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DIRAC’S CONDITION FOR SPANNING HALIN SUBGRAPHS∗

GUANTAO CHEN† AND SONGLING SHAN‡

Abstract. Let G be an n-vertex graph with n ≥ 3. A classic result of Dirac from 1952 asserts
that G is hamiltonian if δ(G) ≥ n/2. Dirac’s theorem is one of the most influential results in the
study of hamiltonicity and by now there are many related known results (see, e.g., [J. A. Bondy,
Handbook of Combinatorics, Vol. 1, MIT Press, Cambridge, MA, 1995, pp. 3–110]. A Halin graph
is a planar graph consisting of two edge-disjoint subgraphs: a spanning tree of at least four vertices
and with no vertex of degree 2, and a cycle induced by the set of the leaves of the spanning tree. Halin
graphs possess rich hamiltonicity properties such as being hamiltonian, hamiltonian connected, and
almost pancyclic. As a continuous “generalization” of Dirac’s theorem, in this paper, we show that
there exists a positive integer n0 such that any graph G with n ≥ n0 vertices and δ(G) ≥ (n+ 1)/2
contains a spanning and pancyclic Halin subgraph H. In addition, for every nonhamiltonian cycle
C in H, there is a cycle C′ longer than C such that C′ contains all vertices from C and at most two
more vertices not from C.
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1. Introduction. A classic theorem of Dirac [12] from 1952 asserts that every
graph on n (n ≥ 3) vertices with minimum degree at least n/2 is hamiltonian. Fol-
lowing Dirac’s result, numerous results on hamiltonicity properties on graphs with
restricted degree conditions have been obtained (see, for instance, [15, 16]). Tradi-
tionally, under similar conditions, results for a graph being hamiltonian, hamiltonian-
connected, and pancyclic are obtained separately. We may ask, under certain con-
ditions, if it is possible to uniformly show a graph possessing several hamiltonicity
properties. The work on finding the square of a hamiltonian cycle in a graph can be
seen as an attempt in this direction. However, it requires minimum degree of 2n/3
for an n-vertex graph G to contain the square of a hamiltonian cycle; for examples,
see [7, 13, 14, 20, 25]. For bipartite graphs, finding the existence of a spanning ladder
is a way of simultaneously showing the graph having many hamiltonicity proper-
ties (see [10, 11]). In this paper, we introduce another approach of uniformly showing
the possession of several hamiltonicity properties in a graph: we show the existence
of a spanning Halin graph in a graph under a given minimum degree condition.

A tree with no vertex of degree 2 is called a homeomorphically irreducible tree
(HIT). A Halin graph H = T ∪ C is a simple planar graph consisting of an HIT T
with at least four vertices and a cycle C induced by the set of leaves of T . The HIT
T is called the underlying tree of H. A wheel graph is an example of a Halin graph,
where the underlying tree is a star. Halin constructed Halin graphs in [17] for the
study of minimally 3-connected graphs. Lovász and Plummer called such graphs Halin
graphs in their study of planar bicritical graphs [21], which are planar graphs having
a 1-factor after deleting any two vertices. Intensive research has been done on Halin
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1998 GUANTAO CHEN AND SONGLING SHAN

graphs. Bondy [4] in 1975 showed that a Halin graph is hamiltonian. In the same year,
Lovász and Plummer [21] showed that not only is a Halin graph itself hamiltonian, but
each of its subgraph obtained by deleting a vertex is hamiltonian. In 1987, Barefoot [2]
proved that Halin graphs are hamiltonian-connected, i.e., there is a hamiltonian path
connecting any two vertices of the graph. Furthermore, it was proved that each edge
of a Halin graph is contained in a hamiltonian cycle and is avoided by another [24].
Bondy and Lovász [6] and Skowrońska [23] independently, in 1985, showed that a
Halin graph is almost pancyclic and is pancyclic if the underlying tree has no vertex
of degree 3, where an n-vertex graph is almost pancyclic if it contains cycles of length
from 3 to n with the possible exception of a single even length and is pancyclic if
it contains cycles of length from 3 to n. Some problems that are NP-complete for
general graphs have been shown to be polynomial time solvable for Halin graphs. For
example, Cornuéjols, Naddef, and Pulleyblank [9] showed that in a Halin graph, a
hamiltonian cycle can be found in polynomial time. Nevertheless, it is NP-complete
to determine whether a graph contains a (spanning) Halin subgraph [18].

Despite all these nice properties of Halin graphs mentioned above, the problem
of determining whether a graph contains a spanning Halin subgraph has not been
well-studied except a conjecture proposed by Lovász and Plummer [21] in 1975. The
conjecture states that every 4-connected plane triangulation contains a spanning Halin
subgraph (disproved recently [8]). In this paper, we investigate the minimum degree
condition that implies the existence of a spanning Halin subgraph in a graph, thereby
giving another approach for uniformly showing the possession of several hamiltonic-
ity properties in a graph under a given minimum degree condition. We obtain the
following result.

Theorem 1.1. There exists n0 > 0 such that for any graph G with n ≥ n0
vertices, if δ(G) ≥ (n+1)/2, then G contains a spanning and pancyclic Halin subgraph
H. In addition, for every non-hamiltonian cycle C in H, there is a cycle C ′ longer
than C such that C ′ contains all vertices from C and at most two more vertices not
from C.

Note that if n ≥ 4, an n-vertex graph with minimum degree at least (n + 1)/2
is 3-connected. Hence, the minimum degree condition in Theorem 1.1 implies the
3-connectedness, which is a necessary condition for a graph to contain a spanning
Halin subgraph, since every Halin graph is 3-connected. A Halin graph contains a
triangle, and bipartite graphs are triangle-free. Hence, Kbn2 c,d

n
2 e contains no spanning

Halin subgraph. For n even, the graph obtained from two copies of Kn
2 +1 by gluing

them together on an edge is 2-connected, so it has no spanning Halin subgraph. Both
these graphs have minimum degree at most n/2. We see that the minimum degree
condition in Theorem 1.1 is best possible. For the pancyclicity property, it is worth
mentioning that a result by Bondy [3] says that every n-vertex graph with minimum
degree at least n+1

2 is pancyclic.
Theorem 1.1 is proved for large graphs. It might be very hard to obtain the

same result for all graphs, as when constructing a Halin graph in general, we may
need to find its underlying tree first. The minimum degree condition suffices for the
existence of a such tree T in G (in fact, it was shown that an n-vertex graph with
minimum degree at least 4

√
2n contains a spanning tree with no vertex of degree

2 [1]). However, the hardness lies in finding a cycle C spanning the set of the leaves
of T so that T ∪ C is planar. In other words, when T is fixed, we have to find a
cycle C in G passing through a set of given vertices in some particular order. The
other way of finding a spanning Halin graph H is to find a spanning subgraph which
contains H, for example, spanning structures close to ladder structures (e.g., graphs
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DIRAC’S CONDITION FOR SPANNING HALIN SUBGRAPHS 1999

H1 to H5 as defined in next section). Particularly, the square of a hamiltonian cycle
contains H1 or H2 as a spanning subgraph, so it contains a spanning Halin subgraph.
But the disadvantage of using “uniform” structures as Hi is that it makes it hard for
constructing them “manually.” Nevertheless, we still suspect that (n + 1)/2 is the
right condition for all graphs to contain a spanning Halin subgraph.

2. Notation and definitions. We consider simple and finite graphs only. Let G
be a graph. Denote by V (G) and E(G) the vertex set and edge set of G, respectively,
and by e(G) the cardinality of E(G). We denote by δ(G) the minimum degree of
G and by ∆(G) the maximum degree. Let v ∈ V (G) be a vertex and S ⊆ V (G)
a subset. Then G[S] is the subgraph of G induced by S. Similarly, G[F ] is the
subgraph induced by F if F ⊆ E(G). The notation ΓG(v, S) denotes the set of
neighbors of v in S, and degG(v, S) = |ΓG(v, S)|. We let ΓG(v, S) = S−ΓG(v, S) and
degG(v, S) = |ΓG(v, S)|. Note that if v ∈ S, then v ∈ ΓG(v, S). Given another set U ⊆
V (G), define ΓG(U, S) =

⋂
u∈U ΓG(u, S), degG(U, S) = |ΓG(U, S)|, and NG(U, S) =⋃

u∈U ΓG(u, S). When U = {u1, u2, . . . , uk}, we may write ΓG(U, S), degG(U, S), and
NG(U, S) as ΓG(u1, u2, . . . , uk, S), degG(u1, u2, . . . , uk, S), and NG(u1, u2, . . . , uk, S),
respectively, in specifying the vertices in U . When S = V (G), we only write ΓG(U),
degG(U), and NG(U). Let U1, U2 ⊆ V (G) be two disjoint subsets. Then δG(U1, U2) =
min{degG(u1, U2) |u1 ∈ U1} and ∆G(U1, U2) = max{degG(u1, U2) |u1 ∈ U1}. Notice
that the notation δG(U1, U2) and ∆G(U1, U2) is not symmetric with respect to U1 and
U2. We denote by EG(U1, U2) the set of edges with one end in U1 and the other in U2,
and the cardinality of EG(U1, U2) is denoted by eG(U1, U2). We may omit the index
G if there is no risk of confusion. Let u, v ∈ V (G) be two vertices. We write u ∼ v
if u and v are adjacent. A path connecting u and v is called a (u, v)-path. If G is a
bipartite graph with partite sets A and B, we denote G by G(A,B) in emphasizing
the two partite sets.

In constructing Halin graphs, we use ladder graphs and a class of “ladder-like”
graphs as substructures. We give the description of these graphs below.

Definition 2.1. An n-ladder Ln = Ln(A,B) is a balanced bipartite graph with

A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}

such that ai ∼ bj iff |i − j| ≤ 1. We call aibi the ith rung of Ln. If n is even,
then we call each of the shortest (a1, bn)-path a1b2a3b4 · · · an−1bn and (b1, an)-path
b1a2b3a4 · · · bn−1an a side of Ln, and if n is odd, then we call each of the shortest
(a1, an)-path a1b2a3b4 · · · an−1bn−1an and (b1, bn)-path b1a2b3a4 · · · bn−2an−1bn a side
of Ln.

Let L be a ladder with xy as one of its rungs. For an edge gh, we say xy and gh
are adjacent if x ∼ g, y ∼ h or x ∼ h, y ∼ g. Suppose L has its first rung as ab and
its last rung as cd, we denote L by ab−L− cd in specifying the two rungs. If a and c

(and so b and d) are contained in a same side of L, we denote L by
−→
ab − L−−→cd. Let

A and B be two disjoint vertex sets. We say the rung xy of L is contained in A× B
if either x ∈ A, y ∈ B or x ∈ B, y ∈ A. Let L′ be another ladder vertex-disjoint with
L. If the last rung of L is adjacent to the first rung of L′, we write LL′ for the new
ladder obtained by concatenating L and L′. In particular, if L′ = gh is an edge, we
write LL′ as Lgh.

We now define five types of “ladder-like” graphs, call them H1, H2, H3, H4, and
H5, respectively. Let Ln be a ladder with a1b1 and anbn as the first and last rungs,
respectively, and x, y, z, w, u be five new vertices. Then each of Hi is obtained from
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H1 H2

H3 H4 H5

a1a1a1

a1a1a1

a2

a3

a4a4a4

a4

a4a4

b1b1b1

b1b1b1

b2

b3

b4b4b4

b4

b4b4

xxxxx

xxx

xx

yyyyy

y yy

yy

zzz

zzz

z

uww

L4

T1 T2 T3 T4 T5

Figure 1. L4, Hi constructed from L4, and Ti associated with Hi for each i = 1, 2, · · · , 5

In Extremal Case 1, we will show that G contains a spanning Halin subgraph isomorphic to194

a graph in Q (defined in (2.1)). In all other cases, we will construct a spanning subgraph of G195

isomorphic to either a wheel or Hi for some i ∈ {1, 2, 3, 4, 5}. Note that a wheel graph, each graph196

in Q and each Hi is pancyclic. Furthermore, by easy checking, a wheel graph, each graph in Q,197

and each Hi satisfies the following property: for every non-hamiltonian cycle C in it, there is a198

cycle C ′ longer than C such that C ′ contains all vertices from C and at most two more vertices not199

from C. Hence, to prove Theorem 1.1, we only need to show the existence of the mentioned graphs200

above. The following three theorems deal with the Non-extremal Case and the two extremal cases,201

respectively, and thus give a proof of Theorem 1.1.202

Theorem 3.1. Suppose that 0 < β ≪ 1/(20 · 173) and n is a sufficiently large integer. Let G203

be a graph on n vertices with δ(G) ≥ (n + 1)/2. If G is in Extremal Case 1, then G contains a204

spanning Halin subgraph isomorphic to a graph in Q (defined in (2.1)) as a subgraph.205

Theorem 3.2. Suppose that 0 < β ≪ 1/(20 · 173) and n is a sufficiently large integer. Let G206

be a graph on n vertices with δ(G) ≥ (n + 1)/2. If G is in Extremal Case 2, then G contains a207

spanning Halin subgraph isomorphic to either a wheel or some Hi, i ∈ {1, 2, 3, 4, 5}.208

Theorem 3.3. Let n be a sufficiently large integer and G an n-vertex graph with δ(G) ≥ (n +209

1)/2. If G is in the Non-extremal Case, then G has a spanning Halin subgraph isomorphic to H1210

or H2.211

We need the following lemma in each of the proofs of Theorems 3.1 - 3.2 in dealing with212

“garbage” vertices.213

Lemma 3.1. Let F be a graph such that V (F ) is partitioned into S ∪R. Suppose that (i) there214

are |R| vertex-disjoint 3-stars (a 3-star is a copy of K1,3) with the vertices in R as their centers215

and with leaves contained in S, (ii) for any two vertices u, v ∈ N(R,S), deg(u, v, S) ≥ 6|R|, and216

(iii) for any three vertices u, v, w ∈ N(N(R,S), S), deg(u, v, w, S) ≥ 7|R|. Then there is a ladder217

spanning R and some other 7|R| − 2 vertices from S. Additionally, the ladder has the vertices on218

its first and last rungs in S.219

Proof. Let R = {w1, w2, · · · , wr}. Consider first that r = 1. Choose x11, x12, x13 ∈ Γ(w1, S).
By (ii), there are distinct vertices y112 ∈ Γ(x11, x12, S) and y123 ∈ Γ(x12, x13, S). Then the graph L
on {w1, x11, x12, x13, y

1
12, y

1
23} with edges in

{w1x11, w1x12, w1x13, y
1
12x11, y

1
12x12, y

1
23x12, y

1
23x13}

is a ladder covering R with |V (L)| = 6. Suppose now r ≥ 2. By condition (i), for each i with

Fig. 1. L4, Hi constructed from L4, and Ti associated with Hi for each i = 1, 2, . . . , 5.

Ln by adding some specified vertices and edges as follows. Additionally, for each i
with 1 ≤ i ≤ 5, we define a graph Ti associated with Hi. A depiction of a ladder
L4, H1, H2, H3, H4, H5 constructed from L4, and the graph Ti associated with Hi are
given in Figure 1.
H1: Add two new vertices x, y and the edges xa1, xb1, yan, ybn, and xy.

