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Abstract
For two graphs A and B, a graph G is called {A, B}-free if G contains neither A nor B
as an induced subgraph. Let Pn denote the path of order n. For nonnegative integers k,
� andm, let Nk,�,m be the graph obtained from K3 and three vertex-disjoint paths Pk+1,
P�+1, Pm+1 by identifying each of the vertices of K3 with one endvertex of one of the
paths. Let Zk = Nk,0,0 and Bk,� = Nk,�,0. Bedrossian characterized all pairs {A, B}
of connected graphs such that every 2-connected {A, B}-free graph is Hamiltonian.
All pairs appearing in the characterization involve the claw (K1,3) and one of N1,1,1,
P6 and B1,2. In this paper, we characterize connected graphs that are (i) {K1,3, Z2}-
free but not B1,1-free, (ii) {K1,3, B1,1}-free but not P5-free, or (iii) {K1,3, B1,2}-free
but not P6-free. The third result is closely related to Bedrossian’s characterization.
Furthermore, we apply our characterizations to some forbidden pair problems.
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Fig. 1 Graphs Zn , B1,n and N

1 Introduction

Our notation and terminology are standard, and mostly taken from [6]. We consider
only simple and finite graphs. Let G be a graph. For v ∈ V (G), we let NG(v) denote
the neighborhood of v in G. For a set U , we let G[U ] denote the subgraph of G
induced by U ∩ V (G).

Let F be a family of connected graphs. A graph G is said to be F-free if G
contains no member of F as an induced subgraph. The members of F are called
forbidden subgraphs. If G is {F}-free, then G is simply said to be F-free. A family
F of forbidden subgraphs is called a forbidden pair if |F | = 2. For two families F1
and F2 of forbidden subgraphs, we write F1 ≤ F2 if for every F2 ∈ F2, there exists
F1 ∈ F1 such that F1 is an induced subgraph of F2. Note that if F1 ≤ F2, then every
F1-free graph is also F2-free.

Let K1,3 denote the star with three leaves, and let Kn and Pn denote the complete
graph and the path of order n, respectively. For nonnegative integers k, � and m, let
Nk,�,m be the graph obtained from K3 and three vertex-disjoint paths Pk+1, P�+1,
Pm+1 by identifying each of the vertices of K3 with one endvertex of one of the paths.
The graphs Nk,0,0 and Nk,�,0 are denoted by Zk and Bk,�, respectively. The graph
N1,1,1 is usually denoted by N (see Fig. 1).

Bedrossian [1] characterized all pairs {A, B} of connected graphs such that every
2-connected {A, B}-free graph is Hamiltonian.

Theorem 1 (Bedrossian [1]) Let F be a pair of connected graphs. Then every 2-
connected F-free graph has a Hamiltonian cycle if and only if F ≤ {K1,3, N }, F ≤
{K1,3, P6} or F ≤ {K1,3, B1,2}.

For two different graphs B, B ′ ∈ {N , B1,2, P6}, usually it takes independent work
to show that 2-connected {K1,3, B}-free graphs are Hamiltonian, and 2-connected
{K1,3, B ′}-free graphs are Hamiltonian, and the proof of one case may be harder than
the other. This situation happens in many research concerning forbidden subgraphs.
This naturally raises a question of investigating the difference between {K1,3, B}-free
graphs and {K1,3, B ′}-free graphs. Since a characterization of the difference together
with existing results on {K1,3, B}-free graphs will shed light on new properties of
{K1,3, B ′}-free graphs.

Olariu in [11] showed that every connected Z1-free but not K3-free graph is a
complete multipartite graph with at least three partite sets. His result is useful when
we investigate the class of Z1-free graphs (for example, the characterization was used
for research of perfect Z1-free graphs in [11]). Recently, Furuya and Tsuchiya [9]
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Fig. 2 Generalized comb

focused on forbidden pairs appearing in Theorem 1, and obtained a characterization
similar to Olariu’s result.

A graph H is called a generalized comb if for an integer m ≥ 3, H consists of m
disjoint cliques, say Li (1 ≤ i ≤ m), and a clique C containing m disjoint subcliques
Ri (1 ≤ i ≤ m) such that every vertex in Li is adjacent to every vertex in Ri (see
Fig. 2). In this context, Li is called a leaf-clique and Ri is called the root of Li .

Theorem 2 (Furuya and Tsuchiya [9]) A connected graph G is {K1,3, B1,2}-free but
not N-free if and only if G is a generalized comb.

We will characterize new families of connected graphs that are {K1,3, Z2}-free but
not B1,1-free or {K1,3, B1,m}-free but not Pmax{3m,m+4}-free for some integer m ≥ 1.
We start with some definitions.

A generalized comb is pointed if all of its leaf-cliques consist of exactly one vertex.
LetH0 be the family of pointed generalized combs. For each i (1 ≤ i ≤ 8), let Hi be
the graph depicted in Fig. 3, where the vertices of Hi (1 ≤ i ≤ 5) indicated by the
open circles are called expandable vertices, and denote by Ui the set of expandable
vertices of Hi . Given a family C = {Ca | a ∈ Ui } of disjoint cliques indexed by a, the
graph Hi (C) is obtained from Hi by replacing each vertex a ∈ Ui with the clique Ca

and adding all edges between u ∈ V (Hi ) − {a} and Ca if au ∈ E(Hi ). Let

Hi = {Hi (C) | C = {Ca | a ∈ Ui } is a family of disjoint cliques indexed by a}.

Clearly, Hi ∈ Hi for each i . For convention, let H j = {Hj } for each j (6 ≤ j ≤ 8).
The graphs in

⋃
0≤i≤8Hi are exactly all connected graphs that are {K1,3, Z2}-free but

not B1,1-free as follows.

Theorem 3 A connected graph G is {K1,3, Z2}-free but not B1,1-free if and only if
G ∈ ⋃

0≤i≤8Hi .

For � ≥ 5, let L0, L1, . . . , L� be � + 1 disjoint cliques. Let Fp = Fp(L1, . . . , L�)

be the graph obtained from a path v1v2 · · · v� by blowing up each vi with Li and joining
every vertex of Li to all vertices of Li+1 for 1 ≤ i ≤ � − 1. We call Fp a fat �-path
(or simply a fat path). In this context, Li (1 ≤ i ≤ �) are called fundamental cliques
of Fp. Let Fc = Fc(L0, . . . , L�) be the graph obtained from a cycle v0v1 · · · v�v0 by
blowing up each vi with Li and joining every vertex of Li to all vertices of Li+1 for
0 ≤ i ≤ � where the indices are calculated modulo � + 1. We call Fc a fat �-cycle
(or simply a fat cycle). In this context, Li (0 ≤ i ≤ �) are called fundamental cliques
of Fc. Note that fat �-paths have � fundamental cliques but fat �-cycles have � + 1
fundamental cliques. LetP(�) be the family of fat i-paths and fat i-cycles for all i ≥ �.
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Fig. 3 Graphs Hi

Fig. 4 Graph F ′

Theorem 4 A connected graph G is {K1,3, B1,1}-free but not P5-free if and only if
G ∈ P(5).

