

Characterizing the Difference Between Graph Classes Defined by Forbidden Pairs Including the Claw

Guantao Chen¹ · Michitaka Furuya² · Songling Shan³ · Shoichi Tsuchiya⁴ ·
Ping Yang¹

Received: 13 June 2018 / Revised: 13 September 2019 / Published online: 19 October 2019
© Springer Japan KK, part of Springer Nature 2019

Abstract

For two graphs A and B , a graph G is called $\{A, B\}$ -free if G contains neither A nor B as an induced subgraph. Let P_n denote the path of order n . For nonnegative integers k , ℓ and m , let $N_{k,\ell,m}$ be the graph obtained from K_3 and three vertex-disjoint paths P_{k+1} , $P_{\ell+1}$, P_{m+1} by identifying each of the vertices of K_3 with one endvertex of one of the paths. Let $Z_k = N_{k,0,0}$ and $B_{k,\ell} = N_{k,\ell,0}$. Bedrossian characterized all pairs $\{A, B\}$ of connected graphs such that every 2-connected $\{A, B\}$ -free graph is Hamiltonian. All pairs appearing in the characterization involve the claw ($K_{1,3}$) and one of $N_{1,1,1}$, P_6 and $B_{1,2}$. In this paper, we characterize connected graphs that are (i) $\{K_{1,3}, Z_2\}$ -free but not $B_{1,1}$ -free, (ii) $\{K_{1,3}, B_{1,1}\}$ -free but not P_5 -free, or (iii) $\{K_{1,3}, B_{1,2}\}$ -free but not P_6 -free. The third result is closely related to Bedrossian's characterization. Furthermore, we apply our characterizations to some forbidden pair problems.

Keywords Forbidden subgraph · Hamiltonian cycle · Halin graph

This research was partially supported by NSF Grant DMS-1855716, JSPS KAKENHI Grant numbers JP18K13449 and JP19K14584, and by Grant for Basic Science Research Projects from The Sumitomo Foundation.

✉ Michitaka Furuya
michitaka.furuya@gmail.com

Shoichi Tsuchiya
s.tsuchiya@isc.senshu-u.ac.jp

¹ Department of Mathematics and Statistics, Georgia State University, Atlanta, USA

² College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan

³ Department of Mathematics, Illinois State University, Normal, USA

⁴ School of Network and Information, Senshu University, Kawasaki, Kanagawa, Japan

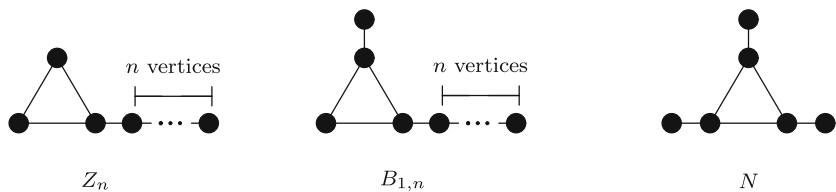


Fig. 1 Graphs Z_n , $B_{1,n}$ and N

1 Introduction

Our notation and terminology are standard, and mostly taken from [6]. We consider only simple and finite graphs. Let G be a graph. For $v \in V(G)$, we let $N_G(v)$ denote the *neighborhood* of v in G . For a set U , we let $G[U]$ denote the subgraph of G induced by $U \cap V(G)$.

Let \mathcal{F} be a family of connected graphs. A graph G is said to be \mathcal{F} -*free* if G contains no member of \mathcal{F} as an induced subgraph. The members of \mathcal{F} are called *forbidden subgraphs*. If G is $\{F\}$ -free, then G is simply said to be F -*free*. A family \mathcal{F} of forbidden subgraphs is called a *forbidden pair* if $|\mathcal{F}| = 2$. For two families \mathcal{F}_1 and \mathcal{F}_2 of forbidden subgraphs, we write $\mathcal{F}_1 \leq \mathcal{F}_2$ if for every $F_2 \in \mathcal{F}_2$, there exists $F_1 \in \mathcal{F}_1$ such that F_1 is an induced subgraph of F_2 . Note that if $\mathcal{F}_1 \leq \mathcal{F}_2$, then every \mathcal{F}_1 -free graph is also \mathcal{F}_2 -free.

Let $K_{1,3}$ denote the star with three leaves, and let K_n and P_n denote the complete graph and the path of order n , respectively. For nonnegative integers k , ℓ and m , let $N_{k,\ell,m}$ be the graph obtained from K_3 and three vertex-disjoint paths P_{k+1} , $P_{\ell+1}$, P_{m+1} by identifying each of the vertices of K_3 with one endvertex of one of the paths. The graphs $N_{k,0,0}$ and $N_{k,\ell,0}$ are denoted by Z_k and $B_{k,\ell}$, respectively. The graph $N_{1,1,1}$ is usually denoted by N (see Fig. 1).

Bedrossian [1] characterized all pairs $\{A, B\}$ of connected graphs such that every 2-connected $\{A, B\}$ -free graph is Hamiltonian.

Theorem 1 (Bedrossian [1]) *Let \mathcal{F} be a pair of connected graphs. Then every 2-connected \mathcal{F} -free graph has a Hamiltonian cycle if and only if $\mathcal{F} \leq \{K_{1,3}, N\}$, $\mathcal{F} \leq \{K_{1,3}, P_6\}$ or $\mathcal{F} \leq \{K_{1,3}, B_{1,2}\}$.*

For two different graphs B , $B' \in \{N, B_{1,2}, P_6\}$, usually it takes independent work to show that 2-connected $\{K_{1,3}, B\}$ -free graphs are Hamiltonian, and 2-connected $\{K_{1,3}, B'\}$ -free graphs are Hamiltonian, and the proof of one case may be harder than the other. This situation happens in many research concerning forbidden subgraphs. This naturally raises a question of investigating the difference between $\{K_{1,3}, B\}$ -free graphs and $\{K_{1,3}, B'\}$ -free graphs. Since a characterization of the difference together with existing results on $\{K_{1,3}, B\}$ -free graphs will shed light on new properties of $\{K_{1,3}, B'\}$ -free graphs.

Olariu in [11] showed that every connected Z_1 -free but not K_3 -free graph is a complete multipartite graph with at least three partite sets. His result is useful when we investigate the class of Z_1 -free graphs (for example, the characterization was used for research of perfect Z_1 -free graphs in [11]). Recently, Furuya and Tsuchiya [9]

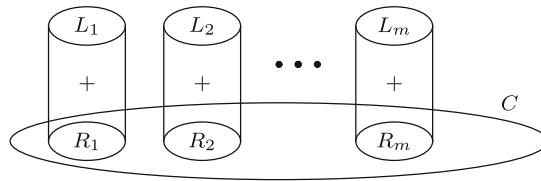


Fig. 2 Generalized comb

focused on forbidden pairs appearing in Theorem 1, and obtained a characterization similar to Olariu's result.

A graph H is called a *generalized comb* if for an integer $m \geq 3$, H consists of m disjoint cliques, say L_i ($1 \leq i \leq m$), and a clique C containing m disjoint subcliques R_i ($1 \leq i \leq m$) such that every vertex in L_i is adjacent to every vertex in R_i (see Fig. 2). In this context, L_i is called a *leaf-clique* and R_i is called the *root* of L_i .

Theorem 2 (Furuya and Tsuchiya [9]) *A connected graph G is $\{K_{1,3}, B_{1,2}\}$ -free but not N -free if and only if G is a generalized comb.*

We will characterize new families of connected graphs that are $\{K_{1,3}, Z_2\}$ -free but not $B_{1,1}$ -free or $\{K_{1,3}, B_{1,m}\}$ -free but not $P_{\max\{3m, m+4\}}$ -free for some integer $m \geq 1$. We start with some definitions.

A generalized comb is *pointed* if all of its leaf-cliques consist of exactly one vertex. Let \mathcal{H}_0 be the family of pointed generalized combs. For each i ($1 \leq i \leq 8$), let H_i be the graph depicted in Fig. 3, where the vertices of H_i ($1 \leq i \leq 5$) indicated by the open circles are called *expandable vertices*, and denote by U_i the set of expandable vertices of H_i . Given a family $\mathcal{C} = \{C_a \mid a \in U_i\}$ of disjoint cliques indexed by a , the graph $H_i(\mathcal{C})$ is obtained from H_i by replacing each vertex $a \in U_i$ with the clique C_a and adding all edges between $u \in V(H_i) - \{a\}$ and C_a if $au \in E(H_i)$. Let

$$\mathcal{H}_i = \{H_i(\mathcal{C}) \mid \mathcal{C} = \{C_a \mid a \in U_i\} \text{ is a family of disjoint cliques indexed by } a\}.$$

Clearly, $H_i \in \mathcal{H}_i$ for each i . For convention, let $\mathcal{H}_j = \{H_j\}$ for each j ($6 \leq j \leq 8$). The graphs in $\bigcup_{0 \leq i \leq 8} \mathcal{H}_i$ are exactly all connected graphs that are $\{K_{1,3}, Z_2\}$ -free but not $B_{1,1}$ -free as follows.

