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DIRAC’S CONDITION FOR SPANNING HALIN SUBGRAPHS*

GUANTAO CHENT AND SONGLING SHANf?

Abstract. Let G be an n-vertex graph with n > 3. A classic result of Dirac from 1952 asserts
that G is hamiltonian if §(G) > n/2. Dirac’s theorem is one of the most influential results in the
study of hamiltonicity and by now there are many related known results (see, e.g., [J. A. Bondy,
Handbook of Combinatorics, Vol. 1, MIT Press, Cambridge, MA, 1995, pp. 3-110]. A Halin graph
is a planar graph consisting of two edge-disjoint subgraphs: a spanning tree of at least four vertices
and with no vertex of degree 2, and a cycle induced by the set of the leaves of the spanning tree. Halin
graphs possess rich hamiltonicity properties such as being hamiltonian, hamiltonian connected, and
almost pancyclic. As a continuous “generalization” of Dirac’s theorem, in this paper, we show that
there exists a positive integer ng such that any graph G with n > ng vertices and 6(G) > (n+1)/2
contains a spanning and pancyclic Halin subgraph H. In addition, for every nonhamiltonian cycle
C in H, there is a cycle C’ longer than C such that C’ contains all vertices from C and at most two
more vertices not from C'.
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1. Introduction. A classic theorem of Dirac [12] from 1952 asserts that every
graph on n (n > 3) vertices with minimum degree at least n/2 is hamiltonian. Fol-
lowing Dirac’s result, numerous results on hamiltonicity properties on graphs with
restricted degree conditions have been obtained (see, for instance, [15, 16]). Tradi-
tionally, under similar conditions, results for a graph being hamiltonian, hamiltonian-
connected, and pancyclic are obtained separately. We may ask, under certain con-
ditions, if it is possible to uniformly show a graph possessing several hamiltonicity
properties. The work on finding the square of a hamiltonian cycle in a graph can be
seen as an attempt in this direction. However, it requires minimum degree of 2n/3
for an n-vertex graph G to contain the square of a hamiltonian cycle; for examples,
see [7, 13, 14, 20, 25]. For bipartite graphs, finding the existence of a spanning ladder
is a way of simultaneously showing the graph having many hamiltonicity proper-
ties (see [10, 11]). In this paper, we introduce another approach of uniformly showing
the possession of several hamiltonicity properties in a graph: we show the existence
of a spanning Halin graph in a graph under a given minimum degree condition.

A tree with no vertex of degree 2 is called a homeomorphically irreducible tree
(HIT). A Halin graph H = T U C is a simple planar graph consisting of an HIT T
with at least four vertices and a cycle C' induced by the set of leaves of 7. The HIT
T is called the underlying tree of H. A wheel graph is an example of a Halin graph,
where the underlying tree is a star. Halin constructed Halin graphs in [17] for the
study of minimally 3-connected graphs. Lovédsz and Plummer called such graphs Halin
graphs in their study of planar bicritical graphs [21], which are planar graphs having
a 1-factor after deleting any two vertices. Intensive research has been done on Halin
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graphs. Bondy [4] in 1975 showed that a Halin graph is hamiltonian. In the same year,
Lovéasz and Plummer [21] showed that not only is a Halin graph itself hamiltonian, but
each of its subgraph obtained by deleting a vertex is hamiltonian. In 1987, Barefoot [2]
proved that Halin graphs are hamiltonian-connected, i.e., there is a hamiltonian path
connecting any two vertices of the graph. Furthermore, it was proved that each edge
of a Halin graph is contained in a hamiltonian cycle and is avoided by another [24].
Bondy and Lovész [6] and Skowroniska [23] independently, in 1985, showed that a
Halin graph is almost pancyclic and is pancyclic if the underlying tree has no vertex
of degree 3, where an n-vertex graph is almost pancyclic if it contains cycles of length
from 3 to n with the possible exception of a single even length and is pancyclic if
it contains cycles of length from 3 to n. Some problems that are NP-complete for
general graphs have been shown to be polynomial time solvable for Halin graphs. For
example, Cornuéjols, Naddef, and Pulleyblank [9] showed that in a Halin graph, a
hamiltonian cycle can be found in polynomial time. Nevertheless, it is NP-complete
to determine whether a graph contains a (spanning) Halin subgraph [18].

Despite all these nice properties of Halin graphs mentioned above, the problem
of determining whether a graph contains a spanning Halin subgraph has not been
well-studied except a conjecture proposed by Lovédsz and Plummer [21] in 1975. The
conjecture states that every 4-connected plane triangulation contains a spanning Halin
subgraph (disproved recently [8]). In this paper, we investigate the minimum degree
condition that implies the existence of a spanning Halin subgraph in a graph, thereby
giving another approach for uniformly showing the possession of several hamiltonic-
ity properties in a graph under a given minimum degree condition. We obtain the
following result.

THEOREM 1.1. There exists ng > 0 such that for any graph G with n > ny
vertices, if 5(G) > (n+1)/2, then G contains a spanning and pancyclic Halin subgraph
H. In addition, for every non-hamiltonian cycle C in H, there is a cycle C' longer
than C such that C' contains all vertices from C and at most two more vertices not
from C'.

Note that if n > 4, an n-vertex graph with minimum degree at least (n + 1)/2
is 3-connected. Hence, the minimum degree condition in Theorem 1.1 implies the
3-connectedness, which is a necessary condition for a graph to contain a spanning
Halin subgraph, since every Halin graph is 3-connected. A Halin graph contains a
triangle, and bipartite graphs are triangle-free. Hence, K |z ],r27 contains no spanning
Halin subgraph. For n even, the graph obtained from two copies of Kz 1 by gluing
them together on an edge is 2-connected, so it has no spanning Halin subgraph. Both
these graphs have minimum degree at most n/2. We see that the minimum degree
condition in Theorem 1.1 is best possible. For the pancyclicity property, it is worth
mentioning that a result by Bondy [3] says that every n-vertex graph with minimum
degree at least "T“ is pancyclic.

Theorem 1.1 is proved for large graphs. It might be very hard to obtain the
same result for all graphs, as when constructing a Halin graph in general, we may
need to find its underlying tree first. The minimum degree condition suffices for the
existence of a such tree T in G (in fact, it was shown that an n-vertex graph with
minimum degree at least 4v/2n contains a spanning tree with no vertex of degree
2 [1]). However, the hardness lies in finding a cycle C' spanning the set of the leaves
of T so that T'U C' is planar. In other words, when T is fixed, we have to find a
cycle C in G passing through a set of given vertices in some particular order. The
other way of finding a spanning Halin graph H is to find a spanning subgraph which
contains H, for example, spanning structures close to ladder structures (e.g., graphs
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H, to Hs as defined in next section). Particularly, the square of a hamiltonian cycle
contains Hi or Hy as a spanning subgraph, so it contains a spanning Halin subgraph.
But the disadvantage of using “uniform” structures as H; is that it makes it hard for
constructing them “manually.” Nevertheless, we still suspect that (n + 1)/2 is the
right condition for all graphs to contain a spanning Halin subgraph.

2. Notation and definitions. We consider simple and finite graphs only. Let G
be a graph. Denote by V(G) and E(G) the vertex set and edge set of G, respectively,
and by e(G) the cardinality of E(G). We denote by §(G) the minimum degree of
G and by A(G) the maximum degree. Let v € V(G) be a vertex and S C V(G)
a subset. Then G[S] is the subgraph of G induced by S. Similarly, G[F] is the
subgraph induced by F if FF C FE(G). The notation I'¢(v,S) denotes the set of
neighbors of v in S, and degg (v, S) = [T'g(v, S)|. We let I'z(v,S) =S —Tg(v, S) and
degs(v, S) = |I'z(v, S)|. Note that if v € S, then v € T'g(v, S). Given another set U C
V(G), define I'g(U,S) = N,cv Ta(u, S), dega(U,S) = [T'q(U, S)|, and Ng(U,S) =
Uwer Ta(u, S). When U = {uy,us, ..., ux}, we may write I'q(U, S), dega(U, S), and
N¢(U,S) as Tg(ur,us, ..., ug,S), dega(ui, us, ..., ug,S), and Ng(u1,usa,...,uk,S),
respectively, in specifying the vertices in U. When S = V(G), we only write I'¢(U),
dege(U), and Ng(U). Let Uy, Us C V(G) be two disjoint subsets. Then d¢(Uy, Us) =
min{degg(u1,Us) |uy € U1} and Ag(Uy,Uz) = max{degg(u1,Us) |us € Uy}. Notice
that the notation dg(Uy, Us) and Ag(Uy, Us) is not symmetric with respect to Uy and
Us. We denote by Eg (U, Us) the set of edges with one end in Uy and the other in U,
and the cardinality of Eg (U1, Us) is denoted by eq(Uy, Us). We may omit the index
G if there is no risk of confusion. Let u,v € V(G) be two vertices. We write u ~ v
if u and v are adjacent. A path connecting v and v is called a (u,v)-path. If G is a
bipartite graph with partite sets A and B, we denote G by G(A, B) in emphasizing
the two partite sets.

In constructing Halin graphs, we use ladder graphs and a class of “ladder-like”
graphs as substructures. We give the description of these graphs below.

DEFINITION 2.1. An n-ladder L,, = L, (A, B) is a balanced bipartite graph with
A={ai,as,...,a,} and B ={by,ba,...,b,}

such that a; ~ b; iff |i —j| < 1. We call a;b; the ith rung of L. If n is even,
then we call each of the shortest (ay,by)-path aibsasby - --an_1b, and (by,ay)-path
biagbsay - - -bp_1a, a side of L,, and if n is odd, then we call each of the shortest
(a1, an)-path arbaasby - - - ap—_1b,—1a, and (by, by, )-path byasbsay - -+ by_oa,_1b, a side
of Ly,.

Let L be a ladder with xy as one of its rungs. For an edge gh, we say zy and gh
are adjacent if x ~ g,y ~ h or x ~ h,y ~ g. Suppose L has its first rung as ab and
its last rung as cd, we denote L by ab— L — c¢d in specifying the two rungs. If a and ¢
(and so b and d) are contained in a same side of L, we denote L by ab — L — cd. Let
A and B be two disjoint vertex sets. We say the rung zy of L is contained in A x B
if either x € A,y € Bor z € B,y € A. Let L' be another ladder vertex-disjoint with
L. If the last rung of L is adjacent to the first rung of L', we write LL’ for the new
ladder obtained by concatenating L and L’. In particular, if L’ = gh is an edge, we
write LL' as Lgh.

We now define five types of “ladder-like” graphs, call them Hy, Hy, H3, Hy, and
Hj, respectively. Let L, be a ladder with a1b; and a,b,, as the first and last rungs,
respectively, and x,y, z, w,u be five new vertices. Then each of H; is obtained from
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Figure 1. Ly, H; constructed from Ly, and T; associated with H; for eachi=1,2,---.,5
Fic. 1. Ly, H; constructed from L4, and T; associated with H; for each 1 =1,2,...,5.

In Extremal Case 1, we will show that G contains a spanning Halin subgraph isomorphic to
a graph, ibyOndidiigedome( 2pggifidd adrtithsranabesdges asilfotlovssrudtddisioaralingfonlegetpli of G
isomornpitle to<ithet §,wheellefinl;afqrrapineli adshAaded, WitlNGfe tiatdepidtéehgoliph |addhrgraph
in Q dngd EhchHH; Fis pHyc¥tiicortstrtletenidrenby gaandchhekgmaph Theelogiapdd with gfaptein Q,
and eatheH jisdighies fhe following property: for every non-hamiltonian cycle C in it, there is a
cycle C’' ldpgerAtidit wosnelw thexttiCéscantamsdathecetiges from A8 amd, atympstidarmore vertices not
from C. Hencd.¢b ProveMH¢aramal ,lhwe,oblytheed to show the existence of the mentioned graphs
above. THe follbddn ghilerea chieorentiseteal, with dhd Non-estgesned Cabe, anxd the pwa adtrernntlcases,
respectively, amythus give a proof of Theorem 1.1.