Theorem 5 A connected graph G is {K1,3, B1,2}-free but not P6-free if and only if
G ∈ P(6).

In fact, we will prove a more general result stated below.

Theorem 6 For an integer m ≥ 1, a connected graph G is {K1,3, B1,m}-free but not
Pmax{3m,m+4}-free if and only if G ∈ P(max{3m,m + 4}).

The order of the path in Theorem 6 is best possible if we use only fat
paths and fat cycles in a characterization. Fix an integer m ≥ 1. Let F =
Fp(L1, . . . , Lmax{3m−1,m+3}) be a fat path, and let K be a clique with V (F)∩ K = ∅.
Let F ′ be the graph obtained from F ∪ K by joining each vertex of K to each vertex
of Lmax{m−1,1} ∪ Lmax{m,2} ∪ Lmax{2m,3} ∪ Lmax{2m+1,4} (see Fig. 4). Then we see that
F ′ is a connected {K1,3, B1,m}-free but not Pmax{3m−1,m+3}-free graph.

The rest of the paper is organized as follows. We give some applications of Theo-
rems 3 and 6 in Sect. 2. In Sect. 3, we prove Theorems 3 and 6. In the last section, we
prove two results that will be given in Sect. 2.
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2 Applications of Theorems 3 and 6

In this section, we introduce three applications of Theorems 3 and 6. We first focus
on the existence of Hamiltonian cycle. Theorem 1 is a combination of the following
three results.

Theorem 7 (Duffus et al. [7]) Every 2-connected {K1,3, N }-free graph has a Hamil-
tonian cycle.

Theorem 8 (Broersma andVeldman [2])Every 2-connected {K1,3, P6}-free graph has
a Hamiltonian cycle.

Theorem 9 (Bedrossian [1]) Every 2-connected {K1,3, B1,2}-free graph has a Hamil-
tonian cycle.

In [12], Ryjáček proved that if a 2-connected graph is {K1,3, B1,2}-free or
{K1,3, P6}-free, then its closure is {K1,3, N }-free. By using fundamental properties
for closure, Ryjáček’s result shows that Theorems 8 and 9 can be obtained from The-
orem 7. Theorem 5 gives a more detailed relation among Theorems 7–9. Since all
2-connected fat i-paths and all 2-connected fat i-cycles have a Hamiltonian cycle for
i ≥ 3, Theorems 5 and 8 provide an alternative proof of Theorem 9.

We next consider the pancyclicity of graphs. Let k and m be integers with 0 ≤ k ≤
m. A graphG of order n ≥ m is (k,m)-pancyclic if for every X ⊆ V (G)with |X | = k
and every m ≤ i ≤ n, there exists a cycle of G with length i containing all vertices
in X . The (k,m)-pancyclicity was defined by Faudree et al. [8] to generalize some
pancyclic-type concepts, and Crane [4] recently proved the following result.

Theorem 10 (Crane [4]) If G is a 2-connected {K1,3, P5}-free graph of order n ≥ 5,
then G is (1, 5)-pancyclic and (k, 3k)-pancyclic for all k ≥ 2.

Combining Theorems 4 and 10, we obtain the following result.

Theorem 11 Let G be a 2-connected {K1,3, B1,1}-free graph of order n ≥ 5. If G does
not belong to P(5), then G is (1, 5)-pancyclic and (k, 3k)-pancyclic for all k ≥ 2.

Crane [5] also gave a result concerning (k,m)-pancyclicity for {K1,3, P6}-free
graphs, and so we obtain a similar result as Theorem 11 for {K1,3, B1,2}-free graphs.

We conclude this section with the spanning Halin subgraph problem. A graph is
planar if it can be embedded in the planewithout edge-crossing, and such an embedded
graph is called a plane graph. A Halin graph, named after Halin who introduced this
concept in [10], is a plane graph consisting of a tree T without vertices of degree 2
and a cycle C whose vertex set is equal to the set of the leaves of T (and we often
write a Halin graph H as H = T ∪ C). It is known that 3-connectedness is a trivial
necessary condition for a graph to have a spanningHalin subgraph. In [3], the following
conjecture was proposed.

Conjecture 1 (Chen et al. [3]) Let H be a forbidden pair. Then every 3-connected
H-free graph has a spanning Halin subgraph if and only if either H ≤ {K1,3, Z3} or
H ≤ {K1,3, B1,2}.
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The “only if” part of Conjecture 1 was already proved in [3]. Also, as a partial
answer for the “if” part of the conjecture, the following theorem was proved.

Theorem 12 (Chen et al. [3])Every 3-connected {K1,3, P5}-free graph has a spanning
Halin subgraph.

As corollaries of Theorems 3, 4 and 12, we obtain other partial answers for the “if”
part of Conjecture 1 which will be proved in Sect. 4.

Theorem 13 Every 3-connected {K1,3, B1,1}-free graph has a spanning Halin sub-
graph.

Theorem 14 Every 3-connected {K1,3, Z2}-free graph has a spanning Halin sub-
graph.

3 Proof of Main Results

In this section, we prove Theorems 3 and 6.

3.1 Proof of Theorem 3

Lemma 1 Let G be a connected {K1,3, Z2}-free graph which contains an induced
subgraph N. Then G is a pointed generalized comb.

Proof Since G is Z2-free and Z2 is an induced subgraph of B1,2, G is also B1,2-
free. This, together with Theorem 2, implies that G is a generalized comb. We only
show that every leaf-clique consists of a single vertex. Let Li (1 ≤ i ≤ m) be the
leaf-cliques of G, and let Ri be the root of Li . On the contrary, we may assume
that |L1| ≥ 2. Let a1, a2 ∈ L1 with a1 
= a2, a3 ∈ R1, a4 ∈ R2 and a5 ∈ L2. Then
G[{a1, a2, a3, a4, a5}] ∼= Z2, giving a contradiction. HenceG is a pointed generalized
comb. �


In the following lemmas (Lemmas 2–8), we follow the labels given in Fig. 3.