Theorem 3 *A connected graph G is $\{K_{1,3}, Z_2\}$ -free but not $B_{1,1}$ -free if and only if $G \in \bigcup_{0 \leq i \leq 8} \mathcal{H}_i$.*

For $\ell \geq 5$, let L_0, L_1, \dots, L_ℓ be $\ell + 1$ disjoint cliques. Let $F_p = F_p(L_1, \dots, L_\ell)$ be the graph obtained from a path $v_1 v_2 \dots v_\ell$ by blowing up each v_i with L_i and joining every vertex of L_i to all vertices of L_{i+1} for $1 \leq i \leq \ell - 1$. We call F_p a *fat ℓ -path* (or simply a *fat path*). In this context, L_i ($1 \leq i \leq \ell$) are called *fundamental cliques* of F_p . Let $F_c = F_c(L_0, \dots, L_\ell)$ be the graph obtained from a cycle $v_0 v_1 \dots v_\ell v_0$ by blowing up each v_i with L_i and joining every vertex of L_i to all vertices of L_{i+1} for $0 \leq i \leq \ell$ where the indices are calculated modulo $\ell + 1$. We call F_c a *fat ℓ -cycle* (or simply a *fat cycle*). In this context, L_i ($0 \leq i \leq \ell$) are called *fundamental cliques* of F_c . Note that fat ℓ -paths have ℓ fundamental cliques but fat ℓ -cycles have $\ell + 1$ fundamental cliques. Let $\mathcal{P}(\ell)$ be the family of fat i -paths and fat i -cycles for all $i \geq \ell$.

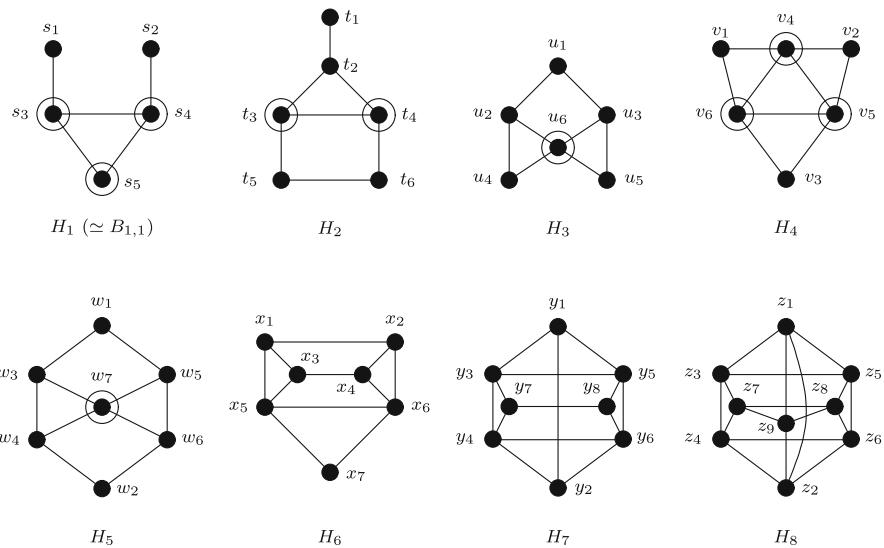


Fig. 3 Graphs H_i

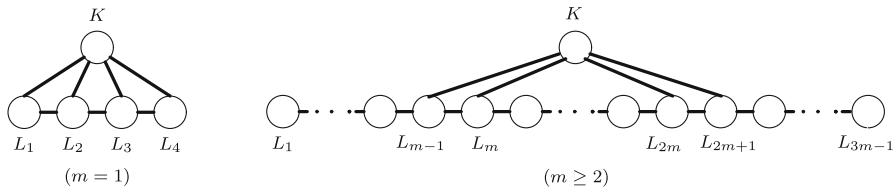


Fig. 4 Graph F'

Theorem 4 A connected graph G is $\{K_{1,3}, B_{1,1}\}$ -free but not P_5 -free if and only if $G \in \mathcal{P}(5)$.

Theorem 5 A connected graph G is $\{K_{1,3}, B_{1,2}\}$ -free but not P_6 -free if and only if $G \in \mathcal{P}(6)$.

In fact, we will prove a more general result stated below.

Theorem 6 For an integer $m \geq 1$, a connected graph G is $\{K_{1,3}, B_{1,m}\}$ -free but not $P_{\max\{3m, m+4\}}$ -free if and only if $G \in \mathcal{P}(\max\{3m, m+4\})$.

The order of the path in Theorem 6 is best possible if we use only fat paths and fat cycles in a characterization. Fix an integer $m \geq 1$. Let $F = F_p(L_1, \dots, L_{\max\{3m-1, m+3\}})$ be a fat path, and let K be a clique with $V(F) \cap K = \emptyset$. Let F' be the graph obtained from $F \cup K$ by joining each vertex of K to each vertex of $L_{\max\{m-1, 1\}} \cup L_{\max\{m, 2\}} \cup L_{\max\{2m, 3\}} \cup L_{\max\{2m+1, 4\}}$ (see Fig. 4). Then we see that F' is a connected $\{K_{1,3}, B_{1,m}\}$ -free but not $P_{\max\{3m-1, m+3\}}$ -free graph.

The rest of the paper is organized as follows. We give some applications of Theorems 3 and 6 in Sect. 2. In Sect. 3, we prove Theorems 3 and 6. In the last section, we prove two results that will be given in Sect. 2.

2 Applications of Theorems 3 and 6

In this section, we introduce three applications of Theorems 3 and 6. We first focus on the existence of Hamiltonian cycle. Theorem 1 is a combination of the following three results.

Theorem 7 (Duffus et al. [7]) *Every 2-connected $\{K_{1,3}, N\}$ -free graph has a Hamiltonian cycle.*

Theorem 8 (Broersma and Veldman [2]) *Every 2-connected $\{K_{1,3}, P_6\}$ -free graph has a Hamiltonian cycle.*

Theorem 9 (Bedrossian [1]) *Every 2-connected $\{K_{1,3}, B_{1,2}\}$ -free graph has a Hamiltonian cycle.*

In [12], Ryjáček proved that if a 2-connected graph is $\{K_{1,3}, B_{1,2}\}$ -free or $\{K_{1,3}, P_6\}$ -free, then its closure is $\{K_{1,3}, N\}$ -free. By using fundamental properties for closure, Ryjáček's result shows that Theorems 8 and 9 can be obtained from Theorem 7. Theorem 5 gives a more detailed relation among Theorems 7–9. Since all 2-connected fat i -paths and all 2-connected fat i -cycles have a Hamiltonian cycle for $i \geq 3$, Theorems 5 and 8 provide an alternative proof of Theorem 9.

We next consider the pancylicity of graphs. Let k and m be integers with $0 \leq k \leq m$. A graph G of order $n \geq m$ is (k, m) -pancyclic if for every $X \subseteq V(G)$ with $|X| = k$ and every $m \leq i \leq n$, there exists a cycle of G with length i containing all vertices in X . The (k, m) -pancyclicity was defined by Faudree et al. [8] to generalize some pancyclic-type concepts, and Crane [4] recently proved the following result.

Theorem 10 (Crane [4]) *If G is a 2-connected $\{K_{1,3}, P_5\}$ -free graph of order $n \geq 5$, then G is $(1, 5)$ -pancyclic and $(k, 3k)$ -pancyclic for all $k \geq 2$.*

Combining Theorems 4 and 10, we obtain the following result.

Theorem 11 *Let G be a 2-connected $\{K_{1,3}, B_{1,1}\}$ -free graph of order $n \geq 5$. If G does not belong to $\mathcal{P}(5)$, then G is $(1, 5)$ -pancyclic and $(k, 3k)$ -pancyclic for all $k \geq 2$.*

Crane [5] also gave a result concerning (k, m) -pancyclicity for $\{K_{1,3}, P_6\}$ -free graphs, and so we obtain a similar result as Theorem 11 for $\{K_{1,3}, B_{1,2}\}$ -free graphs.

We conclude this section with the spanning Halin subgraph problem. A graph is *planar* if it can be embedded in the plane without edge-crossing, and such an embedded graph is called a *plane graph*. A *Halin graph*, named after Halin who introduced this concept in [10], is a plane graph consisting of a tree T without vertices of degree 2 and a cycle C whose vertex set is equal to the set of the leaves of T (and we often write a Halin graph H as $H = T \cup C$). It is known that 3-connectedness is a trivial necessary condition for a graph to have a spanning Halin subgraph. In [3], the following conjecture was proposed.

Conjecture 1 (Chen et al. [3]) *Let \mathcal{H} be a forbidden pair. Then every 3-connected \mathcal{H} -free graph has a spanning Halin subgraph if and only if either $\mathcal{H} \leq \{K_{1,3}, Z_3\}$ or $\mathcal{H} \leq \{K_{1,3}, B_{1,2}\}$.*

The “only if” part of Conjecture 1 was already proved in [3]. Also, as a partial answer for the “if” part of the conjecture, the following theorem was proved.

Theorem 12 (Chen et al. [3]) *Every 3-connected $\{K_{1,3}, P_5\}$ -free graph has a spanning Halin subgraph.*

As corollaries of Theorems 3, 4 and 12, we obtain other partial answers for the “if” part of Conjecture 1 which will be proved in Sect. 4.

Theorem 13 *Every 3-connected $\{K_{1,3}, B_{1,1}\}$ -free graph has a spanning Halin subgraph.*

Theorem 14 *Every 3-connected $\{K_{1,3}, Z_2\}$ -free graph has a spanning Halin subgraph.*

3 Proof of Main Results

In this section, we prove Theorems 3 and 6.