Theorem 3Lf g%éfpoge? {t{}l 2O <%’ Ppe é}@ 175%¢mg n is a su, czently arge integer. Let G
be a gmp 3on n ver 1ces wzeml()V IC>ei(1 ’f’@ %r% ;Fw} gugéy l%eﬁ Z(f’fo&flams a

spanning Halir" suhgra %rorzndrp%zc 0a gmph i @ ((%\Iﬁnec% }Sa%’ ¢ é@ﬁ ?]mc HC O

Theorem 324 f‘jymgopps f«'ﬁﬂtg}?z?a@ . &4(2}) }]175 ) and n is a sufficiently large integer. Let G
be a gragl,on ﬂd@f@&ﬁ%%&é&@eﬁxi@ +, W/2nalfife dages krlrewn], Casenly then, Gh,coptains a
spanning Haliny subgranktisemogplic 4v, cf&tﬁ%méuiwgl e sREGH itlak c{lo% B; 4% vertex on

Theorem k¢ dide wipl ehatfhasbipsapmpe fdger and G an n-vertex graph with §(G) > (n +

1)/2. If G is z%efh&]\?%ﬁ@ﬁ%rﬂalz@%s@; thiertr hdd - spanning Halin subgraph isomorphic to Hy
or Hy. Hs: Add five new vertices z,y, 2, w, u.

we need dip el o SO S o R BV Gl
“garbage” Vertlﬁortest (b1,by)-path in L.

Lemma 3.JAnkeifl be everiontie sudd theteHgds) e pavtitionedabitoud ) &b, Swwpgas, thet %) there
are |R| vertex-aligfainhelsfayofez8;stor senge copy £ I suckvithatha, usrtbees vBriek theitheenters
and with leaveshombstnds in,S-pbtih forlany two vertices u,v € N(R,S), deg(u,v,S) > 6|R|, and
(i11) for any thPte werdplesobtoined DN @Ry Sy Apletipbuthewedex 7|dild Thdinghehe isdgdadder
spanning R andysisridestfieal iR{h— 2 verittees From S. Additionally, the ladder has the vertices on
its first and laﬁetl@gﬁ?ﬂg[{x Yy Z, W, Uy a1, by, Qp, by H.

Proof. 18! B L %y ub; Not%ﬁe}th%%h&f fedschdfatineyanbyapg the eraphobtainqd, g
By (iif" fésabaz é@ﬁﬂ@g&&m&t@g 7apd.addin, 1%@56%% dspfig.p Hali ali 8 2t ﬁgeg;faph L

on { le 1§ afi:12 1%113’ i,mp%% é&”ﬁg trée. Notice also that 2y 1 an edge on the cycle
along the leaves o any underlying tree of H, or Hg For each H; and T;, call x the left

{wi211, w1212, W1T13, Y12T11, Y1aT12, Y3 T12, Y3213 }

is a ladder covering R with |V(L)| = 6. Suppose now r > 2. By condition (i), for each ¢ with
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end and y the right end, and call a vertex of degree at least 3 in the underlying tree
of H; a Halin constructible vertex. By analyzing the structure of H;, we see that each
internal vertex on a/the shortest (z,y)-path in H; — ay (for ¢ = 1,2) or H; — z (for
i = 3,4,5) is a Halin constructible vertex. Note that any vertex in V(H;) — {z,y}
can be a Halin constructible vertex. We call a1b; the head link of T; and a,b,, the
tail link of T;, and for each of T3,Ty,T5, we call the vertex z not contained in any
triangles the connecting vertex. The notation of H; and T; are fixed hereafter.

Let T € {T1,...,T5} be a subgraph of a graph G. Suppose that 7' has head link
ab, tail link cd, and possibly the connecting vertex z. Suppose G — V(T') contains a
spanning ladder L with first rung c¢;d; and last rung ¢, d,, such that c;d; is adjacent to
ab and ¢, d,, is adjacent to cd. Additionally, if the connecting vertex z of T' exists, then
z has a neighbor 2/, which is an internal vertex on a shortest path between the two ends
of T in the graph abLed UT — z. Then abLed UT or abLed UT U {z2'} is a spanning
Halin subgraph of G. This technique is frequently used later on in constructing a
Halin graph. The following proposition gives another way of constructing a Halin
graph based on H; and Hs.

For i = 1,2, let G; € {Hy, Ha} be disjoint and with left end z; and right end ;.
Let u; € V(G;) be a Halin constructible vertex. We call the graph @ := G; U G2 —
{z1Y1, T2y2 }U{x122, y1y2, u1us } the connection of G1 and G5 and write Q = G1 & Gs.
Let

(2.1) Q={H1® Hi,Hi ¢ Hy,Hy® Hp}.

PROPOSITION 1. Every graph Q € Q is a Halin graph and is pancyclic.

Proof. We show the statement for Q = H; & Hs. The other cases can be shown
similarly.

We embed H; in the plane so that x; is located on the left side of ui, and
y1 is located on the right side of w;. We do the same for Hy but put Hs below
the location of H;. Now, we can remove the edges x1y; and x2y» and add the edges
T1T2, U1Us2, Y1y2 to obtain still a plane graph, which gives a plane embedding of Q). We
next show that @) can be decomposed into a homeomorphically irreducible spanning
tree and a cycle induced by the leaves of the tree. Let T; be an underlying plane
tree of H;. Then T := Ty UT; U {ujus} is an HIT spanning V(H;) U V(Hz). Since
H; is a Halin graph and T; is an underlying tree of H;, the edge induced subgraph
C; = H;|E(H;) — E(T;)] is a cycle. Furthermore, z;y; € E(C;) by the construction
of H;. Thus C; — x;y; is an (z;,y;)-path spanning the set of leaves of T;, and so
C = (C1 —x1y1) U (Co — zoy2) U {x129, Y192} is a cycle spanning the set of leaves of
T. Hence Q =T U C is a Halin graph.

To see the pancyclicity of @, suppose that H; has 2n; + 2 vertices and Hs has
2ngy + 3 vertices. It is easy to check that in H;, there are (x;,y;)-paths of order from
n; + 2 to |V(H;)|, and there are cycles of order from 3 to |V(H;)|. Combining the
(z1,y1)-paths from H; and (z2,y2)-paths from Hy using the edges x1x2 and y;1yo gives
cycles of length from n; +ng +4 to ny +na +5 = |V(Q)| in Q. Together with cycles
in H;, we know that @ contains all cycles of length from 3 to |V(Q)]. d

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1. Following
the standard setup of proofs applying the regularity lemma, we divide the proof into
a nonextremal case and extremal cases. For this purpose, we define the two extremal
cases in the following.

Let G be an n-vertex graph and V its vertex set. Let 0 < 8 < 1 be a constant.
Let W C V(G). We say W is an approximate vertez-cut of G with parameter 3 if
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there is a partition V; and Vo of V. — W such that eq(Vi, V2) < fn? and §[G[V;]] >
§(G) — |W| — Bn for each i = 1,2. The two extremal cases are defined as below.

Extremal Case 1. G has an approximate vertex-cut of size at most 54n with
parameter (.
Extremal Case 2. There exists a partition V3 UV of V such that |V;| >
(1/2 = 78)n and A(G[V1]) < Bn.
Nonextremal case. We say that an n-vertex graph with minimum degree at
least (n+1)/2 is in the nonextremal case if it is in neither
Extremal Case 1 nor Extremal Case 2.

In Extremal Case 1, we will show that G contains a spanning Halin subgraph
isomorphic to a graph in Q (defined in (2.1)). In all other cases, we will construct a
spanning subgraph of G isomorphic to either a wheel or H; for some i € {1,2,3,4,5}.
Note that a wheel graph, each graph in Q, and each H; are pancyclic. Furthermore,
by easy checking, a wheel graph, each graph in Q, and each H; satisfy the following
property: for every nonhamiltonian cycle C in it, there is a cycle C’ longer than C
such that C’ contains all vertices from C and at most two more vertices not from C.
Hence, to prove Theorem 1.1, we only need to show the existence of the mentioned
graphs above. The following three theorems deal with the nonextremal case and the
two extremal cases, respectively, and thus give a proof of Theorem 1.1.

THEOREM 3.1. Suppose that 0 < 8 < 1/(20 - 17%) and n is a sufficiently large
integer. Let G be a graph on n vertices with §(G) > (n+1)/2. If G is in Extremal
Case 1, then G contains a spanning Halin subgraph isomorphic to a graph in Q (defined
in (2.1)) as a subgraph.

THEOREM 3.2. Suppose that 0 < 3 < 1/(20 - 173) and n is a sufficiently large
integer. Let G be a graph on n vertices with §(G) > (n + 1)/2. If G is in Extremal
Case 2, then G contains a spanning Halin subgraph isomorphic to either a wheel or
some H;, i € {1,2,3,4,5}.

THEOREM 3.3. Let n be a sufficiently large integer and G an n-vertex graph with
3(G) > (n+1)/2. If G is in the nonextremal case, then G has a spanning Halin
subgraph isomorphic to Hy or Hs.

We need the following lemma in each of the proofs of Theorems 3.1 and 3.2 in
dealing with “garbage” vertices.

LEMMA 3.1. Let F be a graph such that V(F) is partitioned into S U R. Suppose
that (i) there are |R| vertex-disjoint 3-stars (a 3-star is a copy of Ki 3) with the vertices
in R as their centers and with leaves contained in S, (ii) for any two vertices u,v €
N(R,S), deg(u,v,S) > 6|R|, and (iil) for any three vertices u,v,w € N(N(R,S),S),
deg(u,v,w,S) > 7|R|. Then there is a ladder spanning R and some other T|R| — 2
vertices from S. Additionally, the ladder has the vertices on its first and last rungs
mn S.

Proof. Let R = {wy,wa,...,w,}. Consider first that r = 1. Choose x11, %12, %13 €
(w1, S). By (ii), there are distinct vertices yiy € I'(z11,712,5) and y3; € T'(212,
213,5). Then the graph L on {wy,x11, 212, ¥13, Y1, Ya3 } With edges in

1 1 1 1
{w19€11, W1T12,W1T13, Y1211, Y1212 Y23L12; y233313}

is a ladder covering R with |V (L)| = 6. Suppose now r > 2. By condition (i), for each
1 with 1 < ¢ < r, there exist distinct vertices x;1, x;2, z;3 € I'(w;, S). By (ii), we choose

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Wi ~ i1, T52, Li3;5 Y19 ™~ Til, L2 Yog3 ™~ T2, Li3; 24 ~ Ti3, Li+1,1; Wi ~ T43, Ti+1,1, Z4-

t is easy to check that L is a ladder covering R with |V (L)| = 8r — 2. The ladder has its first and

ast rungs in S is seen by its construction. Fi igure 2 Ggives a deglctlon of L for $R| = 2. [ |
DIRAC’S CONDITION FOR SPANNINGHALIN SUBGRAPHS

w1 w2

T11

1
Yia

u1

Figure 2. hadder Juofiqrder 14

We will alsetmeedsihes hipagtite @@;@gmlﬁﬁrmmml& dxishincerthes preofy msianilar, we omit it.

such that r i2,S) and ybq X2, i3, S) for each ¢, and at the same time
Lemma 338 b Kt Ao i " biartite gmm il VIR paianed into S U R with
BC A. Suppoese Mai, (i) ther®) drechR| lgrniter- dibjdindlls- bfais) withshistiertivasian R as their centers
zﬁd with lea?}éls Ugontdtnedt i He upghpsiarertigs B sudrthatsaf, b BE( RS); Tdeg(u, v, S) > 3|R|,
zﬁd (iii) for any %17%2& &e%zces U, v, W € N( (R,S),S5), deg(u,v,w,S) > 4|R| Then there is a
ader spanniny (R) ventibesfrotie $alith 13$R| 111 #flthem taken from A.
4:ddztzonally, He) l@d@é@ﬁﬁm@mtﬁefyfﬁg‘ewndxl@&b EUIVGSTIB, Y11 Yo T2, YsaTra, YhaZrs and

the edges indicated below for each 1 <§ <r —1:
The following simple observation is heavﬂy used in the proofs explicitly or implicitly.

w; ~ I?lax127xv37 y12 ~ $11,IL'72, y 3 ~ 9312,1313, Zz ~ T3, Li4+1,15 Ui ™~ Tq3, Ti41, 1,21

Lemma 3. 31 aS to . tha% .- . ‘be subsets. Then éigrg UL, U, -+ Uk, S) >
degG ui‘ts‘%ﬁst };nd lziis_t éﬁg@ (ﬁf’i@ ?%Jljf% ILS ts cé‘@ﬁ?ﬁctlog%ﬁig@j Q_glée(g]@ ctlorf%f |S |

Extremal €187l s %asier than the other cases, so we start with it.
We will also need the bipartite version of Lemma 3.1. Since the proof is similar,

3.1. Proofeofithieorem 3.1. We assume that GG has an approximate vertex-cut W with parame-
6] such that |W1FW5@72 LattF VA dhdbd/a beath@pmtamﬁ HVVARY iswehidtlentddh@H V;]] > (1/2—60)n.

