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1. Introduction

The encounter of a vortex gust with an aerodynamic body is a canonical fluid-structure interaction with implications
for the prediction of transient loads on fliers and swimmers and their generation of vortex sound. Among the various
orientations that the incident vortex can take with respect to the solid body (cf. Rockwell (1998)), the alignment of the
spanwise vortex with the orientation of the bound vorticity on the body, the wake, and the boundary-layer vorticity
allows for their dynamic coupling during a vortex-airfoil encounter. For this reason, a number of theoretical, numerical,
and experimental studies have been carried out to understand and model two-dimensional vortex-structure interactions.

Many prior investigations of two-dimensional vortex-body interactions consider static solid structures, where the
flow unsteadiness arises from the motion of one or many coherent vortices. The simplest analytical models of these
scenarios represent the vortex structures as point vortices, where the solid boundaries are often transformed via conformal
mapping techniques to simple geometries where the solution is known or is easily determined. Analytical vortex-structure
modeling has historically focused on the effects of boundary geometry on the vortex path, which is of interest to gain
insight into the evolution of coherent flows and is critical in the assessment of vortex sound generation (Crighton, 1972;
Howe, 1997; Conlisk and Veley, 1985; Jaworski, 2016, 2018, 2019). These analytical models can be generalized to handle
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multiply-connected domains (Baddoo and Ayton, 2018; Crowdy, 2010), as well as vortex clouds (Panaras, 1987) or finite-
sized vortices (Newton, 2013). The close encounter of real vortices with surface nonuniformities (e.g., an edge, corner,
or surface asperity) and the large surface pressure fluctuations they can impart are sensitive to the incoming vortex
strength (Conlisk and Rockwell, 1981), the geometrical details of the boundary (Rockwell and Knisely, 1979), and the
alignment of the vortex with the solid body (Conlisk and Rockwell, 1981; Ziada and Rockwell, 1982; Gursul and Rockwell,
1990). To date, analytical investigations of direct vortex impingement have not been developed for structures under
aeroelastic motions, which is a key contribution of the present study.

The local vortex-body interaction of near or direct impingement can lead to significant distortion of the incoming
vortex (Gursul and Rockwell, 1990) and its possible severing by the body into two parts (Rockwell and Knisely, 1979;
Lee and Smith, 1991; Barnes and Visbal, 2018a,b). Strong viscous and nonlinear effects in the neighborhood of the
solid boundary can also lead to transient separation and turbulent transition of the surface boundary layer (Barnes and
Visbal, 2018a,b), the eruption of vorticity from this boundary layer (Doligalski et al., 1994), the creation of additional
vortices (Ziada and Rockwell, 1982), and a time-dependent change in the circulation of the incident vortex gust (Peng
and Gregory, 2015). It is argued in the present work (along the lines of Rogler (1978)) that regimes with significant
viscous interaction between the incident vortex and boundary layer indicate the practical limit of point-vortex models
for aeroelastic vortex gust simulations.

Dynamic structural motions affect the paths of the incident vortex and the vorticity shed into the wake, which is the
product of unsteady loading by the vortex gust on the aerodynamic structure or airfoil. These structural motions may
be either prescribed (Manela, 2013) or the result of aeroelastic coupling with the vortex gust, where in the latter case
the compliance of either the airfoil or its support provides the means for a dynamic two-way energy transfer between
the fluid and the solid body. The introduction of structural elasticity into the physical system leads to the possibility of
resonance effects, which have been studied in the context of flow noise amplification and suppression by Howe (1994)
for a turbulent inflow and by Manela (2011) for a point-vortex gust. Aeroelastic point-vortex interactions have lacked
attention in the literature in comparison to cases with static structures or prescribed motion. Manela and Huang (2013)
investigated the interaction of an incident point vortex with a trailing edge flap mounted to a torsional spring, and
Riso et al. (2016) investigated impulsive and transient gust loads using a discrete free wake with vortices shed at every
instant in time. These studies were carried out for flat plates and did not consider the effects of airfoil geometry on the
vortex-structure interaction. The present work is motivated by the need to assess this geometrical effect in addition to
the dynamically-coupled interactions of the incident vortex, the aeroelastic airfoil motion, and the vortex wake.