3.1 Proof of Theorem 3

Lemma 1 *Let G be a connected $\{K_{1,3}, Z_2\}$ -free graph which contains an induced subgraph N . Then G is a pointed generalized comb.*

Proof Since G is Z_2 -free and Z_2 is an induced subgraph of $B_{1,2}$, G is also $B_{1,2}$ -free. This, together with Theorem 2, implies that G is a generalized comb. We only show that every leaf-clique consists of a single vertex. Let L_i ($1 \leq i \leq m$) be the leaf-cliques of G , and let R_i be the root of L_i . On the contrary, we may assume that $|L_1| \geq 2$. Let $a_1, a_2 \in L_1$ with $a_1 \neq a_2$, $a_3 \in R_1$, $a_4 \in R_2$ and $a_5 \in L_2$. Then $G[\{a_1, a_2, a_3, a_4, a_5\}] \cong Z_2$, giving a contradiction. Hence G is a pointed generalized comb. \square

In the following lemmas (Lemmas 2–8), we follow the labels given in Fig. 3.

Lemma 2 *Let G be a connected $\{K_{1,3}, Z_2, N\}$ -free graph which contains an induced subgraph $H = H_1(\{C_{s_3}, C_{s_4}, C_{s_5}\})$, where C_{s_3} , C_{s_4} and C_{s_5} are disjoint cliques. Then for each vertex $a \in V(G) - V(H)$ with $N_G(a) \cap V(H) \neq \emptyset$, one of the following holds:*

- (i) $C_{s_3} \cup C_{s_4} \cup C_{s_5} \subseteq N_G(a) \cap V(H)$ and $s_i \notin N_G(a) \cap V(H)$ for some $i \in \{1, 2\}$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_1$),
- (ii) for some $i \in \{1, 2\}$, $N_G(a) \cap V(H) = \{s_i\} \cup C_{s_5}$ and $|C_{s_{5-i}}| = 1$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_2$),
- (iii) for some $i \in \{3, 4\}$, $N_G(a) \cap V(H) = \{s_1, s_2\} \cup C_{s_i}$ and $|C_{s_{7-i}}| = |C_{s_5}| = 1$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_3$), or
- (iv) $N_G(a) \cap V(H) = \{s_1, s_2\} \cup C_{s_3} \cup C_{s_4}$ and $|C_{s_5}| = 1$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_4$).

Proof For each $i \in \{3, 4, 5\}$, we take a vertex b_i as follows: if $N_G(a) \cap C_{s_i} \neq \emptyset$, let $b_i \in N_G(a) \cap C_{s_i}$; otherwise (i.e., $N_G(a) \cap C_{s_i} = \emptyset$), let $b_i \in C_{s_i}$.

Case 1: $N_G(a) \cap C_{s_5} \neq \emptyset$.

If $as_1, as_2 \in E(G)$, then $G[\{a, s_1, s_2, b_5\}] \cong K_{1,3}$, giving a contradiction. Thus $as_1 \notin E(G)$ or $as_2 \notin E(G)$. We may assume that $as_1 \notin E(G)$.

If $N_G(a) \cap C_{s_3} \neq \emptyset$ and $ab \notin E(G)$ for some $b \in C_{s_4}$, then $G[\{b_3, a, b, s_1\}] \cong K_{1,3}$; if $N_G(a) \cap C_{s_4} \neq \emptyset$ and $ab \notin E(G)$ for some $b \in C_{s_3}$, then $as_2 \in E(G)$ because $G[\{b_4, a, b, s_2\}] \not\cong K_{1,3}$, and hence $G[\{a, s_2, b_4, b, s_1\}] \cong Z_2$. In either case, we get a contradiction. This implies that either $C_{s_3} \cup C_{s_4} \subseteq N_G(a)$ or $N_G(a) \cap (C_{s_3} \cup C_{s_4}) = \emptyset$.

Subcase 1.1: $C_{s_3} \cup C_{s_4} \subseteq N_G(a)$.

If $ab \notin E(G)$ for some $b \in C_{s_5}$, then $G[\{b_3, a, s_1, b\}] \cong K_{1,3}$, giving a contradiction. Thus $C_{s_5} \subseteq N_G(a)$. If $as_2 \in E(G)$, let $C'_{s_i} = C_{s_i}$ ($i \in \{3, 5\}$) and $C'_{s_4} = C_{s_4} \cup \{a\}$; if $as_2 \notin E(G)$, let $C'_{s_i} = C_{s_i}$ ($i \in \{3, 4\}$) and $C'_{s_5} = C_{s_5} \cup \{a\}$. Then $G[V(H) \cup \{a\}] = H_1(\{C'_{s_3}, C'_{s_4}, C'_{s_5}\}) \in \mathcal{H}_1$, and so (i) holds.

Subcase 1.2: $N_G(a) \cap (C_{s_3} \cup C_{s_4}) = \emptyset$.

Since $G[\{a, s_1, s_2, b_5, b_3, b_4\}] \not\cong N$, we have $as_2 \in E(G)$. If $ab \notin E(G)$ for some $b \in C_{s_5}$, then $G[\{b, b_3, b_4, s_2, a\}] \cong Z_2$, giving a contradiction. Thus $C_{s_5} \subseteq N_G(a)$, and hence $N_G(a) \cap V(H) = \{s_2\} \cup C_{s_5}$. If $|C_{s_3}| \geq 2$, then $G[\{b_3, b, b_4, s_2, a\}] \cong Z_2$ where $b \in C_{s_3} - \{b_3\}$, giving a contradiction. Thus $|C_{s_3}| = 1$, and so (ii) holds.

Case 2: $N_G(a) \cap C_{s_5} = \emptyset$ (i.e., $ab_5 \notin E(G)$). \square

Claim For each $i \in \{3, 4\}$, if $N_G(a) \cap C_{s_i} \neq \emptyset$, then $N_G(a) \supseteq \{s_1, s_2\} \cup C_{s_i}$.

Proof We may assume $i = 3$. Since $G[\{b_3, a, b_5, s_1\}] \not\cong K_{1,3}$, we have $as_1 \in E(G)$. By the same argument, if $N_G(a) \cap C_{s_4} \neq \emptyset$, then $as_2 \in E(G)$. Since $G[\{a, s_1, b_3, b_4, s_2\}] \not\cong Z_2$, we have $as_2 \in E(G)$ or $ab_4 \in E(G)$. In either case, we have $as_2 \in E(G)$. If $ab \notin E(G)$ for some $b \in C_{s_3}$, then $G[\{b_5, b, b_3, a, s_2\}] \cong Z_2$, giving a contradiction. Thus $C_{s_3} \subseteq N_G(a)$. \square

Suppose $N_G(a) \cap (C_{s_3} \cup C_{s_4}) = \emptyset$. Since $N_G(a) \cap V(H) \neq \emptyset$, we have $as_i \in E(G)$ for some $i \in \{1, 2\}$. Hence $G[\{b_5, b_{5-i}, b_{i+2}, s_i, a\}] \cong Z_2$, giving a contradiction. Thus $N_G(a) \cap (C_{s_3} \cup C_{s_4}) \neq \emptyset$. We may assume that $N_G(a) \cap C_{s_3} \neq \emptyset$. This together with Claim 3.1 forces $\{s_1, s_2\} \cup C_{s_3} \subseteq N_G(a)$. If $|C_{s_5}| \geq 2$, then $G[\{b_5, b, b_3, a, s_2\}] \cong Z_2$ where $b \in C_{s_5} - \{b_5\}$, giving a contradiction. Thus $|C_{s_5}| = 1$.

If $N_G(a) \cap C_{s_4} \neq \emptyset$, then $C_{s_4} \subseteq N_G(a)$ by Claim 3.1, and hence (iv) holds. Thus we may assume that $N_G(a) \cap C_{s_4} = \emptyset$ (i.e., $N_G(a) \cap V(H) = \{s_1, s_2\} \cup C_{s_3}$). If $|C_{s_4}| \geq 2$, then $G[\{b_4, b, s_2, a, s_1\}] \cong Z_2$ in G where $b \in C_{s_4} - \{b_4\}$, giving a contradiction. Hence $|C_{s_4}| = 1$, and so (iii) holds. \square

Lemma 3 Let G be a connected $\{K_{1,3}, Z_2, N\}$ -free graph which contains an induced subgraph $H = H_2(\{C_{t_3}, C_{t_4}\})$, where C_{t_3} and C_{t_4} are disjoint cliques. Then for each vertex $a \in V(G) - V(H)$ with $N_G(a) \cap V(H) \neq \emptyset$, one of the following holds:

- (i) for some $i \in \{5, 6\}$, $N_G(a) \cap V(H) = \{t_2, t_i\} \cup C_{t_3} \cup C_{t_4}$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_2$),
- (ii) for some $i \in \{3, 4\}$, $N_G(a) \cap V(H) = \{t_1, t_{i+2}\} \cup C_{t_i}$ and $|C_{t_{7-i}}| = 1$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_5$), or

(iii) $N_G(a) \cap V(H) = \{t_1, t_2, t_5, t_6\}$ and $|C_{t_3}| = |C_{t_4}| = 1$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_6$).