5 veiﬁs st té Z%Et’z [:z é?/?aves %Lz%iéaj%ﬁ% i?%ﬂ %%Z}%W 0 subsets as follows:

tices u,v € N(R,S), deg(u,v,S) > 3|R|, and (iii) for any three vertices u,v,w €

W@Vﬁ?{@, g) Webd@g(wﬁv 13 QR(HTH&]})MW—ZQ @lﬁdﬂ}r s@cmdingWQami Wme— Wwh.
other T|R| — 2 vertices from S with 3|R| — 1 of them taken from A. Additionally, the

(G nﬁcﬁerjl 3 Zts}ﬁa\%agggl %mfﬁgf Py fn+1 )/4—2.50n for any w E Wa. Since G is 3-connected
Bd (1 /2 — ?/v‘) hea’fO”c‘ﬁVemé SR TR AT St S o RIS 5, Between G[VL U W]
2] ik

¢ or copyright; see http://www.siam.org/journals/ojsa.php

(%/28/20 to 131?56.553.122. RedistﬂBution subjec

ngd G[V2 U lth 13, gl 717;@],5 l?:V{uLij, L/Kl .and}pg, @2‘/(@ %e s%bsets Then deg(uy,ug, ...,
2 1(% 1)\>S||S| (degg(ur, S) + - -+ + degg(ur, 5)) = |S| — k(S| = 6(U,5)) = ké(U, S) —

Extremal Case 1 is easier than the other cases, so we start with it.
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3.1. Proof of Theorem 3.1. We assume that G has an approximate vertex-
cut W with parameter 8 such that |W| < 58n. Let Vi and V5 be the partition of
V — W such that §[G[V;]] > (1/2 — 68)n. As §(G) > (n+1)/2, (1/2—-68)n < |V;| <
(1/2 4+ 68)n. We partition W into two subsets as follows:

Wr ={w e W|deg(w, V1) > (n+1)/4—2.58n} and Wy=W — W;.
As 0(G) > (n+ 1)/2, we have deg(w,V2) > (n+ 1)/4 — 2.5pn for any w € Ws.

Since G is 3-connected and (1/2 — 63)n > 3, there are three independent edges p1po,
q1q2, and ri1ry between G[V; U Wil and G[Va U Wa] with p1,q1,71 € V3 U W, and
D2,G2,72 € Vo U Wa.

For i = 1,2, by the partition of W;, we see that §(W;,V;) > 3|W;| + 3. Thus,
(Wi, Vi—{pi,qi}) > 3|W;|. There are |W,; —{p;, ¢; }| vertex-disjoint 3-stars with their
centers in W; — {p;, q;}. By Lemma 3.3, for any w,v,w € V;, we have

deg(u,v,Vi = {pi; ¢;}) 2 20(G[Vi]) = [Vi| =2 = (1/2 = 18B)n — 2 = 6|W,

By Lemma 3.1, we can find a ladder L; which spans W; — {p;, ¢;} and another 7|W; —
{pi,q;}| — 2 vertices from V; — {p;, ¢; }, if W; — {p;, ¢;} # 0. Denote a;b; and c;d; the
first and last rungs of L; (if L; exists), respectively. Let

Gi = G[V; — V(LZ)] and n; = |V(Gl)|
Note that n; > (n+1)/2 —68n — 7|W;| > (n+1)/2 —41pn. For i = 1,2,

degg, () > 6(G[Vi]) = TIW;| > (n+1)/2 —418n if 2 € V(G;) and = & {p;, ¢;} N W,
dege,(p:) = (n+1)/4 — 2560 — TIWi| = (1/4 - 418)n it p, € W,
dege,(q;) > (n+1)/4—256n —7|W;| > (1/4 —418)n if ¢; € W.

Let ¢ = 1,2. We now show that G; contains a spanning subgraph isomorphic
to either Hy or Hy as defined in the previous section. Since n; < (1/2 4 65)n and
degg,(x) > (n+1)/2 — 418n for any = € V(G;) — W, any subgraph of G; induced
by at least (1/4 — 41/)n vertices not in W has minimum degree at least (n+1)/2 —
418n — (n; — (1/4 — 418)n) > (1/4 — 885)n and thus has a matching of size at least
3. Hence, when n; is even, we can choose independent edges e; = x;y; and f; = z;w;
with

23,y € e, (pi) —{a:} and 2z, w; € T, (@) — {pi}-
And if n; is odd, we can choose independent edges g;y; (we may assume g; # 1),
fi = zjw;, and a vertex x; with

9i-%i,Yi € La,(pi) —{ai}, v € g, (9i,yi) — {pi-ai} and  z,w; € T, (¢:) — {zi,pi}s

where the existence of the vertex z; is possible since the subgraph of G; induced by
Tq, (pi) —{¢;} has minimum degree at least (1/2 —418)n— ((1/2468)n — |Tq, (p:) —
{¢:}) = ITq,(pi) — {@:}| — 478n, and hence contains a triangle. In this case, again,
denote e; = x;y;. Let

G, =G; —{pi.ai} if n; is even;
Gi = Gi — {pm%&%} if n; is odd.

By the definition above, |[V(G})| is even.
The following claim is a modification of (1) of Lemma 2.2 in [11].
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CLAM 3.1.1. Fori=1,2, let aibl, cid} € E(G}) be two independent edges. Then

171 Y

G/ contains two vertez- dzsyomt ladders Qi1 and Q2 spanning V(G}) such that Qi1
has e; = z;y; as its first rung and ab; as its last rung, and Q2 has cid} as its first
rung and f; = z;w; as its last rung, where e; and f; are defined prior to this claim.

Proof. We only show the claim for i = 1 as the case for ¢ = 2 is similar. Notice
that by the definition of G}, |[V(G})| is even. Since |[V(G})| < (1/2 4+ 68)n and
3Gy > (n+1)/2 —41pn — 3 > |V(G})]/2 + 4, G} has a perfect matching M
containing e; = x1y1, f1 = z1w1, a}by, i dj. We identify o} and ¢} into a vertex called
s" and identify b and d} into a vertex called ¢'. Denote G as the resulting graph.
Note that s't’ € E(GY) by the way of identifications. Partition V(GY) arbitrarily
into U; and Uy with |U1| = |U2| such that .131,2’1,8/ S Ul, y1,w1,t’ S UQ, and let
M = (M — {a}b},ddi}) U {s't'}. Since U; and U, are defined after giving the
matching M, we know that M’ C Egy (Uy, Uz).

Define an auxiliary graph H’ with vertex set M’ and edge set defined as follows.
If zy,uv € M' — {s't'} with z,u € Uy, then xy ~p wv if and only if z ~g; v and
Y ~ar u(we do not include the case that x ~g, wand y ~g, v as we deﬁned a
bipartition here). Additionally, for any pg € M’ — {s't'} with p € Uy,

pq~p s't" ifand only if  p ~g U),d) and g~ oal, ).

Notice that a ladder with rungs in M’ is corresponding to a path in H’ and vice
versa. We next show that 6(H') > |V(H’)|/2 + 1. This will imply that H’ has a
hamiltonian path starting with e;, ending with fi, and having st as an internal
vertex. The path with s't’ replaced by a}b] and ¢} d} is corresponding to the required
ladders in GY.

Let w € U; and v € U,. Note that

deg(u, Us) > 5(GY) — |Uh| > (1/2 — 448)n — 3,
deg(v,Uy) > 6(GY) — |Ua| > (1/2 — 448)n — 3,
deg(at, ¢}, Uz) > 2deg(u, Us) — |[Ur] = (1/2 = 928)n,
deg(by,dy,Uy) > 2deg(v,Uy) — |Ua| > (1/2 —928)n.
Let wv € M’ with u € Uy. If u # ', then
deg(uv, V(H")) = [{u'v € M" |u' € Uj,u ~v" and v ~ u'}|
> |U1| - ng’l’(/th U2) - F@(Uv Ul)
> 2((1/2 —44B)n — 3) — |Us]
> (1/4 — 928)n.
If u = s, then
deg(s't', V(H')) = {u'v' € M'|v € Up,v" ~al,c} and v’ ~ b, d}}|
> |U1| = Uz = T(ay, ¢y, Uz)| = |Ur = T(by, di, Un)|
>2((1/2 = 928)n) — |U2|
> (1/4 — 1878)n.
Since 8 < 1/2200 and n is very large,
O(H') = (1/4—1878)n > [V(H')|/2 + 1,

as desired. O
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3.2. Proof of Theorem 3.2. Recall Extremal Case 2: There exists a partition
V1UVs of V such that [Vi| > (1/2—78)n and A(G[V4]) < Sn. Since 6(G) > (n+1)/2,
the assumptions imply that

(1/2-78)n < [Vi| < (1/2+ B)n and (1/2— B)n < |Va| < (1/2 + 78)n.

Let 8 and a be real numbers satisfying 8 < «/20 and a < (1/17)3. Set a; = o!/3
and ay = a?/3. We first repartition V(G) as follows:

Vy ={v € Va|deg(v, V1) > (1—an)[Vil}, Vor={v € Va—=V3 | deg(v, V3) = (1 — au)[V5 1},
Vl—V1UV01, and ‘/0—‘/2—‘/2—‘/01.

CrLAM 3.2.1. |V01 @] V0| = |V2 — ‘/2/| < OZ2|V2|.

Proof. Notice that e(Vy,Va) > (1/2 — B)n|V1| > 11/227;7%|V1||V2| > (1 —a)|W||Va]
as 8 < «/20. Hence,

(=) [Vi[[Va| < e(V1,V2) < e(Vi, V3)+e(Vi, Vo = V3) < [VA[[Vo |+ (1—an) Vi |[Va= V3 .

This gives that |Vp1 U V| = [V — V5| < as|V5|. 0

As a result of moving vertices from V5 to Vi and by Claim 3.2.1, we have the
following:

(1/2 =78)n < |V{| < (1/2+ B)n+ Vo1 < (1/2+ B)n + as(1/2+78)n < (1/24az)n,
(1/2 = az)n < [V3] < (1/2 +7B)n,
6(V{,V3) > min{(1/2 = B)n — [Vo — V5|, (1 — a1)|V5 |} > (1/2 — 221 /3)n,
(3.1) o(Va, Vi) = (1 —an)Vil = (1 = a1)(1/2 = 78)n > (1/2 — 2a1/3)n,
o(Vo, Vi) = (n+1)/2 = (1 = a1)[V3] = [Vo| > aun/3 > 3[Vp| + 10,
S(Vo,Va) > (n+1)/2 — (1 —ay)|Vi| = [Vo U Vo1 | > an/3 > 3|Vy| + 10.

