUF,different from G. This contradicts the assumption that F is a singe-parent
set.

Let x be the unique elementin G — F. Since x ¢ F, F C Fy. Then F = F,. For
otherwise F has aparent H withx ¢ H. So, F has two parents G and H, contradicting
that F is a single-parent set. O

Let F be a union-closed family. Denote by @ r the subfamily of all single-parent
sets. By Lemma 1, | X £| > |@£|. So, if | X 7| = |@£], then | X £| is minimum among
all union-closed families isomorphic to F. In this case, we call F irreducible. On the
other hand, if F is normal, then | X | = |F| — 1. So, forevery F € F with F # X r,
there exists an x € Xz such that F = F,. Clearly, in this case, | X | is maximum
among all union-closed families isomorphic to F. If F is not a normal family, then
there exists a set A € F such that A # F, for all x ¢ X . The following result
provides an algorithm that adds a new element to X r and maintains the same laddice
structure until the family becomes normal.

Theorem 1 Let F be a non-normal union-closed family and let A € F such that
A # Fy forall x € Xr. Let y be an element not in X r. If H is a family consisting of
F e Fif F C Aand F U{y} otherwise, then, H is a union-closed family isomorphic
to F.

Proof LetH beafamily consistingof F € Fif F € A and FU{y} otherwise. We claim
that G U H € 'H for any two sets G, H € H by considering two cases. Suppose first
that y ¢ GU H. In this case, we have both G, H € F, whichin turn gives GUH € F
since F is union-closed. By the definition of H, wehave GUH € Hsincey ¢ GUH.
Suppose nextthaty € GUH.SinceG—y, H—y € F,(H—y)U(G—y) € F.Since
y € GU H, by symmetry we may assume y € H. By the definitionof H, H —y ¢ A,
SOGUH —-y=(G—-y)U(H —Y) ;(_ A.Hence, GUH = (G —y)U(H —y)U{y}
is a set in H.

Moreover, it is easy to verify that G C H if and only if G — y C H — y since
y ¢ Xr. Hence, the lattices generated by F and H are isomorphic. We note that
A = H,, which is the maximal set not containing y in H. So, H is a separating
union-closed set family. O

We now turn our attention to reducing the universe of a union-closed family. For
a union-closed family F and an element x € X, let F~* = {F — {x} : F € F}.
The following theorem provides an algorithm that deletes elements and maintains
the same laddice structure until the family becomes irreducible. For example, let
F = {0, {1}, {1,2,4},{1, 3,4}, {1, 2, 3, 4}}. Clearly, F4 = {1} is not a single-parent
set. F~4 = {0, {1},{1,2,},{1,3,},{1,2,3, }} is isomophic to F, and irreducible.

Theorem 2 [f a union-closed family F is not irreducible, then there exists an element
x € X such that F~* is isomorphic to F.
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Proof Since F is not irreducible, there exists an x € X & such that F, is not a single-
parentset,i.e., Fy ¢ ®@r. We claim that 7~ is isomorphic to F. Let » be the mapping
from F to F " defined by ¥ (F) = F — x for every F € F. We will show that i is
a bijection and preserves the inclusion relation of F.

We first show that ¢ is a bijection. Clearly, 1 is an onto mapping, so we only need
to show it is an injection. Suppose on the contrary that there exist A, B € F with
A # B suchthat A —x = B — x. Then, we have either A= B —xor B =A — x.
By symmetry, we assume A = B — x. Since x ¢ A, A C F, by the maximality of
Fy.Since B= AU {x},wehave F; UB = F,U(AU{x}) = FyU{x} € F, whichin
turn shows that F, U B is a parent of F. Since F, ¢ @ r, it has another parent G. By
the definition of parent, we have F, C G and F, U {x} ¢ G. So, x ¢ G, which gives
a contradiction to the maximality of F.

We now show that ¢ preserves the inclusion relation of F. For any two distinct
sets A, B € F, we will show that A C B ifandonlyif A —x C B — x. We first
assume A C B, which gives A — x € B — x. Since ¥ is a bijection, the equality
does not hold, so A — x C B — x. Conversely, suppose A —x C B — x. In this case,
if A ¢ B, then we have x € A and x ¢ B. Since x ¢ B, we have B C Fy. Since
A—x C B C Fy,F,U{x} = (FU(A—x))U{x} = F,UA. Since F is union-closed,
we have Fy U {x} € F. So, F, U{x}is aparent of F,. Since Fy ¢ ®@r, Fy has another
parent G.If x € G, then G D F, U {x}, contradicting G is a parent of F'. Thus, x ¢ G,
contradicting that Fy is the maximum set in F not containing x. O

Corollary 1 A union-closed family F can be reduced to an irreducible isomorphic
union-closed family I' by consecutively removing vertices x € X r with F, ¢ ©r.