Proof For each $i \in \{3, 4\}$, let $b_i \in C_{t_i}$. For each $i \in \{5, 6\}$, we note that the graph $B_i := H - t_i$ belongs to \mathcal{H}_1 .

Case 1: $N_G(a) \cap (C_{t_3} \cup C_{t_4}) = \emptyset$.

Since $N_G(a) \cap V(H) \neq \emptyset$, $N_G(a) \cap V(B_i) \neq \emptyset$ for some $i \in \{5, 6\}$. We may assume that $N_G(a) \cap V(B_5) \neq \emptyset$. Since $N_G(a) \cap (C_{t_3} \cup C_{t_4}) = \emptyset$, we have $N_G(a) \cap V(B_5) = \{t_1, t_2, t_6\}$ and $|C_{t_4}| = 1$ by Lemma 2. In particular, $N_G(a) \cap V(B_6) \neq \emptyset$. Then again by Lemma 2, $N_G(a) \cap V(B_6) = \{t_1, t_2, t_5\}$ and $|C_{t_3}| = 1$. This implies that $N_G(a) \cap V(H) = \{t_1, t_2, t_5, t_6\}$ and $|C_{t_3}| = |C_{t_4}| = 1$, and so (iii) holds.

Case 2: $N_G(a) \cap (C_{t_3} \cup C_{t_4}) \neq \emptyset$.

We may assume that $N_G(a) \cap C_{t_3} \neq \emptyset$. If $N_G(a) \cap V(B_5) = \{t_6\} \cup C_{t_3}$, then either $N_G(a) \cap V(B_6) = C_{t_3}$ or $N_G(a) \cap V(B_6) = \{t_5\} \cup C_{t_3}$, which contradicts Lemma 2. Thus, by Lemma 2, we have either $G[V(B_5) \cup \{a\}] \in \mathcal{H}_1$, or $N_G(a) \cap V(B_5) = \{t_1\} \cup C_{t_3}$ and $|C_{t_4}| = 1$.

Subcase 2.1: $G[V(B_5) \cup \{a\}] \in \mathcal{H}_1$.

We see that $\{t_2\} \cup C_{t_3} \cup C_{t_4} \subseteq N_G(a)$. Since $G[\{a, t_2, b_4, t_6, t_5\}] \not\cong Z_2$, we have $at_5 \in E(G)$ or $at_6 \in E(G)$. We may assume that $at_5 \in E(G)$. If $at_1 \in E(G)$, then $G[\{a, t_1, b_4, t_5\}] \cong K_{1,3}$, giving a contradiction. Thus $at_1 \notin E(G)$. So, $at_6 \notin E(G)$ because $G[\{t_5, t_6, a, t_2, t_1\}] \not\cong Z_2$. Hence we get $N_G(a) \cap V(H) = \{t_2, t_5\} \cup C_{t_3} \cup C_{t_4}$. Consequently, $G[V(H) \cup \{a\}] = H_2(\{C'_{t_3}, C'_{t_4}\})$ where $C'_{s_3} = C_{s_3} \cup \{a\}$ and $C'_{s_4} = C_{s_4}$, and so (i) holds.

Subcase 2.2: $N_G(a) \cap V(B_5) = \{t_1\} \cup C_{t_3}$ and $|C_{t_4}| = 1$.

Since $G[\{b_3, a, t_2, t_5\}] \not\cong K_{1,3}$, we have $at_5 \in E(G)$. Hence $N_G(a) \cap V(H) = \{t_1, t_5\} \cup C_{t_3}$ and $|C_{t_4}| = 1$, and so (ii) holds. \square

Lemma 4 Let G be a connected $\{K_{1,3}, Z_2, N\}$ -free graph which contains an induced subgraph $H = H_3(\{C_{u_6}\})$, where C_{u_6} is a clique. Then for each vertex $a \in V(G) - V(H)$ with $N_G(a) \cap V(H) \neq \emptyset$, one of the following holds:

- (i) $N_G(a) \cap V(H) = \{u_2, u_3, u_4, u_5\} \cup C_{u_6}$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_3$),
- (ii) $N_G(a) \cap V(H) = \{u_1, u_i, u_{7-i}\}$ for some $i \in \{2, 3\}$ and $|C_{u_6}| = 1$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_6$), or
- (iii) $N_G(a) \cap V(H) = \{u_4, u_5\}$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_5$).

Proof For each $i \in \{2, 3\}$, we note that the graph $B_i := H - u_i$ belongs to \mathcal{H}_1 . Since $N_G(a) \cap V(H) \neq \emptyset$, $N_G(a) \cap V(B_i) \neq \emptyset$ for some $i \in \{2, 3\}$. If $au_4, au_5 \notin E(G)$, then $N_G(a) \cap V(B_i) \subseteq \{u_1, u_{u_5-i}\} \cup C_{u_6}$ for each $i \in \{2, 3\}$, which contradicts Lemma 2. Thus, $au_4 \in E(G)$ or $au_5 \in E(G)$. We may assume that $au_4 \in E(G)$. Then by Lemma 2, we have either $G[V(B_3) \cup \{a\}] \in \mathcal{H}_1$, or $N_G(a) \cap V(B_3) = \{u_1, u_4\}$ and $|C_{u_6}| = 1$, or $N_G(a) \cap V(B_3) = \{u_4, u_5\}$.

Case 1: $G[V(B_3) \cup \{a\}] \in \mathcal{H}_1$.

In this case, we have $\{u_2, u_4\} \cup C_{u_6} \subseteq N_G(a)$. Then again by Lemma 2, we have either $G[V(B_2) \cup \{a\}] \in \mathcal{H}_1$ or $N_G(a) \cap V(B_2) = \{u_1, u_4\} \cup C_{u_6}$ or $N_G(a) \cap V(B_2) = \{u_1, u_3, u_4\} \cup C_{u_6}$. If $N_G(a) \cap V(B_2) = \{u_1, u_4\} \cup C_{u_6}$ (i.e., $N_G(a) \cap V(H) = \{u_1, u_2, u_4\} \cup C_{u_6}$), then $G[\{u_2, a, u_1, u_3, u_5\}] \cong Z_2$; if

$N_G(a) \cap V(B_2) = \{u_1, u_3, u_4\} \cup C_{u_6}$ (i.e., $N_G(a) \cap V(H) = \{u_1, u_2, u_3, u_4\} \cup C_{u_6}$), then $G[\{u_2, u_4, a, u_3, u_5\}] \cong Z_2$. In either case, we get a contradiction. Thus $G[V(B_2) \cup \{a\}] \in \mathcal{H}_1$. Since $au_4 \in E(G)$, we see that $N_G(a) \cap V(B_2) = \{u_3, u_4, u_5\} \cup C_{u_6}$, and hence $N_G(a) \cap V(H) = \{u_2, u_3, u_4, u_5\} \cup C_{u_6}$. Consequently, $G[V(H) \cup \{a\}] = H_3(\{C'_{u_6}\})$ where $C'_{u_6} = C_{u_6} \cup \{a\}$, and so (i) holds.

Case 2: $N_G(a) \cap V(B_3) = \{u_1, u_4\}$ and $|C_{u_6}| = 1$.

Since $au_2 \notin E(G)$ and $G[\{u_1, u_2, u_3, a\}] \not\cong K_{1,3}$, we have $au_3 \in E(G)$. Hence $N_G(a) \cap V(H) = \{u_1, u_3, u_4\}$ and $|C_{u_6}| = 1$, and so (ii) holds.

Case 3: $N_G(a) \cap V(B_3) = \{u_4, u_5\}$.

Since $G[\{u_3, u_1, b, a\}] \not\cong K_{1,3}$ for any $b \in C_{u_6}$, we have $au_3 \notin E(G)$. Hence $N_G(a) \cap V(H) = \{u_4, u_5\}$, and so (iii) holds. \square

Lemma 5 *Let G be a connected $\{K_{1,3}, Z_2, N\}$ -free graph which contains an induced subgraph $H = H_4(\{C_{v_4}, C_{v_5}, C_{v_6}\})$, where C_{v_4} , C_{v_5} and C_{v_6} are disjoint cliques. Then for each vertex $a \in V(G) - V(H)$ with $N_G(a) \cap V(H) \neq \emptyset$, we have $N_G(a) \cap V(H) = (\{v_1, v_2, v_3\} - \{v_i\}) \cup C_{v_4} \cup C_{v_5} \cup C_{v_6}$ for some $i \in \{1, 2, 3\}$. Consequently, $G[V(H) \cup \{a\}] \in \mathcal{H}_4$.*

Proof For each $i \in \{4, 5, 6\}$, let $b_i \in C_{v_i}$. For each $i \in \{5, 6\}$, we note that the graph $B_i := H - C_{v_i}$ belongs to \mathcal{H}_1 .

Suppose $N_G(a) \cap \{v_1, v_2, v_3\} = \emptyset$. Since $N_G(a) \cap V(H) \neq \emptyset$, we may assume that $ab_4 \in E(G)$. Then $G[\{b_4, a, v_1, v_2\}] \cong K_{1,3}$, giving a contradiction. Thus, $N_G(a) \cap \{v_1, v_2, v_3\} \neq \emptyset$. We may assume that $av_1 \in E(G)$. Then, by Lemma 2, we have $G[V(B_5) \cup \{a\}] \in \mathcal{H}_1$ or $N_G(a) \cap V(B_5) = \{v_1, v_i\}$ for some $i \in \{2, 3\}$.