CLAIM 3.2.2. We may assume that A(G) <n — 1.

Proof. Suppose to the contrary and let w € V(G) such that deg(w) = n—1. Then
by 6(G) > (n+1)/2 we have §(G —w) > (n—1)/2, and thus G — w has a hamiltonian
cycle. This implies that G has a spanning wheel subgraph, in particular, a spanning
Halin subgraph of G. a

Cram 3.2.3. Let t,m be positive integers with m sufficiently large and H be a
graph with 6(H) > max{t + 1,3}, and let VY = {v € V(H)|degy(v) > arm}. If
|[V(H)—=V?|—4(t+1) > m—6aam, then H—V contains at least t+2 vertez-disjoint
3-stars.

Proof. Assume H — V{ contains a subgraph M of at most s < t + 2 disjoint
3-stars. Then |V(M)| < 4(t+1). Note that if t = 1, then §(H) > 3. By counting the
number of edges between V(M) and V(H) — V;? — V(M) in two ways, we get that

(3.2) max{l,t — L}V (H) = V| —4(t+1) < ey_yo(V(M),V(H) =V = V(M))
< 4sA(H — V) < dsaym.

Since |[V(H) — V| —4(t +1) > m — 6agm and a < (1/8)3 by the assumption,
inequality (3.2) gives that s > 4max{1,t — 1} > t + 2, showing a contradiction. d
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CLAIM 3.2.4. There exists a subgraph T C G with |V(T')| = n(mod 2) such that
T and G — V(T) satisfy the following conditions.
(i) T is isomorphic to some graph in {T\,To,...,T5}.

(ii) Let 2m =n— |V(T)|. Then G —V(T) contains a balanced spanning bipartite
graph G’ with partite sets Uy and Uy such that |Uy| = |Us| = m.

(iii) There exists a subset W of Uy U Uy with at most asn wvertices such that
dege (z, V(G') = W) > (1 — oy — 2cc2)m for all x ¢ W.

(iv) Assume that T has head link 122 and tail link y1y2. There exist x| xh, yiyh €
E(G') such that o}, y, € Uy — W, zf_, ~ x;, and y5_; ~ y,;, fori = 1,2,
and if T has a connecting vertex, then the connecting vertex is contained in
Viuvy —w.

(v) There are |W| vertez-disjoint 3-stars in G' — {x!, xb, ¥}, y4} with the vertices
i W as their centers.

Proof. By (3.1) and Lemma 3.3, for ¢ = 1,2, we notice that for any u,v,w € V/,
(3.3) deg(u,v,w,Vy_;) > 36(V/,V4_,) —2|V5_,| > (1/2 — 3a1)n > n/4.

We now separate the proof into two cases according to the parity of n.

Case 1. n is even. Suppose first that max{|V{|,|V5|} < n/2. We arbitrarily
partition Vg into Vig and Vag such that |V U Vig| = |V4 U Vao| = n/2. Since 6(G) >
(n+1)/2,

S(G[VY U Vig)), 8(G[V;y U Vi) > 1.

Let z1uy € E(G[V{ U Vyg]) and yaus € E(G[V4 U Vagl) such that 21 € VY and ug €

D(uy,Vy). If there exists u; € VY, then it is clear by (3.1) that deg(xy,uy,Vy) >
2|Vp| + 10. Thus, we assume that V{ is an independent set in G. Then we have

deg(x1,V3) = (n+1)/2 = [Vo| > [V5 U Vao| — [Val.

Since
deg(uy,Vy) > 3|Vo| + 10

by (3.1), we again have that deg(x1,u1,Vy) > 2|Vo| + 10. Hence, there exists zo €
I'(z1,u1,Vy) — {y2,uz}. Similarly, there exists y1 € I'(y2,ue, V{) — {z1,u1}. Then
G[{z1,u1,T2,y1,u2,y2}] contains a subgraph T isomorphic to T;. Let

(3.4) m = (n—6)/2,U1 = (V{ UVi) — V(T), and Uz = (V3 U Vag) — V(T).

We then have |U;| = |Us| = m.

Let G' = (V(G) = V(T), E¢(U1,Us)) be the bipartite graph with partite sets Uy
and Us. Notice that [W| < |Vy| < as|Va| < aan. By (3.1), we have degg (z, V(G') —
W) > (1 — a; — 2a9)m for all & ¢ W. This shows (iii). By the construction of T
above, we have x1,y; € V{ — W. For i = 1,2, by (3.1) and the definition of U; and
W, we have

(3.5) 5(Vo, Us = W) = 6(Vo, V{ = V(T)) = 3|Vy| + 6.

So |Tgr(y2, U1 — W), [T/ (2, U1 — W)| > 3|Vo| + 6. Applying statement (iii) and
Lemma 3.3, we have eq/ (g (x2,U1 — W), T (21,Us — W), e (T (y2, U1 — W),
Lo (y1,Ua—=W)) > (3|Vo|+6)(1 —2c; —4a)m > 2m. Hence, we can find independent
edges zjx4 and yjys such that 2}y, € U; — W, x_, ~ x;, and y5_, ~ y;. This gives
statement (iv). Finally, by (3.5), we have 6(Vo, U; — W — {z}, 25, v}, v5}) > 3|Vo| + 2.
Hence, there are vertex-disjoint 3-stars with their centers in W.
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Otherwise we have max{|V/|,|V4|} > n/2. By (3.1), we have the same lower
bound for §(V{,V3), 6(V4,VY), and 6(Vo, VY), 6(Vo,V5). Furthermore, all the argu-
ments in the following will depend only on the degree conditions, so we assume, with-
out loss of generality (w.l.o.g.), that |V{| > n/2+1. Then §(G[V{]) > 2 and thus G[V/]
contains two vertex-disjoint paths of order 3 and 2, respectively. Let m = (n — 8)/2.
Let V{ be the set of vertices u € V{ such that deg(u,V{) > aym. We consider three
cases here.

Case (a): |[V{| =5 < m. Let zquiwy, y1v1 C G[V{] be two vertex-disjoint paths,
and let xo € T'(z1,u1,w1,Vs),y2 € T'(y1,v1,Vy), and z € T'(wy,v1,Vy) be three dis-
tinct vertices. Then G[{z1, u1, w1, X2, 2, y1,v1,y2}] contains a subgraph T isomorphic
to Ty. Notice that |V — V(T')| < m. We arbitrarily partition V into Vig and Vag
such that [(V] — V(T)) U Vig| = |(Vg — V(T)) U Vag| = m. Let

(36) U1 = (Vll @] VlO) - V(T)7U2 = (‘/2/ @] ‘/20) - V(T) and W = V().

Hence we assume |V{| —5 = m + t; for some ¢; > 1. This implies that |V]| =
n/2+t; + 1 and thus 6(G[V{]) > t; + 2.

Case (b): |[VP| > t;. We form a set W with ¢; vertices from V and all the
vertices of V5. Then |[V/ —W| =m+5+4+1¢ —t; = m+5 = n/2 + 1, and hence
§(G[V{ —W]) > 2. Similarly as in Case (a), we can find a subgraph 7" of G contained
in G[(V{ UVY) — W] isomorphic to Ty. Let

(3.7) Uy=V{—V(T)—W, and U= (VJUW)—V(T).

Case (c): |VP| < t;. Suppose that |V} — V| = m+5+1t) =n/2+t) +1 for some
1 > 1. This implies that 6(G[V{ — V{]) >t} + 2.

Note that [V = VP =m+5+t) =n/2+t) +1and |V{| < (1/2+ B)n + as| V3.
Thus, t] < |[V{| —m —5 < 2aam, and |V{ — V| — 4(t) + 1)) > m — 3t} > m — 6azm.
By Claim 3.2.3, G[V{ — V] contains #} + 2 vertex-disjoint 3-stars. Let zjujw; and
y1v1 be two paths taken from two 3-stars in M. Then we can find a subgraph T of G
isomorphic to T in the same way as in Case (a). We take exactly ¢; 3-stars from the
remaining ones in M and denote the centers of these stars by W’. Let

(38) Uy =V =V —V(T) = W' W =W UV UV, and Uy = (V4 UW) — V(T).

For the partition of U; and Us defined in each of (3.6), (3.7), and (3.8), we let
G' = (V(G) —V(T), Eq(U1,Us)) be the bipartite graph with partite sets U; and Us.
Notice that

[W| < Vo] < agn  if Case (a) occurs,

W < [Vo|+|V{|-m—=5<(1/2+8)n+|Vo U Vo1| — n/2—1 < agn if Case (b) occurs,

W[ =W UV U V| =V = Us = V(T)| + Vo U Vou|
<(1/24B8)n—(1/2—=4)n+ |VoU Vp1| < agn  if Case (c) occurs.

(Recall that |V{| < (1/2 + B)n + |Vp1| and |V U V1| < az|Va] from (3.1).) Since
S(V3,V{) > (1 —2a1/3)n from (3.1) and |V{ — U] < 2aam, we have §(Uy — W, Uy —
W) > (1 — a1 — 2az)m. On the other hand, from (3.1), §(V{,V4) > (1/2 — 2a;1/3)n.
This gives that 6(U; —W,Us—W) > (1—a3 —2as2)m. Hence, we have degg: (x, V(G')—
W) > (1 —a; —2as)m for all z ¢ W. According to the construction of T, we have
x1,y1 € V{—W. Applying statement (iii), by Lemma 3.3, for any u € T'g/ (z2, U1 —W),
deg(u,x1,Uyg—W) > 2(1—a1 —2a2)m—m = (1—2a1 —4ag)m. Thus, eq (T (21, Uz —
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W), Fgl (1‘2, U1 — I/V))7 EG/(Fgl (yl, U2 — W), FG/(yQ, U1 — W)) Z (3|V0| + 6)(1 — 20[1 —
4daiz)m > 2m. Hence, we can find independent edges «) x4 and yjy5 such that x%,y! €
Ui —W, a5, ~ax;, and y4_, ~ y;. By the construction of T, T is isomorphic to T},
and the connecting vertex z € Vy C V/ UV — W. This gives statement (iv). Finally,
as

S(Vo, Uy — W) > 8(Vo, V) = |V{ — (U1 = W)| > ain/3 — (1/2 4+ az)n+n/2 — 4 — azn
> (1/3aq — 2a)n — 4 > 3|W| + 5,

we have 0(Vo, Uy — W — {2, 25, v}, 4 }) > 3|W |+ 1. By the definition of V;°, we have
S(VO, V) — W — {2}, 2h,y},y4}) > arm — asn — 4 > 3|W|. For the vertices in W' in
Case (c), we already know that there are vertex-disjoint 3-stars in G’ with centers in
W'. Hence, regardless of the construction of W, we can always find vertex-disjoint
3-stars with their centers in W.