3 Duality and Normality

Let F be a union-closed family. Recall that the dual F* of F is the union-closed
family generated by {F, : x € Xz}, where F, = {F € F : x € F}forx € Xr.In
this section, we give a complete description of the sets in F* and use this to give a
characterization of normal families in terms of its dual families, as well as in terms of
generators. Recall that, under the inclusion relation, a union-closed family F forms a
lattice, where A A B denotes the greatest lower bound of A and B for any A, B € F.
Clearly, A A B = Upcr.rcangF. Since we assume ¥ € F, A A B is well-defined.
As noticed before, by the maximality of Fy, F, = F, ¢F,

Lemma2 If F is a union-closed family, then for any F, G € F, ng U -7:ng
= ngAG- This implies that {Fcr : F € F} is union-closed since F A G € F.

Proof Let H = F A G. Since H € F and H C G, we have ng > ng U
F ¢G- To prove equality, suppose for a contradiction that there exists a set A € ‘7:51 %
— }—;(_F U ‘7:¢_G- Since A € ‘FgH’ A g H.So, AU H contains H as a proper subset.
Since A ¢ ng U .7-'5;6, we have A € Fand A C G, thatis, A € FNG. So,
AUH C FNG,contradicting that H = F A G. |

Theorem 3 For any union-closed family F, we have F* = {ng : F e F}
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Proof Let H = {ng : F € F}. By Lemma 2, H is union-closed. Since ]:;(_XF =0,
we have § € H. Since Fy = }—SZFx forevery x € X r and F* = ({Fx : x € X£}), by
Lemma 2, F7* C ‘H. We will show that equality holds.

Let F e Fand X = {x : F C F,}. Weclaim F = A,¢x Fy, which in turn shows
ng = UXEX}_;(FX € F* and completes the proof.

LetY = X7 —X.Foreachy € Y,since F ¢ F,, wehave y € F by the maximality
of Fy. So, Y C F. On the other hand, for each z € F, we have F ,¢_ F,,sozeY.
Hence, F = Y. Since F C F, for each x € F, we have FF C AycxFy. On the
other hand, for each x € X, since x ¢ Fy, we have x ¢ A cxF;. Consequently,
Y D AvexFx.So, F =Y = Apex Fy. O

Corollary 2 A union-closed family F is normal if and only if F* = {Fy : x € X} U
{4}.

Proof By Theorem 3, we have |F*| = |{f,<ZF : F € F}| = |F|. By the definition
of normal families, {F, : x € X} U {#J} € F*. So, equality holds if and only if
| X£r|+ 1 = |F]|, ie.,if and only if F is normal. O

Recall that a generator G of F is a set in F that cannot be expressed as the union
of two proper subsets in F, and that G (F) denotes the subfamily of all generators of
F.Foreach x € X r, let G(F), denote the family of all generators containing x.

Lemma 3 Let F be a union-closed family and let x, y and z be three elements of X .
Then, F, = Fx U Fy ifand only if G(F); = G(F)x U G(F)y.

Proof We first show the “only if part”. Suppose F, = F, U F,. Then for every
F e F,z € Fifandonlyifx € Fory € F.This especially holds for every generator
F e G(F),50 G(F); = G(F)x UG(F)y.

To show the “if” part, we assume G(F); = G(F)x UG(F)y,s0 G(F); 2 G(F)x
and G(F); 2 G(F)y. We claim F, C F,. Suppose not. Then x € F,. Let G C F;
be a generator with x € G. Then, G € G(F)y — G(F), giving a contradiction
to G(F); € G(F)y. Similarly, we have F, C F). So, F; € F, A Fy. We claim
that equality holds. Suppose not. Then F, C Fx A Fy. By the maximality of F,
we have z € Fx A Fy. So, there is a generator G C Fy N F), containing z. Since
GC I AF,CFNF,x,y¢G.S0oG ¢ G(F)xUG(F)y. Since z € G, we have
G € G(F),, giving a contradiction to G(F),; = G(F), U G(F)y. On the other hand,
by Lemma 2, F, = F, U F, if and only if F; = F, A F,. The proof is completed. O

Theorem 4 A union-closed family F is normal if and only if {G (F)x : x € X F}U{0}
is union-closed.