Let T1 = H1[{x, y, a1, b1, an, bn}].
H2: Add three new vertices x, y, z and the edges za1, zb1, xz, xb1, yan, ybn, and

xy.
Let T2 = H2[{x, y, z, a1, b1, an, bn}].

H3: Add three new vertices x, y, z and the edges xa1, xb1, yan, ybn, xz, yz, and
either zai or zbi for some 1 ≤ i ≤ n. Note that H2 is a special case of H3

with i = 1 or n.
Let T3 = H3[{x, y, z, a1, b1, an, bn}].

H4: Add four new vertices x, y, z, w and the edges wa1, wb1, xw, xb1, yan, ybn, xz,
yz, and either zai or zbi for some 1 ≤ i ≤ n such that ai or bi is a vertex on
the side of L that has b1 as one end.
Let T4 = H4[{x, y, z, w, a1, b1, an, bn}].

H5: Add five new vertices x, y, z, w, u.
If n is odd, we add the edges wa1, wb1, xw, xb1, uan, ubn, yu, ybn, xz, yz, and
either zai or zbi for some 1 ≤ i ≤ n such that ai or bi is a vertex on the
shortest (b1, bn)-path in L.
And if n is even, we add the edges wa1, wb1, xw, xb1, uan, ubn, yu, yan, xz, yz,
and either zai or zbi for some 1 ≤ i ≤ n such that ai or bi is a vertex on the
shortest (b1, an)-path in L.
The graph obtained from H5 by deleting the vertex z and adding the edge
xy is identical with H4 with i = n.
Let T5 = H5[{x, y, z, w, u, a1, b1, an, bn}].

Let i = 1, 2, . . . , 5. Notice that each of Hi is a Halin graph, and the graph obtained
from H5 by deleting the vertex z and adding the edge xy is also a Halin graph. Except
H1, each Hi has a unique underlying tree. Notice also that xy is an edge on the cycle
along the leaves of any underlying tree of H1 or H2. For each Hi and Ti, call x the left
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DIRAC’S CONDITION FOR SPANNING HALIN SUBGRAPHS 2001

end and y the right end, and call a vertex of degree at least 3 in the underlying tree
of Hi a Halin constructible vertex. By analyzing the structure of Hi, we see that each
internal vertex on a/the shortest (x, y)-path in Hi − xy (for i = 1, 2) or Hi − z (for
i = 3, 4, 5) is a Halin constructible vertex. Note that any vertex in V (H1) − {x, y}
can be a Halin constructible vertex. We call a1b1 the head link of Ti and anbn the
tail link of Ti, and for each of T3, T4, T5, we call the vertex z not contained in any
triangles the connecting vertex. The notation of Hi and Ti are fixed hereafter.

Let T ∈ {T1, . . . , T5} be a subgraph of a graph G. Suppose that T has head link
ab, tail link cd, and possibly the connecting vertex z. Suppose G − V (T ) contains a
spanning ladder L with first rung c1d1 and last rung cndn such that c1d1 is adjacent to
ab and cndn is adjacent to cd. Additionally, if the connecting vertex z of T exists, then
z has a neighbor z′, which is an internal vertex on a shortest path between the two ends
of T in the graph abLcd ∪ T − z. Then abLcd ∪ T or abLcd ∪ T ∪ {zz′} is a spanning
Halin subgraph of G. This technique is frequently used later on in constructing a
Halin graph. The following proposition gives another way of constructing a Halin
graph based on H1 and H2.

For i = 1, 2, let Gi ∈ {H1, H2} be disjoint and with left end xi and right end yi.
Let ui ∈ V (Gi) be a Halin constructible vertex. We call the graph Q := G1 ∪ G2 −
{x1y1, x2y2}∪{x1x2, y1y2, u1u2} the connection of G1 and G2 and write Q = G1⊕G2.
Let

Q = {H1 ⊕H1, H1 ⊕H2, H2 ⊕H2}.(2.1)

Proposition 1. Every graph Q ∈ Q is a Halin graph and is pancyclic.

Proof. We show the statement for Q = H1 ⊕H2. The other cases can be shown
similarly.

We embed H1 in the plane so that x1 is located on the left side of u1, and
y1 is located on the right side of u1. We do the same for H2 but put H2 below
the location of H1. Now, we can remove the edges x1y1 and x2y2 and add the edges
x1x2, u1u2, y1y2 to obtain still a plane graph, which gives a plane embedding of Q. We
next show that Q can be decomposed into a homeomorphically irreducible spanning
tree and a cycle induced by the leaves of the tree. Let Ti be an underlying plane
tree of Hi. Then T := T1 ∪ T1 ∪ {u1u2} is an HIT spanning V (H1) ∪ V (H2). Since
Hi is a Halin graph and Ti is an underlying tree of Hi, the edge induced subgraph
Ci = Hi[E(Hi) − E(Ti)] is a cycle. Furthermore, xiyi ∈ E(Ci) by the construction
of Hi. Thus Ci − xiyi is an (xi, yi)-path spanning the set of leaves of Ti, and so
C = (C1 − x1y1) ∪ (C2 − x2y2) ∪ {x1x2, y1y2} is a cycle spanning the set of leaves of
T . Hence Q = T ∪ C is a Halin graph.

To see the pancyclicity of Q, suppose that H1 has 2n1 + 2 vertices and H2 has
2n2 + 3 vertices. It is easy to check that in Hi, there are (xi, yi)-paths of order from
ni + 2 to |V (Hi)|, and there are cycles of order from 3 to |V (Hi)|. Combining the
(x1, y1)-paths from H1 and (x2, y2)-paths from H2 using the edges x1x2 and y1y2 gives
cycles of length from n1 + n2 + 4 to n1 + n2 + 5 = |V (Q)| in Q. Together with cycles
in Hi, we know that Q contains all cycles of length from 3 to |V (Q)|.

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1. Following
the standard setup of proofs applying the regularity lemma, we divide the proof into
a nonextremal case and extremal cases. For this purpose, we define the two extremal
cases in the following.

Let G be an n-vertex graph and V its vertex set. Let 0 < β ≤ 1 be a constant.
Let W ⊆ V (G). We say W is an approximate vertex-cut of G with parameter β if
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there is a partition V1 and V2 of V −W such that eG(V1, V2) ≤ βn2 and δ[G[Vi]] ≥
δ(G)− |W | − βn for each i = 1, 2. The two extremal cases are defined as below.

Extremal Case 1. G has an approximate vertex-cut of size at most 5βn with
parameter β.

Extremal Case 2. There exists a partition V1 ∪ V2 of V such that |V1| ≥
(1/2− 7β)n and ∆(G[V1]) ≤ βn.

Nonextremal case. We say that an n-vertex graph with minimum degree at
least (n+1)/2 is in the nonextremal case if it is in neither
Extremal Case 1 nor Extremal Case 2.

In Extremal Case 1, we will show that G contains a spanning Halin subgraph
isomorphic to a graph in Q (defined in (2.1)). In all other cases, we will construct a
spanning subgraph of G isomorphic to either a wheel or Hi for some i ∈ {1, 2, 3, 4, 5}.
Note that a wheel graph, each graph in Q, and each Hi are pancyclic. Furthermore,
by easy checking, a wheel graph, each graph in Q, and each Hi satisfy the following
property: for every nonhamiltonian cycle C in it, there is a cycle C ′ longer than C
such that C ′ contains all vertices from C and at most two more vertices not from C.
Hence, to prove Theorem 1.1, we only need to show the existence of the mentioned
graphs above. The following three theorems deal with the nonextremal case and the
two extremal cases, respectively, and thus give a proof of Theorem 1.1.

Theorem 3.1. Suppose that 0 < β � 1/(20 · 173) and n is a sufficiently large
integer. Let G be a graph on n vertices with δ(G) ≥ (n + 1)/2. If G is in Extremal
Case 1, then G contains a spanning Halin subgraph isomorphic to a graph in Q (defined
in (2.1)) as a subgraph.

Theorem 3.2. Suppose that 0 < β � 1/(20 · 173) and n is a sufficiently large
integer. Let G be a graph on n vertices with δ(G) ≥ (n + 1)/2. If G is in Extremal
Case 2, then G contains a spanning Halin subgraph isomorphic to either a wheel or
some Hi, i ∈ {1, 2, 3, 4, 5}.

Theorem 3.3. Let n be a sufficiently large integer and G an n-vertex graph with
δ(G) ≥ (n + 1)/2. If G is in the nonextremal case, then G has a spanning Halin
subgraph isomorphic to H1 or H2.

We need the following lemma in each of the proofs of Theorems 3.1 and 3.2 in
dealing with “garbage” vertices.

Lemma 3.1. Let F be a graph such that V (F ) is partitioned into S ∪R. Suppose
that (i) there are |R| vertex-disjoint 3-stars (a 3-star is a copy of K1,3) with the vertices
in R as their centers and with leaves contained in S, (ii) for any two vertices u, v ∈
N(R,S), deg(u, v, S) ≥ 6|R|, and (iii) for any three vertices u, v, w ∈ N(N(R,S), S),
deg(u, v, w, S) ≥ 7|R|. Then there is a ladder spanning R and some other 7|R| − 2
vertices from S. Additionally, the ladder has the vertices on its first and last rungs
in S.

Proof. LetR = {w1, w2, . . . , wr}. Consider first that r = 1. Choose x11, x12, x13 ∈
Γ(w1, S). By (ii), there are distinct vertices y112 ∈ Γ(x11, x12, S) and y123 ∈ Γ(x12,
x13, S). Then the graph L on {w1, x11, x12, x13, y

1
12, y

1
23} with edges in{

w1x11, w1x12, w1x13, y
1
12x11, y

1
12x12, y

1
23x12, y

1
23x13

}
is a ladder covering R with |V (L)| = 6. Suppose now r ≥ 2. By condition (i), for each
i with 1 ≤ i ≤ r, there exist distinct vertices xi1, xi2, xi3 ∈ Γ(wi, S). By (ii), we choose
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6 G. CHEN, S. SHAN

1 ≤ i ≤ r, there exist distinct vertices xi1, xi2, xi3 ∈ Γ(wi, S). By (ii), we choose distinct vertices
y112, y

1
23, · · · , yr12, yr23 different from the existing vertices already chosen such that yi12 ∈ Γ(xi1, xi2, S)

and yi23 ∈ Γ(xi2, xi3, S) for each i, and at the same time, we chose distinct vertices z1, z2, · · · , zr−1

from the unchosen vertices in S such that zi ∈ Γ(xi3, x(i+1),1, S) for each 1 ≤ i ≤ r − 1. Finally,
by (iii), choose distinct vertices u1, u2, · · · , ur−1 from the unchosen vertices in S such that ui ∈
Γ(yi23, y

i+1
12 , zi, S). Let L be the graph with

V (L) = R ∪ {xi1, xi2, xi3, yi12, yi23, zi, ui, xr1, xr2, xr3, yr12, yr23 | 1 ≤ i ≤ r − 1} and

E(L) consisting of the edges wrxr1, wrxr2, wrxr3, y
r
12xr1, y

r
12xr2, y

r
23xr2, y

r
23xr3 and the edges indi-

cated below for each 1 ≤ i ≤ r − 1:

wi ∼ xi1, xi2, xi3; y
i
12 ∼ xi1, xi2; y

i
23 ∼ xi2, xi3; zi ∼ xi3, xi+1,1; ui ∼ xi3, xi+1,1, zi.

It is easy to check that L is a ladder covering R with |V (L)| = 8r − 2. The ladder has its first and220

last rungs in S is seen by its construction. Figure 2 gives a depiction of L for |R| = 2.221

w1 w2

x11

x12

x13 x21

x22

x23

y112 y123 y212 y223

u1

z1

Figure 2. Ladder L of order 14

We will also need the bipartite version of Lemma 3.1. Since the proof is similar, we omit it.222

Lemma 3.2. Let F (A,B) be a bipartite graph such that V (F ) is partitioned into S ∪ R with223

R ⊆ A. Suppose that (i) there are |R| vertex-disjoint 3-stars with the vertices in R as their centers224

and with leaves contained in S, (ii) for any two vertices u, v ∈ N(R,S), deg(u, v, S) ≥ 3|R|,225

and (iii) for any three vertices u, v, w ∈ N(N(R,S), S), deg(u, v, w, S) ≥ 4|R|. Then there is a226

ladder spanning R and some other 7|R| − 2 vertices from S with 3|R| − 1 of them taken from A.227

Additionally, the ladder has its first and last rungs in S.228

The following simple observation is heavily used in the proofs explicitly or implicitly.229

Lemma 3.3. Let U = {u1, u2 · · · , uk}, S ⊆ V (G) be subsets. Then deg(u1, u2, · · · , uk, S) ≥230

|S| − (degG(u1, S) + · · ·+ degG(uk, S)) ≥ |S| − k(|S| − δ(U,S)) = kδ(U,S) − (k − 1)|S|.231

Extremal Case 1 is easier than the other cases, so we start with it.232

3.1. Proof of Theorem 3.1. We assume that G has an approximate vertex-cut W with parame-
ter β such that |W | ≤ 5βn. Let V1 and V2 be the partition of V −W such that δ[G[Vi]] ≥ (1/2−6β)n.
As δ(G) ≥ (n+1)/2, (1/2−6β)n ≤ |Vi| ≤ (1/2+6β)n. We partition W into two subsets as follows:

W1 = {w ∈ W | deg(w, V1) ≥ (n+ 1)/4 − 2.5βn} and W2 = W −W1.

As δ(G) ≥ (n+1)/2, we have deg(w, V2) ≥ (n+1)/4−2.5βn for any w ∈ W2. Since G is 3-connected233

and (1/2 − 6β)n > 3, there are three independent edges p1p2, q1q2, and r1r2 between G[V1 ∪W1]234

and G[V2 ∪W2] with p1, q1, r1 ∈ V1 ∪W1 and p2, q2, r2 ∈ V2 ∪W2.235

Fig. 2. Ladder L of order 14.

distinct vertices y112, y
1
23, . . . , y

r
12, y

r
23 different from the existing vertices already chosen

such that yi12 ∈ Γ(xi1, xi2, S) and yi23 ∈ Γ(xi2, xi3, S) for each i, and at the same time,
we chose distinct vertices z1, z2, . . . , zr−1 from the unchosen vertices in S such that
zi ∈ Γ(xi3, x(i+1),1, S) for each 1 ≤ i ≤ r− 1. Finally, by (iii), choose distinct vertices

u1, u2, . . . , ur−1 from the unchosen vertices in S such that ui ∈ Γ(yi23, y
i+1
12 , zi, S). Let

L be the graph with

V (L) = R ∪ {xi1, xi2, xi3, yi12, yi23, zi, ui, xr1, xr2, xr3, yr12, yr23 | 1 ≤ i ≤ r − 1} and

E(L) consisting of the edges wrxr1, wrxr2, wrxr3, y
r
12xr1, y

r
12xr2, y

r
23xr2, y

r
23xr3 and

the edges indicated below for each 1 ≤ i ≤ r − 1:

wi ∼ xi1, xi2, xi3; yi12 ∼ xi1, xi2; yi23 ∼ xi2, xi3; zi ∼ xi3, xi+1,1; ui ∼ xi3, xi+1,1, zi.