Case 2. n is odd. Suppose first that max{|V{/],|V3|} < (n+1)/2 and let m = (n—
7)/2. We arbitrarily partition Vj into Vg and Vag such that, w.l.o.g., say |[V{ UVig| =
(n+1)/2 and |V5 U V| = (n —1)/2. (Again, here we use the symmetry of the lower
bounds on 6(V{,Vy), §(Vy,V{), and §(Vp, V), 6(Vo,Vy) from (3.1).) We show that
G[V{ U Vig] either contains two independent edges or is isomorphic to K (,—1)/2. As
§(G) > (n+1)/2, we have 6(G[V{UVjp]) > 1. Since n is sufficiently large, (n+1)/2 > 3.
Then it is easy to see that if G[V/ U Vio] 2 K (,—1)/2, then G[V] U Vig] contains two
independent edges. Furthermore, we can choose two independent edges xju; and
y1v1 such that uy,v; € V{. This is obvious if |Vig| < 1. So we assume |Vig| > 2.
As §(Vy, V) > 3|Vp| + 10, by choosing z1,y1 € Vip, we can choose distinct vertices
up € I'(z1,V/) and v1 € T(y1,V]). Let o € T'(x1,u1,V5), 92 € T'(y1,v1,Vs), and
z € T(uy,v1, Vy). Then G[{x1,u1, 2, y1,v1, Y2, 2}] contains a subgraph T isomorphic
to T3. We assume now that G[V] U Vio] is isomorphic to Ky ,,—1)/2. Let ui be
the center of the star K (,,_1)/2. Then each leaf of the star has at least (n —1)/2
neighbors in V4 U Vag. Since |Vy U Vag| = (n—1)/2, we have I'(v, Vg U Vag) = V4 U Vag
if v e V] UVig — {u1}. By the definition of Vj, A(Vp, V{) < (1 — aq)|Vi| + [Vo1| and
A(Vo, Vi) < (1 —aq)|V3|, and so uy € VY, Vip = 0, and Voo = 0. We claim that
V5 is not an independent set. Otherwise, by §(G) > (n + 1)/2, for each v € Vj,
(v, V{) = V/. This in turn shows that u; has degree n — 1, showing a contradiction
to Claim 3.2.2. So let yovy € E(G[V3]) be an edge. Let wy € I'(ve, VY) — {u1} and
wiuixy be a path containing wy. Choose y; € T'(ys, v, V{) — {wy,u1,21} and x5 €
D(21,u1, w1, Vy) — {y2,v2}. Then G[{z1,u1,x2, w1, v, ya,y1 }] contains a subgraph T
isomorphic to T5. Let Uy = (V] U Vi) — V(T) and Uz = (V5 U Vo) — V(T) and
W = VO — V(T) ‘We have ‘U1| = |U2‘ =m and |W| S |V0| S Qomn.

Otherwise we have max{|V{|,|V5|} > (n+ 1)/2 + 1. By the symmetry of lower
bounds on degrees related to V{ and V4 from (3.1), we assume, w.l.o.g., that |V]| >
(n+1)/2+ 1. Then §(G[V{]) > 2 and thus G[V]] contains two independent edges.
Let m = (n — 7)/2 and V¥ be the set of vertices u € V{ such that deg(u, V{) > ajm.
Since |V{| > (n+1)/2+ 1 > m+4, we assume |V{| = m +4 +t; for some t; > 1. We
consider three cases here.

Case (a): Assume first that |V| > t;. We form a set W with ¢; vertices from
VP and all the vertices of V. Then |[V/ — W| =m+4+t — (V]| -4 —-m) =
m+4 = (n+1)/2, and we have 6(G[V] — W]) > 1. As any vertex u € V{ — W is
a vertex such that deg(u, V{) < aym, we know G[V{ — W] contains two independent
edges. Let zyui,y1v1 € E(G[V] — W]) be two independent edges, and let xzo €
D(z1,u1,Vy),y2 € T'(y1,v1, V), and z € T'(ug,v1, V) be three distinct vertices. Then
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G[{z1,u1, 2, 2,91,v1,Yy2}] contains a subgraph T isomorphic to T3. Let U; = V{ —
V(T) W, Us = (V{OW) ~V(T). Then U] = |Us| = m and [W] < [Vo| +|V{ —Us]| <
[Vo — V3| 4 Bn + 4 < aan.

Thus we assume that |V| < t;. Suppose that |V/ =VP| = m+4+t] = (n+1)/2+t}
for some #; > 1. This implies that 6(G[V{ — V{]) > ¢, + 1.

Case (b): ty > 2. Note that [V = V| = m+4+t, = (n+1)/2 + ] and
[VI] < (124 B)n-+aa|V4]. Thus, £, < |V/|—m—4 < 2agm, and |V} — V| —~4(t, +1) >
m— 3ty > m—6asym. By Claim 3.2.3, G[V{ — V] contains a graph M of ¢} +2 vertex-
disjoint 3-stars. Let x1u; and yyv; be two paths taken from two 3-stars in M. Then
we can find a subgraph T of G isomorphic to T3 the same way as in Case (a). We take
exactly t] 3-stars from the remaining ones in M and denote the centers of these stars
by W. Let Uy = V] =V =V(T)-W', W = WUV UVy, and Uy = (VJUW) =V (T).
Then |Uy| = |Uz| = m.

Case (c): t{ = 1. In this case, we let m = (n —9)/2. If G[V] — V] contains a
vertex adjacent to all other vertices in V] — V?, then the vertex would be contained in
V by the definition of V;?. Hence, we assume that G[V] — V] has no vertex adjacent
to all other vertices in V/ — V?. Then by the assumptions that §(G) > (n + 1)/2
and |V{ — V| = (n +1)/2 + 1, we can find two vertex-disjoint paths of order 3
in G[V{ — V{]. Let zyujw; and y1v121 be two paths in G[V{ — V]. There exist
distinct vertices xs € T'(z1,u1, w1, Vy),y2 € T'(y1,v1,21,Vy), and z € [(wy, 21, V3).
Then G[{z1,u1, w1, x2,y1,v1, 21, Y2, 2}] contains a subgraph T isomorphic to T5. Let
Uy =V =V2—V(T), W = VPUVy, and Uy = (VJUW)—V(T). Then |U;| = |Us| = m.

For the partition of U; and Us in all the cases discussed in Case 2, we let
G = (V(G) = V(T),Eg(U1,Us)) be the bipartite graph with partite sets U; and
Us. Similarly as in Case 1, we can show that all the statements (i)—(v) hold. |

Let Wy = Uy NW and Wy = Us N W. By (v) of Claim 3.2.4, we know that
there are |W7| vertex-disjoint 3-stars with centers in W; and all other vertices in
Us — Wy — {2, v}, 25, ¥4}, and |Ws| vertex-disjoint 3-stars with centers in W and
all other vertices in Uy — Wy — {a}, 9], 25, v5}, and all these |[W7| + |W3| stars are
vertex-disjoint. Let S be the union of the 3-stars with centers in Ws. By (iii) of
Claim 3.2.4,

F(U,’U, Ul - W1 - V(S) - {x’l,xé,yi,yé}) > 3‘W1| for any u,v € U2 - W27

F(u,v,w, U2 - V(S) - {.’1?’1,1)/2, y:/l7y/2}) > 4‘VV1| for any u,v,w € Ul_Wl_V(S)'
By Lemma 3.2, we can find a ladder L; disjoint from the 3-stars in .S with centers in
Wy such that L; is spanning Wi, 4|W7| — 1 vertices from Uy — W — {2}, 25, v1, ¥4},
and another 3|W;| — 1 vertices from Uy — Wy — {z], 24, v}, v}, if W1 # 0.

Again, by (iii) of Claim 3.2.4,

F(u,v, Uy — Wy — V(Ll) - {mllﬂx;ayll,yé}) > 3|W2| for any u,v € Uy - W17
T(u,v,w, Uy — Wy — V(Ly) — {2}, 25, 45, y5}) > 4|Ws|  for any u,v,w € Uy — Ws.
By Lemma 3.2, we can find a ladder Ly disjoint from L; such that Lo is spanning Ws,
4|Ws| — 1 vertices from Uy — V(L) — {«}, z%, 1, y4}, and another 3|Ws| — 1 vertices

from Ug - W2 — V(L1) - {x’l,xé,y’l,yé}, if WQ 75 @

Denote aj;ag; and by;be; the first and last rungs of L; (if L; exists), respectively,
where a1;,b1; € Uy. As |Ur| = |Us], and we took 4|W;|+4|Ws|—2 vertices, respectively,
from U; and U, when constructing Ly and Lo, we have |U; — V(L U L)| = |Us —
V(L1 U Ly)|. Let

Ul =U;, — V(LU Ly), m' = |Uj| =|Uj|, and G" =G"(UjUU,, Eq(U;,Us)).
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Since |W| < agn, m > (n —9)/2, and n is sufficiently large, we have 1/n 4+ 7|W| <
15aam. As §(G' — W) > (1 — oy — 2a2)m and a < (1/17)3, we obtain the following:

§(G") > Tm’ /8 + 1.

Let a}; € T'(aq;, U), af; € T'(az;, Uq) such that af,a}; € E(G) and bl € T'(by;, US),
by, € T'(bg;, Uy) such that b),b5, € E(G). We have the claim below.

CrAIM 3.2.5. The balanced bipartite graph G” contains three vertex-disjoint lad-
ders Q1, Q2, and Q3 spanning V(G") such that the first rung of Q1 is x iz} and the
last rung of Q1 is al aby, the first rung of Q2 is by by, and the last rung of Q2 is
al4ahy, and the first rung of Qs is bobhy and the last rung of Qs is yyyh.

Proof. Since 6(G") > Tm’/8+1 > m’/2+6, G” has a perfect matching M contain-
ing the following edges: x|z}, al ahy, bbby, al0ahs, biabhe, yiyh. We identify af; and
biy, ahy and bhy, aly and b4, and ab, and b, as vertices called ¢}, ¢y, ¢}o, and ch,
respectively. Denote G* = G*(Us,Us) as the resulting graph and let ¢};chy, cjachy €
E(G*). Denote M’ := M —{a} a5, bj1b51, @505, biobhe }U{ch1¢h, chachs}. Define an
auxiliary graph H' on M’ as follows. If xy,uv € M' — {c},¢5, ¢|ochs} with z,u € U7,
then zy ~ g+ wv if and only if  ~g v and y ~g u. For any pq € M’ —{c},chy, 1oCho}
with p € Uj, pg ~mr ¢1¢hy (vesp., pg ~pgr ¢ho¢hy) if and only if p ~gr afy,by; and
q ~gr ahy, by (resp., p ~gr aly, by and q ~gr ahy, bh,). Notice that there is a natural
one-to-one correspondence between ladders with rungs in M’ and paths in H’. Since
0a+(UT,U3), 06+ (Us,Uf) > 3m’/4+ 1, we get 6(H') > m’/2+ 1. Hence H' has a
hamiltonian path starting with « 2z}, ending with {5, and having ¢|,c5, and ¢|5ch,
as two internal vertices. The path with the vertex c},ch, replaced by af,a}; and
b1 b5, and with the vertex ¢j,chy replaced by ajqab, and b,bh, is corresponding to
the required ladders in G”'. 0

IfT e {Tl,TQ}, then

H = 2122Q1 L1Q2L2Q3y1y2 UT

is a spanning Halin subgraph of G. Suppose now that T' € {T3,T4,T5} and z is the
connecting vertex. Then z € V] UV] — W by Claim 3.2.4. Suppose, w.l.o.g., that
z € V§—W. Then by (iii) of Claim 3.2.4 and §(V5, V{) > (1/2—20a4/3)n from (3.1), we
have that degg(z,U7) > dega(z, Vi—=V (L1ULy)=V(T)) > (1—a;—10as)m > m/2+1.
So z has a neighbor on each side of the ladder Q1 L1Q2L2Q3, which has m vertices on
each side, and each side has at most m/2 + 1 vertices from each partition of U; and
U). Let H' be obtained from z122Q1 L1Q2L2Q3y1y2 UT by suppressing the degree 2
vertex z. Then H’ is a Halin graph such that there exists one side of Q1L1Q2L2Q3
with each vertex on it as a degree 3 vertex on a underlying tree of H’'. Let 2z’ be a
neighbor of z such that 2z’ has degree 3 in the underlying tree of H’'. Then

H = 2120Q1L1Q2L2Q3y1y2 UT U {22}

is a spanning Halin subgraph of G.