Lemma 2 Let G be a connected {K1,3, Z2, N }-free graph which contains an induced
subgraph H = H1({Cs3,Cs4 ,Cs5}), where Cs3 , Cs4 and Cs5 are disjoint cliques. Then
for each vertex a ∈ V (G) − V (H) with NG(a) ∩ V (H) 
= ∅, one of the following
holds:

(i) Cs3 ∪ Cs4 ∪ Cs5 ⊆ NG(a) ∩ V (H) and si /∈ NG(a) ∩ V (H) for some i ∈ {1, 2}
(and so G[V (H) ∪ {a}] ∈ H1),

(ii) for some i ∈ {1, 2}, NG(a) ∩ V (H) = {si } ∪ Cs5 and |Cs5−i | = 1 (and so
G[V (H) ∪ {a}] ∈ H2),

(iii) for some i ∈ {3, 4}, NG(a) ∩ V (H) = {s1, s2} ∪ Csi and |Cs7−i | = |Cs5 | = 1
(and so G[V (H) ∪ {a}] ∈ H3), or

(iv) NG(a)∩V (H) = {s1, s2}∪Cs3∪Cs4 and |Cs5 | = 1 (and soG[V (H)∪{a}] ∈ H4).
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Proof For each i ∈ {3, 4, 5}, we take a vertex bi as follows: if NG(a) ∩ Csi 
= ∅, let
bi ∈ NG(a) ∩ Csi ; otherwise (i.e., NG(a) ∩ Csi = ∅), let bi ∈ Csi .
Case 1: NG(a) ∩ Cs5 
= ∅.

If as1, as2 ∈ E(G), then G[{a, s1, s2, b5}] ∼= K1,3, giving a contradiction. Thus
as1 /∈ E(G) or as2 /∈ E(G). We may assume that as1 /∈ E(G).

If NG(a) ∩ Cs3 
= ∅ and ab /∈ E(G) for some b ∈ Cs4 , then G[{b3, a, b, s1}] ∼=
K1,3; if NG(a)∩Cs4 
= ∅ and ab /∈ E(G) for some b ∈ Cs3 , then as2 ∈ E(G) because
G[{b4, a, b, s2}] � K1,3, and henceG[{a, s2, b4, b, s1}] ∼= Z2. In either case, we get a
contradiction. This implies that eitherCs3 ∪Cs4 ⊆ NG(a) or NG(a)∩(Cs3 ∪Cs4) = ∅.
Subcase 1.1: Cs3 ∪ Cs4 ⊆ NG(a).

If ab /∈ E(G) for some b ∈ Cs5 , then G[{b3, a, s1, b}] ∼= K1,3, giving a con-
tradiction. Thus Cs5 ⊆ NG(a). If as2 ∈ E(G), let C ′

si = Csi (i ∈ {3, 5}) and
C ′
s4 = Cs4 ∪ {a}; if as2 /∈ E(G), let C ′

si = Csi (i ∈ {3, 4}) and C ′
s5 = Cs5 ∪ {a}. Then

G[V (H) ∪ {a}] = H1({C ′
s3,C

′
s4 ,C

′
s5}) ∈ H1, and so (i) holds.

Subcase 1.2: NG(a) ∩ (Cs3 ∪ Cs4) = ∅.
Since G[{a, s1, s2, b5, b3, b4}] � N , we have as2 ∈ E(G). If ab /∈ E(G) for some

b ∈ Cs5 , then G[{b, b3, b4, s2, a}] ∼= Z2, giving a contradiction. Thus Cs5 ⊆ NG(a),
and hence NG(a) ∩ V (H) = {s2} ∪Cs5 . If |Cs3 | ≥ 2, then G[{b3, b, b4, s2, a}] ∼= Z2
where b ∈ Cs3 − {b3}, giving a contradiction. Thus |Cs3 | = 1, and so (ii) holds.
Case 2: NG(a) ∩ Cs5 = ∅ (i.e., ab5 /∈ E(G)). �

Claim For each i ∈ {3, 4}, if NG(a) ∩ Csi 
= ∅, then NG(a) ⊇ {s1, s2} ∪ Csi .

Proof We may assume i = 3. Since G[{b3, a, b5, s1}] � K1,3, we have as1 ∈
E(G). By the same argument, if NG(a) ∩ Cs4 
= ∅, then as2 ∈ E(G). Since
G[{a, s1, b3, b4, s2}] � Z2, we have as2 ∈ E(G) or ab4 ∈ E(G). In either case, we
have as2 ∈ E(G). If ab /∈ E(G) for some b ∈ Cs3 , then G[{b5, b, b3, a, s2}] ∼= Z2,
giving a contradiction. Thus Cs3 ⊆ NG(a). �


Suppose NG(a)∩(Cs3 ∪Cs4) = ∅. Since NG(a)∩V (H) 
= ∅, we have asi ∈ E(G)

for some i ∈ {1, 2}. Hence G[{b5, b5−i , bi+2, si , a}] ∼= Z2, giving a contradiction.
Thus NG(a)∩ (Cs3 ∪Cs4) 
= ∅. We may assume that NG(a)∩Cs3 
= ∅. This together
withClaim3.1 forces {s1, s2}∪Cs3 ⊆ NG(a). If |Cs5 | ≥ 2, thenG[{b5, b, b3, a, s2}] ∼=
Z2 where b ∈ Cs5 − {b5}, giving a contradiction. Thus |Cs5 | = 1.

If NG(a)∩Cs4 
= ∅, thenCs4 ⊆ NG(a) by Claim 3.1, and hence (iv) holds. Thus we
may assume that NG(a)∩Cs4 = ∅ (i.e., NG(a)∩V (H) = {s1, s2}∪Cs3 ). If |Cs4 | ≥ 2,
then G[{b4, b, s2, a, s1}] ∼= Z2 in G where b ∈ Cs4 − {b4}, giving a contradiction.
Hence |Cs4 | = 1, and so (iii) holds. �

Lemma 3 Let G be a connected {K1,3, Z2, N }-free graph which contains an induced
subgraph H = H2({Ct3,Ct4}), where Ct3 and Ct4 are disjoint cliques. Then for each
vertex a ∈ V (G) − V (H) with NG(a) ∩ V (H) 
= ∅, one of the following holds:

(i) for some i ∈ {5, 6}, NG(a)∩V (H) = {t2, ti }∪Ct3∪Ct4 (and so G[V (H)∪{a}] ∈
H2),

(ii) for some i ∈ {3, 4}, NG(a) ∩ V (H) = {t1, ti+2} ∪ Cti and |Ct7−i | = 1 (and so
G[V (H) ∪ {a}] ∈ H5), or
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(iii) NG(a)∩ V (H) = {t1, t2, t5, t6} and |Ct3 | = |Ct4 | = 1 (and so G[V (H)∪ {a}] ∈
H6).

Proof For each i ∈ {3, 4}, let bi ∈ Cti . For each i ∈ {5, 6}, we note that the graph
Bi := H − ti belongs toH1.
Case 1: NG(a) ∩ (Ct3 ∪ Ct4) = ∅.

Since NG(a)∩V (H) 
= ∅, NG(a)∩V (Bi ) 
= ∅ for some i ∈ {5, 6}.Wemay assume
that NG(a)∩V (B5) 
= ∅. Since NG(a)∩ (Ct3 ∪Ct4) = ∅, we have NG(a)∩V (B5) =
{t1, t2, t6} and |Ct4 | = 1 by Lemma 2. In particular, NG(a) ∩ V (B6) 
= ∅. Then
again by Lemma 2, NG(a) ∩ V (B6) = {t1, t2, t5} and |Ct3 | = 1. This implies that
NG(a) ∩ V (H) = {t1, t2, t5, t6} and |Ct3 | = |Ct4 | = 1, and so (iii) holds.
Case 2: NG(a) ∩ (Ct3 ∪ Ct4) 
= ∅.

