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Abstract

For two graphs A and B, a graph G is called {A, B}-free if G contains neither A nor B
as an induced subgraph. Let P, denote the path of order n. For nonnegative integers k,
£ and m, let Ny ¢ », be the graph obtained from K3 and three vertex-disjoint paths Py 1,
Pyi1, Py by identifying each of the vertices of K3 with one endvertex of one of the
paths. Let Zy = Nj 0,0 and Bx ¢y = Nk ¢, 0. Bedrossian characterized all pairs {A, B}
of connected graphs such that every 2-connected {A, B}-free graph is Hamiltonian.
All pairs appearing in the characterization involve the claw (K 3) and one of Ny 1 1,
Pg and Bj . In this paper, we characterize connected graphs that are (i) {K1 3, Z2}-
free but not By i-free, (ii) {K1 3, B1,1}-free but not Ps-free, or (iii) {K1 3, By 2}-free
but not Ps-free. The third result is closely related to Bedrossian’s characterization.
Furthermore, we apply our characterizations to some forbidden pair problems.
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Fig.1 Graphs Z,, By ,, and N

1 Introduction

Our notation and terminology are standard, and mostly taken from [6]. We consider
only simple and finite graphs. Let G be a graph. For v € V(G), we let Ng(v) denote
the neighborhood of v in G. For a set U, we let G[U] denote the subgraph of G
induced by U N V(G).

Let F be a family of connected graphs. A graph G is said to be F-free if G
contains no member of F as an induced subgraph. The members of F are called
forbidden subgraphs. If G is {F}-free, then G is simply said to be F-free. A family
F of forbidden subgraphs is called a forbidden pair if |F| = 2. For two families F
and F, of forbidden subgraphs, we write | < JF, if for every F, € JF3, there exists
F1 € F such that Fy is an induced subgraph of F». Note that if 7| < F3, then every
JFi-free graph is also Fo-free.

Let K 3 denote the star with three leaves, and let K,, and P, denote the complete
graph and the path of order n, respectively. For nonnegative integers k, £ and m, let
Nk ¢.m be the graph obtained from K3 and three vertex-disjoint paths Py, Pr41,
P,,+1 by identifying each of the vertices of K3 with one endvertex of one of the paths.
The graphs Ny 0,0 and N ¢ are denoted by Z; and By ¢, respectively. The graph
N1 1.1 is usually denoted by N (see Fig. 1).

Bedrossian [1] characterized all pairs {A, B} of connected graphs such that every
2-connected {A, B}-free graph is Hamiltonian.

Theorem 1 (Bedrossian [1]) Let F be a pair of connected graphs. Then every 2-
connected F-free graph has a Hamiltonian cycle if and only if F < {K13, N}, F <
{K13, Pe}or F < {Ki3, B2}

For two different graphs B, B’ € {N, B 2, Ps}, usually it takes independent work
to show that 2-connected {K 3, B}-free graphs are Hamiltonian, and 2-connected
{K 3, B'}-free graphs are Hamiltonian, and the proof of one case may be harder than
the other. This situation happens in many research concerning forbidden subgraphs.
This naturally raises a question of investigating the difference between {K 3, B}-free
graphs and {K 3, B'}-free graphs. Since a characterization of the difference together
with existing results on {K 3, B}-free graphs will shed light on new properties of
{K1.3, B'}-free graphs.

Olariu in [11] showed that every connected Zi-free but not K3-free graph is a
complete multipartite graph with at least three partite sets. His result is useful when
we investigate the class of Z-free graphs (for example, the characterization was used
for research of perfect Zi-free graphs in [11]). Recently, Furuya and Tsuchiya [9]
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Fig.2 Generalized comb

focused on forbidden pairs appearing in Theorem 1, and obtained a characterization
similar to Olariu’s result.

A graph H is called a generalized comb if for an integer m > 3, H consists of m
disjoint cliques, say L; (1 <i <m), and a clique C containing m disjoint subcliques
R; (1 <i < m) such that every vertex in L; is adjacent to every vertex in R; (see
Fig. 2). In this context, L; is called a leaf-clique and R; is called the root of L;.

Theorem 2 (Furuya and Tsuchiya [9]) A connected graph G is {K 3, B1 2}-free but
not N-free if and only if G is a generalized comb.

We will characterize new families of connected graphs that are { K 3, Z>}-free but
not By i-free or {K 3, By, }-free but not Prax(3m,m+4}-free for some integer m > 1.
We start with some definitions.

A generalized comb is pointed if all of its leaf-cliques consist of exactly one vertex.
Let Hj be the family of pointed generalized combs. For eachi (1 <i < 8), let H; be
the graph depicted in Fig. 3, where the vertices of H; (1 < i < 5) indicated by the
open circles are called expandable vertices, and denote by U; the set of expandable
vertices of H;. Given a family C = {C, | a € U;} of disjoint cliques indexed by a, the
graph H;(C) is obtained from H; by replacing each vertex a € U; with the clique C,
and adding all edges between u € V(H;) — {a} and C, if au € E(H;). Let

Hi = {H;(C) | C ={C,4 | a € U;} is a family of disjoint cliques indexed by a}.

Clearly, H; € H; for each i. For convention, let H; = {H;} for each j (6 < j < 8).
The graphs in UOgigs ‘H,; are exactly all connected graphs that are {K 3, Z}-free but
not By -free as follows.

Theorem 3 A connected graph G is {K1 3, Za}-free but not By i-free if and only if
G € U0§i§8 Hl'.

For £ > 5,1et Lo, L1, ..., Ly be £ + 1 disjoint cliques. Let F, = F},(L1, ..., Lg)
be the graph obtained from a path v{v; - - - v, by blowing up each v; with L; and joining
every vertex of L; to all vertices of L;y1 for 1 <i < £ — 1. We call F), a fat £-path
(or simply a fat path). In this context, L; (1 < i < £) are called fundamental cliques
of Fy. Let F. = F.(Lo, ..., Ly) be the graph obtained from a cycle vovy - - - vevg by
blowing up each v; with L; and joining every vertex of L; to all vertices of L;4 for
0 < i < £ where the indices are calculated modulo £ 4+ 1. We call F, a fat £-cycle
(or simply a fat cycle). In this context, L; (0 < i < £) are called fundamental cliques
of F.. Note that fat £-paths have ¢ fundamental cliques but fat £-cycles have ¢ + 1
fundamental cliques. Let P(£) be the family of fat i-paths and fat i-cycles for all i > £.
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Fig.4 Graph F’

Theorem 4 A connected graph G is {K1 3, B1,1}-free but not Ps-free if and only if
G € P(5).