It is easy to check that L is a ladder covering R with |V (L)| = 8r− 2. The ladder has
its first and last rungs in S, shown by its construction. Figure 2 gives a depiction of
L for |R| = 2.

We will also need the bipartite version of Lemma 3.1. Since the proof is similar,
we omit it.

Lemma 3.2. Let F (A,B) be a bipartite graph such that V (F ) is partitioned into
S ∪ R with R ⊆ A. Suppose that (i) there are |R| vertex-disjoint 3-stars with the
vertices in R as their centers and with leaves contained in S, (ii) for any two ver-
tices u, v ∈ N(R,S), deg(u, v, S) ≥ 3|R|, and (iii) for any three vertices u, v, w ∈
N(N(R,S), S), deg(u, v, w, S) ≥ 4|R|. Then there is a ladder spanning R and some
other 7|R| − 2 vertices from S with 3|R| − 1 of them taken from A. Additionally, the
ladder has its first and last rungs in S.

The following simple observation is heavily used in the proofs explicitly or im-
plicitly.

Lemma 3.3. Let U = {u1, u2, . . . , uk}, S ⊆ V (G) be subsets. Then deg(u1, u2, . . . ,
uk, S) ≥ |S| − (degG(u1, S) + · · ·+ degG(uk, S)) ≥ |S| − k(|S| − δ(U, S)) = kδ(U, S)−
(k − 1)|S|.

Extremal Case 1 is easier than the other cases, so we start with it.
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3.1. Proof of Theorem 3.1. We assume that G has an approximate vertex-
cut W with parameter β such that |W | ≤ 5βn. Let V1 and V2 be the partition of
V −W such that δ[G[Vi]] ≥ (1/2− 6β)n. As δ(G) ≥ (n+ 1)/2, (1/2− 6β)n ≤ |Vi| ≤
(1/2 + 6β)n. We partition W into two subsets as follows:

W1 = {w ∈W | deg(w, V1) ≥ (n+ 1)/4− 2.5βn} and W2 = W −W1.

As δ(G) ≥ (n + 1)/2, we have deg(w, V2) ≥ (n + 1)/4 − 2.5βn for any w ∈ W2.
Since G is 3-connected and (1/2− 6β)n > 3, there are three independent edges p1p2,
q1q2, and r1r2 between G[V1 ∪ W1] and G[V2 ∪ W2] with p1, q1, r1 ∈ V1 ∪ W1 and
p2, q2, r2 ∈ V2 ∪W2.

For i = 1, 2, by the partition of Wi, we see that δ(Wi, Vi) ≥ 3|Wi| + 3. Thus,
δ(Wi, Vi−{pi, qi}) ≥ 3|Wi|. There are |Wi−{pi, qi}| vertex-disjoint 3-stars with their
centers in Wi − {pi, qi}. By Lemma 3.3, for any u, v, w ∈ Vi, we have

deg(u, v, Vi − {pi, qi}) ≥ 2δ(G[Vi])− |Vi| − 2 ≥ (1/2− 18β)n− 2 ≥ 6|Wi|,
deg(u, v, w, Vi − {pi, qi}) ≥ 3δ(G[Vi])− 2|Vi| − 2 ≥ (1/2− 30β)n− 2 ≥ 7|Wi|.

By Lemma 3.1, we can find a ladder Li which spans Wi−{pi, qi} and another 7|Wi−
{pi, qi}| − 2 vertices from Vi − {pi, qi}, if Wi − {pi, qi} 6= ∅. Denote aibi and cidi the
first and last rungs of Li (if Li exists), respectively. Let

Gi = G[Vi − V (Li)] and ni = |V (Gi)|.

Note that ni ≥ (n+ 1)/2− 6βn− 7|Wi| ≥ (n+ 1)/2− 41βn. For i = 1, 2,

degGi
(x) ≥ δ(G[Vi])− 7|Wi| ≥ (n+ 1)/2− 41βn if x ∈ V (Gi) and x 6∈ {pi, qi} ∩W ,

degGi
(pi) ≥ (n+ 1)/4− 2.5βn− 7|Wi| ≥ (1/4− 41β)n if pi ∈W ,

degGi
(qi) ≥ (n+ 1)/4− 2.5βn− 7|Wi| ≥ (1/4− 41β)n if qi ∈W.

Let i = 1, 2. We now show that Gi contains a spanning subgraph isomorphic
to either H1 or H2 as defined in the previous section. Since ni ≤ (1/2 + 6β)n and
degGi(x) ≥ (n + 1)/2 − 41βn for any x ∈ V (Gi) −W , any subgraph of Gi induced
by at least (1/4− 41β)n vertices not in W has minimum degree at least (n+ 1)/2−
41βn− (ni − (1/4− 41β)n) ≥ (1/4− 88β)n and thus has a matching of size at least
3. Hence, when ni is even, we can choose independent edges ei = xiyi and fi = ziwi
with

xi, yi ∈ ΓGi
(pi)− {qi} and zi, wi ∈ ΓGi

(qi)− {pi}.
And if ni is odd, we can choose independent edges giyi (we may assume gi 6= ri),
fi = ziwi, and a vertex xi with

gi, xi, yi ∈ ΓGi
(pi)− {qi}, xi ∈ ΓGi

(gi, yi)− {pi, qi} and zi, wi ∈ ΓGi
(qi)− {xi, pi},

where the existence of the vertex xi is possible since the subgraph of Gi induced by
ΓGi(pi)−{qi} has minimum degree at least (1/2− 41β)n− ((1/2 + 6β)n− |ΓGi(pi)−
{qi}|) ≥ |ΓGi(pi) − {qi}| − 47βn, and hence contains a triangle. In this case, again,
denote ei = xiyi. Let {

G′i = Gi − {pi, qi} if ni is even;

G′i = Gi − {pi, qi, gi} if ni is odd.

By the definition above, |V (G′i)| is even.
The following claim is a modification of (1) of Lemma 2.2 in [11].
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Claim 3.1.1. For i = 1, 2, let a′ib
′
i, c
′
id
′
i ∈ E(G′i) be two independent edges. Then

G′i contains two vertex-disjoint ladders Qi1 and Qi2 spanning V (G′i) such that Qi1
has ei = xiyi as its first rung and a′ib

′
i as its last rung, and Qi2 has c′id

′
i as its first

rung and fi = ziwi as its last rung, where ei and fi are defined prior to this claim.

Proof. We only show the claim for i = 1 as the case for i = 2 is similar. Notice
that by the definition of G′1, |V (G′1)| is even. Since |V (G′1)| ≤ (1/2 + 6β)n and
δ(G′1) ≥ (n + 1)/2 − 41βn − 3 ≥ |V (G′1)|/2 + 4, G′1 has a perfect matching M
containing e1 = x1y1, f1 = z1w1, a

′
1b
′
1, c
′
1d
′
1. We identify a′1 and c′1 into a vertex called

s′ and identify b′1 and d′1 into a vertex called t′. Denote G′′1 as the resulting graph.
Note that s′t′ ∈ E(G′′1) by the way of identifications. Partition V (G′′1) arbitrarily
into U1 and U2 with |U1| = |U2| such that x1, z1, s

′ ∈ U1, y1, w1, t
′ ∈ U2, and let

M ′ := (M − {a′1b′1, c′1d′1}) ∪ {s′t′}. Since U1 and U2 are defined after giving the
matching M , we know that M ′ ⊆ EG′′1 (U1, U2).

Define an auxiliary graph H ′ with vertex set M ′ and edge set defined as follows.
If xy, uv ∈ M ′ − {s′t′} with x, u ∈ U1, then xy ∼H′ uv if and only if x ∼G′1 v and
y ∼G′1 u (we do not include the case that x ∼G′1 u and y ∼G′1 v as we defined a
bipartition here). Additionally, for any pq ∈M ′ − {s′t′} with p ∈ U1,

pq ∼H′ s′t′ if and only if p ∼G′1 b
′
1, d
′
1 and q ∼G′1 a

′
1, c
′
1.

Notice that a ladder with rungs in M ′ is corresponding to a path in H ′ and vice
versa. We next show that δ(H ′) ≥ |V (H ′)|/2 + 1. This will imply that H ′ has a
hamiltonian path starting with e1, ending with f1, and having s′t′ as an internal
vertex. The path with s′t′ replaced by a′1b

′
1 and c′1d

′
1 is corresponding to the required

ladders in G′1.
Let u ∈ U1 and v ∈ U2. Note that

deg(u, U2) ≥ δ(G′1)− |U1| ≥ (1/2− 44β)n− 3,

deg(v, U1) ≥ δ(G′1)− |U2| ≥ (1/2− 44β)n− 3,

deg(a′1, c
′
1, U2) ≥ 2deg(u, U2)− |U1| ≥ (1/2− 92β)n,

deg(b′1, d
′
1, U1) ≥ 2deg(v, U1)− |U2| ≥ (1/2− 92β)n.

Let uv ∈M ′ with u ∈ U1. If u 6= s′, then

deg(uv, V (H ′)) = |{u′v′ ∈M ′ |u′ ∈ U1, u ∼ v′ and v ∼ u′}|
≥ |U1| − ΓG′′1

(u, U2)− ΓG′′1
(v, U1)

≥ 2((1/2− 44β)n− 3)− |U2|
≥ (1/4− 92β)n.

If u = s′, then

deg(s′t′, V (H ′)) = |{u′v′ ∈M ′ |u′ ∈ U1, v
′ ∼ a′1, c′1 and u′ ∼ b′1, d′1}|

≥ |U1| − |U2 − Γ(a′1, c
′
1, U2)| − |U1 − Γ(b′1, d

′
1, U1)|

≥ 2((1/2− 92β)n)− |U2|
≥ (1/4− 187β)n.

Since β < 1/2200 and n is very large,

δ(H ′) ≥ (1/4− 187β)n ≥ |V (H ′)|/2 + 1,

as desired.
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DIRAC’S CONDITION FOR SPANNING HALIN SUBGRAPHS 9

can be denoted as −−→x2y2 −Q21L2Q22 −−−→z2w2. To make r2 a Halin constructible vertex, we let J2 =293

Q21L2Q22∪{g2x2, g2y2, p2g2, p2y2, q2z2, q2w2} if r2 is on the shortest (y2, w2)-path in Q21L2Q22, and294

let J2 = Q21L2Q22 ∪ {g2x2, g2y2, p2g2, p2x2, q2z2, q2w2} if r2 is on the shortest (x2, z2)-path (recall295

that g2, x2, y2 ∈ ΓG2(p2)). LetH = J1∪J2∪{p1p2, r1r2, q1q2}. ThenH is a spanning Halin subgraph296

of G by Proposition 1 as J1 + p1q1 ∼= H1 and J2 + p2q2 ∼= H2. Figure 3 gives a construction of H297

for the above case when r2 is on the shortest (y2, w2)-path in Q21L2Q22.

x1

x2

y1
y2

a2

a′2
b2 c2

d2

a1

b1 c1

d1

L2

L1

b′2 c′2

d′2

a′1

b′1 c′1

d′1

z1

z2

w1

w2

g2

p1

p2

q1

q2
r1

r2

Q11 Q12

Q21
Q22

Figure 3. A Halin graph H

298

3.2. Proof of Theorem 3.2. Recall Extremal Case 2: There exists a partition V1 ∪ V2 of V
such that |V1| ≥ (1/2 − 7β)n and ∆(G[V1]) ≤ βn. Since δ(G) ≥ (n + 1)/2, the assumptions imply
that

(1/2 − 7β)n ≤ |V1| ≤ (1/2 + β)n and (1/2− β)n ≤ |V2| ≤ (1/2 + 7β)n.

Let β and α be real numbers satisfying β ≤ α/20 and α ≤ (1/17)3. Set α1 = α1/3 and α2 = α2/3.299

We first repartition V (G) as follows.300

V ′
2 = {v ∈ V2 | deg(v, V1) ≥ (1− α1)|V1|}, V01 = {v ∈ V2 − V ′

2 | deg(v, V ′
2 ) ≥ (1− α1)|V ′

2 |},301

V ′
1 = V1 ∪ V01, and V0 = V2 − V ′

2 − V01.302

303

Claim 3.2.1. |V01 ∪ V0| = |V2 − V ′
2 | ≤ α2|V2|.304

Proof. Notice that e(V1, V2) ≥ (1/2 − β)n|V1| ≥ 1/2−β
1/2+7β |V1||V2| ≥ (1 − α)|V1||V2| as β ≤ α/20.305

Hence,306

(1− α)|V1||V2| ≤e(V1, V2)≤ e(V1, V
′
2) + e(V1, V2 − V ′

2) ≤ |V1||V ′
2 |+ (1− α1)|V1||V2 − V ′

2 |.307

This gives that |V01 ∪ V0| = |V2 − V ′
2 | ≤ α2|V2|.308

As a result of moving vertices from V2 to V1 and by Claim 3.2.1, we have the following.309

(1/2 − 7β)n ≤ |V ′
1 | ≤ (1/2 + β)n+ |V01| ≤ (1/2 + β)n+ α2(1/2 + 7β)n ≤ (1/2 + α2)n,310

(1/2 − α2)n ≤ |V ′
2 | ≤ (1/2 + 7β)n,311

δ(V ′
1 , V

′
2) ≥ min{(1/2 − β)n− |V2 − V ′

2 |, (1− α1)|V ′
2 |} ≥ (1/2 − 2α1/3)n,312

δ(V ′
2 , V

′
1) ≥ (1− α1)|V1| ≥ (1− α1)(1/2 − 7β)n ≥ (1/2 − 2α1/3)n,(3.1)313

δ(V0, V
′
1) ≥ (n+ 1)/2 − (1− α1)|V ′

2 | − |V0| ≥ α1n/3 ≥ 3|V0|+ 10,314

δ(V0, V
′
2) ≥ (n+ 1)/2 − (1− α1)|V1| − |V0 ∪ V01| ≥ α1n/3 ≥ 3|V0|+ 10.315

Fig. 3. A Halin graph H.

We may assume n1 is even and n2 is odd and construct a spanning Halin subgraph
of G (the construction for the other three cases follow a similar argument). Recall that
p1p2, q1q2, r1r2 are the three prescribed independent edges between G[V1 ∪W1] and
G[V2 ∪ W2], where p1, q1, r1 ∈ V1 ∪ W1 and p2, q2, g2, r2 ∈ V2 ∪ W2. As shown in
Figure 3, for i = 1, 2, by inserting Li in between Qi1 and Qi2 to get a larger ladder,
and joining pi, gi, and qi to the end rungs of the new ladder, we will obtain a graph Ji,
where Ji + piqi ∼= Hi and the vertices pi and qi serve as the left end and the right end
of Ji + piqi. The three edges p1p2, q1q2, and r1r2 will be used as “connecting edges”
to get (J1 + p1q1) ⊕ (J2 + p2q2), which is the connection of J1 + p1q1 and J2 + p2q2
as defined in (2.1).