We may assume that NG(a)∩Ct3 
= ∅. If NG(a)∩ V (B5) = {t6} ∪Ct3 , then either
NG(a) ∩ V (B6) = Ct3 or NG(a) ∩ V (B6) = {t5} ∪ Ct3 , which contradicts Lemma 2.
Thus, by Lemma 2, we have either G[V (B5) ∪ {a}] ∈ H1, or NG(a) ∩ V (B5) =
{t1} ∪ Ct3 and |Ct4 | = 1.
Subcase 2.1: G[V (B5) ∪ {a}] ∈ H1.

We see that {t2} ∪ Ct3 ∪ Ct4 ⊆ NG(a). Since G[{a, t2, b4, t6, t5}] � Z2, we have
at5 ∈ E(G) or at6 ∈ E(G). We may assume that at5 ∈ E(G). If at1 ∈ E(G), then
G[{a, t1, b4, t5}] ∼= K1,3, giving a contradiction. Thus at1 /∈ E(G). So, at6 /∈ E(G)

becauseG[{t5, t6, a, t2, t1}] � Z2. Hence we get NG(a)∩V (H) = {t2, t5}∪Ct3 ∪Ct4 .
Consequently,G[V (H)∪{a}] = H2({C ′

t3,C
′
t4})whereC ′

s3 = Cs3∪{a} andC ′
s4 = Cs4 ,

and so (i) holds.
Subcase 2.2: NG(a) ∩ V (B5) = {t1} ∪ Ct3 and |Ct4 | = 1.

Since G[{b3, a, t2, t5}] � K1,3, we have at5 ∈ E(G). Hence NG(a) ∩ V (H) =
{t1, t5} ∪ Ct3 and |Ct4 | = 1, and so (ii) holds. �

Lemma 4 Let G be a connected {K1,3, Z2, N }-free graph which contains an induced
subgraph H = H3({Cu6}), where Cu6 is a clique. Then for each vertex a ∈ V (G) −
V (H) with NG(a) ∩ V (H) 
= ∅, one of the following holds:

(i) NG(a) ∩ V (H) = {u2, u3, u4, u5} ∪ Cu6 (and so G[V (H) ∪ {a}] ∈ H3),
(ii) NG(a) ∩ V (H) = {u1, ui , u7−i } for some i ∈ {2, 3} and |Cu6 | = 1 (and so

G[V (H) ∪ {a}] ∈ H6), or
(iii) NG(a) ∩ V (H) = {u4, u5} (and so G[V (H) ∪ {a}] ∈ H5).

Proof For each i ∈ {2, 3}, we note that the graph Bi := H − ui belongs toH1. Since
NG(a) ∩ V (H) 
= ∅, NG(a) ∩ V (Bi ) 
= ∅ for some i ∈ {2, 3}. If au4, au5 /∈ E(G),
then NG(a) ∩ V (Bi ) ⊆ {u1, uu5−i } ∪ Cu6 for each i ∈ {2, 3}, which contradicts
Lemma 2. Thus, au4 ∈ E(G) or au5 ∈ E(G). We may assume that au4 ∈ E(G).
Then byLemma2,we have eitherG[V (B3)∪{a}] ∈ H1, or NG(a)∩V (B3) = {u1, u4}
and |Cu6 | = 1, or NG(a) ∩ V (B3) = {u4, u5}.
Case 1: G[V (B3) ∪ {a}] ∈ H1.

In this case, we have {u2, u4} ∪ Cu6 ⊆ NG(a). Then again by Lemma 2,
we have either G[V (B2) ∪ {a}] ∈ H1 or NG(a) ∩ V (B2) = {u1, u4} ∪ Cu6
or NG(a) ∩ V (B2) = {u1, u3, u4} ∪ Cu6 . If NG(a) ∩ V (B2) = {u1, u4} ∪ Cu6
(i.e., NG(a) ∩ V (H) = {u1, u2, u4} ∪ Cu6 ), then G[{u2, a, u1, u3, u5}] ∼= Z2; if
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NG(a)∩ V (B2) = {u1, u3, u4} ∪Cu6 (i.e., NG(a)∩ V (H) = {u1, u2, u3, u4} ∪Cu6 ),
then G[{u2, u4, a, u3, u5}] ∼= Z2. In either case, we get a contradiction. Thus
G[V (B2) ∪ {a}] ∈ H1. Since au4 ∈ E(G), we see that NG(a) ∩ V (B2) =
{u3, u4, u5}∪Cu6 , and hence NG(a)∩V (H) = {u2, u3, u4, u5}∪Cu6 . Consequently,
G[V (H) ∪ {a}] = H3({C ′

u6}) where C ′
u6 = Cu6 ∪ {a}, and so (i) holds.

Case 2: NG(a) ∩ V (B3) = {u1, u4} and |Cu6 | = 1.
Since au2 /∈ E(G) and G[{u1, u2, u3, a}] � K1,3, we have au3 ∈ E(G). Hence

NG(a) ∩ V (H) = {u1, u3, u4} and |Cu6 | = 1, and so (ii) holds.
Case 3: NG(a) ∩ V (B3) = {u4, u5}.

Since G[{u3, u1, b, a}] � K1,3 for any b ∈ Cu6 , we have au3 /∈ E(G). Hence
NG(a) ∩ V (H) = {u4, u5}, and so (iii) holds. �

Lemma 5 Let G be a connected {K1,3, Z2, N }-free graph which contains an induced
subgraph H = H4({Cv4 ,Cv5 ,Cv6}), where Cv4 , Cv5 and Cv6 are disjoint cliques.
Then for each vertex a ∈ V (G) − V (H) with NG(a) ∩ V (H) 
= ∅, we have NG(a) ∩
V (H) = ({v1, v2, v3}− {vi })∪Cv4 ∪Cv5 ∪Cv6 for some i ∈ {1, 2, 3}. Consequently,
G[V (H) ∪ {a}] ∈ H4.

Proof For each i ∈ {4, 5, 6}, let bi ∈ Cvi . For each i ∈ {5, 6}, we note that the graph
Bi := H − Cvi belongs toH1.

Suppose NG(a) ∩ {v1, v2, v3} = ∅. Since NG(a) ∩ V (H) 
= ∅, we may assume
that ab4 ∈ E(G). Then G[{b4, a, v1, v2}] ∼= K1,3, giving a contradiction. Thus,
NG(a) ∩ {v1, v2, v3} 
= ∅. We may assume that av1 ∈ E(G). Then, by Lemma 2, we
have G[V (B5) ∪ {a}] ∈ H1 or NG(a) ∩ V (B5) = {v1, vi } for some i ∈ {2, 3}.