Theorem 5 A connected graph G is {K1 3, B12}-free but not Ps-free if and only if
G € P(6).

In fact, we will prove a more general result stated below.

Theorem 6 For an integer m > 1, a connected graph G is {K1 3, B1 m}-free but not
Pmax{3m,m+4)-free if and only if G € P(max{3m, m + 4}).

The order of the path in Theorem 6 is best possible if we use only fat
paths and fat cycles in a characterization. Fix an integer m > 1. Let F =
Fp(Ly, ..., Lyax{3m—1,m+3}) be a fat path, and let K be a clique with V(F)N K = §.
Let F’ be the graph obtained from F U K by joining each vertex of K to each vertex
of Lmax{m—1,1} Y Lmax{m,2) Y Lmax{2m,3} Y Lmax{2m+1,4) (see Fig. 4). Then we see that
F’ is a connected {K| 3, By, }-free but not Prmax{3m—1,m+3)-free graph.

The rest of the paper is organized as follows. We give some applications of Theo-
rems 3 and 6 in Sect. 2. In Sect. 3, we prove Theorems 3 and 6. In the last section, we
prove two results that will be given in Sect. 2.
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2 Applications of Theorems 3 and 6

In this section, we introduce three applications of Theorems 3 and 6. We first focus
on the existence of Hamiltonian cycle. Theorem 1 is a combination of the following
three results.

Theorem 7 (Duffus et al. [7]) Every 2-connected {K 3, N}-free graph has a Hamil-
tonian cycle.

Theorem 8 (Broersma and Veldman [2]) Every 2-connected { K 3, Pe}-free graph has
a Hamiltonian cycle.

Theorem 9 (Bedrossian [1]) Every 2-connected {K1 3, B1,2}-free graph has a Hamil-
tonian cycle.

In [12], Ryjacek proved that if a 2-connected graph is {K| 3, By 2}-free or
{K1 3, Pe}-free, then its closure is {K1 3, N}-free. By using fundamental properties
for closure, Ryjacek’s result shows that Theorems 8 and 9 can be obtained from The-
orem 7. Theorem 5 gives a more detailed relation among Theorems 7-9. Since all
2-connected fat i-paths and all 2-connected fat i-cycles have a Hamiltonian cycle for
i > 3, Theorems 5 and 8 provide an alternative proof of Theorem 9.

We next consider the pancyclicity of graphs. Let k and m be integers with 0 < k <
m. A graph G of order n > m is (k, m)-pancyclic if forevery X C V(G) with | X| =k
and every m < i < n, there exists a cycle of G with length i containing all vertices
in X. The (k, m)-pancyclicity was defined by Faudree et al. [8] to generalize some
pancyclic-type concepts, and Crane [4] recently proved the following result.

Theorem 10 (Crane [4]) If G is a 2-connected {K 3, Ps}-free graph of order n > 5,
then G is (1, 5)-pancyclic and (k, 3k)-pancyclic for all k > 2.

Combining Theorems 4 and 10, we obtain the following result.

Theorem 11 Let G be a2-connected {K1 3, B1.1}-free graph of ordern > 5. If G does
not belong to P(5), then G is (1, 5)-pancyclic and (k, 3k)-pancyclic for all k > 2.

Crane [5] also gave a result concerning (k, m)-pancyclicity for {K 3, Ps}-free
graphs, and so we obtain a similar result as Theorem 11 for {K 3, By 2}-free graphs.

We conclude this section with the spanning Halin subgraph problem. A graph is
planarif it can be embedded in the plane without edge-crossing, and such an embedded
graph is called a plane graph. A Halin graph, named after Halin who introduced this
concept in [10], is a plane graph consisting of a tree T without vertices of degree 2
and a cycle C whose vertex set is equal to the set of the leaves of 7' (and we often
write a Halin graph H as H = T U C). It is known that 3-connectedness is a trivial
necessary condition for a graph to have a spanning Halin subgraph. In [3], the following
conjecture was proposed.

Conjecture 1 (Chen et al. [3]) Let H be a forbidden pair. Then every 3-connected
‘H-free graph has a spanning Halin subgraph if and only if either H < {K1 3, Z3} or
‘H < {Ki3, B12}.
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The “only if” part of Conjecture 1 was already proved in [3]. Also, as a partial
answer for the “if” part of the conjecture, the following theorem was proved.

Theorem 12 (Chenetal. [3]) Every 3-connected {K 3, Ps}-free graph has a spanning
Halin subgraph.

As corollaries of Theorems 3, 4 and 12, we obtain other partial answers for the “if”
part of Conjecture 1 which will be proved in Sect. 4.

Theorem 13 Every 3-connected {K1 3, B1.1}-free graph has a spanning Halin sub-
graph.

Theorem 14 Every 3-connected {K 3, Z2}-free graph has a spanning Halin sub-
graph.

3 Proof of Main Results

In this section, we prove Theorems 3 and 6.

3.1 Proof of Theorem 3

Lemma1 Let G be a connected {K 3, Z>2}-free graph which contains an induced
subgraph N. Then G is a pointed generalized comb.

Proof Since G is Zp-free and Z; is an induced subgraph of B, G is also Bj -
free. This, together with Theorem 2, implies that G is a generalized comb. We only
show that every leaf-clique consists of a single vertex. Let L; (1 < i < m) be the
leaf-cliques of G, and let R; be the root of L;. On the contrary, we may assume
that [L1| > 2. Letaj,a> € Ly witha; # az, a3 € Ry, as € Ry and as € L;. Then
Gllai, az, a3, a4, as}] = Z», giving a contradiction. Hence G is a pointed generalized
comb. O

In the following lemmas (Lemmas 2-8), we follow the labels given in Fig. 3.