For a uniform discussion, we may assume that both of the ladders L1 and L2

exist. Let i = 1, 2. Recall that Li has aibi as its first rung and cidi as its last
rung. Choose a′i ∈ ΓG(ai, V (G′i)), b

′
i ∈ ΓG(bi, V (G′i)) such that a′ib

′
i ∈ E(G) and

c′i ∈ ΓG(ci, V (G′i)), d
′
i ∈ ΓG(di, V (G′i)) such that c′id

′
i ∈ E(G) (a′i, b

′
i, c
′
i, d
′
i are

chosen mutually distinct and distinct from xi, yi, zi, wi, gi, ri). This is possible as
δ(Vi, V (G′i)) ≥ (n+ 1)/2− 41βn− 2. Let Qi1 and Qi2 be the ladders of G′i given by
Claim 3.1.1. Set J1 = Q11L1Q12∪{p1x1, p1y1, q1z1, q1w1}. Assume Q21L2Q22 is a lad-
der can be denoted as −−→x2y2−Q21L2Q22−−−→z2w2. To make r2 a Halin constructible ver-
tex, we let J2 = Q21L2Q22 ∪{g2x2, g2y2, p2g2, p2y2, q2z2, q2w2} if r2 is on the shortest
(y2, w2)-path in Q21L2Q22 and let J2 = Q21L2Q22∪{g2x2, g2y2, p2g2, p2x2, q2z2, q2w2}
if r2 is on the shortest (x2, z2)-path (recall that g2, x2, y2 ∈ ΓG2

(p2)). Let H =
J1 ∪ J2 ∪ {p1p2, r1r2, q1q2}. Then H is a spanning Halin subgraph of G by Proposi-
tion 1 as J1 + p1q1 ∼= H1 and J2 + p2q2 ∼= H2. Figure 3 gives a construction of H for
the above case when r2 is on the shortest (y2, w2)-path in Q21L2Q22.D
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3.2. Proof of Theorem 3.2. Recall Extremal Case 2: There exists a partition
V1∪V2 of V such that |V1| ≥ (1/2−7β)n and ∆(G[V1]) ≤ βn. Since δ(G) ≥ (n+1)/2,
the assumptions imply that

(1/2− 7β)n ≤ |V1| ≤ (1/2 + β)n and (1/2− β)n ≤ |V2| ≤ (1/2 + 7β)n.

Let β and α be real numbers satisfying β ≤ α/20 and α ≤ (1/17)3. Set α1 = α1/3

and α2 = α2/3. We first repartition V (G) as follows:

V ′2 = {v ∈ V2 | deg(v, V1) ≥ (1−α1)|V1|}, V01={v ∈ V2−V ′2 | deg(v, V ′2) ≥ (1− α1)|V ′2 |},
V ′1 = V1 ∪ V01, and V0 = V2 − V ′2 − V01.

Claim 3.2.1. |V01 ∪ V0| = |V2 − V ′2 | ≤ α2|V2|.
Proof. Notice that e(V1, V2) ≥ (1/2 − β)n|V1| ≥ 1/2−β

1/2+7β |V1||V2| ≥ (1 − α)|V1||V2|
as β ≤ α/20. Hence,

(1−α)|V1||V2| ≤ e(V1, V2) ≤ e(V1, V ′2)+e(V1, V2 − V ′2) ≤ |V1||V ′2 |+(1−α1)|V1||V2−V ′2 |.

This gives that |V01 ∪ V0| = |V2 − V ′2 | ≤ α2|V2|.
As a result of moving vertices from V2 to V1 and by Claim 3.2.1, we have the

following:

(1/2− 7β)n ≤ |V ′1 | ≤ (1/2 + β)n+ |V01| ≤ (1/2 + β)n+ α2(1/2+7β)n ≤ (1/2+α2)n,

(1/2− α2)n ≤ |V ′2 | ≤ (1/2 + 7β)n,

δ(V ′1 , V
′
2) ≥ min{(1/2− β)n− |V2 − V ′2 |, (1− α1)|V ′2 |} ≥ (1/2− 2α1/3)n,

δ(V ′2 , V
′
1) ≥ (1− α1)|V1| ≥ (1− α1)(1/2− 7β)n ≥ (1/2− 2α1/3)n,(3.1)

δ(V0, V
′
1) ≥ (n+ 1)/2− (1− α1)|V ′2 | − |V0| ≥ α1n/3 ≥ 3|V0|+ 10,

δ(V0, V
′
2) ≥ (n+ 1)/2− (1− α1)|V1| − |V0 ∪ V01| ≥ α1n/3 ≥ 3|V0|+ 10.

Claim 3.2.2. We may assume that ∆(G) < n− 1.

Proof. Suppose to the contrary and let w ∈ V (G) such that deg(w) = n−1. Then
by δ(G) ≥ (n+ 1)/2 we have δ(G−w) ≥ (n−1)/2, and thus G−w has a hamiltonian
cycle. This implies that G has a spanning wheel subgraph, in particular, a spanning
Halin subgraph of G.

Claim 3.2.3. Let t,m be positive integers with m sufficiently large and H be a
graph with δ(H) ≥ max{t + 1, 3}, and let V 0

1 = {v ∈ V (H) | degH(v) ≥ α1m}. If
|V (H)−V 0

1 |−4(t+1) ≥ m−6α2m, then H−V 0
1 contains at least t+2 vertex-disjoint

3-stars.

Proof. Assume H − V 0
1 contains a subgraph M of at most s < t + 2 disjoint

3-stars. Then |V (M)| ≤ 4(t+ 1). Note that if t = 1, then δ(H) ≥ 3. By counting the
number of edges between V (M) and V (H)− V 0

1 − V (M) in two ways, we get that

max{1, t− 1}|V (H)− V 0
1 | − 4(t+ 1) ≤ eH−V 0

1
(V (M), V (H)− V 0

1 − V (M))(3.2)

≤ 4s∆(H − V 0
1 ) ≤ 4sα1m.

Since |V (H) − V 0
1 | − 4(t + 1) ≥ m − 6α2m and α ≤ (1/8)3 by the assumption,

inequality (3.2) gives that s ≥ 4 max{1, t− 1} ≥ t+ 2, showing a contradiction.

D
ow

nl
oa

de
d 

05
/2

8/
20

 to
 1

31
.9

6.
25

3.
12

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2008 GUANTAO CHEN AND SONGLING SHAN

Claim 3.2.4. There exists a subgraph T ⊆ G with |V (T )| ≡ n (mod 2) such that
T and G− V (T ) satisfy the following conditions.

(i) T is isomorphic to some graph in {T1, T2, . . . , T5}.
(ii) Let 2m = n− |V (T )|. Then G− V (T ) contains a balanced spanning bipartite

graph G′ with partite sets U1 and U2 such that |U1| = |U2| = m.
(iii) There exists a subset W of U1 ∪ U2 with at most α2n vertices such that

degG′(x, V (G′)−W ) ≥ (1− α1 − 2α2)m for all x 6∈W .
(iv) Assume that T has head link x1x2 and tail link y1y2. There exist x′1x

′
2, y
′
1y
′
2 ∈

E(G′) such that x′i, y
′
i ∈ Ui − W , x′3−i ∼ xi, and y′3−i ∼ yi, for i = 1, 2,

and if T has a connecting vertex, then the connecting vertex is contained in
V ′1 ∪ V ′2 −W .

(v) There are |W | vertex-disjoint 3-stars in G′ −{x′1, x′2, y′1, y′2} with the vertices
in W as their centers.

Proof. By (3.1) and Lemma 3.3, for i = 1, 2, we notice that for any u, v, w ∈ V ′i ,

deg(u, v, w, V ′3−i) ≥ 3δ(V ′i , V
′
3−i)− 2|V ′3−i| ≥ (1/2− 3α1)n > n/4.(3.3)

We now separate the proof into two cases according to the parity of n.
Case 1. n is even. Suppose first that max{|V ′1 |, |V ′2 |} ≤ n/2. We arbitrarily

partition V0 into V10 and V20 such that |V ′1 ∪ V10| = |V ′2 ∪ V20| = n/2. Since δ(G) ≥
(n+ 1)/2,

δ(G[V ′1 ∪ V10]), δ(G[V ′2 ∪ V20]) ≥ 1.

Let x1u1 ∈ E(G[V ′1 ∪ V10]) and y2u2 ∈ E(G[V ′2 ∪ V20]) such that x1 ∈ V ′1 and u2 ∈
Γ(u1, V

′
2). If there exists u1 ∈ V ′1 , then it is clear by (3.1) that deg(x1, u1, V

′
2) ≥

2|V0|+ 10. Thus, we assume that V ′1 is an independent set in G. Then we have

deg(x1, V
′
2) ≥ (n+ 1)/2− |V0| > |V ′2 ∪ V20| − |V0|.

Since
deg(u1, V

′
2) ≥ 3|V0|+ 10

by (3.1), we again have that deg(x1, u1, V
′
2) ≥ 2|V0| + 10. Hence, there exists x2 ∈

Γ(x1, u1, V
′
2) − {y2, u2}. Similarly, there exists y1 ∈ Γ(y2, u2, V

′
1) − {x1, u1}. Then

G[{x1, u1, x2, y1, u2, y2}] contains a subgraph T isomorphic to T1. Let

m = (n− 6)/2, U1 = (V ′1 ∪ V10)− V (T ), and U2 = (V ′2 ∪ V20)− V (T ).(3.4)

We then have |U1| = |U2| = m.
Let G′ = (V (G)− V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1

and U2. Notice that |W | ≤ |V0| ≤ α2|V2| < α2n. By (3.1), we have degG′(x, V (G′)−
W ) ≥ (1 − α1 − 2α2)m for all x /∈ W . This shows (iii). By the construction of T
above, we have x1, y1 ∈ V ′1 −W . For i = 1, 2, by (3.1) and the definition of Ui and
W , we have

δ(V0, Ui −W ) = δ(V0, V
′
i − V (T )) ≥ 3|V0|+ 6.(3.5)

So |ΓG′(y2, U1 −W )|, |ΓG′(x2, U1 −W )| ≥ 3|V0| + 6. Applying statement (iii) and
Lemma 3.3, we have eG′(ΓG′(x2, U1 − W ),ΓG′(x1, U2 − W )), eG′(ΓG′(y2, U1 − W ),
ΓG′(y1, U2−W )) ≥ (3|V0|+6)(1−2α1−4α2)m > 2m. Hence, we can find independent
edges x′1x

′
2 and y′1y

′
2 such that x′i, y

′
i ∈ Ui −W , x′3−i ∼ xi, and y′3−i ∼ yi. This gives

statement (iv). Finally, by (3.5), we have δ(V0, Ui −W −{x′1, x′2, y′1, y′2}) ≥ 3|V0|+ 2.
Hence, there are vertex-disjoint 3-stars with their centers in W .
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Otherwise we have max{|V ′1 |, |V ′2 |} > n/2. By (3.1), we have the same lower
bound for δ(V ′1 , V

′
2), δ(V ′2 , V

′
1), and δ(V0, V

′
1), δ(V0, V

′
2). Furthermore, all the argu-

ments in the following will depend only on the degree conditions, so we assume, with-
out loss of generality (w.l.o.g.), that |V ′1 | ≥ n/2+1. Then δ(G[V ′1 ]) ≥ 2 and thus G[V ′1 ]
contains two vertex-disjoint paths of order 3 and 2, respectively. Let m = (n− 8)/2.
Let V 0

1 be the set of vertices u ∈ V ′1 such that deg(u, V ′1) ≥ α1m. We consider three
cases here.

Case (a): |V ′1 | − 5 ≤ m. Let x1u1w1, y1v1 ⊆ G[V ′1 ] be two vertex-disjoint paths,
and let x2 ∈ Γ(x1, u1, w1, V

′
2), y2 ∈ Γ(y1, v1, V

′
2), and z ∈ Γ(w1, v1, V

′
2) be three dis-

tinct vertices. Then G[{x1, u1, w1, x2, z, y1, v1, y2}] contains a subgraph T isomorphic
to T4. Notice that |V ′2 − V (T )| ≤ m. We arbitrarily partition V0 into V10 and V20
such that |(V ′1 − V (T )) ∪ V10| = |(V ′2 − V (T )) ∪ V20| = m. Let

U1 = (V ′1 ∪ V10)− V (T ), U2 = (V ′2 ∪ V20)− V (T ) and W = V0.(3.6)

Hence we assume |V ′1 | − 5 = m + t1 for some t1 ≥ 1. This implies that |V ′1 | =
n/2 + t1 + 1 and thus δ(G[V ′1 ]) ≥ t1 + 2.

Case (b): |V 0
1 | ≥ t1. We form a set W with t1 vertices from V 0

1 and all the
vertices of V0. Then |V ′1 − W | = m + 5 + t1 − t1 = m + 5 = n/2 + 1, and hence
δ(G[V ′1 −W ]) ≥ 2. Similarly as in Case (a), we can find a subgraph T of G contained
in G[(V ′1 ∪ V ′2)−W ] isomorphic to T4. Let

U1 = V ′1 − V (T )−W, and U2 = (V ′2 ∪W )− V (T ).(3.7)

Case (c): |V 0
1 | < t1. Suppose that |V ′1 −V 0

1 | = m+ 5 + t′1 = n/2 + t′1 + 1 for some
t′1 ≥ 1. This implies that δ(G[V ′1 − V 0

1 ]) ≥ t′1 + 2.
Note that |V ′1 − V 0

1 | = m+ 5 + t′1 = n/2 + t′1 + 1 and |V ′1 | ≤ (1/2 + β)n+ α2|V ′2 |.
Thus, t′1 ≤ |V ′1 | −m− 5 ≤ 2α2m, and |V ′1 − V 0

1 | − 4(t′1 + 1)) ≥ m− 3t′1 ≥ m− 6α2m.
By Claim 3.2.3, G[V ′1 − V 0

1 ] contains t′1 + 2 vertex-disjoint 3-stars. Let x1u1w1 and
y1v1 be two paths taken from two 3-stars in M . Then we can find a subgraph T of G
isomorphic to T4 in the same way as in Case (a). We take exactly t′1 3-stars from the
remaining ones in M and denote the centers of these stars by W ′. Let

U1 = V ′1 − V 0
1 − V (T )−W ′,W = W ′ ∪ V 0

1 ∪ V0, and U2 = (V ′2 ∪W )− V (T ).(3.8)

For the partition of U1 and U2 defined in each of (3.6), (3.7), and (3.8), we let
G′ = (V (G)− V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and U2.
Notice that

|W | ≤ |V0| ≤ α2n if Case (a) occurs,

|W | ≤ |V0|+|V ′1 |−m−5≤(1/2+β)n+|V0 ∪ V01| − n/2−1 ≤ α2n if Case (b) occurs,

|W | = |W ′ ∪ V 0
1 ∪ V0| = |V ′1 − U1 − V (T )|+ |V0 ∪ V01|

≤ (1/2 + β)n− (1/2− 4)n+ |V0 ∪ V01| ≤ α2n if Case (c) occurs.

(Recall that |V ′1 | ≤ (1/2 + β)n + |V01| and |V0 ∪ V01| ≤ α2|V2| from (3.1).) Since
δ(V ′2 , V

′
1) ≥ (1− 2α1/3)n from (3.1) and |V ′1 − U1| ≤ 2α2m, we have δ(U2 −W,U1 −

W ) ≥ (1− α1 − 2α2)m. On the other hand, from (3.1), δ(V ′1 , V
′
2) ≥ (1/2− 2α1/3)n.