Suppose that $N_G(a) \cap V(B_5) = \{v_1, v_i\}$ for some $i \in \{2, 3\}$. In this case, we may assume that $N_G(a) \cap V(B_5) = \{v_1, v_2\}$. Then by Lemma 2, $N_G(a) \cap V(B_6) = \{v_1, v_2\}$. In particular, $N_G(a) \cap V(H) = \{v_1, v_2\}$. Then $G[\{b_5, v_3, b_6, v_1, a\}] \cong Z_2$, giving a contradiction. Thus $G[V(B_5) \cup \{a\}] \in \mathcal{H}_1$.

Hence we have $N_G(a) \cap V(B_5) = \{v_1\} \cup C_{v_4} \cup C_{v_6}$ or $N_G(a) \cap V(B_5) = \{v_1, v_i\} \cup C_{v_4} \cup C_{v_6}$ for some $i \in \{2, 3\}$. If $N_G(a) \cap V(B_5) = \{v_1\} \cup C_{v_4} \cup C_{v_6}$, then $ab_5 \in E(G)$ because $G[\{a, v_1, b_6, b_5, v_2\}] \not\cong Z_2$, and hence $G[\{b_5, a, v_2, v_3\}] \cong K_{1,3}$, giving a contradiction. Thus $N_G(a) \cap V(B_5) = \{v_1, v_i\} \cup C_{v_4} \cup C_{v_6}$ for some $i \in \{2, 3\}$. We may assume that $N_G(a) \cap V(B_5) = \{v_1, v_2\} \cup C_{v_4} \cup C_{v_6}$. Here we focus on the subgraph of G induced by $V(B_6) \cup \{a\}$. Since B_6 belongs to \mathcal{H}_1 , it follows from Lemma 2 that $C_{v_5} \subseteq N_G(a)$. In particular, $N_G(a) \cap V(H) = \{v_1, v_2\} \cup C_{v_4} \cup C_{v_5} \cup C_{v_6}$. Therefore $G[V(H) \cup \{a\}] = H_4(\{C'_{v_4}, C'_{v_5}, C'_{v_6}\})$ where $C'_{s_4} = C_{s_4} \cup \{a\}$ and $C'_{s_i} = C_{s_i}$ ($i \in \{5, 6\}$). \square

Lemma 6 *Let G be a connected $\{K_{1,3}, Z_2, N\}$ -free graph which contains an induced subgraph $H = H_5(\{C_{w_7}\})$, where C_{w_7} is a clique. Then for each vertex $a \in V(G) - V(H)$ with $N_G(a) \cap V(H) \neq \emptyset$, one of the following holds:*

- (i) $N_G(a) \cap V(H) = \{w_3, w_4, w_5, w_6\} \cup C_{w_7}$ (and so $G[V(H) \cup \{a\}] \in \mathcal{H}_5$), or
- (ii) $N_G(a) \cap V(H) = \{w_1, w_2, w_i, w_{9-i}\}$ for some $i \in \{3, 4\}$ and $|C_{w_7}| = 1$ (and so $G[V(H) \cup \{a\}] \cong H_7$).

Proof For each $i \in \{1, 2\}$, we note that the graph $B_i := H - w_i$ belongs to \mathcal{H}_3 . Since $N_G(a) \cap V(H) \neq \emptyset$, $N_G(a) \cap V(B_i) \neq \emptyset$ for some $i \in \{1, 2\}$. We may assume that

$N_G(a) \cap V(B_1) \neq \emptyset$. If $N_G(a) \cap V(B_1) = \{w_3, w_5\}$, then either $N_G(a) \cap V(B_2) = \{w_3, w_5\}$ or $N_G(a) \cap V(B_2) = \{w_1, w_3, w_5\}$, which contradicts Lemma 4. This, together with Lemma 4, implies that either $G[V(B_1) \cup \{a\}] \in \mathcal{H}_3$ or $N_G(a) \cap V(B_1) = \{w_2, w_i, w_{9-i}\}$ for some $i \in \{3, 4\}$ and $|C_{w_7}| = 1$.

Case 1: $G[V(B_1) \cup \{a\}] \in \mathcal{H}_3$.

Note that we have either $N_G(a) \cap V(B_2) = \{w_3, w_4, w_5, w_6\} \cup C_{w_7}$ or $N_G(a) \cap V(B_2) = \{w_1, w_3, w_4, w_5, w_6\} \cup C_{w_7}$. This, together with Lemma 4, leads to $N_G(a) \cap V(H) = \{w_3, w_4, w_5, w_6\} \cup C_{w_7}$. Hence, $G[V(H) \cup \{a\}] = H_5(\{C'_{w_7}\}) \in \mathcal{H}_5$ where $C'_{w_7} = C_{w_7} \cup \{a\}$, and so (i) holds.

Case 2: $N_G(a) \cap V(B_1) = \{w_2, w_i, w_{9-i}\}$ for some $i \in \{3, 4\}$ and $|C_{w_7}| = 1$.

We may assume that $N_G(a) \cap V(B_1) = \{w_2, w_3, w_6\}$. Then $N_G(a) \cap V(B_2) = \{w_3, w_6\}$ or $N_G(a) \cap V(B_2) = \{w_1, w_3, w_6\}$. This, together with Lemma 4, leads to $N_G(a) \cap V(H) = \{w_1, w_2, w_3, w_6\}$, and so (ii) holds. \square

Lemma 7 *Let G be a connected $\{K_{1,3}, Z_2, N\}$ -free graph which contains an induced subgraph $H = H_6$. Then for each vertex $a \in V(G) - V(H)$ with $N_G(a) \cap V(H) \neq \emptyset$, $N_G(a) \cap V(H) = \{x_i, x_{i+1}, x_7\}$ for some $i \in \{1, 3\}$. Consequently, $G[V(H) \cup \{a\}] \cong H_7$.*

Proof We note that the graph $B := H - x_1$ belongs to \mathcal{H}_3 , and the graph $B^* := H - x_5$ belongs to \mathcal{H}_2 .

We first suppose that $ax_i, ax_{i+2} \in E(G)$ for some $i \in \{1, 2\}$. We may assume that $ax_1, ax_3 \in E(G)$. Then by Lemma 3, we have $N_G(a) \cap V(B^*) = \{x_1, x_3, x_6, x_7\}$, and hence either $N_G(a) \cap V(B) = \{x_3, x_6, x_7\}$ or $N_G(a) \cap V(B) = \{x_3, x_5, x_6, x_7\}$, which contradicts Lemma 4. Thus,

$$\text{for each } i \in \{1, 2\}, \text{ either } ax_i \notin E(G) \text{ or } ax_{i+2} \notin E(G). \quad (1)$$

If $N_G(a) \cap V(B^*) \neq \emptyset$, then $|N_G(a) \cap V(B^*)| \geq 2$ by Lemma 3. In particular, we have $N_G(a) \cap V(B) \neq \emptyset$. If $N_G(a) \cap \{x_1, x_2, x_3, x_4\} = \emptyset$, then $N_G(a) \cap V(B) \subseteq \{x_5, x_6, x_7\}$, which contradicts Lemma 4. Thus $N_G(a) \cap \{x_1, x_2, x_3, x_4\} \neq \emptyset$. By the symmetry of x_1, \dots, x_4 , we may assume that $ax_1 \in E(G)$. By (1), $ax_3 \notin E(G)$. Since $G[\{x_1, a, x_2, x_3\}] \not\cong K_{1,3}$, we have $ax_2 \in E(G)$. So, $ax_4 \notin E(G)$ by (1). Then, by Lemma 4, $N_G(a) \cap V(B) = \{x_2, x_7\}$. Consequently, $N_G(a) \cap V(H) = \{x_1, x_2, x_7\}$. \square

Lemma 8 *Let G be a connected $\{K_{1,3}, Z_2, N\}$ -free graph which contains an induced subgraph $H = H_7$. Then for each vertex $a \in V(G) - V(H)$ with $N_G(a) \cap V(H) \neq \emptyset$, $N_G(a) \cap V(H) = \{y_1, y_2, y_7, y_8\}$. Consequently, $G[V(H) \cup \{a\}] \cong H_8$.*

Proof For each $i \in \{1, 2\}$, we note that the graph $B_i := H - y_i$ is isomorphic to H_6 . Since $N_G(a) \cap V(H) \neq \emptyset$, we have $N_G(a) \cap V(B_i) \neq \emptyset$ for some $i \in \{1, 2\}$. We may assume that $N_G(a) \cap V(B_1) \neq \emptyset$. Then, by Lemma 7, $N_G(a) \cap V(B_1) = \{y_2, y_3, y_5\}$ or $N_G(a) \cap V(B_1) = \{y_2, y_7, y_8\}$. In particular, $\{y_3, y_5\} \subseteq N_G(a) \cap V(B_2)$ or $\{y_7, y_8\} \subseteq N_G(a) \cap V(B_2)$. This, together with Lemma 7, leads to $N_G(a) \cap V(B_1) = \{y_2, y_7, y_8\}$ and $N_G(a) \cap V(B_2) = \{y_1, y_7, y_8\}$. So, $N_G(a) = \{y_1, y_2, y_7, y_8\}$. \square

Proof of Theorem 3 By a routine but tedious argument, we can verify that every graph in $\bigcup_{0 \leq i \leq 8} \mathcal{H}_i$ is $\{K_{1,3}, Z_2\}$ -free but not $B_{1,1}$ -free (and we omit its detail). Thus it suffices to show that, if a connected $\{K_{1,3}, Z_2\}$ -free graph G is not $B_{1,1}$ -free (i.e., G contains $B_{1,1}$ as an induced subgraph), then G belongs to $\bigcup_{0 \leq i \leq 8} \mathcal{H}_i$.