Lemma2 Let G be a connected {K 3, Z2, N}-free graph which contains an induced
subgraph H = H\({Cy,, Cy,, Cys}), where Cy,, Cy, and Cy, are disjoint cliques. Then
for each vertex a € V(G) — V(H) with Ng(a) N V(H) # @, one of the following
holds:

(1) C3 UCsy UCys € Ng(a)NV(H) and s; ¢ Ng(a) NV (H) for somei € {1,2}
(and so G[V(H) U {a}] € Hy),

(ii) for some i € (1,2}, Ng(a) N V(H) = {s;} U Cys and |Cys_,| = 1 (and so
G[V(H) U{a}] € Ha),
(iii) for some i € {3,4}, Ng(a) N V(H) = {s1,52} U Cy; and |Cy,_;| = |Cs5| =1

(and so G|V (H) U {a}] € H3), or
(iv) Ng(@)NV(H) = {51, 52}UCsUCy, and |Cys| = 1 (andso GV (H)U{a}] € Ha).

@ Springer



Graphs and Combinatorics (2019) 35:1459-1474 1465

Proof For eachi € {3, 4,5}, we take a vertex b; as follows: if Ng(a) N Cy;, # 9, let
b; € Ng(a) N Cy;; otherwise (i.e., Ng(a) N Cs; = ¥), let b; € Cy,.
Case 1: Ng(a) N Cy5 # 9.

If asy, asy € E(G), then G[{a, 51, 52, bs}] = K 3, giving a contradiction. Thus
as; ¢ E(G) orasy ¢ E(G). We may assume that as; ¢ E(G).

If Ng(a) N Cy; # @ and ab ¢ E(G) for some b € Cy,, then G[{b3,a, b, s1}] =
K13;if Ng(a)NCy, # Vandab ¢ E(G) forsome b € Cy,, thenasy € E(G) because
G[{b4,a, b, s2}] 2 K1,3,and hence G[{a, s2, ba, b, s1}] = Z>. Ineither case, we geta
contradiction. This implies that either Cy, UC,, € Ng(a) or Ng(a)N(Cs, UCs,) = 0.
Subcase 1.1: Cy; U Cy, € Ng(a).

If ab ¢ E(G) for some b € Cy, then G[{b3,a, s1,b}] = K3, giving a con-
tradiction. Thus Cy; € Ng(a). If as; € E(G), let C;l_ = C; (( € {3,5)) and
C§4 = Cy, Uf{a};ifasy ¢ E(G), let Céi = Cy, (i € {3,4}) and CA’,5 = Cy; U{a}. Then
G[V(H)U {a}] = H, ({C§3, §4, CA’,S}) € H1, and so (i) holds.

Subcase 1.2: Ng(a) N (Cs; U Cyy) = 0.

Since G[{a, s1, 52, bs, b3, ba}] 2 N, wehave as; € E(G).If ab ¢ E(G) for some
b € Cy,, then G[{b, b3, bs, 52, a}] = Z», giving a contradiction. Thus Cy; € Ng(a),
and hence Ng(a) N V(H) = {s2} U Cy5. If |Cyy | > 2, then G[{b3, D, by, 52, a}] = Z>
where b € C,, — {b3}, giving a contradiction. Thus |Cy,| = 1, and so (ii) holds.
Case 2: Ng(a) N Cys =0 (i.e., abs ¢ E(G)). O

Claim Foreachi € {3,4}, if Ng(a) N Cy; # @, then Ng(a) 2 {s1, 52} U Cy,.

Proof We may assume i = 3. Since G[{b3,a, bs,s1}] Z K3, we have as; €
E(G). By the same argument, if Ng(a) N Cs, # ¢, then as; € E(G). Since
Gl{a, s1, b3, ba, s2}] 2 Z>, we have asy € E(G) or abs € E(G). In either case, we
have as; € E(G). If ab ¢ E(G) for some b € Cy,, then G[{bs, b, b3, a, s2}] = Z»,
giving a contradiction. Thus Cy; € Ng(a). O

Suppose Ng (a) N (Cs; UCs,) = @. Since Ng(a) NV (H) # ¥, wehave as; € E(G)
for some i € {1, 2}. Hence G[{bs, bs_;, bi+2, si,a}] = Z,, giving a contradiction.
Thus Ng(a) N (Cyy U Cy,) # . We may assume that N (a) N Cy, # @. This together
with Claim 3.1 forces {s1, s2}UCy; € Ng(a).If |Cys| > 2,then G[{bs, b, b3, a, s2}] =
Z, where b € Cy — {bs}, giving a contradiction. Thus |Cy| = 1.

If Ng(a)NCs, # ¥, then Cy,  Ng(a) by Claim 3.1, and hence (iv) holds. Thus we
may assume that Ng (a) NCy, = ¥ (i.e., N (@) NV (H) = {s1, 52}UCy;). If |Cyy | > 2,
then G[{b4, b, s2,a, s1}] = Z» in G where b € C,, — {b4}, giving a contradiction.
Hence |Cy,| = 1, and so (iii) holds. m]

Lemma3 Let G be a connected {K13, Z2, N}-free graph which contains an induced
subgraph H = Hy({Cy,, Cy,}), where Cy, and Cy, are disjoint cliques. Then for each
vertexa € V(G) — V(H) with Ng(a) N V(H) # 0, one of the following holds:

(1) forsomei € {5,6}, Nc(a)NV(H) = {2, ;}UC,UCy, (and so G|V (H)U{a}] €
H2),

(ii) for some i € (3,4}, Ng(a) N V(H) = {t1,ti12} U C;, and |Cy,_;| = 1 (and so
G[V(H) U {a}] € Hs), or
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(iii) Ng(@)NV(H) ={t1, 12,15, t6} and |Cy| = |Cy,| = 1 (and so G[V(H)U{a}]
He).

Proof For eachi € {3,4},let b; € C,. For each i € {5, 6}, we note that the graph
B; := H — t; belongs to H;.
Case 1: Ng(a) N (C,, U Cyy) = 0.