This gives that δ(U1−W,U2−W ) ≥ (1−α1−2α2)m. Hence, we have degG′(x, V (G′)−
W ) ≥ (1 − α1 − 2α2)m for all x /∈ W . According to the construction of T , we have
x1, y1 ∈ V ′1−W . Applying statement (iii), by Lemma 3.3, for any u ∈ ΓG′(x2, U1−W ),
deg(u, x1, U2−W ) ≥ 2(1−α1−2α2)m−m = (1−2α1−4α2)m. Thus, eG′(ΓG′(x1, U2−
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W ),ΓG′(x2, U1−W )), eG′(ΓG′(y1, U2−W ),ΓG′(y2, U1−W )) ≥ (3|V0|+ 6)(1− 2α1−
4α2)m > 2m. Hence, we can find independent edges x′1x

′
2 and y′1y

′
2 such that x′i, y

′
i ∈

Ui −W , x′3−i ∼ xi, and y′3−i ∼ yi. By the construction of T , T is isomorphic to T4,
and the connecting vertex z ∈ V ′2 ⊆ V ′1 ∪ V ′2 −W . This gives statement (iv). Finally,
as

δ(V0, U1 −W ) ≥ δ(V0, V ′1)− |V ′1 − (U1 −W )| ≥ α1n/3− (1/2 + α2)n+n/2− 4− α2n

≥ (1/3α1 − 2α2)n− 4 ≥ 3|W |+ 5,

we have δ(V0, U1−W −{x′1, x′2, y′1, y′2}) ≥ 3|W |+ 1. By the definition of V 0
1 , we have

δ(V 0
1 , V

′
1 −W − {x′1, x′2, y′1, y′2}) ≥ α1m− α2n− 4 ≥ 3|W |. For the vertices in W ′ in

Case (c), we already know that there are vertex-disjoint 3-stars in G′ with centers in
W ′. Hence, regardless of the construction of W , we can always find vertex-disjoint
3-stars with their centers in W .

Case 2. n is odd. Suppose first that max{|V ′1 |, |V ′2 |} ≤ (n+1)/2 and let m = (n−
7)/2. We arbitrarily partition V0 into V10 and V20 such that, w.l.o.g., say |V ′1 ∪V10| =
(n+ 1)/2 and |V ′2 ∪ V20| = (n− 1)/2. (Again, here we use the symmetry of the lower
bounds on δ(V ′1 , V

′
2), δ(V ′2 , V

′
1), and δ(V0, V

′
1), δ(V0, V

′
2) from (3.1).) We show that

G[V ′1 ∪ V10] either contains two independent edges or is isomorphic to K1,(n−1)/2. As
δ(G) ≥ (n+1)/2, we have δ(G[V ′1∪V10]) ≥ 1. Since n is sufficiently large, (n+1)/2 > 3.
Then it is easy to see that if G[V ′1 ∪ V10] 6∼= K1,(n−1)/2, then G[V ′1 ∪ V10] contains two
independent edges. Furthermore, we can choose two independent edges x1u1 and
y1v1 such that u1, v1 ∈ V ′1 . This is obvious if |V10| ≤ 1. So we assume |V10| ≥ 2.
As δ(V0, V

′
1) ≥ 3|V0| + 10, by choosing x1, y1 ∈ V10, we can choose distinct vertices

u1 ∈ Γ(x1, V
′
1) and v1 ∈ Γ(y1, V

′
1). Let x2 ∈ Γ(x1, u1, V

′
2), y2 ∈ Γ(y1, v1, V

′
2), and

z ∈ Γ(u1, v1, V
′
2). Then G[{x1, u1, x2, y1, v1, y2, z}] contains a subgraph T isomorphic

to T3. We assume now that G[V ′1 ∪ V10] is isomorphic to K1,(n−1)/2. Let u1 be
the center of the star K1,(n−1)/2. Then each leaf of the star has at least (n − 1)/2
neighbors in V ′2 ∪ V20. Since |V ′2 ∪ V20| = (n− 1)/2, we have Γ(v, V ′2 ∪ V20) = V ′2 ∪ V20
if v ∈ V ′1 ∪ V10 − {u1}. By the definition of V0, ∆(V0, V

′
1) < (1 − α1)|V1| + |V01| and

∆(V0, V
′
2) < (1 − α1)|V ′2 |, and so u1 ∈ V ′1 , V10 = ∅, and V20 = ∅. We claim that

V ′2 is not an independent set. Otherwise, by δ(G) ≥ (n + 1)/2, for each v ∈ V ′2 ,
Γ(v, V ′1) = V ′1 . This in turn shows that u1 has degree n− 1, showing a contradiction
to Claim 3.2.2. So let y2v2 ∈ E(G[V ′2 ]) be an edge. Let w1 ∈ Γ(v2, V

′
1) − {u1} and

w1u1x1 be a path containing w1. Choose y1 ∈ Γ(y2, v2, V
′
1) − {w1, u1, x1} and x2 ∈

Γ(x1, u1, w1, V
′
2)− {y2, v2}. Then G[{x1, u1, x2, w1, v2, y2, y1}] contains a subgraph T

isomorphic to T2. Let U1 = (V ′1 ∪ V10) − V (T ) and U2 = (V ′2 ∪ V20) − V (T ) and
W = V0 − V (T ). We have |U1| = |U2| = m and |W | ≤ |V0| ≤ α2n.

Otherwise we have max{|V ′1 |, |V ′2 |} ≥ (n + 1)/2 + 1. By the symmetry of lower
bounds on degrees related to V ′1 and V ′2 from (3.1), we assume, w.l.o.g., that |V ′1 | ≥
(n + 1)/2 + 1. Then δ(G[V ′1 ]) ≥ 2 and thus G[V ′1 ] contains two independent edges.
Let m = (n− 7)/2 and V 0

1 be the set of vertices u ∈ V ′1 such that deg(u, V ′1) ≥ α1m.
Since |V ′1 | ≥ (n+ 1)/2 + 1 > m+ 4, we assume |V ′1 | = m+ 4 + t1 for some t1 ≥ 1. We
consider three cases here.

Case (a): Assume first that |V 0
1 | ≥ t1. We form a set W with t1 vertices from

V 0
1 and all the vertices of V0. Then |V ′1 − W | = m + 4 + t1 − (|V ′1 | − 4 − m) =
m + 4 = (n + 1)/2, and we have δ(G[V ′1 −W ]) ≥ 1. As any vertex u ∈ V ′1 −W is
a vertex such that deg(u, V ′1) < α1m, we know G[V ′1 −W ] contains two independent
edges. Let x1u1, y1v1 ⊆ E(G[V ′1 − W ]) be two independent edges, and let x2 ∈
Γ(x1, u1, V

′
2), y2 ∈ Γ(y1, v1, V

′
2), and z ∈ Γ(u1, v1, V

′
2) be three distinct vertices. Then
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G[{x1, u1, x2, z, y1, v1, y2}] contains a subgraph T isomorphic to T3. Let U1 = V ′1 −
V (T )−W , U2 = (V ′2∪W )−V (T ). Then |U1| = |U2| = m and |W | ≤ |V0|+ |V ′1−U1| ≤
|V2 − V ′2 |+ βn+ 4 ≤ α2n.

Thus we assume that |V 0
1 | < t1. Suppose that |V ′1−V 0

1 | = m+4+t′1 = (n+1)/2+t′1
for some t′1 ≥ 1. This implies that δ(G[V ′1 − V 0

1 ]) ≥ t′1 + 1.
Case (b): t′1 ≥ 2. Note that |V ′1 − V 0

1 | = m + 4 + t′1 = (n + 1)/2 + t′1 and
|V ′1 | ≤ (1/2+β)n+α2|V ′2 |. Thus, t′1 ≤ |V ′1 |−m−4 ≤ 2α2m, and |V ′1−V 0

1 |−4(t′1+1) ≥
m−3t′1 ≥ m−6α2m. By Claim 3.2.3, G[V ′1−V 0

1 ] contains a graph M of t′1 +2 vertex-
disjoint 3-stars. Let x1u1 and y1v1 be two paths taken from two 3-stars in M . Then
we can find a subgraph T of G isomorphic to T3 the same way as in Case (a). We take
exactly t′1 3-stars from the remaining ones in M and denote the centers of these stars
by W ′. Let U1 = V ′1−V 0

1 −V (T )−W ′, W = W ′∪V 0
1 ∪V0, and U2 = (V ′2∪W )−V (T ).

Then |U1| = |U2| = m.
Case (c): t′1 = 1. In this case, we let m = (n − 9)/2. If G[V ′1 − V 0

1 ] contains a
vertex adjacent to all other vertices in V ′1−V 0

1 , then the vertex would be contained in
V 0
1 by the definition of V 0

1 . Hence, we assume that G[V ′1 −V 0
1 ] has no vertex adjacent

to all other vertices in V ′1 − V 0
1 . Then by the assumptions that δ(G) ≥ (n + 1)/2

and |V ′1 − V 0
1 | = (n + 1)/2 + 1, we can find two vertex-disjoint paths of order 3

in G[V ′1 − V 0
1 ]. Let x1u1w1 and y1v1z1 be two paths in G[V ′1 − V 0

1 ]. There exist
distinct vertices x2 ∈ Γ(x1, u1, w1, V

′
2), y2 ∈ Γ(y1, v1, z1, V

′
2), and z ∈ Γ(w1, z1, V

′
2).

Then G[{x1, u1, w1, x2, y1, v1, z1, y2, z}] contains a subgraph T isomorphic to T5. Let
U1 = V ′1−V 0

1 −V (T ), W = V 0
1 ∪V0, and U2 = (V ′2∪W )−V (T ). Then |U1| = |U2| = m.

For the partition of U1 and U2 in all the cases discussed in Case 2, we let
G′ = (V (G) − V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and
U2. Similarly as in Case 1, we can show that all the statements (i)–(v) hold.

Let W1 = U1 ∩ W and W2 = U2 ∩ W . By (v) of Claim 3.2.4, we know that
there are |W1| vertex-disjoint 3-stars with centers in W1 and all other vertices in
U2 −W2 − {x′1, y′1, x′2, y′2}, and |W2| vertex-disjoint 3-stars with centers in W2 and
all other vertices in U1 − W1 − {x′1, y′1, x′2, y′2}, and all these |W1| + |W2| stars are
vertex-disjoint. Let S be the union of the 3-stars with centers in W2. By (iii) of
Claim 3.2.4,

Γ(u, v, U1 −W1 − V (S)− {x′1, x′2, y′1, y′2}) ≥ 3|W1| for any u, v ∈ U2 −W2,

Γ(u, v, w, U2 − V (S)− {x′1, x′2, y′1, y′2}) ≥ 4|W1| for any u, v, w ∈ U1−W1−V (S).

By Lemma 3.2, we can find a ladder L1 disjoint from the 3-stars in S with centers in
W2 such that L1 is spanning W1, 4|W1| − 1 vertices from U2 −W2 − {x′1, x′2, y′1, y′2},
and another 3|W1| − 1 vertices from U1 −W1 − {x′1, x′2, y′1, y′2}, if W1 6= ∅.

Again, by (iii) of Claim 3.2.4,

Γ(u, v, U2 −W2 − V (L1)− {x′1, x′2, y′1, y′2}) ≥ 3|W2| for any u, v ∈ U1 −W1,

Γ(u, v, w, U1 −W1 − V (L1)− {x′1, x′2, y′1, y′2}) ≥ 4|W2| for any u, v, w ∈ U2 −W2.

By Lemma 3.2, we can find a ladder L2 disjoint from L1 such that L2 is spanning W2,
4|W2| − 1 vertices from U1 − V (L1)− {x′1, x′2, y′1, y′2}, and another 3|W2| − 1 vertices
from U2 −W2 − V (L1)− {x′1, x′2, y′1, y′2}, if W2 6= ∅.

Denote a1ia2i and b1ib2i the first and last rungs of Li (if Li exists), respectively,
where a1i, b1i ∈ U1. As |U1| = |U2|, and we took 4|W1|+4|W2|−2 vertices, respectively,
from U1 and U2 when constructing L1 and L2, we have |U1 − V (L1 ∪ L2)| = |U2 −
V (L1 ∪ L2)|. Let

U ′i = Ui − V (L1 ∪ L2), m′ = |U ′1| = |U ′2|, and G′′ = G′′(U ′1 ∪ U ′2, EG(U ′1, U
′
2)).
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Since |W | ≤ α2n, m ≥ (n − 9)/2, and n is sufficiently large, we have 1/n + 7|W | ≤
15α2m. As δ(G′ −W ) ≥ (1− α1 − 2α2)m and α ≤ (1/17)3, we obtain the following:

δ(G′′) ≥ 7m′/8 + 1.

Let a′2i ∈ Γ(a1i, U
′
2), a′1i ∈ Γ(a2i, U

′
1) such that a′1ia

′
2i ∈ E(G) and b′2i ∈ Γ(b1i, U

′
2),

b′1i ∈ Γ(b2i, U
′
1) such that b′1ib

′
2i ∈ E(G). We have the claim below.

Claim 3.2.5. The balanced bipartite graph G′′ contains three vertex-disjoint lad-
ders Q1, Q2, and Q3 spanning V (G′′) such that the first rung of Q1 is x′1x

′
2 and the

last rung of Q1 is a′11a
′
21, the first rung of Q2 is b′11b

′
21 and the last rung of Q2 is

a′12a
′
22, and the first rung of Q3 is b′12b

′
22 and the last rung of Q3 is y′1y

′
2.

Proof. Since δ(G′′) ≥ 7m′/8+1 > m′/2+6, G′′ has a perfect matching M contain-
ing the following edges: x′1x

′
2, a
′
11a
′
21, b

′
11b
′
21, a

′
12a
′
22, b

′
12b
′
22, y

′
1y
′
2. We identify a′11 and

b′11, a′21 and b′21, a′12 and b′12, and a′22 and b′22 as vertices called c′11, c′21, c′12, and c′22,
respectively. Denote G∗ = G∗(U∗1 , U

∗
2 ) as the resulting graph and let c′11c

′
21, c

′
12c
′
22 ∈

E(G∗). Denote M ′ := M−{a′11a′21, b′11b′21, a′12a′22, b′12b′22}∪{c′11c′21, c′12c′22}. Define an
auxiliary graph H ′ on M ′ as follows. If xy, uv ∈M ′−{c′11c′21, c′12c′22} with x, u ∈ U ′1,
then xy ∼H′ uv if and only if x ∼G′ v and y ∼G′ u. For any pq ∈M ′−{c′11c′21, c′12c′22}
with p ∈ U ′2, pq ∼H′ c′11c′21 (resp., pq ∼H′ c′12c′22) if and only if p ∼G′ a′11, b′11 and
q ∼G′ a′21, b′21 (resp., p ∼G′ a′12, b′12 and q ∼G′ a′22, b′22). Notice that there is a natural
one-to-one correspondence between ladders with rungs in M ′ and paths in H ′. Since
δG∗(U

∗
1 , U

∗
2 ), δG∗(U

∗
2 , U

∗
1 ) ≥ 3m′/4 + 1, we get δ(H ′) ≥ m′/2 + 1. Hence H ′ has a

hamiltonian path starting with x′1x
′
2, ending with y′1y

′
2, and having c′11c

′
21 and c′12c

′
22

as two internal vertices. The path with the vertex c′11c
′
21 replaced by a′11a

′
21 and

b′11b
′
21 and with the vertex c′12c

′
22 replaced by a′12a

′
22 and b′12b

′
22 is corresponding to

the required ladders in G′′.