Suppose that NG(a) ∩ V (B5) = {v1, vi } for some i ∈ {2, 3}. In this case, we may
assume that NG(a)∩V (B5) = {v1, v2}. Then byLemma2, NG(a)∩V (B6) = {v1, v2}.
In particular, NG(a) ∩ V (H) = {v1, v2}. Then G[{b5, v3, b6, v1, a}] ∼= Z2, giving a
contradiction. Thus G[V (B5) ∪ {a}] ∈ H1.

Hence we have NG(a)∩V (B5) = {v1}∪Cv4 ∪Cv6 or NG(a)∩V (B5) = {v1, vi }∪
Cv4 ∪Cv6 for some i ∈ {2, 3}. If NG(a)∩V (B5) = {v1}∪Cv4 ∪Cv6 , then ab5 ∈ E(G)

because G[{a, v1, b6, b5, v2}] � Z2, and hence G[{b5, a, v2, v3}] ∼= K1,3, giving a
contradiction. Thus NG(a)∩V (B5) = {v1, vi }∪Cv4∪Cv6 for some i ∈ {2, 3}.Wemay
assume that NG(a) ∩ V (B5) = {v1, v2} ∪ Cv4 ∪ Cv6 . Here we focus on the subgraph
of G induced by V (B6) ∪ {a}. Since B6 belongs toH1, it follows from Lemma 2 that
Cv5 ⊆ NG(a). In particular, NG(a) ∩ V (H) = {v1, v2} ∪Cv4 ∪Cv5 ∪Cv6 . Therefore
G[V (H) ∪ {a}] = H4({C ′

v4
,C ′

v5
,C ′

v6
}) where C ′

s4 = Cs4 ∪ {a} and C ′
si = Csi (i ∈

{5, 6}). �

Lemma 6 Let G be a connected {K1,3, Z2, N }-free graph which contains an induced
subgraph H = H5({Cw7}), where Cw7 is a clique. Then for each vertex a ∈ V (G) −
V (H) with NG(a) ∩ V (H) 
= ∅, one of the following holds:

(i) NG(a) ∩ V (H) = {w3, w4, w5, w6} ∪ Cw7 (and so G[V (H) ∪ {a}] ∈ H5), or
(ii) NG(a) ∩ V (H) = {w1, w2, wi , w9−i } for some i ∈ {3, 4} and |Cw7 | = 1 (and so

G[V (H) ∪ {a}] ∼= H7).

Proof For each i ∈ {1, 2}, we note that the graph Bi := H − wi belongs toH3. Since
NG(a) ∩ V (H) 
= ∅, NG(a) ∩ V (Bi ) 
= ∅ for some i ∈ {1, 2}. We may assume that
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NG(a) ∩ V (B1) 
= ∅. If NG(a) ∩ V (B1) = {w3, w5}, then either NG(a) ∩ V (B2) =
{w3, w5} or NG(a) ∩ V (B2) = {w1, w3, w5}, which contradicts Lemma 4. This,
together with Lemma 4, implies that eitherG[V (B1)∪{a}] ∈ H3 or NG(a)∩V (B1) =
{w2, wi , w9−i } for some i ∈ {3, 4} and |Cw7 | = 1.
Case 1: G[V (B1) ∪ {a}] ∈ H3.

Note that we have either NG(a) ∩ V (B2) = {w3, w4, w5, w6} ∪ Cw7 or NG(a) ∩
V (B2) = {w1, w3, w4, w5, w6}∪Cw7 . This, together with Lemma 4, leads to NG(a)∩
V (H) = {w3, w4, w5, w6} ∪Cw7 . Hence, G[V (H) ∪ {a}] = H5({C ′

w7
}) ∈ H5 where

C ′
w7

= Cw7 ∪ {a}, and so (i) holds.
Case 2: NG(a) ∩ V (B1) = {w2, wi , w9−i } for some i ∈ {3, 4} and |Cw7 | = 1.

We may assume that NG(a) ∩ V (B1) = {w2, w3, w6}. Then NG(a) ∩ V (B2) =
{w3, w6} or NG(a) ∩ V (B2) = {w1, w3, w6}. This, together with Lemma 4, leads to
NG(a) ∩ V (H) = {w1, w2, w3, w6}, and so (ii) holds. �

Lemma 7 Let G be a connected {K1,3, Z2, N }-free graph which contains an induced
subgraph H = H6. Then for each vertex a ∈ V (G)−V (H)with NG(a)∩V (H) 
= ∅,
NG(a)∩V (H) = {xi , xi+1, x7} for some i ∈ {1, 3}. Consequently, G[V (H)∪{a}] ∼=
H7.

Proof We note that the graph B := H−x1 belongs toH3, and the graph B∗ := H−x5
belongs toH2.

We first suppose that axi , axi+2 ∈ E(G) for some i ∈ {1, 2}. We may assume that
ax1, ax3 ∈ E(G). Then by Lemma 3, we have NG(a) ∩ V (B∗) = {x1, x3, x6, x7},
and hence either NG(a) ∩ V (B) = {x3, x6, x7} or NG(a) ∩ V (B) = {x3, x5, x6, x7},
which contradicts Lemma 4. Thus,

for each i ∈ {1, 2}, either axi /∈ E(G) or axi+2 /∈ E(G). (1)

If NG(a) ∩ V (B∗) 
= ∅, then |NG(a) ∩ V (B∗)| ≥ 2 by Lemma 3. In particular, we
have NG(a) ∩ V (B) 
= ∅. If NG(a) ∩ {x1, x2, x3, x4} = ∅, then NG(a) ∩ V (B) ⊆
{x5, x6, x7}, which contradicts Lemma 4. Thus NG(a) ∩ {x1, x2, x3, x4} 
= ∅. By the
symmetry of x1, . . . , x4, wemay assume that ax1 ∈ E(G). By (1), ax3 /∈ E(G). Since
G[{x1, a, x2, x3}] � K1,3, we have ax2 ∈ E(G). So, ax4 /∈ E(G) by (1). Then, by
Lemma 4, NG(a) ∩ V (B) = {x2, x7}. Consequently, NG(a) ∩ V (H) = {x1, x2, x7}.

�

Lemma 8 Let G be a connected {K1,3, Z2, N }-free graph which contains an induced
subgraph H = H7. Then for each vertex a ∈ V (G)−V (H)with NG(a)∩V (H) 
= ∅,
NG(a) ∩ V (H) = {y1, y2, y7, y8}. Consequently, G[V (H) ∪ {a}] ∼= H8.