3.3. Proof of Theorem 3.3. In this section, we prove Theorem 3.3. In the first
subsection, we introduce the regularity lemma, the blow-up lemma, and some related
results. Then we show that G contains a subgraph T isomorphic to T; if n is even
and to Ty if n is odd. By showing that G — V(T') contains a spanning ladder L with
its first rung adjacent to the head link of 7" and its last rung adjacent to the tail link
of T, we get a spanning Halin subgraph H of G formed by LUT.
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3.3.1. The regularity lemma and the blow-up lemma. For any two disjoint
nonempty vertex sets A and B of a graph G, the density of A and B is the ratio
d(A,B) := \EIS\?]];)I' Let € and ¢ be two positive real numbers. The pair (4, B) is
called e-regular if for every X C A and Y C B with |X| > ¢|A| and |Y]| > ¢|B],
|[d(X,Y) — d(A, B)| < € holds. In addition, if §(A, B) > §|B| and §(B, A) > J§|A|, we
say (A, B) is an (g, d)-super regular pair.

LEMMA 3.4 (regularity lemma-degree form [26]). For every ¢ > 0 there is an
M = M (e) such that if G is any graph with n vertices and d € [0, 1] is any real number,
then there is a partition of the vertex set V(G) into I + 1 clusters Vo, Vi,..., Vi, and
there is a spanning subgraph G' C G with the following properties:

o [ < M;

Vol < en, all clusters |V;| = |V;| < [en] for all1 <i#j<lI;
dege (v) > dega(v) — (d+¢e)n for allv € V(G);
e(G'[Vi]) =0 for alli > 1;
in G', all pairs (V;,V;) (1 < i # j < 1) are e-regular, each with a density
either 0 or greater than d.

LEMMA 3.5 (blow-up lemma [19]). For every §,A,c > 0, there exists an € =
e(d, A, ¢) and v = v(0, A, c) > 0 such that the following holds. Let (X,Y) be an (g, 9)-
superregular pair with | X| = Y| = N. If a bipartite graph H with A(H) < A can be
embedded in Kn n by a function ¢, then H can be embedded in (X,Y’). Moreover, in
each ¢~ (X) and ¢~1(Y) (the inverse image of X and Y, respectively), fix at most
N special vertices z, each of which is equipped with a subset S, of X orY of size at
least ¢N. The embedding of H into (X,Y) exists even if we restrict the image of z to
be S, for all special vertices z.

Besides the above two lemmas, we also need the two lemmas below regarding
regular pairs.

EMMA 3.6. 1s an e-reqular pair with densit then for an C A wit
L 3.6. If (A, B) qular p hd y d, then f y A C A with
|A’| > €| A, there are at most €| B| vertices b € B such that deg(b, A’) < (d — €)|A"].

LEMMA 3.7 (slicing lemma). Let (A, B) be an e-regular pair with density d, and
for some v > ¢, let A C A and B’ C B with |A’'| > v|A|, |B'| > v|B|. Then (A’,B’)
is an €’'-regular pair of density d', where ¢’ = max{e/v,2e} and d' > d —e¢.

3.3.2. Finding subgraph T.

CrLAM 3.3.1. Let n be a sufficient large integer and G an n-vertex graph with
5(G) > (n+1)/2. Suppose that G is not in FExtremal Case 2. Then if n is even, G
contains a subgraph T isomorphic to Ty, and if n is odd, G contains a subgraph T
isomorphic to Ts.

Proof. Suppose first that n is even. Let xy € E(G) be an edge. We show that
G[N(z) — {y}] contains an edge z1x2 and G[N(y) — {x}] contains an edge y1y2 such
that the two edges are independent. Since G is not in Extremal Case 2, it has no
independent set of size at least (1/2—75)n. Since n is sufficiently large, |N(z)—{y}| >
2l — 1 > (1/2 = 7B)n. Thus, G[N(x) — {y}] contains an edge x1x2. Similarly,
G[N(y)—{z, z1,x2}] contains an edge y1y2. Therefore, G[{x,y, z1, T2, y1,y2}] contains
a subgraph T isomorphic to 77. We then assume that n is odd. We show in the first
step that G contains a subgraph isomorphic to K, (K4 with one edge removed).
Let yz € E(G). As §(G) > (n + 1)/2, there exists y; € I'(y,z). If there exists
y2 € I'(y, z) — {y1}, we are done. Otherwise, (I'(y) — {y1,2}) N (T'(z) — {y1,9}) = 0.
As (@) > (n+1)/2 and |T(y)UT(2) —{y1, 9, 2} > (n+1)/2, y1 is adjacent to a vertex
y2 € D(y)Ul'(2)—{y1,y, 2}. Assume ys € I'(2)—{y1,y}. Then G[{y,y1, 2, y2}] contains
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a copy of K. Choose z € I'(y) — {z,91,y2} and choose an edge z1z2 € G[['(x) —
{y,91,92,2}]. Then G[{y,v1, 2,y2,x,x1,22}] contains a subgraph 7T isomorphic to
Ts. O

Let T be a subgraph of G as given by Claim 3.3.1. Suppose the head link of
T is 2125 and the tail link of T is yyys. Let G’ = G — V(T). We show in the
next section that G’ contains a spanning ladder with its first rung being adjacent
to x1x2 and its last rung being adjacent to y1y2. Let n’ = |[V(G')|. Then we have
3(G)>(n+1)/2—=T>n'/2—-4>(1/2 - B)n/, where [ is the parameter defined in
the two extremal cases.

3.3.3. Finding a spanning ladder of G’ with prescribed end rungs. In
this subsection, we roughly follow the following steps in finding a spanning ladder L
in G’ with its first rung being adjacent to zyxs and its last rung being adjacent to
Y1Y2.

Step 1. Apply the regularity lemma to G’ to partition the vertices of G’ into clusters
and a “garbage” set V. Construct the reduced graph G, with vertices as
clusters.

Step 2. In G,, find a hamiltonian path X1Y; - -+ XY}, such that each of deg(z1, X1),
deg(z2,Y1), deg(yr, Xi), and deg(ya, V) is large. (The ladder L will be con-
structed such that its vertices on the first and last rungs are contained, re-
spectively, from vertices in X; UY; and X U Y} so that we can concatenate
122 and y1y9 to its first and last rungs, respectively.)

Step 3. After regularizing each pair (X;,Y;) into a (2e,d — 3e)-superregular pair
(X],Y/), absorb garbage vertices from Vj and from other sources into small
ladders using vertices in Ule(Xg uY/).

Step 4. Denote the set of remaining vertices in X/ and Y, after Step 3, respectively,
as X7 and Y;". Within each pair (X7,Y), apply the blow-up lemma to get a
ladder L* spanning X UY;* such that its vertices in first and last, second and
third, and fourth and fifth rungs are selected from a special set of vertices for
connection purposes.

Step 5. Insert small ladders associated with X;,Y; obtained in Step 3 between the
second and third rungs, or the fourth and fifth rungs of L* from Step 4 to get
a new ladder L.

Step 6. Concatenating ladders £, £2, ..., LF using preselected vertices to get a span-
ning ladder of G'.

THEOREM 3.4. Let n' be a sufficiently large even integer and G’ an n'-vertex
subgraph of G obtained by removing vertices in T, where T € {T1,T>} has head link
x129 and tail link y1y2. Suppose that 6(G') > (1/2 — f)n’ and G = G[V(G') UV (T)]
is in nonextremal case, then G' contains a spanning ladder with its first rung being
adjacent to x1xo and its last rung being adjacent to y1ys.

Proof. We fix the sequence of parameters
I<exdg pxl

and specify their dependence as the proof proceeds.
Let 8 be the parameter defined in the two extremal cases. Then we choose d <
and choose

1
e = 1e(d/2,3,d/4)

following the definition of € in the blow-up lemma.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/28/20 to 131.96.253.122. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

DIRAC’S CONDITION FOR SPANNING HALIN SUBGRAPHS 2015

Applying the regularity lemma to G’ with parameters € and d, we obtain a parti-
tion of V(G') into I +1 clusters Vg, Vi, ..., V] for some | < M < M (e), and a spanning
subgraph G” of G’ with all described properties in the regularity lemma. In particular,
for all v € V(G'),

(3.9) degcr (v) > deggr (v) — (d+e)n’ > (1/2— B —e—d)n' > (1/2 —28)n’
provided that € +d < 3. On the other hand,

(d+¢)
2

e(G") > e(G') — (n)? > e(G') —d(n')?
by € < d.

We further assume that [ = 2k is even; otherwise, we eliminate the last cluster V;
by moving all the vertices in this cluster to V. As a result, [Vo| < 2en’, and

(3.10) (1 —2e)n’ <IN =2kN <n/,

where N = |V;| for 1 <14 <.

For each pair ¢ and j with 1 <1 # j <1, we write V; ~ V; if d(V;,V;) > d. As in
other applications of the regularity lemma, we consider the reduced graph G,., whose
vertex set is {1,2,...,1} and two vertices ¢ and j are adjacent if and only if V; ~ V.
From §(G") > (1/2 — 28)n/, we claim that 6(G,) > (1/2 — 25)l. Suppose not, and
let ig € V(G,) be a vertex with dega,(io) < (1/2 —25)l. Let V;, be the cluster in G
corresponding to 7g. Then we have

(1/2=B)|Vi, |<|Eer (Vig, V=Vig )| <(1/2 = 2B)IN|Vig|+2en/ |V, |[<(1/2=B)n/ [V, .

This gives a contradiction by IN < n' from inequality (3.10).

Let A be a cluster of G”. We say A is an (e, d)-cluster if for any distinct cluster
B of G"” with d(A, B) > 0, (A, B) is an e-regular pair with density at least d. Let
x € V(G") be a vertex and A an (e, d)-cluster. We say x is typical to A if deg(x, A) >
(d — ¢)|A|, and in this case, we write x ~ A.

CLAIM 3.3.2. Each vertex from {x1,22,y1,y2} is typical to at least (1/2 — 20)l
clusters in {Vq,...,Vi}.

Proof. Suppose to the contrary that there exists © € {1, Z2,y2,y2} such that x
is typical to less than (1/2 — 28)l clusters in {V4,...,V;}. Then we have degg:(x) <
(1/2=2B)IN + (d+¢e)n’ < (1/2—=8)n’ by IN <n' and d + ¢ < . O

Let x € V(G”) be a vertex. Denote by V, the set of clusters to which x is typical.

CramM 3.3.3. There exist Vy, € V,, and Vy, € V., such that d(Vy,,Vy,) > d.

Proof. We show the claim by considering two cases based on the size of |V, NV, |.

Case 1. |Vyy NVy,| < 281. Then we have |V, =V, | > (1/2—48)1 and |V,, =V, | >
(1/2 — 4p8)l. We conclude that there is an edge between V,, — V,, and V,, — V,, in
G,. Otherwise, let U be the union of clusters in V,, N V,,, W = Vo UU U V(T).
Let W7 be the set of vertices contained in clusters in V,, — V,,, and let Ws be the
set of vertices contained in clusters in V,, — V,,. Then W; and Wj is a partition of
V(G) — W. Furthermore,

|W| <58n, e(Wy,Ws) < (d+e)n'|Wy| < (d+e)n’(1+4B)IN < fn?, and
S(GIW]) > 0(G) =7 — |[W| = (d+e)n’ > 5(G) — |[W| — Bn.
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These imply that W is an approximate vertex-cut of parameter [ with size at most
56n, implying that G is in Extremal Case 1.

Case 2. |Vy, N Vy,| > 261. We may assume that V,, NV, is an independent set
in G,. Otherwise, we are done by finding an edge within V,, N V,,. Also we may
assume that Eg (Ve N Vg, Vg — Vi) =0 and Eg, Ve, N Vg, Ve, — Vi, ) = 0. Since
§(Gr) > (1/2—=20)l and ¢, (Vay, N Vay, Va, UVs,) = 0, we know that | — [V, UV,,| >
(1/2=2B)l. Hence, [V, UVy,| = Vay | + Vi, | = [V, N Vi, | < (1/2428)1. This gives
that

Ve OV | > Vi | + [Vao | — (1/2+28)1 > (1/2 = 2B8)1 + (1/2 — 28)1 — (1/2 + 2B)1
> (1/2-6p)l.