Since Ng(a)NV(H) # @, Ng(a)NV (B;) # @forsomei € {5, 6}. We may assume
that N (a) NV (Bs) # ¥. Since Ng(a) N (C, UCy) = ¥, we have Ng(a) NV (Bs) =
{t1, 12,16} and |Cy,| = 1 by Lemma 2. In particular, Ng(a) N V(Bs) # ¥. Then
again by Lemma 2, Ng(a) N V(Be) = {t1, 12, t5} and |C;| = 1. This implies that
Ng(a) N V(H) = {t1, 1, t5, tc} and |Cyy| = |Cy,| = 1, and so (iii) holds.

Case 2: Ng(a) N (C, U Cyy) # 0.

We may assume that N (a) N Cyy, #= 0. 1f Ng(a) NV (Bs) = {te} U Cy,, then either
Ng(a) N V(Bg) = Cyy or Ng(a) NV (Bg) = {t5} U Cyy, which contradicts Lemma 2.
Thus, by Lemma 2, we have either G[V (Bs) U {a}] € Hj, or Ng(a) N V(Bs) =
{t1} U Cy and |Cyy| = 1.

Subcase 2.1: G[V (Bs) U {a}] € H;.

We see that {r} U C;; U Cyy € Ng(a). Since Gl{a, 12, ba, 16, t5}] 2 Z>, we have
ats € E(G) or ats € E(G). We may assume that ats € E(G). If at; € E(G), then
Gl{a, t1, bs, t5}] = K1 3, giving a contradiction. Thus at; ¢ E(G). So, ate ¢ E(G)
because G[{fs, t6, a, t2, t1}] 2 Z>. Hence we get Ng(a) NV (H) = {2, t5}UC,, UCy,.
Consequently, G[V (H)U{a}] = H2({Cy,, C;,}) where C{, = Ci;U{a}and Cy, = C,,
and so (i) holds.

Subcase 2.2: Ng(a) N V(Bs) = {t1} U Cy; and |Cy,| = 1.

Since G[{b3,a, tr, t5}] 2 K13, we have ats € E(G). Hence Ng(a) N V(H) =

{t1,t5} U Cy; and |Cy,| = 1, and so (ii) holds. O

Lemma4 Let G be a connected {K1 3, Z2, N}-free graph which contains an induced
subgraph H = H3({Cy}), where C, is a clique. Then for each vertex a € V(G) —
V(H) with Ng(a) N V(H) # 0, one of the following holds:

(1) Ng(a) N V(H) = {uz, u3, ug, us} U Cy (and so G[V(H) U {a}] € H3),
(i) Ng(a) N V(H) = {u1, u;, u7—;} for some i € {2,3} and |Cys| = 1 (and so
G[V(H) U {a}] € Hg), or
(iii)) Ng(a) " V(H) = {ug, us} (and so G[V(H) U {a}] € Hs).

Proof Foreachi € {2, 3}, we note that the graph B; := H — u; belongs to H;. Since
Ng(a) NV (H) # W, Ng(a) N V(B;) £ ¥ for some i € {2, 3}. If auyg, aus ¢ E(G),
then Ng(a) N V(B;) € {u1,uys_;} U Cyy for each i € {2, 3}, which contradicts
Lemma 2. Thus, aus € E(G) or aus € E(G). We may assume that auy € E(G).
Then by Lemma 2, we have either G[V (B3)U{a}] € Hi,or Ng(a)NV (B3) = {u1, ua}
and |Cy4| =1, or Ng(a) N V(B3) = {us, us}.

Case 1: G[V(B3) U {a}] € H;.

In this case, we have {un,u4} U Cyy < Ng(a). Then again by Lemma 2,
we have either G[V(B2) U {a}] € Hj or Ng(a) N V(B2) = {uy,us} U Cy
or Ng(a) N V(B2) = {u1,u3,us} U Cyq. If Ng(a) N V(B2) = {uy,us} U Cy
(ie., Ng(a) N V(H) = {uy,up, us} U Cyy), then G[{uz, a,uy, u3, us}] = Zp; if

@ Springer



Graphs and Combinatorics (2019) 35:1459-1474 1467

Ng(a) NV (B2) = {uy, u3, ug}U Cyg (i.e., N (@) NV (H) = {ur, uz, uz, ug} U Cy),
then G[{uz, us,a,us,us}] = Z. In either case, we get a contradiction. Thus
G[V(By) U {a}] € H;. Since augy € E(G), we see that Ng(a) N V(By) =
{uz, ug, usyUCyq, and hence Ng(a) NV (H) = {uy, us, us, us}UC,,. Consequently,
GIV(H) U {a}] = H3({C,,}) where C, = Cy, U {a}, and so (i) holds.
Case 2: Ng(a) N V(B3) = {u1,us} and |Cy| = 1.

Since aus ¢ E(G) and G[{u1, uz, us, a}] 2 K13, we have aus € E(G). Hence
Ng(a) N V(H) = {u1, u3, us} and |Cy| = 1, and so (ii) holds.
Case 3: Ng(a) N V(B3) = {ug, us}.

Since G[{u3, u1,b,a}] 2 K3 for any b € Cy, we have ausz ¢ E(G). Hence
Ng(a) N V(H) = {ug, us}, and so (iii) holds. O

Lemma5 Let G be a connected {K13, Z2, N}-free graph which contains an induced
subgraph H = H4({C,,, Cys, Cy}), where Cy,, Cys and Cy are disjoint cliques.
Then for each vertexa € V(G) — V(H) with Ng(a) N V(H) # @, we have Ng(a) N
V(H) = ({vi, vz, v3} = {v; ) U Cy, UCys U Cy for some i € {1,2, 3}. Consequently,
G[V(H) U {a}] € Ha.

Proof Foreachi € {4,5,6},leth; € C,,. Foreachi € {5, 6}, we note that the graph
B; :== H — C,, belongs to H;.

Suppose Ng(a) N {vy, v2, v3} = @. Since Ng(a) N V(H) # (J, we may assume
that aby € E(G). Then G[{b4, a, v1,v2}] = K3, giving a contradiction. Thus,
Ng(a) N{vy, v2, v3} # B. We may assume that av; € E(G). Then, by Lemma 2, we
have G[V (Bs) U {a}] € Hj or Ng(a) N V(Bs) = {v1, v;} for some i € {2, 3}.