Proof For each i ∈ {1, 2}, we note that the graph Bi := H − yi is isomorphic to H6.
Since NG(a)∩V (H) 
= ∅, we have NG(a)∩V (Bi ) 
= ∅ for some i ∈ {1, 2}. We may
assume that NG(a)∩V (B1) 
= ∅. Then, byLemma7, NG(a)∩V (B1) = {y2, y3, y5} or
NG(a)∩V (B1) = {y2, y7, y8}. In particular, {y3, y5} ⊆ NG(a)∩V (B2) or {y7, y8} ⊆
NG(a)∩V (B2). This, together with Lemma 7, leads to NG(a)∩V (B1) = {y2, y7, y8}
and NG(a) ∩ V (B2) = {y1, y7, y8}. So, NG(a) = {y1, y2, y7, y8}. �
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Proof of Theorem 3 By a routine but tedious argument, we can verify that every graph
in

⋃
0≤i≤8Hi is {K1,3, Z2}-free but not B1,1-free (and we omit its detail). Thus it

suffices to show that, if a connected {K1,3, Z2}-free graph G is not B1,1-free (i.e., G
contains B1,1 as an induced subgraph), then G belongs to

⋃
0≤i≤8Hi .

If G is not N -free, then by Lemma 1, G ∈ H0, as desired. Thus we may assume
that G is {K1,3, Z2, N }-free. Assume that G contains B1,1 (∈ H1) as an induced
subgraph. Then G contains a graph H ∈ ⋃

1≤i≤8Hi as an induced subgraph. Choose
H so that |V (H)| is as large as possible. It suffices to show that G = H . By way of
contradiction, suppose that G 
= H (i.e., V (G) − V (H) 
= ∅). Since G is connected,
there exists a vertex a ∈ V (G) − V (H) which is adjacent to a vertex in V (H). By
the maximality of H , G[V (H) ∪ {a}] /∈ ⋃

1≤i≤8Hi . This, together with Lemmas 2–
8, gives H = H8. For each i ∈ {7, 8, 9}, we note that the graph Bi := H − zi is
isomorphic to H7. Since NG(a) ∩ V (H) 
= ∅, we have NG(a) ∩ V (Bi ) 
= ∅ for
some i ∈ {7, 8}. We may assume that NG(a) ∩ V (B7) 
= ∅. Then by Lemma 8,
NG(a) ∩ V (B7) = {z3, z4, z8, z9}. In particular, az3 ∈ E(G). On the other hand,
since NG(a) ∩ V (B9) 
= ∅, NG(a) ∩ V (B9) = {z1, z2, z7, z8}, and so az3 /∈ E(G),
giving a contradiction.

This completes the proof of Theorem 3. �


3.2 Proof of Theorem 6

In order to prove Theorem 6, we give a further definition. For two integers s and t , we
let [s, t] = {i ∈ N | s ≤ i ≤ t}. Note that if s > t , then [s, t] = ∅.

Herewe prove Theorem 6.We can easily verify that every graph inP(max{3m,m+
4}) is {K1,3, B1,m}-free but not Pmax{3m,m+4}-free. Thus it suffices to show that if
a connected {K1,3, B1,m}-free graph G is not Pmax{3m,m+4}-free (i.e., G contains
Pmax{3m,m+4} as an induced subgraph), then G belongs to P(max{3m,m + 4}).

Assume that G contains Pmax{3m,m+4} as an induced subgraph. Then G contains a
graph H ∈ P(max{3m,m + 4}) as an induced subgraph. Choose H so that |V (H)| is
as large as possible. It suffices to show that G = H . Otherwise, there exists a vertex
a ∈ V (G) − V (H) such that NG(a) ∩ V (H) 
= ∅. Let � be the integer such that H is
either a fat �-path or a fat �-cycle. Then we can write either H = Fp(L1, . . . , L�) or
H = Fc(L0, . . . , L�) for somedisjoint cliques L0, . . . , L�. Let I = {i | NG(a)∩Li 
=
∅}.
Claim |I | ≤ 4.

Proof Suppose that there are five fundamental cliques L(1), . . . , L(5) of H with
NG(a) ∩ L(i) 
= ∅ (1 ≤ i ≤ 5). For each i (1 ≤ i ≤ 5), let b(i) ∈ NG(a) ∩ L(i).
Since max{3m,m + 4} ≥ 5, if H is a fat cycle, then H has at least six fundamental
cliques. Thus G[{b(i) | 1 ≤ i ≤ 5}] has no cycle, and so is a forest of order five and
maximum degree at most two. Then we can easily check that G[{b(i) | 1 ≤ i ≤ 5}]
has an independent set B with |B| = 3, and hence G[{a} ∪ B] ∼= K1,3, giving a
contradiction. �


If H is a fat cycle, then NG(a) ∩ Li = ∅ for some 0 ≤ i ≤ � by Claim 3.2. By
relabeling L0, . . . , L� if necessary, we may assume that
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(L1) 0 /∈ I , and
(L2) subject to (L1), |I ∩ {1, �}| is as small as possible.

Thus, if H is a fat cycle and there exists an integer i (1 ≤ i ≤ �−2)with i, i+1, i+2 /∈
I , then I ∩ {0, 1, �} = ∅.

For each i (1 ≤ i ≤ �), we take a vertex bi as follows: if i ∈ I , let bi ∈ NG(a)∩Li ;
otherwise (i.e., i /∈ I ), let bi ∈ Li . Note that, by our choices of indices, b1b� /∈ E(G)

regardless of H being a fat path or a fat cycle.

Claim Assume that there exists an index j (2 ≤ j ≤ l − 2) such that I ∩ [2, l − 1] =
{ j, j + 1}. Then either j = 2 and ab1 ∈ E(G) or j = l − 2 and ab� ∈ E(G).

Proof Recall that � ≥ max{3m,m + 4}. We first consider the case � − m − 1 ≤ j ≤
m + 1. Then � ≤ 2m + 2. Since � ≥ 3m, we have m ≤ 2; since � ≥ m + 4,
we have m ≥ 2. Hence m = 2, and this forces � = 6 and j = 3. By the
assumption of the claim, ab2, ab5 /∈ E(G). Since G[{b2, b3, a, b4, b5, b6}] �

B1,2 and G[{b5, b4, a, b3, b2, b1}] � B1,2, we have ab1, ab6 ∈ E(G). Then
G[{a, b1, b3, b6}] ∼= K1,3, giving a contradiction. Thus either j ≥ m + 2 or
j ≤ � − m − 2.
We now consider the case j ≥ m + 2 (i.e., j − m ≥ 2). Then abi /∈ E(G) for

every j − m ≤ i ≤ j − 1. Since G[{b j+2, b j+1, a, b j , b j−1, . . . , b j−m}] � B1,m ,
this forces b j+2 = bl (i.e., j = � − 2) and ab� ∈ E(G), as desired. Thus we may
assume that j ≤ � − m − 2 (i.e., j + m + 1 ≤ � − 1). Then abi /∈ E(G) for every
j + 2 ≤ i ≤ j + m + 1. Since G[{b j−1, b j , a, b j+1, b j+2, . . . , b j+m+1}] � B1,m ,
this forces b j−1 = b1 (i.e., j = 2) and ab1 ∈ E(G), as desired. �

Claim For each j ∈ I , there exists an index j ′ ( j ′ 
= j) such that | j − j ′| = 1 and
j ′ ∈ I .