Proof By Corollary 2, F is normal if and only if 7* = {F : x € X £} U{#}, which is

equivalent to that {F : x € X} U{@} is union-closed. By Lemma 3, this is equivalent
to {G(F)x : x € X} U {0} is union-closed. m|
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4 Generators in Minimal Counterexamples to Conjecture 2

Conjecture 2 claims that every nontrivial normal union-closed family has an abundant
generator. As mentioned in the introduction, the sizes |F| and | X | of minimal coun-
terexamples to Conjecture 1 have been actively studied. In this section, we study the
size of nontrivial sets in a minimum counterexample to Conjecture 2.

Theorem 5 If F is a counterexample to Conjecture 2 with | X x| minimum, then |F| > 7
forall F € F with F # (.

Proof Let F be a union-closed family with no heavy generator and | X | is the min-
imum under this assumption. Denote 7 = {Fy, Fa, ..., F,4+1} such that F; is the
maximal set in F not containing i foreachi = 1,2,...,n + 1, where F; = ) and
Fny1 = XxF ={1,2,...,n}. Moreover, we assume that F, = [1,k + 1] — {2} is an
arbitrary generator. We will show that k > 7, which will complete the proof.

Recall Fop, ={F € F : F 2 F}. Clearly, For, = {F; : i ¢ F2 U {2}}. Let
L={F—-F : FeF>p} Wehave || =n+1—kand F, becomes the empty set.
Since (F; — F2)U(F; — F») = F;UF;— F> forany two F;, F; € F, Lis union-closed.
Moreover, for any two distinct sets F;, F; 2 F>, we have F; — F» # F; — F>. So, L
is normalized.

By the minimality of F, £ has a generator G with |G| > % LetG' = GUF,.
If G’ is a generator in F, then we are done. So, it is not.

Claim Thereis j € F, suchthat G' = F, U F 'j. Moreover, one can choose such j
with the property that F; is a generator in F.

Proof Since G’ is not a generator in JF, there are incomparable sets By, B, € F such
that G’ = B U B;. Furthermore, since G is a generator in £, we may assume that
By & Fop,.

Case 1: By ¢ Fop,. For j = 1,2,1et C; = F> U Bj. Since By, B, € G’ and
F, C G, Cy,Cy C G’ If at least one of C; and C; is G’, then we are done.
Otherwise, G = (C1 — F2) U (C, — F»), giving a contradiction to the fact
that G is a generator in L.

Case2: By € Fop, — {F2}. Let C» = F2 U By. If C; = G’, then we are done.
Otherwise, Y = (B] — F2) U (C; — F3), giving a contradiction to the fact
that G is a generator in L.

This proves that there is j € F> such that G’ = F, U Fj. Among all such F; choose
one of the smallest size. If it is a generator in F, then we are done. Otherwise, there
are noncomparable By, By ¢ Fop, such that F; = By U By. For j = 1,2, let C;
= F,UB;. By the minimality of | F;|, C; # G' # C,.ThenG = (C1— F)U(CLUF),
giving a contradiction to the fact that it is a generator in F5p, . O

Since F — F5p, contains F; not contained in F>, k > 2. Let F3 be a largest
generator F; not contained in F5p, such that G' = F, U F;. Since 1 € F3, |F3]
>14|G| > # Since F is a counterexample, —k + 3 < 0, i.e. k > 3.

Claim k > 5.
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If |[F3N F>| > 2, then |F3| > 2+ |G| > "3 which yields k > 5. So, suppose
F3 N F = {1}. Then, for each j € F, — {1, 3}, F3 C Fj. Since k > 3, there exists at
least one such set F;. So, the smallest among such sets F; is a generator in F and has

size at least |F3| + 1 > #, which again yields k > 5. O
Claim k > 7.

Proof If |F3 N F>| > 3, then |F3| > 3 + |G| > #, which yields k > 7. So,
1<|F3NFE| <2

Case 1: |F3 N Fp| = 2. We may assume F3 N F> = {1,4} and |F5| < --- < |Fi41]-
Since 5 ¢ F3, F3 C Fs. So |F5| > 1+ |F3] > 3+ |G| > “=5*7. Thus
if k& < 6, then Fj5 is not a generator. By its choice, the only possibility is
that F5 = F3 U Fy4. Since k > 5, set Fg exists and is not the union of any
two of F3, F4 and F5. Then Fyg is a generator in F of size at least 1 + | F3|
>3+G| = =5+

Case 2: F3 N F, = {1}. Then every member of ¥ — F5p, — F| — F3 contains F3.
Let /\/l’2 consist of the inclusion minimal members of 7 — F>p, — F1 — F3,
and let F4 € M’2 Then Fy is a generator in F. By construction, 3 € Fy. If
Fy = F3 U {3}, then F4 C F’, giving a contradiction to the maximality of
F3.S0, |F3| = 2+ |F3| = 3+ |G| > =+ which yields k > 7. O

A
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