Suppose that Ng(a) N V(Bs) = {vy, v;} for some i € {2, 3}. In this case, we may
assume that Ng (a)NV (Bs) = {vy, v2}. Thenby Lemma?2, Ng (a)NV (Bg) = {v1, va}.
In particular, Ng(a) N V(H) = {v1, va}. Then G[{bs, v3, bg, v1, a}] = Z,, giving a
contradiction. Thus G[V (Bs) U {a}] € H;.

Hence we have NG (a) NV (Bs) = {v1}UCy, UCy or Ng(a) NV (Bs) = {vy, v;}U
Cy,UCys forsomei € {2,3}.If Ng(a)NV (Bs) = {v1}UC,, UCy, thenabs € E(G)
because G[{a, v1, bs, b5, v2}] 2 Z>, and hence G[{bs, a, vz, v3}] = K3, giving a
contradiction. Thus Ng (a)NV (Bs) = {vy, v;}UC,,UC,, forsomei € {2, 3}. We may
assume that Ng(a) N V(Bs) = {v1, v2} U C,, U Cy. Here we focus on the subgraph
of G induced by V (Bg) U {a}. Since Bg belongs to Hj, it follows from Lemma 2 that
Cys € Ng(a). Inparticular, Ng(a) NV (H) = {v1, v2} U Cy, U Cys U Cyy. Therefore
GIV(H) U {a}] = Hs({C,,, Cl/)s, Cy,}) where Cj, = Cs5, U {a} and Cj, = Cy; (i €
{5, 6}). O

Lemma6 Let G be a connected {K1 3, Z2, N}-free graph which contains an induced

subgraph H = Hs({Cy,}), where Cy,, is a clique. Then for each vertex a € V(G) —
V(H) with Ng(a) N V(H) # 0, one of the following holds:

(1) Ng(a) NV (H) = {w3, wa, ws, we} U Cyy, (and so G[V(H) U {a}] € Hs), or
(i) Ng(@)NV(H) = {wy, wa, w;, wo_;} for somei € (3,4} and |Cy,| =1 (and so
GI[V(H)U{a}] = H7).

Proof Foreachi € {1, 2}, we note that the graph B; := H — w; belongs to H3. Since
Ng(a) N V(H) # ¥, Ng(a) N V(B;) # ¥ for some i € {1,2}. We may assume that
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Ng(a) N V(By) # @.1f Ng(a) N V(By) = {ws, ws}, then either Ng(a) N V(By) =
{wz, ws} or Ng(a) N V(By) = {w;, w3, ws}, which contradicts Lemma 4. This,
together with Lemma 4, implies that either G[V (B1)U{a}] € H3z or Ng(a)NV(B) =
{wa, w;, wo_;} for some i € {3,4} and |Cy,| = 1.

Case 1: G[V(By) U {a}] € Hs.

Note that we have either Ng(a) N V(B2) = {w3, w4, ws, we} U Cyy; or Ng(a) N
V(B2) = {w1, w3, wa, ws, we}UCy,. This, together with Lemma 4, leads to Ng (a)N
V(H) = {w3, ws, ws, we} U Cyy,. Hence, G[V(H) U {a}] = H5({C{U7}) € Hs where
C,,, = Cu, U {a}, and so (i) holds.

Case 2: Ng(a) N V(B1) = {w2, w;, wo_;} for some i € {3,4} and |C,,,| = 1.

We may assume that Ng(a) N V(By) = {wz, w3, we}. Then Ng(a) N V(By) =
{w3, we} or Ng(a) N V(B2) = {wy, w3, we}. This, together with Lemma 4, leads to
Ng(a) N V(H) = {w;, wa, w3, we}, and so (ii) holds. O

Lemma7 Let G be a connected {K 3, Z2, N}-free graph which contains an induced
subgraph H = Hg. Then for each vertexa € V(G)—V (H) with Ng(a)NV (H) # 0,
Ng(@)NV(H) = {xi, xi4+1, x7} for some i € {1, 3}. Consequently, G|V (H)U{a}] =
H7.

Proof We note that the graph B := H — x| belongs to H3, and the graph B* := H — x5
belongs to Ho.

We first suppose that ax;, axjt> € E(G) for some i € {1, 2}. We may assume that
axi,ax3 € E(G). Then by Lemma 3, we have Ng(a) N V(B*) = {x1, x3, x6, X7},
and hence either Ng(a) N V(B) = {x3, xg, x7} or Ng(a) N V(B) = {x3, x5, X6, X7},
which contradicts Lemma 4. Thus,

foreachi € {1, 2}, either ax; ¢ E(G) or axjyy ¢ E(G). (D

If Ng(a) N V(B*) # @, then |[Ng(a) NV (B*)| > 2 by Lemma 3. In particular, we
have Ng(a) N V(B) # @. If Ng(a) N {x1, x2, x3, x4} = @, then Ng(a) N V(B) C
{xs, x6, x7}, which contradicts Lemma 4. Thus Ng(a) N {x1, x2, x3, x4} # . By the
symmetry of x1, ..., x4, we may assume thatax; € E(G).By (1),ax3 ¢ E(G). Since
Gl{x1,a, x2, x3}] 2 K13, we have ax, € E(G). So, axs ¢ E(G) by (1). Then, by
Lemma 4, Ng(a) N V(B) = {x2, x7}. Consequently, Ng(a) N V(H) = {x1, x2, x7}.

O

Lemma8 Let G be a connected {K| 3, Z2, N}-free graph which contains an induced
subgraph H = H7. Then for each vertexa € V(G)—V (H) with Ng(a)NV (H) # 0,
Ng(a) N V(H) = {y1, y2, y7, y8}. Consequently, G[V(H) U {a}] = Hg.