If T ∈ {T1, T2}, then

H = x1x2Q1L1Q2L2Q3y1y2 ∪ T

is a spanning Halin subgraph of G. Suppose now that T ∈ {T3, T4, T5} and z is the
connecting vertex. Then z ∈ V ′1 ∪ V ′2 −W by Claim 3.2.4. Suppose, w.l.o.g., that
z ∈ V ′2−W . Then by (iii) of Claim 3.2.4 and δ(V ′2 , V

′
1) ≥ (1/2−2α1/3)n from (3.1), we

have that degG(z, U ′1) ≥ degG(z, V ′1−V (L1∪L2)−V (T )) ≥ (1−α1−10α2)m > m/2+1.
So z has a neighbor on each side of the ladder Q1L1Q2L2Q3, which has m vertices on
each side, and each side has at most m/2 + 1 vertices from each partition of U ′1 and
U ′2. Let H ′ be obtained from x1x2Q1L1Q2L2Q3y1y2 ∪ T by suppressing the degree 2
vertex z. Then H ′ is a Halin graph such that there exists one side of Q1L1Q2L2Q3

with each vertex on it as a degree 3 vertex on a underlying tree of H ′. Let z′ be a
neighbor of z such that z′ has degree 3 in the underlying tree of H ′. Then

H = x1x2Q1L1Q2L2Q3y1y2 ∪ T ∪ {zz′}

is a spanning Halin subgraph of G.

3.3. Proof of Theorem 3.3. In this section, we prove Theorem 3.3. In the first
subsection, we introduce the regularity lemma, the blow-up lemma, and some related
results. Then we show that G contains a subgraph T isomorphic to T1 if n is even
and to T2 if n is odd. By showing that G− V (T ) contains a spanning ladder L with
its first rung adjacent to the head link of T and its last rung adjacent to the tail link
of T , we get a spanning Halin subgraph H of G formed by L ∪ T .
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3.3.1. The regularity lemma and the blow-up lemma. For any two disjoint
nonempty vertex sets A and B of a graph G, the density of A and B is the ratio

d(A,B) := e(A,B)
|A|·|B| . Let ε and δ be two positive real numbers. The pair (A,B) is

called ε-regular if for every X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|,
|d(X,Y )− d(A,B)| < ε holds. In addition, if δ(A,B) > δ|B| and δ(B,A) > δ|A|, we
say (A,B) is an (ε, δ)-super regular pair.

Lemma 3.4 (regularity lemma-degree form [26]). For every ε > 0 there is an
M = M(ε) such that if G is any graph with n vertices and d ∈ [0, 1] is any real number,
then there is a partition of the vertex set V (G) into l + 1 clusters V0, V1, . . . , Vl, and
there is a spanning subgraph G′ ⊆ G with the following properties:

• l ≤M ;
• |V0| ≤ εn, all clusters |Vi| = |Vj | ≤ dεne for all 1 ≤ i 6= j ≤ l;
• degG′(v) > degG(v)− (d+ ε)n for all v ∈ V (G);
• e(G′[Vi]) = 0 for all i ≥ 1;
• in G′, all pairs (Vi, Vj) (1 ≤ i 6= j ≤ l) are ε-regular, each with a density

either 0 or greater than d.

Lemma 3.5 (blow-up lemma [19]). For every δ,∆, c > 0, there exists an ε =
ε(δ,∆, c) and γ = γ(δ,∆, c) > 0 such that the following holds. Let (X,Y ) be an (ε, δ)-
superregular pair with |X| = |Y | = N . If a bipartite graph H with ∆(H) ≤ ∆ can be
embedded in KN,N by a function φ, then H can be embedded in (X,Y ). Moreover, in
each φ−1(X) and φ−1(Y ) (the inverse image of X and Y , respectively), fix at most
γN special vertices z, each of which is equipped with a subset Sz of X or Y of size at
least cN . The embedding of H into (X,Y ) exists even if we restrict the image of z to
be Sz for all special vertices z.

Besides the above two lemmas, we also need the two lemmas below regarding
regular pairs.

Lemma 3.6. If (A,B) is an ε-regular pair with density d, then for any A′ ⊆ A with
|A′| ≥ ε|A|, there are at most ε|B| vertices b ∈ B such that deg(b, A′) < (d− ε)|A′|.

Lemma 3.7 (slicing lemma). Let (A,B) be an ε-regular pair with density d, and
for some ν > ε, let A′ ⊆ A and B′ ⊆ B with |A′| ≥ ν|A|, |B′| ≥ ν|B|. Then (A′, B′)
is an ε′-regular pair of density d′, where ε′ = max{ε/ν, 2ε} and d′ > d− ε.

3.3.2. Finding subgraph T .

Claim 3.3.1. Let n be a sufficient large integer and G an n-vertex graph with
δ(G) ≥ (n + 1)/2. Suppose that G is not in Extremal Case 2. Then if n is even, G
contains a subgraph T isomorphic to T1, and if n is odd, G contains a subgraph T
isomorphic to T2.

Proof. Suppose first that n is even. Let xy ∈ E(G) be an edge. We show that
G[N(x)− {y}] contains an edge x1x2 and G[N(y)− {x}] contains an edge y1y2 such
that the two edges are independent. Since G is not in Extremal Case 2, it has no
independent set of size at least (1/2−7β)n. Since n is sufficiently large, |N(x)−{y}| ≥
n+1
2 − 1 > (1/2 − 7β)n. Thus, G[N(x) − {y}] contains an edge x1x2. Similarly,

G[N(y)−{x, x1, x2}] contains an edge y1y2. Therefore, G[{x, y, x1, x2, y1, y2}] contains
a subgraph T isomorphic to T1. We then assume that n is odd. We show in the first
step that G contains a subgraph isomorphic to K−4 (K4 with one edge removed).
Let yz ∈ E(G). As δ(G) ≥ (n + 1)/2, there exists y1 ∈ Γ(y, z). If there exists
y2 ∈ Γ(y, z) − {y1}, we are done. Otherwise, (Γ(y) − {y1, z}) ∩ (Γ(z) − {y1, y}) = ∅.
As δ(G) ≥ (n+1)/2 and |Γ(y)∪Γ(z)−{y1, y, z}| > (n+1)/2, y1 is adjacent to a vertex
y2 ∈ Γ(y)∪Γ(z)−{y1, y, z}. Assume y2 ∈ Γ(z)−{y1, y}. ThenG[{y, y1, z, y2}] contains
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a copy of K−4 . Choose x ∈ Γ(y) − {z, y1, y2} and choose an edge x1x2 ∈ G[Γ(x) −
{y, y1, y2, z}]. Then G[{y, y1, z, y2, x, x1, x2}] contains a subgraph T isomorphic to
T2.

Let T be a subgraph of G as given by Claim 3.3.1. Suppose the head link of
T is x1x2 and the tail link of T is y1y2. Let G′ = G − V (T ). We show in the
next section that G′ contains a spanning ladder with its first rung being adjacent
to x1x2 and its last rung being adjacent to y1y2. Let n′ = |V (G′)|. Then we have
δ(G′) ≥ (n+ 1)/2− 7 ≥ n′/2− 4 ≥ (1/2− β)n′, where β is the parameter defined in
the two extremal cases.

3.3.3. Finding a spanning ladder of G′ with prescribed end rungs. In
this subsection, we roughly follow the following steps in finding a spanning ladder L
in G′ with its first rung being adjacent to x1x2 and its last rung being adjacent to
y1y2.
Step 1. Apply the regularity lemma to G′ to partition the vertices of G′ into clusters

and a “garbage” set V0. Construct the reduced graph Gr with vertices as
clusters.

Step 2. In Gr, find a hamiltonian path X1Y1 · · ·XkYk such that each of deg(x1, X1),
deg(x2, Y1), deg(y1, Xk), and deg(y2, Yk) is large. (The ladder L will be con-
structed such that its vertices on the first and last rungs are contained, re-
spectively, from vertices in X1 ∪ Y1 and Xk ∪ Yk so that we can concatenate
x1x2 and y1y2 to its first and last rungs, respectively.)

Step 3. After regularizing each pair (Xi, Yi) into a (2ε, d − 3ε)-superregular pair
(X ′i, Y

′
i ), absorb garbage vertices from V0 and from other sources into small

ladders using vertices in
⋃k
i=1(X ′i ∪ Y ′i ).

Step 4. Denote the set of remaining vertices in X ′i and Y ′i , after Step 3, respectively,
as X∗i and Y ∗i . Within each pair (X∗i , Y

∗
i ), apply the blow-up lemma to get a

ladder Li spanning X∗i ∪Y ∗i such that its vertices in first and last, second and
third, and fourth and fifth rungs are selected from a special set of vertices for
connection purposes.

Step 5. Insert small ladders associated with Xi, Yi obtained in Step 3 between the
second and third rungs, or the fourth and fifth rungs of Li from Step 4 to get
a new ladder Li.

Step 6. Concatenating ladders L1,L2, . . . ,Lk using preselected vertices to get a span-
ning ladder of G′.

Theorem 3.4. Let n′ be a sufficiently large even integer and G′ an n′-vertex
subgraph of G obtained by removing vertices in T , where T ∈ {T1, T2} has head link
x1x2 and tail link y1y2. Suppose that δ(G′) ≥ (1/2− β)n′ and G = G[V (G′) ∪ V (T )]
is in nonextremal case, then G′ contains a spanning ladder with its first rung being
adjacent to x1x2 and its last rung being adjacent to y1y2.

Proof. We fix the sequence of parameters

0 < ε� d� β � 1

and specify their dependence as the proof proceeds.
Let β be the parameter defined in the two extremal cases. Then we choose d� β

and choose

ε =
1

4
ε(d/2, 3, d/4)

following the definition of ε in the blow-up lemma.
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Applying the regularity lemma to G′ with parameters ε and d, we obtain a parti-
tion of V (G′) into l+1 clusters V0, V1, . . . , Vl for some l ≤M ≤M(ε), and a spanning
subgraph G′′ of G′ with all described properties in the regularity lemma. In particular,
for all v ∈ V (G′),

degG′′(v) > degG′(v)− (d+ ε)n′ ≥ (1/2− β − ε− d)n′ ≥ (1/2− 2β)n′(3.9)

provided that ε+ d ≤ β. On the other hand,

e(G′′) ≥ e(G′)− (d+ ε)

2
(n′)2 > e(G′)− d(n′)2

by ε < d.
We further assume that l = 2k is even; otherwise, we eliminate the last cluster Vl

by moving all the vertices in this cluster to V0. As a result, |V0| ≤ 2εn′, and

(1− 2ε)n′ ≤ lN = 2kN ≤ n′,(3.10)

where N = |Vi| for 1 ≤ i ≤ l.
For each pair i and j with 1 ≤ i 6= j ≤ l, we write Vi ∼ Vj if d(Vi, Vj) ≥ d. As in

other applications of the regularity lemma, we consider the reduced graph Gr, whose
vertex set is {1, 2, . . . , l} and two vertices i and j are adjacent if and only if Vi ∼ Vj .
From δ(G′′) > (1/2 − 2β)n′, we claim that δ(Gr) ≥ (1/2 − 2β)l. Suppose not, and
let i0 ∈ V (Gr) be a vertex with degGr(i0) < (1/2− 2β)l. Let Vi0 be the cluster in G
corresponding to i0. Then we have

(1/2−β)n′|Vi0 |≤|EG′(Vi0 , V−Vi0)|<(1/2− 2β)lN |Vi0 |+2εn′|Vi0 |<(1/2−β)n′|Vi0 |.

This gives a contradiction by lN ≤ n′ from inequality (3.10).
Let A be a cluster of G′′. We say A is an (ε, d)-cluster if for any distinct cluster

B of G′′ with d(A,B) > 0, (A,B) is an ε-regular pair with density at least d. Let
x ∈ V (G′′) be a vertex and A an (ε, d)-cluster. We say x is typical to A if deg(x,A) ≥
(d− ε)|A|, and in this case, we write x ∼ A.

Claim 3.3.2. Each vertex from {x1, x2, y1, y2} is typical to at least (1/2 − 2β)l
clusters in {V1, . . . , Vl}.

Proof. Suppose to the contrary that there exists x ∈ {x1, x2, y2, y2} such that x
is typical to less than (1/2 − 2β)l clusters in {V1, . . . , Vl}. Then we have degG′(x) <
(1/2− 2β)lN + (d+ ε)n′ ≤ (1/2− β)n′ by lN ≤ n′ and d+ ε ≤ β.

Let x ∈ V (G′′) be a vertex. Denote by Vx the set of clusters to which x is typical.

Claim 3.3.3. There exist Vx1
∈ Vx1

and Vx2
∈ Vx2

such that d(Vx1
, Vx2

) ≥ d.

Proof. We show the claim by considering two cases based on the size of |Vx1
∩Vx2

|.
Case 1. |Vx1

∩Vx2
| ≤ 2βl. Then we have |Vx1

−Vx2
| ≥ (1/2−4β)l and |Vx2

−Vx1
| ≥

(1/2 − 4β)l. We conclude that there is an edge between Vx1
− Vx2

and Vx2
− Vx1

in
Gr. Otherwise, let U be the union of clusters in Vx1 ∩ Vx2 , W = V0 ∪ U ∪ V (T ).
Let W1 be the set of vertices contained in clusters in Vx1 − Vx2 , and let W2 be the
set of vertices contained in clusters in Vx1

− Vx2
. Then W1 and W2 is a partition of

V (G)−W . Furthermore,

|W | ≤ 5βn, e(W1,W2) ≤ (d+ ε)n′|W1| ≤ (d+ ε)n′(1 + 4β)lN ≤ βn2, and

δ(G[Wi]) ≥ δ(G)− 7− |W | − (d+ ε)n′ ≥ δ(G)− |W | − βn.
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These imply that W is an approximate vertex-cut of parameter β with size at most
5βn, implying that G is in Extremal Case 1.

Case 2. |Vx1
∩ Vx2

| > 2βl. We may assume that Vx1
∩ Vx2

is an independent set
in Gr. Otherwise, we are done by finding an edge within Vx1 ∩ Vx2 . Also we may
assume that EGr (Vx1 ∩Vx2 ,Vx1 −Vx2) = ∅ and EGr (Vx1 ∩Vx2 ,Vx2 −Vx1) = ∅. Since
δ(Gr) ≥ (1/2−2β)l and δGr

(Vx1
∩Vx2

,Vx1
∪Vx2

) = 0, we know that l−|Vx1
∪Vx2

| ≥
(1/2− 2β)l. Hence, |Vx1

∪Vx2
| = |Vx1

|+ |Vx2
| − |Vx1

∩Vx2
| ≤ (1/2 + 2β)l. This gives

that

|Vx1 ∩ Vx2 | ≥ |Vx1 |+ |Vx2 | − (1/2 + 2β)l ≥ (1/2− 2β)l + (1/2− 2β)l − (1/2 + 2β)l

≥ (1/2− 6β)l.

Let U be the union of clusters in Vx1
∩ Vx2

. Then |U| ≥ (1/2− 7β)n and ∆(G[U ]) ≤
(d+ ε)n′ ≤ βn. This shows that G is in Extremal Case 2.