Let U be the union of clusters in V;, N V,,. Then [U| > (1/2 — 78)n and A(G[U]) <
(d+e)n’ < Bn. This shows that G is in Extremal Case 2. 0

Similarly, we have the following claim.

CramM 3.3.4. There exist Vy, € Vy, — {Va,, Vo, } and Vi, € Vy, — {Vay, Viuo } such
that d(V,,,V,,) > d.

Cram 3.3.5. The reduced graph G, has a hamiltonian path X1Y7 - XYy such
that {X1,Y1} = {Va,, Vo, } and { Xy, Y} = {V,,, Vi }-

Proof. We contract the edges V, V,, and V,,V,, in G,. Denote the two new
vertices by V; and V], respectively, and denote the resulting graph by G;. Then we
show that G, contains a hamiltonian (V, V;)-path. This path is corresponding to a
required hamiltonian path in G,..

To show G has a hamiltonian (V, V;)-path, we need the following variation of a
result due to Nash-Williams [22]: Let @ be a 2-connected graph of order m. If §(Q) >
max{(m +2)/3+ 1,a(Q) + 1}, then @ is hamiltonian connected, where a(Q) is the
size of a largest independent set of ). (The result in [22] by Nash-Williams states the
following: Let @ be a 2-connected graph of order m. If §(Q) > max{(m+2)/3,a(Q)},
then @ is hamiltonian.)

We claim that G, is 28l-connected. Otherwise, let S be a vertex-cut of G with
|S] < 281 and S the vertex set corresponding to S in G. Since §(G1) > (1/2—20)1—2
and |S| < 2pl, we know that G!. — S has exactly two components. Let W = S U
Vo UV(T), Wi the set of vertices contained in clusters corresponding to vertices in
one component of G, — S, and Wo = V(G) — Wy — W. Then it is easy to check that
e(W1, W) < Bn? and §(G[W;]) > §(G)—|W|—pBn. Hence W is an approximate vertex-
cut with parameter 3 of size at most 58n, showing that G is in Extremal Case 1. Since
n' = Ni+|Vy| < (I+2)en’, we have that [ > 1/e—2 > 1/5. Hence, G.. is 2-connected.
As G is not in Extremal Case 2, a(G..) < (1/2 = 78)l. By 6(G,) > (1/2 — 2B)l, we
have §(G).) > (1/2—28)l—2 > max{(I+2)/3+1,(1/2—"78)l+1}. Thus, by the result
on hamiltonian connectedness given above, we know that G/ contains a hamiltonian
Vi, V,)-path. O

CLAIM 3.3.6. For each 1 < i <k, there exist X] C X; and Y] CY; such that each
of the following holds:

1) 1X]] > (1— &)Xy — 1, [Vl = (1— )Yl — 1, [¥{] = (1 - )il X} >

(1—¢e)|Xk|, and | X]| > (1 —¢e)|Xy|, 2<i<k-1;

(2) (X1.Y/) is (2e,d — 3¢)-superregular with density at least d — &;

(3) [¥{[ = [X11+ 1, |X}] = [¥{ + 1, nd [X!| = [¥}], 2 < i < k— 1; and

(4) forany A,B € {X1,Y{,..., X}, Y/}, if d(A,B) >0, then (A, B) is 2e-regular

with density at least d — e. Consequently, each A is a (2e,d — €) cluster.
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Proof. For each 1 <13 <k, let
X/ ={x € X;|deg(z,Y;) > (d— )N} and
Y/ ={y €Y;|deg(y,X;) > (d—e)N}.

If necessary, we either take a subset X! of X/ or take a subset Y, of Y} such that
[Y{| = | X1+ 1, | Xi] = Y|+ 1, and |X]| = |Y/| for 2 < i < k — 1. Since (X;,Y;) is
e-regular, we have | X/|,|Y/"| > (1 —¢)N. This gives that |X{|,|Y}/| > (1 —¢)N — 1,
Y/| > (1 —¢)N, |Xi| > (1 —¢)N, and |X!| =|Y/| > (1 —¢)N for 2 < i < k— 1.
As a result, we have deg(z,Y/) > (d — 2¢)N for each x € X| and deg(y, X}) >
(d—2e)N —1 > (d— 3e)N for each y € Y/. By the slicing lemma (Lemma 3.7),
(X1,Y/!) is 2e-regular with density at least d — . Hence (X[,Y/) is (2¢,d — 3e¢)-

superregular for each 1 < ¢ < k. The last assertion is again an application of the
slicing lemma. 0

For 1 < i <k, we call each X/,Y; a superreqularized cluster (sr-cluster) and call
X/ and Y/ partners of each other and write P(X/) = Y/ and P(Y/) = X/. Denote
R="VoU (U, (X, UY)) — (X, UY)))). Since |(X; UY;) — (X]UY/)| < 2N for
92 <i<k—1and |(X;UYy)— (X, UY])],|(XkUY5) — (XLUY!)| < 26N +1, we have

(3.11) |R| < 2en + 2keN +2 < 3en/.

As n' is even and | X{| + |Y{|+ - + |X}| + |Y}/| is even, we know |R| is even. We
arbitrarily group vertices in R into |R|/2 pairs. Given two vertices u,v € R, we
define a (u,v)-chain of length 2¢ as distinct sr-clusters A;, By, ..., A, By such that
un~A ~ B ~ ...~ A ~ B, ~vand each A; and B; are partners; in other
words, {4;, B;} = {X ,Y] } for some i; € {1,...,k}. Recall here u ~ A; means that
deg(u, A1) > (d — 3¢)|A1], and Ay ~ By means that the two vertices corresponding
to Ay and B; are adjacent in G,.. We call such a chain of length 2t a 2t-chain.

Cram 3.3.7. For each pair (u,v) in R, we can find a (u,v)-chain of length at
most 4 such that every sr-cluster is contained in at most d*N/5 chains.

Proof. Suppose we have found chains for the first m < 2en’ pairs of vertices in R
such that no sr-cluster is contained in more than d?N/5 chains. Let ) be the set of
all sr-clusters that are contained exactly in d*N/5 chains. Then

i\ 2kN
T‘Q| S 4m < 8577/ S 8¢

1-2¢’
where the last inequality follows from (3.10). Therefore,
80ke 80le
Q< < < pBl/2
| ‘_d2(1725)_ d? < B2,

provided that 1 — 2¢ > 1/2 and 80e < d?3/2.

Consider now a pair (w, z) of vertices in R which does not have a chain found so
far; we want to find a (w, z)-chain using sr-clusters not in 2. Let U be the set of all
sr-clusters to which w is typical but not in €2, and let V be the set of all sr-clusters
to which z is typical but not in 2. We claim that ||, |V| > (1/2 — 28)I. To see this,
we first observe that any vertex « € R is typical to at least (1/2 — 33/2)l sr-clusters.
For instead,

(1/2 = B)n’ < degg/(x) < (1/2 — 3B/2)IN + (d — 3¢)IN + 3en/,
< (1/2-3B3/2+d)n’
< (1/2 = B)n’ (provided that d < 3/2 ),
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showing a contradiction. Since || < 51/2, we have |U|,|V| > (1/2 — 25)l. Let P(U)
and P(V) be the set of the partners of clusters in &/ and V, respectively. By the
definition of the chains, a cluster A € € if and only its partner P(A) € Q. Hence,
(P(U)UP(V))NQ = 0. Notice also that each cluster has a unique partner, and so we
have |P(U)| = [U| > (1/2 — 28)l and |[P(V)| = |V| > (1/2 — 2B)L.

If Eg, (PU),P(V)) # 0, then there exist two adjacent clusters By € P(U), Az €
P(V). If B; and As are partners of each other, then w ~ Ay ~ By ~ z gives a
(w, z)-chain of length 2. Otherwise, assume A; = P(B;) and By = P(Az); then
wn~ Ay ~ By ~ Ay ~ By ~ z gives a (w, z)-chain of length 4. Hence we assume that
Eg, (PU),P(V)) = (. We may assume that P(U) N P(V) # 0. Otherwise, let S be
the union of clusters contained in V(G,) — (P(U) U P(V)). Then SU RUV (T) with
[SURUV (T)| < 48n'43en’+7 < 56n (provided that 3e+7/n’ < () is an approximate
vertex-cut of G, implying that G is in Extremal Case 1. As Eg (P(U), P(V)) = 0, any
cluster in P(U) NP (V) is adjacent to at least (1/2 —206)I clusters in V(G,) — (P(U) U
P(V)) by 6(G,) > (1/2—2p)l. This implies that |[P(U)UP(V)| < (1/2+420)l, and thus
|[PUYNPV)| > |PU)|+IPOV)|—|PU)UPV)| > (1/2—66)l. Then PU)NP(V) is
corresponding to a subset W; of V(@) such that [Wy| > (1/2 —68)IN > (1/2 - 78)n
and A(G[W1]) < (d+¢)n’ < fn. This implies that G is in Extremal Case 2, showing
a contradiction. |

In the following two claims, we “absorb” vertices in R into small ladders by
using the chains containing the vertices. We construct the ladders in a way such
that the number of vertices used by the ladders, respectively, from X/ and Y/, are
the same. For each 2-chain w ~ X{ ~ Y/ ~ v, when we construct small ladders,
the vertex u will “consume” 3 vertices from X/ and 2 vertices from Y}; similarly,
the vertex v will consume 3 vertices from Y, and 2 vertices from X/. Thus, every
2-chain will consume 5 vertices in total from each X and Y, when we construct small
ladders. Chains of length 4 can result in an imbalance in using vertices from X and
Y; when constructing small ladders. We explain how do we overcome this issue. Let
un~ X ~Y/ ~ X~ Y/ ~vbe a 4-chain. When we construct small ladders, u will
consume 3 vertices from X/ and 2 vertices from Y}, v will consume 3 vertices from Y}
and 2 vertices from X ]’ We see that there is a one vertex difference in using vertices
from X; and Y] and, respectively, from X} and Y. The rough idea to deal with this
problem is to “borrow” a vertex, say w, from X ]’ and to use this vertex w as a vertex
from R that is “assigned” to Y;. This new vertex w will consume 3 vertices from Y,
and 2 vertices from X/. Thus, u and w together will consume 5 vertices in total from
each X/ and Y/ when we construct small ladders. Furthermore, the “borrowing” of
w from X} makes the number of usage of vertices from X} and Y] the same in this
construction process corresponding to each 4-chain. We give the details on how do
we work on 4-chains in the following.

By Claim 3.3.7, each vertex in R is contained in a unique chain of length at
most 4. Let Z be an sr-cluster and u € R be a vertex. We say u and Z are chain-
adjacent to each other if in the chain that contains u, Z appears next to u. For each
sr-cluster Z € {X1{,Y/,..., X}, Y/}, let R(Z) denote the set of vertices in R that are
chain-adjacent to Z. Let

Ry(Z) ={u € R(Z)|u is contained in a 4-chain},
and let

S4(Z) ={Ae{X],Y],..., X}, Y} |u,vER, u~Z~P(Z)~A~P(A)~v is a 4-chain}.
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Obviously, by the definitions, R(Z) — R4(Z) is the set of vertices from R that are
chain-adjacent to Z through 2-chains.

For Z € {X{,..., X} and for each sr-cluster A € S4(Z), let ¢(A) denote the
number of 4-chains that contain Z ~ P(Z) ~ A ~ P(A) as a sequence. For each
A € 84(Z), choose a set R*(A) consisting of ¢(A) vertices in A such that each of them
has at least (d — 3¢)|Z| > 3d2N/5 neighbors in P(Z). (Since (P(Z), A) is 2e-regular
with density at least d—e by Claim 3.3.6(2), we know that there are at least (1—2¢)|A]
vertices in A with this property by Lemma 3.6.)