If G is not N -free, then by Lemma 1, $G \in \mathcal{H}_0$, as desired. Thus we may assume that G is $\{K_{1,3}, Z_2, N\}$ -free. Assume that G contains $B_{1,1}$ ($\in \mathcal{H}_1$) as an induced subgraph. Then G contains a graph $H \in \bigcup_{1 \leq i \leq 8} \mathcal{H}_i$ as an induced subgraph. Choose H so that $|V(H)|$ is as large as possible. It suffices to show that $G = H$. By way of contradiction, suppose that $G \neq H$ (i.e., $V(G) - V(H) \neq \emptyset$). Since G is connected, there exists a vertex $a \in V(G) - V(H)$ which is adjacent to a vertex in $V(H)$. By the maximality of H , $G[V(H) \cup \{a\}] \notin \bigcup_{1 \leq i \leq 8} \mathcal{H}_i$. This, together with Lemmas 2–8, gives $H = H_8$. For each $i \in \{7, 8, 9\}$, we note that the graph $B_i := H - z_i$ is isomorphic to H_7 . Since $N_G(a) \cap V(H) \neq \emptyset$, we have $N_G(a) \cap V(B_i) \neq \emptyset$ for some $i \in \{7, 8\}$. We may assume that $N_G(a) \cap V(B_7) \neq \emptyset$. Then by Lemma 8, $N_G(a) \cap V(B_7) = \{z_3, z_4, z_8, z_9\}$. In particular, $az_3 \in E(G)$. On the other hand, since $N_G(a) \cap V(B_9) \neq \emptyset$, $N_G(a) \cap V(B_9) = \{z_1, z_2, z_7, z_8\}$, and so $az_3 \notin E(G)$, giving a contradiction.

This completes the proof of Theorem 3. \square

3.2 Proof of Theorem 6

In order to prove Theorem 6, we give a further definition. For two integers s and t , we let $[s, t] = \{i \in \mathbb{N} \mid s \leq i \leq t\}$. Note that if $s > t$, then $[s, t] = \emptyset$.

Here we prove Theorem 6. We can easily verify that every graph in $\mathcal{P}(\max\{3m, m+4\})$ is $\{K_{1,3}, B_{1,m}\}$ -free but not $P_{\max\{3m, m+4\}}$ -free. Thus it suffices to show that if a connected $\{K_{1,3}, B_{1,m}\}$ -free graph G is not $P_{\max\{3m, m+4\}}$ -free (i.e., G contains $P_{\max\{3m, m+4\}}$ as an induced subgraph), then G belongs to $\mathcal{P}(\max\{3m, m+4\})$.

Assume that G contains $P_{\max\{3m, m+4\}}$ as an induced subgraph. Then G contains a graph $H \in \mathcal{P}(\max\{3m, m+4\})$ as an induced subgraph. Choose H so that $|V(H)|$ is as large as possible. It suffices to show that $G = H$. Otherwise, there exists a vertex $a \in V(G) - V(H)$ such that $N_G(a) \cap V(H) \neq \emptyset$. Let ℓ be the integer such that H is either a fat ℓ -path or a fat ℓ -cycle. Then we can write either $H = F_p(L_1, \dots, L_\ell)$ or $H = F_c(L_0, \dots, L_\ell)$ for some disjoint cliques L_0, \dots, L_ℓ . Let $I = \{i \mid N_G(a) \cap L_i \neq \emptyset\}$.

Claim $|I| \leq 4$.

Proof Suppose that there are five fundamental cliques $L^{(1)}, \dots, L^{(5)}$ of H with $N_G(a) \cap L^{(i)} \neq \emptyset$ ($1 \leq i \leq 5$). For each i ($1 \leq i \leq 5$), let $b^{(i)} \in N_G(a) \cap L^{(i)}$. Since $\max\{3m, m+4\} \geq 5$, if H is a fat cycle, then H has at least six fundamental cliques. Thus $G[\{b^{(i)} \mid 1 \leq i \leq 5\}]$ has no cycle, and so is a forest of order five and maximum degree at most two. Then we can easily check that $G[\{b^{(i)} \mid 1 \leq i \leq 5\}]$ has an independent set B with $|B| = 3$, and hence $G[\{a\} \cup B] \cong K_{1,3}$, giving a contradiction. \square

If H is a fat cycle, then $N_G(a) \cap L_i = \emptyset$ for some $0 \leq i \leq \ell$ by Claim 3.2. By relabeling L_0, \dots, L_ℓ if necessary, we may assume that

(L1) $0 \notin I$, and
 (L2) subject to (L1), $|I \cap \{1, \ell\}|$ is as small as possible.

Thus, if H is a fat cycle and there exists an integer i ($1 \leq i \leq \ell-2$) with $i, i+1, i+2 \notin I$, then $I \cap \{0, 1, \ell\} = \emptyset$.

For each i ($1 \leq i \leq \ell$), we take a vertex b_i as follows: if $i \in I$, let $b_i \in N_G(a) \cap L_i$; otherwise (i.e., $i \notin I$), let $b_i \in L_i$. Note that, by our choices of indices, $b_1 b_\ell \notin E(G)$ regardless of H being a fat path or a fat cycle.

Claim Assume that there exists an index j ($2 \leq j \leq \ell-2$) such that $I \cap [2, \ell-1] = \{j, j+1\}$. Then either $j = 2$ and $ab_1 \in E(G)$ or $j = \ell-2$ and $ab_\ell \in E(G)$.

Proof Recall that $\ell \geq \max\{3m, m+4\}$. We first consider the case $\ell-m-1 \leq j \leq m+1$. Then $\ell \leq 2m+2$. Since $\ell \geq 3m$, we have $m \leq 2$; since $\ell \geq m+4$, we have $m \geq 2$. Hence $m = 2$, and this forces $\ell = 6$ and $j = 3$. By the assumption of the claim, $ab_2, ab_5 \notin E(G)$. Since $G[\{b_2, b_3, a, b_4, b_5, b_6\}] \not\cong B_{1,2}$ and $G[\{b_5, b_4, a, b_3, b_2, b_1\}] \not\cong B_{1,2}$, we have $ab_1, ab_6 \in E(G)$. Then $G[\{a, b_1, b_3, b_6\}] \cong K_{1,3}$, giving a contradiction. Thus either $j \geq m+2$ or $j \leq \ell-m-2$.

We now consider the case $j \geq m+2$ (i.e., $j-m \geq 2$). Then $ab_i \notin E(G)$ for every $j-m \leq i \leq j-1$. Since $G[\{b_{j+2}, b_{j+1}, a, b_j, b_{j-1}, \dots, b_{j-m}\}] \not\cong B_{1,m}$, this forces $b_{j+2} = b_l$ (i.e., $j = \ell-2$) and $ab_\ell \in E(G)$, as desired. Thus we may assume that $j \leq \ell-m-2$ (i.e., $j+m+1 \leq \ell-1$). Then $ab_i \notin E(G)$ for every $j+2 \leq i \leq j+m+1$. Since $G[\{b_{j-1}, b_j, a, b_{j+1}, b_{j+2}, \dots, b_{j+m+1}\}] \not\cong B_{1,m}$, this forces $b_{j-1} = b_1$ (i.e., $j = 2$) and $ab_1 \in E(G)$, as desired. \square

Claim For each $j \in I$, there exists an index j' ($j' \neq j$) such that $|j - j'| = 1$ and $j' \in I$.

Proof If $2 \leq j \leq \ell-1$ and $j-1, j+1 \notin I$, then $G[\{b_j, a, b_{j-1}, b_{j+1}\}] \cong K_{1,3}$, giving a contradiction. Hence if $2 \leq j \leq \ell-1$, then the desired conclusion holds. Thus we may assume that $j \in \{1, \ell\}$ by (L1).