Similarly, we have the following claim.

Claim 3.3.4. There exist Vy1 ∈ Vy1 − {Vx1
, Vx2
} and Vy2 ∈ Vy2 − {Vx1

, Vx2
} such

that d(Vy1 , Vy2) ≥ d.

Claim 3.3.5. The reduced graph Gr has a hamiltonian path X1Y1 · · ·XkYk such
that {X1, Y1} = {Vx1

, Vx2
} and {Xk, Yk} = {Vy1 , Vy2}.

Proof. We contract the edges Vx1
Vx2

and Vy1Vy2 in Gr. Denote the two new
vertices by V ′x and V ′y , respectively, and denote the resulting graph by G′r. Then we
show that G′r contains a hamiltonian (V ′x, V

′
y)-path. This path is corresponding to a

required hamiltonian path in Gr.
To show G′r has a hamiltonian (V ′x, V

′
y)-path, we need the following variation of a

result due to Nash-Williams [22]: Let Q be a 2-connected graph of order m. If δ(Q) ≥
max{(m + 2)/3 + 1, α(Q) + 1}, then Q is hamiltonian connected, where α(Q) is the
size of a largest independent set of Q. (The result in [22] by Nash-Williams states the
following: Let Q be a 2-connected graph of order m. If δ(Q) ≥ max{(m+2)/3, α(Q)},
then Q is hamiltonian.)

We claim that G′r is 2βl-connected. Otherwise, let S be a vertex-cut of G′r with
|S| < 2βl and S the vertex set corresponding to S in G. Since δ(G′r) ≥ (1/2−2β)l−2
and |S| < 2βl, we know that G′r − S has exactly two components. Let W = S ∪
V0 ∪ V (T ), W1 the set of vertices contained in clusters corresponding to vertices in
one component of G′r − S, and W2 = V (G)−W1 −W . Then it is easy to check that
e(W1,W2) ≤ βn2 and δ(G[Wi]) ≥ δ(G)−|W |−βn. Hence W is an approximate vertex-
cut with parameter β of size at most 5βn, showing that G is in Extremal Case 1. Since
n′ = Nl+ |V0| ≤ (l+2)εn′, we have that l ≥ 1/ε−2 ≥ 1/β. Hence, G′r is 2-connected.
As G is not in Extremal Case 2, α(G′r) ≤ (1/2 − 7β)l. By δ(Gr) ≥ (1/2 − 2β)l, we
have δ(G′r) ≥ (1/2−2β)l−2 ≥ max{(l+2)/3+1, (1/2−7β)l+1}. Thus, by the result
on hamiltonian connectedness given above, we know that G′r contains a hamiltonian
(V ′x, V

′
y)-path.

Claim 3.3.6. For each 1 ≤ i ≤ k, there exist X ′i ⊆ Xi and Y ′i ⊆ Yi such that each
of the following holds:

(1) |X ′1| ≥ (1 − ε)|X1| − 1, |Y ′k| ≥ (1 − ε)|Yk| − 1, |Y ′1 | ≥ (1 − ε)|Y1|, |X ′k| ≥
(1− ε)|Xk|, and |X ′i| ≥ (1− ε)|Xi|, 2 ≤ i ≤ k − 1;

(2) (X ′i, Y
′
i ) is (2ε, d− 3ε)-superregular with density at least d− ε;

(3) |Y ′1 | = |X ′1|+ 1, |X ′k| = |Y ′k|+ 1, and |X ′i| = |Y ′i |, 2 ≤ i ≤ k − 1; and
(4) for any A,B ∈ {X ′1, Y ′1 , . . . , X ′k, Y ′k}, if d(A,B) > 0, then (A,B) is 2ε-regular

with density at least d− ε. Consequently, each A is a (2ε, d− ε) cluster.
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Proof. For each 1 ≤ i ≤ k, let

X ′′i = {x ∈ Xi | deg(x, Yi) ≥ (d− ε)N} and

Y ′′i = {y ∈ Yi | deg(y,Xi) ≥ (d− ε)N}.
If necessary, we either take a subset X ′i of X ′′i or take a subset Y ′i of Y ′′i such that
|Y ′1 | = |X ′1| + 1, |X ′k| = |Y ′k| + 1, and |X ′i| = |Y ′i | for 2 ≤ i ≤ k − 1. Since (Xi, Yi) is
ε-regular, we have |X ′′i |, |Y ′′i | ≥ (1 − ε)N . This gives that |X ′1|, |Y ′k| ≥ (1 − ε)N − 1,
|Y ′1 | ≥ (1 − ε)N , |X ′k| ≥ (1 − ε)N , and |X ′i| = |Y ′i | ≥ (1 − ε)N for 2 ≤ i ≤ k − 1.
As a result, we have deg(x, Y ′i ) ≥ (d − 2ε)N for each x ∈ X ′i and deg(y,X ′i) ≥
(d − 2ε)N − 1 ≥ (d − 3ε)N for each y ∈ Y ′i . By the slicing lemma (Lemma 3.7),
(X ′i, Y

′
i ) is 2ε-regular with density at least d − ε. Hence (X ′i, Y

′
i ) is (2ε, d − 3ε)-

superregular for each 1 ≤ i ≤ k. The last assertion is again an application of the
slicing lemma.

For 1 ≤ i ≤ k, we call each X ′i, Y
′
i a superregularized cluster (sr-cluster) and call

X ′i and Y ′i partners of each other and write P (X ′i) = Y ′i and P (Y ′i ) = X ′i. Denote

R = V0 ∪ (
⋃k
i=1((Xi ∪ Yi) − (X ′i ∪ Y ′i ))). Since |(Xi ∪ Yi) − (X ′i ∪ Y ′i )| ≤ 2εN for

2 ≤ i ≤ k− 1 and |(X1 ∪Y1)− (X ′1 ∪Y ′1)|, |(Xk ∪Yk)− (X ′k ∪Y ′k)| ≤ 2εN + 1, we have

|R| ≤ 2εn+ 2kεN + 2 ≤ 3εn′.(3.11)

As n′ is even and |X ′1| + |Y ′1 | + · · · + |X ′k| + |Y ′k| is even, we know |R| is even. We
arbitrarily group vertices in R into |R|/2 pairs. Given two vertices u, v ∈ R, we
define a (u, v)-chain of length 2t as distinct sr-clusters A1, B1, . . . , At, Bt such that
u ∼ A1 ∼ B1 ∼ . . . ∼ At ∼ Bt ∼ v and each Aj and Bj are partners; in other
words, {Aj , Bj} = {X ′ij , Y ′ij} for some ij ∈ {1, . . . , k}. Recall here u ∼ A1 means that

deg(u,A1) ≥ (d − 3ε)|A1|, and A1 ∼ B1 means that the two vertices corresponding
to A1 and B1 are adjacent in Gr. We call such a chain of length 2t a 2t-chain.

Claim 3.3.7. For each pair (u, v) in R, we can find a (u, v)-chain of length at
most 4 such that every sr-cluster is contained in at most d2N/5 chains.

Proof. Suppose we have found chains for the first m < 2εn′ pairs of vertices in R
such that no sr-cluster is contained in more than d2N/5 chains. Let Ω be the set of
all sr-clusters that are contained exactly in d2N/5 chains. Then

d2N

5
|Ω| ≤ 4m < 8εn′ ≤ 8ε

2kN

1− 2ε
,

where the last inequality follows from (3.10). Therefore,

|Ω| ≤ 80kε

d2(1− 2ε)
≤ 80lε

d2
≤ βl/2,

provided that 1− 2ε ≥ 1/2 and 80ε ≤ d2β/2.
Consider now a pair (w, z) of vertices in R which does not have a chain found so

far; we want to find a (w, z)-chain using sr-clusters not in Ω. Let U be the set of all
sr-clusters to which w is typical but not in Ω, and let V be the set of all sr-clusters
to which z is typical but not in Ω. We claim that |U|, |V| ≥ (1/2− 2β)l. To see this,
we first observe that any vertex x ∈ R is typical to at least (1/2− 3β/2)l sr-clusters.
For instead,

(1/2− β)n′ ≤ degG′(x) < (1/2− 3β/2)lN + (d− 3ε)lN + 3εn′,

≤ (1/2− 3β/2 + d)n′

< (1/2− β)n′ (provided that d < β/2 ),
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showing a contradiction. Since |Ω| ≤ βl/2, we have |U|, |V| ≥ (1/2 − 2β)l. Let P (U)
and P (V) be the set of the partners of clusters in U and V, respectively. By the
definition of the chains, a cluster A ∈ Ω if and only its partner P (A) ∈ Ω. Hence,
(P (U)∪P (V))∩Ω = ∅. Notice also that each cluster has a unique partner, and so we
have |P (U)| = |U| ≥ (1/2− 2β)l and |P (V)| = |V| ≥ (1/2− 2β)l.

If EGr
(P (U), P (V)) 6= ∅, then there exist two adjacent clusters B1 ∈ P (U), A2 ∈

P (V). If B1 and A2 are partners of each other, then w ∼ A2 ∼ B1 ∼ z gives a
(w, z)-chain of length 2. Otherwise, assume A1 = P (B1) and B2 = P (A2); then
w ∼ A1 ∼ B1 ∼ A2 ∼ B2 ∼ z gives a (w, z)-chain of length 4. Hence we assume that
EGr (P (U), P (V)) = ∅. We may assume that P (U) ∩ P (V) 6= ∅. Otherwise, let S be
the union of clusters contained in V (Gr)− (P (U) ∪ P (V)). Then S ∪R ∪ V (T ) with
|S∪R∪V (T )| ≤ 4βn′+3εn′+7 ≤ 5βn (provided that 3ε+7/n′ < β) is an approximate
vertex-cut of G, implying that G is in Extremal Case 1. As EGr

(P (U), P (V)) = ∅, any
cluster in P (U)∩P (V) is adjacent to at least (1/2− 2β)l clusters in V (Gr)− (P (U)∪
P (V)) by δ(Gr) ≥ (1/2−2β)l. This implies that |P (U)∪P (V)| ≤ (1/2+2β)l, and thus
|P (U)∩P (V)| ≥ |P (U)|+ |P (V)|− |P (U)∪P (V)| ≥ (1/2−6β)l. Then P (U)∩P (V) is
corresponding to a subset W1 of V (G) such that |W1| ≥ (1/2− 6β)lN ≥ (1/2− 7β)n
and ∆(G[W1]) ≤ (d+ ε)n′ ≤ βn. This implies that G is in Extremal Case 2, showing
a contradiction.

In the following two claims, we “absorb” vertices in R into small ladders by
using the chains containing the vertices. We construct the ladders in a way such
that the number of vertices used by the ladders, respectively, from X ′i and Y ′i , are
the same. For each 2-chain u ∼ X ′1 ∼ Y ′i ∼ v, when we construct small ladders,
the vertex u will “consume” 3 vertices from X ′i and 2 vertices from Y ′i ; similarly,
the vertex v will consume 3 vertices from Y ′i and 2 vertices from X ′i. Thus, every
2-chain will consume 5 vertices in total from each X ′i and Y ′i when we construct small
ladders. Chains of length 4 can result in an imbalance in using vertices from X ′i and
Y ′i when constructing small ladders. We explain how do we overcome this issue. Let
u ∼ X ′i ∼ Y ′i ∼ X ′j ∼ Y ′j ∼ v be a 4-chain. When we construct small ladders, u will
consume 3 vertices from X ′i and 2 vertices from Y ′i , v will consume 3 vertices from Y ′j
and 2 vertices from X ′j . We see that there is a one vertex difference in using vertices
from X ′i and Y ′i and, respectively, from X ′j and Y ′j . The rough idea to deal with this
problem is to “borrow” a vertex, say w, from X ′j and to use this vertex w as a vertex
from R that is “assigned” to Y ′i . This new vertex w will consume 3 vertices from Y ′i
and 2 vertices from X ′i. Thus, u and w together will consume 5 vertices in total from
each X ′i and Y ′i when we construct small ladders. Furthermore, the “borrowing” of
w from X ′j makes the number of usage of vertices from X ′j and Y ′j the same in this
construction process corresponding to each 4-chain. We give the details on how do
we work on 4-chains in the following.

By Claim 3.3.7, each vertex in R is contained in a unique chain of length at
most 4. Let Z be an sr-cluster and u ∈ R be a vertex. We say u and Z are chain-
adjacent to each other if in the chain that contains u, Z appears next to u. For each
sr-cluster Z ∈ {X ′1, Y ′1 , . . . , X ′k, Y ′k}, let R(Z) denote the set of vertices in R that are
chain-adjacent to Z. Let

R4(Z) = {u ∈ R(Z) |u is contained in a 4-chain},

and let

S4(Z) = {A∈{X ′1, Y ′1 , . . . , X ′k, Y ′k} |u, v∈R, u∼Z∼P (Z)∼A∼P (A)∼v is a 4-chain}.
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Obviously, by the definitions, R(Z) − R4(Z) is the set of vertices from R that are
chain-adjacent to Z through 2-chains.

For Z ∈ {X ′1, . . . , X ′k} and for each sr-cluster A ∈ S4(Z), let c(A) denote the
number of 4-chains that contain Z ∼ P (Z) ∼ A ∼ P (A) as a sequence. For each
A ∈ S4(Z), choose a set R∗(A) consisting of c(A) vertices in A such that each of them
has at least (d− 3ε)|Z| > 3d2N/5 neighbors in P (Z). (Since (P (Z), A) is 2ε-regular
with density at least d−ε by Claim 3.3.6(2), we know that there are at least (1−2ε)|A|
vertices in A with this property by Lemma 3.6.)

For each sr-cluster Y ′i ∈ {Y ′1 , . . . , Y ′k}, and each sr-cluster X ′i ∈ {X ′1, . . . , X ′k}, let

R′(Y ′i ) = R(Y ′i ) ∪

 ⋃
A∈S4(X′i)

R∗(A)

 , and ω(X ′i) =
∑

Z∈{X′1,··· ,X′k}, X
′
i∈S4(Z)

c(X ′i).

Claim 3.3.8. For each i = 1, 2, . . . , k, each of the following holds:
(a) |R(X ′i)| ≤ d2N/5 and |R′(Y ′i )| ≤ d2N/5.
(b) |R(X ′i)−R4(X ′i)| = |R(Y ′i )−R4(Y ′i )|.
(c) ω(X ′i) = |R4(Y ′i )|.
(d) |R′(Y ′i )−R(Y ′i )| = |R4(X ′i)|.
Proof. By Claim 3.3.7, each sr-cluster is contained in at most d2N/5 chains,

and a chain contains X ′i if and only if it also contains Y ′i by its definition. Since
both |R(X ′i)| and |R′(Y ′i )| are bounded above by the number of chains which contain
them, we have that |R(X ′i)| ≤ d2N/5 and |R′(Y ′i )| ≤ d2N/5. By the definition of
2-chains, a vertex in R is chain-adjacent to an sr-cluster A in a 2-chain if and only
if there exists another vertex in R which is chain-adjacent to the partner P (A) of
A. Thus |R(X ′i) − R4(X ′i)| = |R(Y ′i ) − R4(Y ′i )|. By the definition, if X ′i ∈ S4(Z)
for some sr-cluster Z, then c(X ′i) is the number of 4-chains that contain Y ′i ∼ X ′i ∼
P (Z) ∼ Z as a sequence. All of such 4-chains is just the set of 4-chains in which Y ′i
is chain-adjacent to a vertex in R. Since each vertex in R is contained in a unique
chain, we then have that ω(X ′i) = |R4(Y ′i )|. Since each vertex in R′(Y ′i ) − R(Y ′i ) is
corresponding to a 4-chain in which X ′i is chain-adjacent to a vertex in R, we have
that |R′(Y ′i )−R(Y ′i )| = |R4(X ′i)|.