Proof If 2 ≤ j ≤ � − 1 and j − 1, j + 1 /∈ I , then G[{b j , a, b j−1, b j+1}] ∼= K1,3,
giving a contradiction. Hence if 2 ≤ j ≤ � − 1, then the desired conclusion holds.
Thus we may assume that j ∈ {1, �} by (L1).

For the moment, we assume that j = 1 and 2 /∈ I . We further suppose that there
exists an index i (3 ≤ i ≤ �− 1) with i ∈ I . Choose i so that i is as small as possible.
Then, i+1 ∈ I since 3 ≤ i ≤ �−1. If i+1 ≤ �−1 and I ∩[3, �−1] = {i, i+1}, then
i = l−2 and � ∈ I by Claim 3.2. This implies that if i+1 ≤ �−1 (i.e., i ≤ �−2), then
there are three indices i1, i2, i3 (3 ≤ i1 < i2 < i3 ≤ �) with i1, i2, i3 ∈ I , and hence
G[{a, b1, bi1 , bi3}] ∼= K1,3, giving a contradiction. Thus i ≥ � − 1, and so i = � − 1.
Note that I ∩ [1, �] = {1, � − 1, �}. This, together with the fact � − m − 1 ≥ 3,
implies that G[{b1, a, b�, b�−1, . . . , b�−m−1}] ∼= B1,m , giving a contradiction. Thus
I ∩[2, �−1] = ∅. By (L1) and (L2), we see that H is a fat path. If there exists a vertex
u ∈ L1 with au /∈ E(G), then, since � ≥ m + 4, G[{a, b1, u, b2, . . . , bm+2}] ∼= B1,m ,
giving a contradiction. Thus L1 ⊆ NG(a). By the symmetry and the fact � − 1 /∈ I ,
if � ∈ I , then L� ⊆ NG(a). Hence either NG(a) ∩ V (H) = L1 or NG(a) ∩ V (H) =
L1 ∪ L�. If NG(a) ∩ V (H) = L1, then G[V (H) ∪ {a}] = Fp({a}, L1, . . . , L�); if
NG(a) ∩ V (H) = L1 ∪ L�, then G[V (H) ∪ {a}] = Fc({a}, L1, . . . , L�). In either
case, G[V (H)∪ {a}] ∈ P(max{3m,m + 4}), which contradicts the maximality of H .
Thus if j = 1, then 2 ∈ I . By the symmetry, if j = �, then � − 1 ∈ I . �
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Let i1 = min{i | i ∈ I } and i2 = max{i | i ∈ I }. By Claim 3.2, i1 + 1, i2 − 1 ∈ I .

Claim If i1 
= 1, then Li1+1 ⊆ NG(a). If i2 
= l, then Li2−1 ⊆ NG(a).

Proof If i1 
= 1and Li1+1 � NG(a), sayu ∈ Li1+1−NG(a), thenG[{bi1 , bi1−1, a, u}] ∼=
K1,3, giving a contradiction. Thus if i1 
= 1, then Li1+1 ⊆ NG(a). By the symmetry,
we have Li2−1 ⊆ NG(a) if i2 
= �. �


Since |I | ≤ 4, we divide the rest of the proof into three cases according to |I | ≤ 2,
|I | = 3, and |I | = 4.
Case 1: |I | ≤ 2.

By Claim 3.2, I = {i1, i2} = {i1, i1 + 1}. If |I ∩ [2, � − 1]| = 2, then either 1 ∈ I
or � ∈ I by Claim 3.2, and so |I | ≥ 3, giving a contradiction. Thus |I ∩ [2, � −
1]| ≤ 1, which implies either I = {1, 2} or I = {� − 1, �}. We may assume that
I = {1, 2}. By (L2), H is a fat path. If L2 � NG(a), say u ∈ L2 − NG(a), then
G[{a, b2, u, b3, b4, . . . , bm+3}] ∼= B1,m , giving a contradiction. Thus L2 ⊆ NG(a).
This, togetherwithClaim3.2, leads to NG(a)∩V (H) = L1∪L2, and henceG[V (H)∪
{a}] = Fp(L1 ∪ {a}, L2, . . . , L�) ∈ P(max{3m,m + 4}), which contradicts the
maximality of H .
Case 2: |I | = 3.

In this case, I = {i1, i1 + 1 (= i2 − 1), i2} = {i1, i1 + 1, i1 + 2}. By (L1) and (L2),
either H is a fat cycle and I ∩ {0, 1, �} = ∅ or H is a fat path. Since either i1 
= 1 or
i2 
= l, Li1+1 (= Li2−1) ⊆ NG(a) by Claim 3.2. Suppose that either Li1 � NG(a)

or Li2 � NG(a). We may assume that Li1 � NG(a). Let u ∈ Li1 − NG(a). If
i1 ≤ �−m−2 (i.e., i1+m+2 ≤ l), thenG[{u, bi1+1, a, bi1+2, . . . , bi1+m+2}] ∼= B1,m ;
if i1 ≥ m + 2 (i.e., i1 −m − 1 ≥ 1), then G[{a, bi1 , u, bi1−1, . . . , bi1−m−1}] ∼= B1,m .
In either case, we get a contradiction. Thus � − m − 1 ≤ i1 ≤ m + 1. This, together
with the assumption � ≥ max{3m,m + 4}, leads to m = 2, � = 6 and i1 = 3. Then
G[{b1, b2, u, b3, a, b5}] ∼= B1,2, giving a contradiction. Thus Li1 ∪Li2 ⊆ NG(a) (i.e.,
NG(a) ∩ V (H) = Li1 ∪ Li1+1 ∪ Li2 ). Hence

G[V (H) ∪ {a}] = Fc(L0, L1, . . . , Li1 , Li1+1 ∪ {a}, Li2 , . . . , L�)

or

G[V (H) ∪ {a}] = Fp(L1, . . . , Li1 , Li1+1 ∪ {a}, Li2 , . . . , L�)

according as H is a fat cycle or a fat path, which contradicts the maximality of H .
Case 3: |I | = 4.

In this case, i1 + 1 < i2 − 1 and I = {i1, i1 + 1, i2 − 1, i2}. Let J1 = [1, i1 − 1],
J2 = [i1 + 2, i2 − 2] and J3 = [i2 + 1, �] (where Ji may be empty). If |J1| ≥ m, then
i1 − m ≥ 1, and hence G[{bi2 , a, bi1+1, bi1 , bi1−1, . . . , bi1−m}] ∼= B1,m ; if |J2| ≥ m,
then i1 + m + 1 ≤ i2 − 2, and hence G[{bi2 , a, bi1 , bi1+1, . . . , bi1+m+1}] ∼= B1,m ; if
|J3| ≥ m, then i2+m ≤ �, and henceG[{bi1 , a, bi2−1, bi2 , bi2+1, . . . , bi2+m}] ∼= B1,m .
In either case, we get a contradiction. Thus max{|J1|, |J2|, |J3|} ≤ m−1. On the other
hand, |J1|+ |J2|+ |J3| = |[1, �]−{i1, i1 +1, i2 −1, i2}| = �−4 ≥ max{3m−4,m}.
Hence we see that m ≥ 2 and |Ji | = |Ji ′ | = m − 1 for some i, i ′ ∈ {1, 2, 3}
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Fig. 5 A fan-cycle system

with i 
= i ′. Without loss of generality, we may assume that |J1| = m − 1 (i.e.,
i1 = m). If |J2| = m − 1, then G[{bi2−2, bi2−1, bi2 , a, bm, bm−1, . . . , b1}] ∼= B1,m ;
if |J3| = m − 1, then G[{bi2+1, bi2 , bi2−1, a, bm, bm−1, . . . , b1}] ∼= B1,m . In either
case, we again get a contradiction.