For the moment, we assume that $j = 1$ and $2 \notin I$. We further suppose that there exists an index i ($3 \leq i \leq \ell-1$) with $i \in I$. Choose i so that i is as small as possible. Then, $i+1 \in I$ since $3 \leq i \leq \ell-1$. If $i+1 \leq \ell-1$ and $I \cap [3, \ell-1] = \{i, i+1\}$, then $i = \ell-2$ and $\ell \in I$ by Claim 3.2. This implies that if $i+1 \leq \ell-1$ (i.e., $i \leq \ell-2$), then there are three indices i_1, i_2, i_3 ($3 \leq i_1 < i_2 < i_3 \leq \ell$) with $i_1, i_2, i_3 \in I$, and hence $G[\{a, b_1, b_{i_1}, b_{i_3}\}] \cong K_{1,3}$, giving a contradiction. Thus $i \geq \ell-1$, and so $i = \ell-1$. Note that $I \cap [1, \ell] = \{1, \ell-1, \ell\}$. This, together with the fact $\ell-m-1 \geq 3$, implies that $G[\{b_1, a, b_\ell, b_{\ell-1}, \dots, b_{\ell-m-1}\}] \cong B_{1,m}$, giving a contradiction. Thus $I \cap [2, \ell-1] = \emptyset$. By (L1) and (L2), we see that H is a fat path. If there exists a vertex $u \in L_1$ with $au \notin E(G)$, then, since $\ell \geq m+4$, $G[\{a, b_1, u, b_2, \dots, b_{m+2}\}] \cong B_{1,m}$, giving a contradiction. Thus $L_1 \subseteq N_G(a)$. By the symmetry and the fact $\ell-1 \notin I$, if $\ell \in I$, then $L_\ell \subseteq N_G(a)$. Hence either $N_G(a) \cap V(H) = L_1$ or $N_G(a) \cap V(H) = L_1 \cup L_\ell$. If $N_G(a) \cap V(H) = L_1$, then $G[V(H) \cup \{a\}] = F_p(\{a\}, L_1, \dots, L_\ell)$; if $N_G(a) \cap V(H) = L_1 \cup L_\ell$, then $G[V(H) \cup \{a\}] = F_c(\{a\}, L_1, \dots, L_\ell)$. In either case, $G[V(H) \cup \{a\}] \in \mathcal{P}(\max\{3m, m+4\})$, which contradicts the maximality of H . Thus if $j = 1$, then $2 \in I$. By the symmetry, if $j = \ell$, then $\ell-1 \in I$. \square

Let $i_1 = \min\{i \mid i \in I\}$ and $i_2 = \max\{i \mid i \in I\}$. By Claim 3.2, $i_1 + 1, i_2 - 1 \in I$.

Claim If $i_1 \neq 1$, then $L_{i_1+1} \subseteq N_G(a)$. If $i_2 \neq \ell$, then $L_{i_2-1} \subseteq N_G(a)$.

Proof If $i_1 \neq 1$ and $L_{i_1+1} \not\subseteq N_G(a)$, say $u \in L_{i_1+1} - N_G(a)$, then $G[\{b_{i_1}, b_{i_1-1}, a, u\}] \cong K_{1,3}$, giving a contradiction. Thus if $i_1 \neq 1$, then $L_{i_1+1} \subseteq N_G(a)$. By the symmetry, we have $L_{i_2-1} \subseteq N_G(a)$ if $i_2 \neq \ell$. \square

Since $|I| \leq 4$, we divide the rest of the proof into three cases according to $|I| \leq 2$, $|I| = 3$, and $|I| = 4$.

Case 1: $|I| \leq 2$.

By Claim 3.2, $I = \{i_1, i_2\} = \{i_1, i_1 + 1\}$. If $|I \cap [2, \ell - 1]| = 2$, then either $1 \in I$ or $\ell \in I$ by Claim 3.2, and so $|I| \geq 3$, giving a contradiction. Thus $|I \cap [2, \ell - 1]| \leq 1$, which implies either $I = \{1, 2\}$ or $I = \{\ell - 1, \ell\}$. We may assume that $I = \{1, 2\}$. By (L2), H is a fat path. If $L_2 \not\subseteq N_G(a)$, say $u \in L_2 - N_G(a)$, then $G[\{a, b_2, u, b_3, b_4, \dots, b_{m+3}\}] \cong B_{1,m}$, giving a contradiction. Thus $L_2 \subseteq N_G(a)$. This, together with Claim 3.2, leads to $N_G(a) \cap V(H) = L_1 \cup L_2$, and hence $G[V(H) \cup \{a\}] = F_p(L_1 \cup \{a\}, L_2, \dots, L_\ell) \in \mathcal{P}(\max\{3m, m + 4\})$, which contradicts the maximality of H .

Case 2: $|I| = 3$.

In this case, $I = \{i_1, i_1 + 1 (= i_2 - 1), i_2\} = \{i_1, i_1 + 1, i_1 + 2\}$. By (L1) and (L2), either H is a fat cycle and $I \cap \{0, 1, \ell\} = \emptyset$ or H is a fat path. Since either $i_1 \neq 1$ or $i_2 \neq \ell$, $L_{i_1+1} (= L_{i_2-1}) \subseteq N_G(a)$ by Claim 3.2. Suppose that either $L_{i_1} \not\subseteq N_G(a)$ or $L_{i_2} \not\subseteq N_G(a)$. We may assume that $L_{i_1} \not\subseteq N_G(a)$. Let $u \in L_{i_1} - N_G(a)$. If $i_1 \leq \ell - m - 2$ (i.e., $i_1 + m + 2 \leq \ell$), then $G[\{u, b_{i_1+1}, a, b_{i_1+2}, \dots, b_{i_1+m+2}\}] \cong B_{1,m}$; if $i_1 \geq m + 2$ (i.e., $i_1 - m - 1 \geq 1$), then $G[\{a, b_{i_1}, u, b_{i_1-1}, \dots, b_{i_1-m-1}\}] \cong B_{1,m}$. In either case, we get a contradiction. Thus $\ell - m - 1 \leq i_1 \leq m + 1$. This, together with the assumption $\ell \geq \max\{3m, m + 4\}$, leads to $m = 2$, $\ell = 6$ and $i_1 = 3$. Then $G[\{b_1, b_2, u, b_3, a, b_5\}] \cong B_{1,2}$, giving a contradiction. Thus $L_{i_1} \cup L_{i_2} \subseteq N_G(a)$ (i.e., $N_G(a) \cap V(H) = L_{i_1} \cup L_{i_1+1} \cup L_{i_2}$). Hence

$$G[V(H) \cup \{a\}] = F_c(L_0, L_1, \dots, L_{i_1}, L_{i_1+1} \cup \{a\}, L_{i_2}, \dots, L_\ell)$$

or

$$G[V(H) \cup \{a\}] = F_p(L_1, \dots, L_{i_1}, L_{i_1+1} \cup \{a\}, L_{i_2}, \dots, L_\ell)$$

according as H is a fat cycle or a fat path, which contradicts the maximality of H .

Case 3: $|I| = 4$.

In this case, $i_1 + 1 < i_2 - 1$ and $I = \{i_1, i_1 + 1, i_2 - 1, i_2\}$. Let $J_1 = [1, i_1 - 1]$, $J_2 = [i_1 + 2, i_2 - 2]$ and $J_3 = [i_2 + 1, \ell]$ (where J_i may be empty). If $|J_1| \geq m$, then $i_1 - m \geq 1$, and hence $G[\{b_{i_2}, a, b_{i_1+1}, b_{i_1}, b_{i_1-1}, \dots, b_{i_1-m}\}] \cong B_{1,m}$; if $|J_2| \geq m$, then $i_1 + m + 1 \leq i_2 - 2$, and hence $G[\{b_{i_2}, a, b_{i_1}, b_{i_1+1}, \dots, b_{i_1+m+1}\}] \cong B_{1,m}$; if $|J_3| \geq m$, then $i_2 + m \leq \ell$, and hence $G[\{b_{i_1}, a, b_{i_2-1}, b_{i_2}, b_{i_2+1}, \dots, b_{i_2+m}\}] \cong B_{1,m}$. In either case, we get a contradiction. Thus $\max\{|J_1|, |J_2|, |J_3|\} \leq m - 1$. On the other hand, $|J_1| + |J_2| + |J_3| = |[1, \ell] - \{i_1, i_1 + 1, i_2 - 1, i_2\}| = \ell - 4 \geq \max\{3m - 4, m\}$. Hence we see that $m \geq 2$ and $|J_i| = |J_{i'}| = m - 1$ for some $i, i' \in \{1, 2, 3\}$.

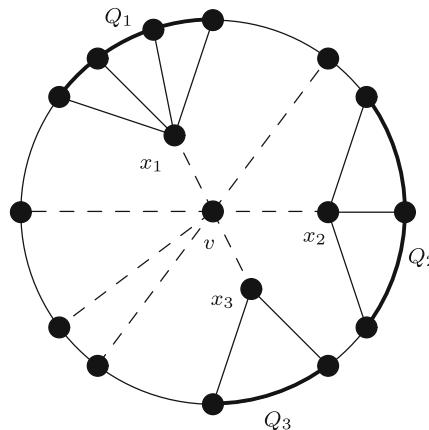


Fig. 5 A fan-cycle system

with $i \neq i'$. Without loss of generality, we may assume that $|J_1| = m - 1$ (i.e., $i_1 = m$). If $|J_2| = m - 1$, then $G[\{b_{i_2-2}, b_{i_2-1}, b_{i_2}, a, b_m, b_{m-1}, \dots, b_1\}] \cong B_{1,m}$; if $|J_3| = m - 1$, then $G[\{b_{i_2+1}, b_{i_2}, b_{i_2-1}, a, b_m, b_{m-1}, \dots, b_1\}] \cong B_{1,m}$. In either case, we again get a contradiction.

This completes the proof of Theorem 6.

4 The Existence of Halin Subgraph

In this section, we prove Theorems 13 and 14.