Claim 3.3.9. For each i = 1, 2, . . . , k, there exist vertex-disjoint ladders Lix, Liy
such that

(a) R(X ′i) ⊆ V (Lix) ⊆ R(X ′i) ∪X ′i ∪ Y ′i and
(b) R′(Y ′i ) ⊆ V (Liy) ⊆ X ′i ∪ Y ′i ∪R′(Y ′i );

(c) |(V (Lix)∪V (Liy))∩X ′i| = 4|R(X ′i)|+ 3|R(Y ′i )|+ 3|R4(X ′i)| − 2 and |(V (Lix)∪
V (Liy)) ∩ Y ′i | = 4|R(Y ′i )|+ 4|R4(X ′i)|+ 3|R(X ′i)| − 2; and

(d) the vertices on the first and last rungs of each of Lix and Liy are contained in
X ′i ∪ Y ′i .

Proof. Notice that by Claim 3.3.6, (X ′i, Y
′
i ) is 2ε-regular with density at least

d − ε. Let R(X ′i) = {x1, . . . , xr}. For each j, 1 ≤ j ≤ r, since |Γ(xj , X
′
i)| ≥ (d −

3ε)|X ′i| > 2ε|X ′i|, by Lemma 3.6, there exists a vertex set Bj ⊆ Y ′i with |Bj | ≥
(1 − 2ε)|Y ′i | such that for each b1 ∈ Bj , deg(b1,Γ(xj , X

′
i)) ≥ (d − 3ε)|Γ(xj , X

′
i)| >

4|R(X ′i)|. If r ≥ 2, for j = 1, . . . , r − 1, by Lemma 3.6, there also exists a vertex
set Bj,j+1 ⊆ Y ′i with |Bj,j+1| ≥ (1 − 4ε)|Y ′i | such that for each b2 ∈ Bj,j+1, we
have deg(b2,Γ(xj , X

′
i)) ≥ (d − 3ε)|Γ(xj , X

′
i)| > 4|R(X ′i)| and deg(b2,Γ(xj+1, X

′
i)) ≥

(d − 3ε)|Γ(xj+1, X
′
i)| > 4|R(X ′i)|. When r ≥ 2, since |Bj |, |Bj,j+1|, |Bj+1| ≥ (d −

3ε)|Y ′i | > 2ε|Y ′i |, there is a set A ⊆ X ′i with |A| ≥ (1 − 6ε)|X ′i| ≥ |R(X ′i)| such
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that for each a ∈ A, deg(a,Bj) ≥ (d − 3ε)|Bj |, deg(a,Bj,j+1) ≥ (d − 3ε)|Bj,j+1|,
and deg(a,Bj+1) ≥ (d − 3ε)|Bj+1|. Notice that (d − 3ε)|Bj |, (d − 3ε)|Bj,j+1|, (d −
3ε)|Bj+1| ≥ (d − 3ε)(1 − 4ε)|Y ′i | > 3|R(X ′i)|. Hence we can choose distinct vertices
u1, u2, . . . , ur−1 ∈ A such that deg(uj , Bj), deg(uj , Bj,j+1), deg(uj , Bj+1) ≥ 3|R(X ′i)|.
Then we can choose distinct vertices yj23 ∈ Γ(uj , Bj), zj ∈ Γ(uj , Bj,j+1) and yj+1

12 ∈
Γ(uj , Bj+1) for each j and choose distinct and unchosen vertices y112 ∈ B1 and yr23 ∈
Br. Finally, as for each vertex b1 ∈ Bj , we have deg(b1,Γ(xj , X

′
i)) > 4|R(X ′i)|, and for

each vertex b2 ∈ Bj,j+1, we have deg(b2,Γ(xj , X
′
i)), deg(b2,Γ(xj+1, X

′
i)) > 4|R(X ′i)|,

we can choose xj1, xj2, xj3 ∈ Γ(xj , X
′
i)−{u1, . . . , ur−1} such that yj12 ∈ Γ(xj1, xj2, Y

′
i ),

yj23 ∈ Γ(xj2, xj3, Y
′
i ), and zj ∈ Γ(xi3, xi+1,1, Y

′
i ). (When i ≥ 2, we choose all these

vertices such that they are not used by existing ladders. The possibility of doing this
is guaranteed by the degree conditions and the small sizes of the existing ladders.)
Let Lix be the graph with

V (Lix) = R(X ′i)∪{xi1, xi2, xi3, yi12, yi23, zi, ui, xr1, xr2, xr3, yr12, yr23 | 1 ≤ i ≤ r−1} and

E(Lix) consisting of the edges xrxr1, xrxr2, xrxr3, y
r
12xr1, y

r
12xr2, y

r
23xr2, y

r
23xr3 and

the edges indicated below for each 1 ≤ i ≤ r − 1:

xi ∼ xi1, xi2, xi3; yi12 ∼ xi1, xi2; yi23 ∼ xi2, xi3; zi ∼ xi3, xi+1,1; ui ∼ xi3, xi+1,1, zi.

It is easy to check that Lix is a ladder spanning R(X ′i), 4|R(X ′i)| − 1 vertices from X ′i
and 3|R(X ′i)|−1 vertices from Y ′i . Similarly, we can find a ladder Liy spanning R′(Y ′i ),
4|R′(Y ′i )| − 1 vertices from Y ′i and 3|R′(Y ′i )| − 1 vertices from X ′i. The constructions
of ladders Lix and Liy verify both statements (a) and (c). Statement (b) is seen by
the construction of the ladders and (d) of Claim 3.3.8, which says that |R′(Y ′i )| =
|R(Y ′i )|+ |R4(X ′i)|.

For each i = 1, 2, . . . , k − 1, let X∗∗i = X ′i − V (
⋃k
i=1(Lix ∪ Liy)) and Y ∗∗i =

Y ′i −V (
⋃k
i=1(Lix∪Liy)). Using Lemma 3.6, for i ∈ {1, . . . , k−1}, choose y∗i ∈ Y ∗∗i such

that |Ai+1| ≥ dN/4, where Ai+1 := X∗∗i+1 ∩ Γ(y∗i ). This is possible, as (Y ∗∗i , X∗∗i+1) is
4ε-regular with density at least d−3ε. (Apply the slicing lemma based on (Y ′i , X

′
i+1).)

Similarly, choose x∗i+1 ∈ Ai+1 such that |Di| ≥ dN/4, where Di := Y ∗∗i ∩Γ(x∗i+1). Let
S = {y∗i , x∗i+1 | 1 ≤ i ≤ k − 1}, and let X∗i = X∗∗i − S and Y ∗i = Y ∗∗i − S. We have
that the following holds.

Claim 3.3.10. For each i = 1, 2, . . . , k, |X∗i | = |Y ∗i | and (X∗i , Y
∗
i ) is (4ε, d/2)-

superregular.

Proof. We show that |X∗i | = |Y ∗i | for each i, 1 ≤ i ≤ k. Since |Y ′1 | = |X ′1| + 1,
|X ′k| = |Y ′k|+1, and |X ′i| = |Y ′i | for 2 ≤ i ≤ k−1, and |X∗∗1 | = |X∗1 |, |Y ∗∗k | = |Y ∗k |, and
|X∗∗i | = |X∗i |−1, |Y ∗∗j | = |Y ∗j |−1 for 2 ≤ i ≤ k, 1 ≤ j ≤ k−1, it suffices to show that

|X ′i ∩ V (
⋃k
i=1(Lix ∪Liy))| = |Y ′i ∩ V (

⋃k
i=1(Lix ∪Liy))|. This is clear by Claims 3.3.9(c)

and 3.3.8, since∣∣∣∣∣X ′i ∩ V
(

k⋃
i=1

(Lix ∪ Liy)

)∣∣∣∣∣ = 4|R(X ′i)|+ 3|R(Y ′i )|+ 3|R4(X ′i)| − 2 + ω(X ′i)

= 4|R(X ′i)−R4(X ′i)|+ 3|R(Y ′i )−R4(Y ′i )|+ 7|R4(X ′i)|+ 3|R4(Y ′i )| − 2 + ω(X ′i)

= 7|R(X ′i)−R4(X ′i)|+ 7|R4(X ′i)|+ 4|R4(Y ′i )| − 2,
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and ∣∣∣∣∣Y ′i ∩ V
(

k⋃
i=1

(Lix ∪ Liy)

)∣∣∣∣∣ = 3|R(X ′i)|+ 4|R(Y ′i )|+ 4|R4(X ′i)| − 2

= 3|R(X ′i)−R4(X ′i)|+ 4|R(Y ′i )−R4(Y ′i )|+ 7|R4(X ′i)|+ 4|R4(Y ′i )| − 2

= 7|R(X ′i)−R4(X ′i)|+ 7|R4(X ′i)|+ 4|R4(Y ′i )| − 2.

Since |R(X ′i)|, |R′(Y ′i )| ≤ d2N/5 for each i, by the first part of the argument,

|X ′i∩V (
⋃k
i=1(Lix∪Liy))| ≤ 4|R(X ′i)|+4|R′(Y ′i )|−2 ≤ 2d2N−2 and |Y ′i ∩V (

⋃k
i=1(Lix∪

Liy))| ≤ 4|R(X ′i)|+ 4|R′(Y ′i )| − 2 ≤ 2d2N − 2. Thus |X∗i |, |Y ∗i | ≥ (1− ε− 2d2)N . As
ε, d � 1, we can assume that 1 − ε − 2d2 < 1/2. Thus, by the slicing lemma based
on the 2ε-regular pair (X ′i, Y

′
i ), we know that (X∗i , Y

∗
i ) is 4ε-regular. Recall from

Claim 3.3.6 that (X ′i, Y
′
i ) is (2ε, d− 3ε)-superregular, we know that for each x ∈ X∗i ,

deg(x, Y ∗i ) ≥ (d − 3ε − 2d2)|Y ∗i | > d|Y ∗i |/2. Similarly, we have for each y ∈ Y ∗i ,
deg(y,X∗i ) ≥ d|X∗i |/2. Thus (X∗i , Y

∗
i ) is (4ε, d/2)-superregular.

For each i = 1, 2, . . . , k−1, now set Bi+1 := Y ∗i+1∩Γ(x∗i+1) and Ci := X∗i ∩Γ(y∗i ).
Since (X∗i , Y

∗
i ) is (4ε, d/2)-superregular, we have |Bi|, |Ci| ≥ d|X∗i |/2 > d|X∗i |/4.

Recall from Claim 3.3.5 that {X1, Y1} = {Vx1
, Vx2
} and {Xk, Yk} = {Vy1 , Vy2}. We

assume, w.l.o.g., that X1 = Vx1 and Xk = Vy1 . Let A1 = X∗1∩Γ(x1), B1 = Y ∗1 ∩Γ(x2),
Ck = X∗k ∩ Γ(y1), and Dk = Y ∗k ∩ Γ(y2). Since deg(x1, X1) ≥ (d − ε)N , we have
deg(x1, X

∗
1 ) ≥ (d − ε − 2ε − 2d2)N ≥ d|X∗1 |/4, and thus |A1| ≥ d|X∗1 |/4. Similarly,

we have |B1|, |Ck|, |Dk| ≥ d|X∗1 |/4. For each 1 ≤ i ≤ k, we assume that Lix =
ai1b

i
1−Lix−ci1di1 and Liy = ai2b

i
2−Liy−ci2di2, where aij , c

i
j ∈ Y ′i ⊆ Yi and bij , d

i
j ∈ X ′i ⊆ Xi

for j = 1, 2. For j = 1, 2, let Aij = X∗i ∩ Γ(aij), C
i
j = X∗i ∩ Γ(cij), B

i
j = Y ∗i ∩ Γ(bij),

and Di
j = Y ∗i ∩Γ(dij). Since (X ′i, Y

′
i ) is (2ε, d− 3ε)-superregular, for j = 1, 2, we have

|Γ(aij , X
′
i)|, |Γ(cij , X

′
i)| ≥ (d− 3ε)|X ′i| and |Γ(bij , Y

′
i )|, |Γ(dij , Y

′
i )| ≥ (d− 3ε)|Y ′i |. Thus,

we have |Aij |, |Bij |, |Cij |, |Di
j | ≥ (d− 3ε)|X ′i| − 2d2N ≥ d|X∗i |/4 = d|Y ∗i |/4.

We now apply the blow-up lemma on (X∗i , Y
∗
i ) to find a spanning ladder Li with

its first and last rungs being contained in Ai × Bi and Ci × Di, respectively, its
second and third rungs being contained in Ai1 × Bi1 and Ci1 × Di

1, respectively, and
its fourth and fifth rungs being contained in Ai2 ×Bi2 and Ci2 ×Di

2, respectively. We
can then insert Lix between the second and third rungs of Li and Liy between the

fourth and fifth rungs of Li to obtained a ladder Li spanning Xi ∪ Yi − S. Finally,
L1y∗1x

∗
2L2 · · · y∗k−1x∗kLk is a spanning ladder of G′ with its first rung adjacent to x1x2

and its last rung adjacent to y1y2.
The proof is now complete.

Acknowledgment. The authors are grateful to the two anonymous referees for
their helpful comments.

REFERENCES

[1] M. O. Albertson, D. M. Berman, J. P. Hutchinson, and C. Thomassen, Graphs with
homeomorphically irreducible spanning trees, J. Graph Theory, 14 (1990), pp. 247–258.

[2] C. A. Barefoot, Hamiltonian connectivity of the Halin graphs, Congr. Numer., 58 (1987),
pp. 93–102.

[3] J. A. Bondy, Pancyclic graphs. I, J. Combin. Theory Ser. B, 11 (1971), pp. 80–84.
[4] J. A. Bondy, Pancyclic graphs: Recent results, in Infinite and Finite Sets, Vol. I, Colloq. Math.

Soc. János Bolyai 10. North-Holland, Amsterdam, 1975, pp. 181–187.
[5] J. A. Bondy, Basic graph theory: Paths and circuits, in Handbook of Combinatorics, Vol. 1,

MIT Press, Cambridge, MA, 1995.

D
ow

nl
oa

de
d 

05
/2

8/
20

 to
 1

31
.9

6.
25

3.
12

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2022 GUANTAO CHEN AND SONGLING SHAN

[6] J. A. Bondy and L. Lovász, Lengths of cycles in Halin graphs, J. Graph Theory, 9 (1985),
pp. 397–410.
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[24] Z. Skupień, Crowned trees and planar highly Hamiltonian graphs, in Contemporary Methods
in Graph Theory, Bibliographisches Institut., Mannheim, 1990, pp. 537–555.

[25] K. Staden and A. Treglown, On degree sequences forcing the square of a Hamilton cycle,
SIAM J. Discrete Math., 31 (2017), pp. 383–437.
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