Proof For eachi € {1, 2}, we note that the graph B; := H — y; is isomorphic to He.
Since Ng(a) NV (H) # #, we have Ng(a) NV (B;) # W forsomei € {1, 2}. We may
assume that Ng (a)NV (B1) # . Then,by Lemma 7, Ng(a)NV (B1) = {y2, ¥3, y5} or
Ng(a)NV(B1) = {y2, y7, ys}. Inparticular, {y3, ys} € Ng(a) NV (B2) or {y7, ys} <
Ng(a) NV (By). This, together with Lemma 7, leads to Ng(a) NV (B1) = {y2, y7, y3}
and Ng(a) N V(B2) = {y1, y7, y8}. So, Ng(a) = {y1, y2, y7, y8} i
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Proof of Theorem 3 By a routine but tedious argument, we can verify that every graph
in U0<i<8 ‘H; is {K1.3, Z2}-free but not By j-free (and we omit its detail). Thus it
suffices to show that, if a connected {K13, Z2}-free graph G is not By |-free (ie., G
contains By ; as an induced subgraph), then G belongs to | Jy; .5 Hi-

If G is not N-free, then by Lemma 1, G € Hy, as desired. Thus we may assume
that G is {K1 3, Z2, N}-free. Assume that G contains B (€ Hp) as an induced
subgraph. Then G contains a graph H € (J; _; .g H; as an induced subgraph. Choose
H so that |V (H)| is as large as possible. It suffices to show that G = H. By way of
contradiction, suppose that G # H (i.e., V(G) — V(H) # ¥). Since G is connected,
there exists a vertex a € V(G) — V(H) which is adjacent to a vertex in V(H). By
the maximality of H, G[V (H) U {a}] ¢ |J, -, ~g Hi. This, together with Lemmas 2—
8, gives H = Hg. For each i € {7, 8,9}, we note that the graph B; := H — z; is
isomorphic to Hy. Since Ng(a) N V(H) # (), we have Ng(a) N V(B;) # @ for
some i € {7,8}. We may assume that Ng(a) N V(B7) # @. Then by Lemma 8,
Ng(a) N V(B7) = {z3, 24, 28, z9}. In particular, azz € E(G). On the other hand,
since Ng(a) N V(By) # @, Ng(a) N V(Bg) = {z1, 22, 27, 28}, and so az3z ¢ E(G),
giving a contradiction.

This completes the proof of Theorem 3. O

3.2 Proof of Theorem 6

In order to prove Theorem 6, we give a further definition. For two integers s and 7, we
let[s,t]={i e N|s <i <t}. Note thatif s > ¢, then [s, ] = .

Here we prove Theorem 6. We can easily verify that every graph in P (max{3m, m+
4}) is {K1 3, By, }-free but not Puax(3m,m+4)-free. Thus it suffices to show that if
a connected {K 3, Bi }-free graph G is not Pmax(3m,m+4)-free (i.e., G contains
Prax{3m,m+4) as an induced subgraph), then G belongs to P(max{3m, m + 4}).

Assume that G contains Prax{3m,m+4} as an induced subgraph. Then G contains a
graph H € P(max{3m, m + 4}) as an induced subgraph. Choose H so that |V (H)| is
as large as possible. It suffices to show that G = H. Otherwise, there exists a vertex
a € V(G) — V(H) such that Ng(a) N V(H) # #. Let £ be the integer such that H is
either a fat £-path or a fat £-cycle. Then we can write either H = F,(Ly, ..., L¢) or
H = F.(Ly, ..., L) forsomedisjointcliques Lo, ..., L¢.Let] = {i | Ng(a)NL; #
#}.

Claim |I| < 4.

Proof Suppose that there are five fundamental cliques L™V, ..., L® of H with
Ng@) NL® £ ¢ (1 <i<5).Foreachi (1 <i <5),letb® e Ng(a) N LD.
Since max{3m,m + 4} > 5, if H is a fat cycle, then H has at least six fundamental
cliques. Thus G[{b(i) | 1 <i < 5}] has no cycle, and so is a forest of order five and
maximum degree at most two. Then we can easily check that G[{p") | 1 < i < 5}]
has an independent set B with |B| = 3, and hence G[{a} U B] = K 3, giving a
contradiction. O

If H is a fat cycle, then Ng(a) N L; = ¢ for some 0 < i < £ by Claim 3.2. By
relabeling Lo, ..., Ly if necessary, we may assume that
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(L1) 0 ¢ 1,and
(L2) subjectto (L1), |1 N {1, £}] is as small as possible.

Thus, if H is a fat cycle and there exists anintegeri (1 <i < ¢—2) withi,i+1,i+2 ¢
I,then I N{0,1,¢} =@.

Foreachi (1 <i < {), we take a vertex b; as follows: ifi € I,letb; € Ng(a)NL;;
otherwise (i.e.,i ¢ I), let b; € L;. Note that, by our choices of indices, b1by ¢ E(G)
regardless of H being a fat path or a fat cycle.

Claim Assume that there exists anindex j (2 < j <[ —2)suchthat I N[2,] — 1] =
{j,j+ 1}. Theneither j =2 and ab; € E(G) or j =1 — 2 and aby € E(G).

Proof Recall that £ > max{3m, m + 4}. We first consider the case £ —m — 1 < j <
m 4+ 1. Then £ < 2m + 2. Since £ > 3m, we have m < 2; since £ > m + 4,
we have m > 2. Hence m = 2, and this forces £ = 6 and j = 3. By the
assumption of the claim, aby,abs ¢ E(G). Since G[{by, b3, a, bs, bs, bg}] 2
Bio and G[{bs,b4,a,b3,br,b1}] 2 By, we have abi,abs € E(G). Then
Gl{a, b1, b3,bs}] = Ki3, giving a contradiction. Thus either j > m + 2 or
j<{f—m-—2.

We now consider the case j > m + 2 (i.e., j —m > 2). Then ab; ¢ E(G) for
every j—m<i<j— 1. Since G[{bj+2,bj+1,a,bj,bj_1, ey bj_m}] 2 Bl,m,
this forces bj o = by (i.e., j = £ —2) and aby € E(G), as desired. Thus we may
assume that j < € —m —2 (ie.,, j+m+1 < ¢ —1). Then ab; ¢ E(G) for every
J+2=<i<j+m+1 Since G[{bj_1,bj,a,bjr1,bj12,...,bj1m+1}] Z Bim,
this forces b;_1 = by (i.e., j = 2) and ab; € E(G), as desired. O

Claim For each j € I, there exists an index j' (j' # j) such that |j — j’| = 1 and
Jj el

Proof If 2 < ] </{-—1 andj — l,j +1 ¢ I, then G[{bj,a,bj_l,bj_H}] = K1,3,
giving a contradiction. Hence if 2 < j < ¢ — 1, then the desired conclusion holds.
Thus we may assume that j € {1, £} by (L1).