Let G be a graph. A sequence $(C : v; Q_1, \dots, Q_m; x_1, \dots, x_m)$ is a *fan-cycle system* of G if

1. C is a cycle of G ,
2. Q_1, \dots, Q_m are vertex-disjoint paths of order at least two on C ,
3. v, x_1, \dots, x_m are distinct vertices with $V(G) - V(C) = \{v, x_1, \dots, x_m\}$,
4. $|V(C) - \bigcup_{1 \leq i \leq m} V(Q_i)| + m \geq 3$,
5. v is adjacent to every vertex in $(V(C) - \bigcup_{1 \leq i \leq m} V(Q_i)) \cup \{x_1, \dots, x_m\}$, and
6. for i ($1 \leq i \leq m$), x_i is adjacent to every vertex of Q_i

(see Fig. 5). In [3], the following lemma was proved in order to construct a spanning Halin subgraph.

Lemma 9 (Chen et al. [3]) *If a graph G has a fan-cycle system, then G has a spanning Halin subgraph.*

Now we show that all 3-connected graphs in $\bigcup_{0 \leq i \leq 8} \mathcal{H}_i$ have a spanning Halin subgraph.

Lemma 10 *For $G \in \bigcup_{0 \leq i \leq 8} \mathcal{H}_i$, if G is 3-connected, then G has a spanning Halin subgraph.*

Proof Since all graphs in $\bigcup_{i \in \{2, 3, 5, 6\}} \mathcal{H}_i$ are not 3-connected, $G \in \mathcal{H}_i$ for some $i \in \{0, 1, 4, 7, 8\}$. By Lemma 9, it suffices to show that G has a fan-cycle system.

Case 1: $G \in \mathcal{H}_0$.

Let L_1, \dots, L_m be the leaf-cliques of G , and let R_i be the root of L_i . For each i ($1 \leq i \leq m$), let $v_i \in R_i$. Since G is 3-connected, $|R_i - \{v_i\}| \geq 2$ for all i , and hence $G - \{v_i \mid 1 \leq i \leq m\}$ has a Hamiltonian cycle C containing $m - 1$ vertex-disjoint paths Q_2, \dots, Q_m with $V(Q_i) = L_i \cup (R_i - \{v_i\})$ ($2 \leq i \leq m$). Then $(C : v_1; Q_2, \dots, Q_m; v_2, \dots, v_m)$ is a fan-cycle system of G .

Case 2: $G \in \mathcal{H}_1$.

Write $G = H_1(\{C_{s_3}, C_{s_4}, C_{s_5}\})$. For each $i \in \{3, 4\}$, let $a_i \in C_{s_i}$. Since G is 3-connected, $|C_{s_i}| \geq 3$ for $i \in \{3, 4\}$, and hence $G - \{a_3, a_4\}$ has a Hamiltonian cycle C containing a path Q with $V(Q) = (C_{s_4} - \{a_4\}) \cup \{s_2\}$. Then $(C : a_3; Q; a_4)$ is a fan-cycle system of G .

Case 3: $G \in \mathcal{H}_4$.

Write $G = H_1(\{C_{v_4}, C_{v_5}, C_{v_6}\})$. Since G is 3-connected, $|C_{v_i} \cup C_{v_j}| \geq 3$ for $i, j \in \{4, 5, 6\}$ with $i \neq j$. By symmetry, we may assume that $|C_{v_4}| \geq 2$ and $|C_{v_5}| \geq 2$. For each $i \in \{4, 5\}$, let $a_i \in C_{v_i}$. Then $G - \{a_4, a_5\}$ has a Hamiltonian cycle C containing a path Q with $V(Q) = (C_{v_5} - \{a_5\}) \cup \{v_3\}$, and hence G has a fan-cycle system $(C : a_4; Q; a_5)$.

Case 4: $G \in \mathcal{H}_7$.

Let $C = y_2y_4y_7y_8y_6$ be a cycle of G , and $Q_1 = y_4y_7$ and $Q_2 = y_8y_6$ be paths on C . Then $(C : y_1; Q_1, Q_2; y_3, y_5)$ is a fan-cycle system of G .

Case 5: $G \in \mathcal{H}_8$.

Let $C = z_2z_4z_7z_9z_8z_6$ be a cycle of G , and $Q_1 = z_4z_7$ and $Q_2 = z_8z_6$ be paths on C . Then $(C : z_1; Q_1, Q_2; z_3, z_5)$ is a fan-cycle system of G .

This completes the proof of Lemma 10. \square

Lemma 11 *For $G \in \mathcal{P}(5)$, if G is 3-connected, then G has a spanning Halin subgraph.*

Proof We first suppose that G is a fat path, and write $G = F_p(L_1, \dots, L_\ell)$. For each i ($2 \leq i \leq \ell - 1$), let $a_i \in L_i$. Since G is 3-connected, $|L_i - \{a_i\}| \geq 2$ for i ($2 \leq i \leq \ell - 1$), and hence $G - \{a_2, \dots, a_{\ell-1}\}$ has a Hamiltonian cycle C such that $C[L_i]$ has exactly two components for every i ($2 \leq i \leq \ell - 1$). We take the spanning tree T of G such that $N_T(a_2) = L_1 \cup (L_2 - \{a_2\}) \cup \{a_3\}$, $N_T(a_{\ell-1}) = L_\ell \cup (L_{\ell-1} - \{a_{\ell-1}\}) \cup \{a_{\ell-2}\}$ and $N_T(a_i) = (L_i - \{a_i\}) \cup \{a_{i-1}, a_{i+1}\}$ ($3 \leq i \leq \ell - 2$). Then T has no vertices of degree 2 and $V(G) - \{a_2, \dots, a_{\ell-1}\}$ is the set of leaves of T . Hence $T \cup C$ is a spanning Halin subgraph of G .

We next suppose that G is a fat cycle, and write $G = F_c(L_0, \dots, L_\ell)$. Since G is 3-connected, G has at most two fundamental cliques of order one. Furthermore, if G has exactly two fundamental cliques of order one, then such cliques are consecutive. By symmetry, we may assume that $|L_i| \geq 2$ for every i ($1 \leq i \leq \ell - 1$). For each i ($1 \leq i \leq \ell - 1$), let $a_i \in L_i$. Then $G - \{a_1, \dots, a_{\ell-1}\}$ has a Hamiltonian cycle C such that $C[L_i]$ has exactly one component for every i ($0 \leq i \leq \ell$). We take a spanning tree T of G such that $N_T(a_1) = L_0 \cup (L_1 - \{a_1\}) \cup \{a_2\}$, $N_T(a_{\ell-1}) = L_\ell \cup (L_{\ell-1} - \{a_{\ell-1}\}) \cup \{a_{\ell-2}\}$ and $N_T(a_i) = (L_i - \{a_i\}) \cup \{a_{i-1}, a_{i+1}\}$ ($2 \leq i \leq \ell - 2$). Then T has no vertices of degree 2 and $V(G) - \{a_1, \dots, a_{\ell-1}\}$ is the set of leaves of T . Hence $T \cup C$ is a spanning Halin subgraph of G . \square

Theorems 4, 12 and Lemma 11 lead to Theorem 13. Theorems 3, 13 and Lemma 10 lead to Theorem 14.

Acknowledgements The author would like to thank anonymous referees for careful reading and helpful comments.

References

1. Bedrossian, P.: Forbidden subgraph and minimum degree conditions for hamiltonicity. Ph.D. Thesis, Memphis State University (1991)
2. Broersma, H., Veldman, H.J.: Restrictions on Induced Subgraphs Ensuring Hamiltonicity or Pancylicity of $K_{1,3}$ -Free Graphs. In Contemporary Methods in Graph Theory, pp. 181–194. Bibliographisches Inst, Mannheim (1990)
3. Chen, G., Han, J., O. S., Shan, S., Tsuchiya, S.: Forbidden pairs and the existence of a spanning Halin subgraph. *Graphs Combin.* **33**, 1321–1345 (2017)
4. Crane, C.B.: Hamiltonian type properties in claw-free P_5 -free graphs. *Graphs Combin.* **32**, 1817–1828 (2016)
5. Crane, C.B.: Pancylic type properties of claw-free P_6 -free graphs. *Australas. J. Combin.* **72**(2), 185–200 (2018)
6. Diestel, R.: Graph Theory (5th edition), Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2018)
7. Duffus, D., Jacobson, M.S., Gould, R.J.: Forbidden Subgraphs and the Hamiltonian Theme. In The Theory and Applications of Graphs, pp. 297–316. Wiley, New York (1981)
8. Faudree, R.J., Gould, R.J., Jacobson, M.S., Lesniak, L.: Generalizing pancylic and k -ordered graphs. *Graphs Combin.* **20**, 291–310 (2004)
9. Furuya, M., Tsuchiya, S.: Claw-free and $N(2, 1, 0)$ -free graphs are almost net-free. *Graphs Combin.* **31**, 2201–2205 (2015)
10. Halin, R.: Studies on Minimally n -Connected Graphs. In Combinatorial Mathematics and Its Applications, pp. 129–136. Academic Press, London (1969)
11. Olariu, S.: Paw-free graph. *Inform. Process. Lett.* **28**, 53–54 (1988)
12. Ryjáček, Z.: Closure and forbidden pairs for Hamiltonicity. *J. Combin. Theory Ser. B* **86**, 331–346 (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.