For each sr-cluster Y/ € {Y{,..., Y/}, and each sr-cluster X! € {X7{,..., X}, let

R(Y]) = R(Y])U U E@], and w(X)) = > e(X)).
A€S4(X]) Ze{X}, XL}, X!€54(2)

Cram 3.3.8. For each i =1,2,...,k, each of the following holds:
(a) [R(X))| < @N/5 and |[R'(Y)] < &*N/5.

(b) [R(X]) = Ra(X])| = [R(Y]) = Ra(Y)].

(c) w(X]) = |Ra(Y{)].

(d) [R'(Y) = R(Y{)| = |[Ra(X])].

Proof. By Claim 3.3.7, each sr-cluster is contained in at most d?N/5 chains,
and a chain contains X if and only if it also contains Y; by its definition. Since
both |R(X])| and |R'(Y/)| are bounded above by the number of chains which contain
them, we have that |R(X])| < d®N/5 and |R'(Y/)| < d?N/5. By the definition of
2-chains, a vertex in R is chain-adjacent to an sr-cluster A in a 2-chain if and only
if there exists another vertex in R which is chain-adjacent to the partner P(A) of
A. Thus |R(X]) — Ry(X])| = |R(Y/) — R4(Y/)]. By the definition, if X] € S4(2)
for some sr-cluster Z, then c¢(X/) is the number of 4-chains that contain Y; ~ X/ ~
P(Z) ~ Z as a sequence. All of such 4-chains is just the set of 4-chains in which Y}
is chain-adjacent to a vertex in R. Since each vertex in R is contained in a unique
chain, we then have that w(X]) = |R4(Y/)|. Since each vertex in R(Y/) — R(Y]/) is
corresponding to a 4-chain in which X/ is chain-adjacent to a vertex in R, we have
that [R'(Y/) — R(Y/)| = |Ra(X])]. 0

CLAIM 3.3.9. For each i = 1,2,...,k, there exist vertex-disjoint ladders Lt L;
such that

(a) R(X{) CV(L;) € R(X])UX/UY and

(b) R(Y/) V(L) € X]UY/UR(Y);

(c) (V(L3)UV(Ly)) NX]| = 4[R(X])| + 3| R(Y])| + 3|Ra(X])| — 2 and |(V(L;) U
V(L)) NY/| = 4|R(Y!)| + 4| Ra(X))| + 3| R(X])| — 2; and

(d) the vertices on the first and last rungs of each of L, and L, are contained in
X/uy;.

Proof. Notice that by Claim 3.3.6, (X,Y/) is 2e-regular with density at least

d—e. Let R(X]) = {x1,...,2,}. For each j, 1 < j < r, since [I'(z;, X])| > (d —
3e)|X]| > 2¢|X!|, by Lemma 3.6, there exists a vertex set B; C Y/ with |B;| >
(1 — 2¢)|Y/| such that for each by € Bj, deg(by,I'(z;,X])) > (d — 3¢)|T'(x;, X])| >
4 R(X])]. If r > 2, for j = 1,...,7 — 1, by Lemma 3.6, there also exists a vertex
set Bj,j+1 - Yvil with ‘Bj,j+1‘ > (1 — 46)‘YZ| such that for each by € Bj,j+1, we
have deg(bs, Tz, X1)) > (d — 32)|T(az, X2)| > 4IR(X])| and deg(ba, Taji1, X1)) >
(d - 36)T (541, X)) > AR(XD|. When 7 > 2, since |Bj|,| B, jal, |Bysa| > (d -
3e)|Y/| > 2¢e|Y/|, there is a set A C X! with |4| > (1 — 6¢)|X]| > |R(X])| such
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that for each a € A, deg(a,B;) > (d — 3¢)|B;|, deg(a,Bj j+1) > (d — 3¢€)|Bj j+1l,
and deg(a, Bjy+1) > (d — 3¢)|B;+1|. Notice that (d — 3¢)|B,|, (d — 3¢)|Bj,j+1/, (d —
3¢)|Bjt1] > (d — 3e)(1 — 4¢)|Y/| > 3|R(X])|. Hence we can choose distinct vertices
U1, Uz, ..., ur—1 € A such that deg(uj, B;),deg(uj, Bj j+1),deg(u;, Bj11) > 3|R(X])].
Then we can choose distinct vertices yl, € I'(uj, Bj),z; € I'(uj, Bj j4+1) and yiit e
I'(uj, Bjt+1) for each j and choose distinct and unchosen vertices yi, € By and y5; €
B,.. Finally, as for each vertex by € B;, we have deg(by,I'(z;, X])) > 4|R(X])|, and for
each vertex by € B; j11, we have deg(bs,I'(xj, X])),deg(ba, T'(xj41,X])) > 4|R(X])],
we can choose z;1, T 2, x5 € I'(z, X!)—{u1, ..., ur—1} such that y{Q € I'(zj1,242,Y)),
ygg € I'(zjo,x;3,Y/), and z; € T'(43,2i41,1,Y;). (When ¢ > 2, we choose all these
vertices such that they are not used by existing ladders. The possibility of doing this
is guaranteed by the degree conditions and the small sizes of the existing ladders.)
Let LY be the graph with

V(LL) = R(X)U{@i1, T2, Tiz, Yo, Ybss 2is Uis Trly Tz, T3y Uiy Yos | 1 < i < r—1}  and

E(L;) consisting of the edges ,Ty1,T,Tro, TrTr3, Y12Tr1, Y12Tr2, Y93Tr2, Yo3Tr3 and
the edges indicated below for each 1 < i <r —1:

L L . .
Ti ~ Ti1, Li2, i35 Y19 ™~ Til, Li2; Yoz ™~ Li2, T3, Zi ™~ Ti3, Li4+1,1; Ui ~ Ti3, Li4+1,1, Zi-

It is easy to check that L! is a ladder spanning R(X]), 4|R(X])| — 1 vertices from X/
and 3| R(X])|—1 vertices from Y. Similarly, we can find a ladder L{ spanning R'(Y),
4|R'(Y/)] — 1 vertices from Y, and 3|R/(Y;)| — 1 vertices from X. The constructions
of ladders L}, and L verify both statements (a) and (c). Statement (b) is seen by
the construction of the ladders and (d) of Claim 3.3.8, which says that |R'(Y/)| =
RO + | Ra(X7). 0

For each i = 1,2,...,k — 1, let X* = X] — V(Uf:l(Li, U L)) and Y™ =
Yi’—V(Uf:l(LéUL;)). Using Lemma 3.6, for ¢ € {1,...,k—1}, choose y € Y;** such
that |A;11| > dN/4, where A;y 1 := X7, NI (y;). This is possible, as (Y;**, X/,) is
4e-regular with density at least d—3¢. (Apply the slicing lemma based on (Y, X7, ,).)
Similarly, choose 7, € A;41 such that |D;| > dN/4, where D; := Y;**NT'(x} ). Let
S ={y;, ;|1 <i<k—1} andlet Xf = X" — S and V;* = Y;** — 5. We have
that the following holds.

CramM 3.3.10. For each i = 1,2,...,k, |X}| = [Y;*| and (X},Y) is (4e,d/2)-
superreqular.

Proof. We show that |X}| = |Y;*| for each i, 1 <4 < k. Since |Y{| = |X{| + 1,
X7 = V{1, and |X!| = [¥7] for 2 < i < k—1, and [X{*] = | X7, [¥*] = [¥7], and
| X[ = X7 =1, [V = [Yj|-1for 2 <i<k,1<j<k—1, it suffices to show that
X/ NV (U, (Liu L) =1y/n V(U (£t u L))|. This is clear by Claims 3.3.9(c)
and 3.3.8, since

k
X/ nv (U(L; U L@))
i=1

= 4|R(X;) = Ra(X])| + 3|R(Y]) = Ra(Y{)| + TIRa(X])] + 3[Ra(Y])] = 2 + w(X])
= TIR(X}) — Ra(X])| + 7| Ra(X7)| + 4| Ra(Y])| - 2,

= 4|R(X])| + 3[R(Y])] + 3|R4(X})| — 2 + w(X])
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and

k
Yinv (U(Li U LZ)) = 3|R(X))| + 4| R(Y))| + 4| Ra(X)| — 2

i=1
= 3|R(X;) — Ra(X{)| + 4|R(Y/) — Ra(Y))| + 7[Ra(X})| + 4| Ra(Y])] — 2
= TIR(X]) — Ra(X])| + T|Ra(X7)| + 4| R4(Y])| — 2.

Since |R(X])|,|R'(Y/)| < d®N/5 for each i, by the first part of the argument,
X/ NV (U (LLULE)| < 4| R(X])|+4| R/ (Y))| -2 < 242N —2 and Y/ "V (U;_, (LU
L)) < 4R(X])| 4+ 4|R'(Y])| = 2 < 2d®N — 2. Thus |X;|,|Y*| > (1 —e —2d*)N. As
e,d < 1, we can assume that 1 — ¢ — 2d? < 1/2. Thus, by the slicing lemma based
on the 2e-regular pair (X/,Y/), we know that (X,Y;*) is 4e-regular. Recall from
Claim 3.3.6 that (X/,Y/) is (2¢,d — 3¢)-superregular, we know that for each = € X7,

deg(z,Y;*) > (d — 3¢ — 2d?)|Y;*| > d|Y;*|/2. Similarly, we have for each y € Y*,
deg(y, X7) > d|X}|/2. Thus (X}, Y;*) is (4e, d/2)-superregular. d

Foreachi=1,2,...,k—1, now set By := Y, NI'(z],;) and C; := X NI[(y]).
Since (X7,Y;*) is (4e,d/2)-superregular, we have |B;|,|C;| > d|X[f|/2 > d|X[|/4.
Recall from Claim 3.3.5 that {X1,Y1} = {V,,, Ve, } and { X, Y} = {V,,, Vi, }. We
assume, w.l.o.g., that X; =V, and X}, =V,,. Let A1 = X{NI'(z1), B1 = Y7 NI (x2),
Cr = XiNID(y1), and Dy = Y NT'(y2). Since deg(z1,X1) > (d — )N, we have
deg(x1,X7) > (d — e — 2e — 2d*)N > d|X7|/4, and thus |A;| > d|X7|/4. Similarly,
we have |Bi|,|Cyk|,|Dx| > d|X7|/4. For each 1 < i < k, we assume that L{ =
aibi — L, —cidi and L} = ajbh— L} —chdh, where a;-, c} €Y/ CY, and b;-,d; e X/ CX;
for j = 1,2. For j = 1,2, let A} = X NT(d}), C; = X7 NT(c}), B = Y;* NT(b),
and D = Y;* NT(d}). Since (X],Y/) is (2¢,d — 3¢)-superregular, for j = 1,2, we have
IP(ai, X0)1, ID(eh, X))| = (d—32)|X!] and [P(b, Y], ID(d:, Y})| = (d — 3)[¥7]. Thus,
we have | AL, | B, [CI], D3| > (d — 3¢)|X1| — 242N > d|X7]/4 = dJY;"|/4.

We now apply the blow-up lemma on (X, Y;*) to find a spanning ladder L with
its first and last rungs being contained in A; x B; and C; x D;, respectively, its
second and third rungs being contained in A} x Bi and C% x D%, respectively, and
its fourth and fifth rungs being contained in A% x B} and C% x D%, respectively. We
can then insert L} between the second and third rungs of L' and L} between the
fourth and fifth rungs of L? to obtained a ladder £? spanning X; UY; — S. Finally,
Lly;as % yr  x3iLF is a spanning ladder of G’ with its first rung adjacent to x17o
and its last rung adjacent to y1y2.

The proof is now complete.
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