For the moment, we assume that j = 1 and 2 ¢ I. We further suppose that there
exists anindex i (3 <i < ¢ — 1) withi € I. Choose i so that i is as small as possible.
Then,i+1 € Isince3 <i <{l—1.Ifi+1 <f—1andIN[3,¢£—1] ={i,i+ 1}, then
i =1—2and? € I by Claim 3.2. This implies thatifi+1 < £—1 (i.e.,i < £—2),then
there are three indices i1, i7,i3 (3 < i < i» < i3 < {) with iy, ip,i3 € I, and hence
Gl{a, b1, b\, bis}]1 = K 3, giving a contradiction. Thus i > £ — 1, andsoi = ¢ — 1.
Note that 7 N [1,£] = {1,£¢ — 1, £}. This, together with the fact £ —m — 1 > 3,
implies that G[{b1,a, by, be—1, ..., bp—m—1}] = B1 n, giving a contradiction. Thus
IN[2,¢—1] =¢.By (L1)and (L2), we see that H is a fat path. If there exists a vertex
u e Ly withau ¢ E(G), then, since £ > m+4, G[{a, by, u,ba, ..., bypi2}]1 = Bl o,
giving a contradiction. Thus L1 € Ng(a). By the symmetry and the fact £ — 1 ¢ I,
if £ € I,then Ly € Ng(a). Hence either Ng(a) N V(H) = Lj or Ng(a) N V(H) =
Li ULy If Ng(a) N V(H) = Ly, then G[V(H) U {a}] = Fy,({a}, L1, ..., Ly); if
Ng(a) N V(H) = Ly U Ly, then G[V(H) U {a}] = F.({a}, Ly, ..., L¢). In either
case, G[V(H) U {a}] € P(max{3m, m 4+ 4}), which contradicts the maximality of H.
Thus if j = 1, then 2 € 1. By the symmetry, if j = ¢,then? — 1 € . O
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Leti; =min{i |i € I} andip = max{i | i € I}. ByClaim3.2,i; + 1,i — 1 € .
Claim If iy # 1,then L; 41 € Ng(a).If i, #1[,then L;,_1 € Ng(a).

Proof 1fiy # land L;, 11 ,d_ Ng(a),sayu € L;jjy1—Ng(a),thenG[{b;, b;jj—1,a,u}] =
K 3, giving a contradiction. Thus if i1 # 1, then L; 11 € Ng(a). By the symmetry,
we have L;,_1 € Ng(a) if iy # L. O

Since |I| < 4, we divide the rest of the proof into three cases according to || < 2,
|[I| =3,and |I]| = 4.

Case 1: |I| < 2.

By Claim 3.2, I = {iy, i} = {i1, i1 + 1}. If [I N[2,€ — 1]| = 2, theneither | € [
or { € I by Claim 3.2, and so |/| > 3, giving a contradiction. Thus [ N [2, ¢ —
1]| < 1, which implies either I = {1,2} or I = {¢ — 1, £}. We may assume that
I = {1,2}. By (L2), H is a fat path. If L, ;(_ Ng(a), say u € Ly — Ng(a), then
Gl{a,by,u,b3, ba, ..., byui3}] = By, giving a contradiction. Thus Ly € Ng(a).
This, together with Claim 3.2, leads to Ng(a)NV (H) = L1UL>,andhence G[V (H)U
{a}] = Fp(L1 U {a}, L2, ..., L¢) € P(max{3m,m + 4}), which contradicts the
maximality of H.

Case 2: || = 3.

Inthiscase, I = {i1, i1+ 1 (=i>—1),i2} = {i1, i1+ 1,i;1 +2}. By (L1) and (L2),
either H is afatcycle and I N {0, 1, €} = ¥ or H is a fat path. Since either i1 # 1 or
in #1, Lij+1 (= Lj,—1) € Ng(a) by Claim 3.2. Suppose that either L;, g Ng(a)
or Liy ¢ Ng(a). We may assume that L;, ¢ Ng(a). Letu € L — Ng(a). If
i1 <€—m=2(@e.,i1+m+2 <), then G[{u, b; 41, a, bi+2, - .., biy+m+2}] = Bi,m;
ifiy >m+2(@e.,iy —m—12> 1), then G[{a, b;;, u, bj;—1, ..., bj;—m—1}1 = B1 .
In either case, we get a contradiction. Thus £ —m — 1 < i; < m + 1. This, together
with the assumption £ > max{3m,m + 4}, leadstom = 2, £ = 6 and i; = 3. Then
G[{b1, b2, u, b3, a, bs}] = By 2, giving a contradiction. Thus L; UL;, € Ng(a) (i.e.,
Ng(a)NV(H)=L; UL; 11 UL;). Hence

G[V(H) U {a}] = FC(L()’Ll’ ""Ll'la Lll+1 U{a}aLizv L] Lé)
or
G[V(H) U {a}] = F[?(Lla "'7Li17Li1+1 U{a}aLi27 "'7L£)

according as H is a fat cycle or a fat path, which contradicts the maximality of H.
Case 3: |I| = 4.