This completes the proof of Theorem 6.

4 The Existence of Halin Subgraph

In this section, we prove Theorems 13 and 14.
Let G be a graph. A sequence (C : v; Q1, . . . , Qm; x1, . . . , xm) is a fan-cycle

system of G if

1. C is a cycle of G,
2. Q1, . . . , Qm are vertex-disjoint paths of order at least two on C ,
3. v, x1, . . . , xm are distinct vertices with V (G) − V (C) = {v, x1, . . . , xm},
4. |V (C) − ⋃

1≤i≤m V (Qi )| + m ≥ 3,
5. v is adjacent to every vertex in (V (C) − ⋃

1≤i≤m V (Qi )) ∪ {x1, . . . , xm}, and
6. for i (1 ≤ i ≤ m), xi is adjacent to every vertex of Qi

(see Fig. 5). In [3], the following lemma was proved in order to construct a spanning
Halin subgraph.

Lemma 9 (Chen et al. [3]) If a graph G has a fan-cycle system, then G has a spanning
Halin subgraph.

Now we show that all 3-connected graphs in
⋃

0≤i≤8Hi have a spanning Halin
subgraph.

Lemma 10 For G ∈ ⋃
0≤i≤8Hi , if G is 3-connected, then G has a spanning Halin

subgraph.
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Proof Since all graphs in
⋃

i∈{2,3,5,6} Hi are not 3-connected, G ∈ Hi for some
i ∈ {0, 1, 4, 7, 8}. By Lemma 9, it suffices to show that G has a fan-cycle system.
Case 1: G ∈ H0.

Let L1, . . . , Lm be the leaf-cliques of G, and let Ri be the root of Li . For each
i (1 ≤ i ≤ m), let vi ∈ Ri . Since G is 3-connected, |Ri − {vi }| ≥ 2 for all i , and
hence G − {vi | 1 ≤ i ≤ m} has a Hamiltonian cycle C containing m − 1 vertex-
disjoint paths Q2, . . . , Qm with V (Qi ) = Li ∪ (Ri − {vi }) (2 ≤ i ≤ m). Then
(C : v1; Q2, . . . , Qm; v2, . . . , vm) is a fan-cycle system of G.
Case 2: G ∈ H1.

Write G = H1({Cs3,Cs4 ,Cs5}). For each i ∈ {3, 4}, let ai ∈ Csi . Since G is 3-
connected, |Csi | ≥ 3 for i ∈ {3, 4}, and hence G − {a3, a4} has a Hamiltonian cycle
C containing a path Q with V (Q) = (Cs4 − {a4}) ∪ {s2}. Then (C : a3; Q; a4) is a
fan-cycle system of G.
Case 3: G ∈ H4.

Write G = H1({Cv4 ,Cv5 ,Cv6}). Since G is 3-connected, |Cvi ∪ Cv j | ≥ 3 for
i, j ∈ {4, 5, 6} with i 
= j . By symmetry, we may assume that |Cv4 | ≥ 2 and
|Cv5 | ≥ 2. For each i ∈ {4, 5}, let ai ∈ Cvi . Then G − {a4, a5} has a Hamiltonian
cycle C containing a path Q with V (Q) = (Cv5 − {a5}) ∪ {v3}, and hence G has a
fan-cycle system (C : a4; Q; a5).
Case 4: G ∈ H7.

Let C = y2y4y7y8y6 be a cycle of G, and Q1 = y4y7 and Q2 = y8y6 be paths on
C . Then (C : y1; Q1, Q2; y3, y5) is a fan-cycle system of G.
Case 5: G ∈ H8.

Let C = z2z4z7z9z8z6 be a cycle of G, and Q1 = z4z7 and Q2 = z8z6 be paths on
C . Then (C : z1; Q1, Q2; z3, z5) is a fan-cycle system of G.

This completes the proof of Lemma 10. �

Lemma 11 For G ∈ P(5), if G is 3-connected, then G has a spanningHalin subgraph.

Proof We first suppose that G is a fat path, and write G = Fp(L1, . . . , L�). For each
i (2 ≤ i ≤ � − 1), let ai ∈ Li . Since G is 3-connected, |Li − {ai }| ≥ 2 for i (2 ≤ i ≤
� − 1), and hence G − {a2, . . . , a�−1} has a Hamiltonian cycle C such that C[Li ] has
exactly two components for every i (2 ≤ i ≤ �−1). We take the spanning tree T of G
such that NT (a2) = L1∪(L2−{a2})∪{a3}, NT (a�−1) = L�∪(L�−1−{a�−1})∪{a�−2}
and NT (ai ) = (Li − {ai }) ∪ {ai−1, ai+1} (3 ≤ i ≤ � − 2). Then T has no vertices
of degree 2 and V (G) − {a2, . . . , a�−1} is the set of leaves of T . Hence T ∪ C is a
spanning Halin subgraph of G.

We next suppose that G is a fat cycle, and write G = Fc(L0, . . . , L�). Since G is
3-connected, G has at most two fundamental cliques of order one. Furthermore, if G
has exactly two fundamental cliques of order one, then such cliques are consecutive.
By symmetry, we may assume that |Li | ≥ 2 for every i (1 ≤ i ≤ � − 1). For each
i (1 ≤ i ≤ � − 1), let ai ∈ Li . Then G − {a1, . . . , a�−1} has a Hamiltonian cycle
C such that C[Li ] has exactly one component for every i (0 ≤ i ≤ �). We take
a spanning tree T of G such that NT (a1) = L0 ∪ (L1 − {a1}) ∪ {a2}, NT (a�−1) =
L�∪(L�−1−{a�−1})∪{a�−2} and NT (ai ) = (Li−{ai })∪{ai−1, ai+1} (2 ≤ i ≤ �−2).
Then T has no vertices of degree 2 and V (G) − {a1, . . . , a�−1} is the set of leaves of
T . Hence T ∪ C is a spanning Halin subgraph of G. �
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Theorems 4, 12 and Lemma 11 lead to Theorem 13. Theorems 3, 13 and Lemma 10
lead to Theorem 14.
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