Inthiscase,ij +1 <ip—land I = {iy, i1+ 1,ip — 1,ip}. Let J; = [1,i; — 1],
Jo =[i1 +2,ip — 2] and J3 = [ip + 1, £] (where J; may be empty). If |J1| > m, then
it —m > 1, and hence G[{bi,, a, bi,+1, bi,, bi,—1, .. .. bij—m}] = Bim; if | 2| > m,
then iy +m + 1 < iy — 2, and hence G[{b;,, a, b;,, bi;+1, - .., bijxm+1}] = B m; if
|J3] = m,thenir+m < {£,andhence G[{b;,, a, bi,—1, biy, biy41, ..., biygm}l = Bim.
In either case, we get a contradiction. Thus max{|J1|, | /2|, |J3]} < m — 1. On the other
hand, |J1|+ | 2|+ 13| = |[1, €] —{i1, i1+ 1,i2 — 1, i2}| = £ —4 > max{3m —4, m}.
Hence we see that m > 2 and |J;| = |Ji7| = m — 1 for some i,i’ € {1,2,3}
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Q1

Q2
Qs
Fig.5 A fan-cycle system
with i # i’. Without loss of generality, we may assume that |J;| = m — 1 (i.e.,
ll = m). If |J2| =m — 1, then G[{blz—Za biz—lv bizﬂ av bn‘h bm—la LRI ) bl}] ; Bl,m;

if |J3] = m — 1, then G[{bi2+1, b,’z, big—h a,by,by_1,...,b1}] = Bl,m- In either
case, we again get a contradiction.
This completes the proof of Theorem 6.

4 The Existence of Halin Subgraph

In this section, we prove Theorems 13 and 14.
Let G be a graph. A sequence (C : v; Q1,..., Om; X1, ..., Xy) 1s a fan-cycle
system of G if

Cisacycle of G,
01, ..., O, are vertex-disjoint paths of order at least two on C,
v, X1, ..., Xy are distinct vertices with V(G) — V(C) = {v, x1, ..., Xm},

V() — Ulfigm VOl +m =3,
v is adjacent to every vertex in (V(C) — Ulgigm V(Q)) U{xy,...,xn}, and
fori (1 <i < m), x; is adjacent to every vertex of Q;

Sk b=

(see Fig. 5). In [3], the following lemma was proved in order to construct a spanning
Halin subgraph.

Lemma 9 (Chenetal. [3]) Ifa graph G has a fan-cycle system, then G has a spanning
Halin subgraph.

Now we show that all 3-connected graphs in UOS- ~g Hi have a spanning Halin
subgraph.

Lemma 10 For G € U0§i§8 ‘Hi, if G is 3-connected, then G has a spanning Halin
subgraph.
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Proof Since all graphs in (J;c(.3.5.6) Hi are not 3-connected, G € H; for some
i €{0,1,4,7,8}. By Lemma 9, it suffices to show that G has a fan-cycle system.
Case 1: G € H,.

Let Ly, ..., L, be the leaf-cliques of G, and let R; be the root of L;. For each
i (1 <i <m),letv; € R;. Since G is 3-connected, |R; — {v;}| > 2 for all i, and
hence G — {v; | 1 < i < m} has a Hamiltonian cycle C containing m — 1 vertex-
disjoint paths Q», ..., Q,, with V(Q;) = L; U (R; — {v;}) 2 < i < m). Then
(C:v1;02,...,OQm; v2,...,Uy) is a fan-cycle system of G.

Case2: G € H;.

Write G = H;({Cy;, Cy,, Css}). For each i € {3,4}, let q; € Cy,;. Since G is 3-
connected, |Cy;| > 3 fori € {3, 4}, and hence G — {a3, a4} has a Hamiltonian cycle
C containing a path Q with V(Q) = (Cy, — {a4}) U {s2}. Then (C : a3; Q; a4) is a
fan-cycle system of G.

Case 3: G € Ha.

Write G = H{({Cy,, Cys, Cy}). Since G is 3-connected, |Cy; U CUJ,| > 3 for
i,j € {4,5,6} with i # j. By symmetry, we may assume that |C,,| > 2 and
|Cys| = 2. For eachi € {4,5}, leta; € Cy;. Then G — {a4, as} has a Hamiltonian
cycle C containing a path Q with V(Q) = (Cy; — {as}) U {v3}, and hence G has a
fan-cycle system (C : a4; Q; as).

Case 4: G € H7.

Let C = y2y4y7y386 be a cycle of G, and Q| = ysy7 and Q2 = ygye be paths on
C.Then (C : y1; Q1, O2; ¥3, y5) is a fan-cycle system of G.

Case 5: G € Hg.

Let C = 222427292826 be a cycle of G, and Q| = z4z7 and Q2 = z3z¢ be paths on
C. Then (C : z1; Q1, Q2; 23, 25) is a fan-cycle system of G.

This completes the proof of Lemma 10. O

Lemma 11 For G € P(5), if G is 3-connected, then G has a spanning Halin subgraph.

Proof We first suppose that G is a fat path, and write G = F,(L1, ..., L¢). For each
i(2<i<t—1),leta; € L;.Since G is 3-connected, |L; — {a;}| > 2fori 2 <i <
£ —1),and hence G — {ay, ..., ar—1} has a Hamiltonian cycle C such that C[L;] has
exactly two components for every i (2 <i < £—1). We take the spanning tree 7 of G
suchthat N7 (az2) = L1U(La—{az2})U{as}, Nr(ae—1) = LeU(Le—1—{ae—1})U{ar—2}
and N7 (a;) = (L; — {a;i}) U{ai—1,ai+1} 3 <i < € — 2). Then T has no vertices
of degree 2 and V(G) — {aa, ..., ap—1} is the set of leaves of T. Hence T U C is a
spanning Halin subgraph of G.

We next suppose that G is a fat cycle, and write G = F.(Lo, ..., Lg). Since G is
3-connected, G has at most two fundamental cliques of order one. Furthermore, if G
has exactly two fundamental cliques of order one, then such cliques are consecutive.
By symmetry, we may assume that |[L;| > 2 forevery i (1 <i < ¢ — 1). For each
i(l<i<dt-—1),leta; € L;. Then G — {ay, ...,ar—1} has a Hamiltonian cycle
C such that C[L;] has exactly one component for every i (0 < i < £). We take
a spanning tree T of G such that N7 (a;) = Lo U (L1 — {a1}) U {aa}, Nr(a;,—1) =
LeU(L¢—1—{ae—1HU{ag—2}and N1 (a;) = (Li—{a;HhUfai-1,ai+1} 2 < i < £-2).
Then T has no vertices of degree 2 and V(G) — {ay, ..., as—1} is the set of leaves of
T.Hence T U C is a spanning Halin subgraph of G. O
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Theorems 4, 12 and Lemma 11 lead to Theorem 13. Theorems 3, 13 and Lemma 10
lead to Theorem 14.
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