The production and evolution of vorticity shed into the wake determines the unsteady aerodynamic load on an airfoil.
Accordingly, researchers have sought to develop low-order models for unsteady vortex shedding that are accurate with
respect to load prediction and can also provide physical insight into the flow field at a modest computational cost relative
to a full numerical simulation of the Navier-Stokes equations. Early wake models for transient airfoil motions (von Karman
and Sears, 1938; Bisplinghoff et al., 1996) supposed a flat, continuous vortex sheet that is appropriate for small-amplitude
airfoil motions but becomes increasingly inaccurate for large-amplitude airfoil motions or severe gust responses (Riso
et al.,, 2016). Brown and Michael (1954, 1955) and Edwards (1954) developed independently a point-vortex model to
describe the static vortices positioned over lifting delta wings due to leading-edge separation. This model was adapted by
Cheng (1954) and Rott (1956) for unsteady two-dimensional flow with point vortices whose strengths are allowed to vary
in time. The Brown and Michael model framework supposes that the vorticity shed from an edge rolls up via a connecting
vortex sheet into a concentrated point vortex, whose strength is set by the Kutta condition and whose position is described
by a first-order differential equation: the so-called Brown and Michael equation. The original model formulation brought
about a spurious surface force on the airfoil that was identified by Peters and Hirschberg (1993) and was eliminated by
Howe (1996) in his emended form of the Brown and Michael equation, which is used in the present work. Michelin and
Llewellyn Smith (2009) reviewed and formalized the derivation of the Brown and Michael equation, which results from a
linear momentum balance requiring zero net force on both the shed vortex and on the connecting vortex sheet. However,
Michelin and Llewellyn Smith (2009) pointed out that the Brown and Michael framework has an insufficient number
of free parameters to impose both linear and angular momentum balances on the vortex and the connecting sheet, in
addition to the condition that the strength of a trailing-edge point vortex cannot decrease in time. Wang and Eldredge
(2013) built upon the conservation of impulse argument by Tchieu and Leonard (2011) to develop a new evolution model
for shed point vortices that agrees well with airfoil simulations at high pitch rates with shedding from both leading and
trailing edges. More recently, Darakananda and Eldredge (2019) developed a hybrid modeling approach where the rate
at which the vortex sheets roll up into point vortices may be adjusted by the analyst to gain the desired level of physical
insight into the fluid dynamics. Eldredge and Jones (2019) provided a full contemporary review of low-order approaches
to vortex modeling.

The objective of the present work is to model the dynamic vortex-gust interactions of non-flat airfoils that are mounted
to a linear suspension. The theoretical model is used to investigate the dynamic interplay between a vortex gust, unsteady
vortex shedding, the airfoil shape, and the aeroelastic airfoil motion, as well as to predict the conditions for direct
vortex impingement. To these ends, Section 2 develops the mathematical model and dynamic formulation for vortex-gust
interactions with a Joukowski airfoil. Section 3 first studies the effect of airfoil thickness and compares the model results
against previous experiments with fixed airfoils. The dimensionless aeroelastic parameters and the initial placement of
the vortex gust to achieve direct airfoil impingement are then determined numerically. Section 4 summarizes the results
from this study and presents concluding remarks.
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Fig. 1. Schematic of the generalized model problem of an incident vortex interaction with a symmetric Joukowski airfoil on elastic translational
support in a uniform flow, where U is the flow speed and h(t) denotes the downward plunge displacement of the airfoil. The coordinate system
passes through the airfoil midchord at x = 0. The airfoil can be considered as a damped harmonic oscillator with mass m, damping coefficient ¢,
and spring stiffness k,. I denotes the strength of the incident line vortex, and y, is the strength of the tethered trailing-edge vortex whose motion
is determined by the emended Brown and Michael equation. X is the set of free vortices generated at the airfoil trailing edge due to unsteady
airfoil loads in response to the incident line vortex or the airfoil motion. The airfoil has zero angle of attack. Vortex circulation is positive in the
counterclockwise orientation.

2. Mathematical formulation

Fig. 1 illustrates the model problem of a Joukowski airfoil on elastic supports in two-dimensional uniform flow with
an incident line vortex I" and the vorticity field X shed into the wake. All vortices are defined to have positive circulation
in the counterclockwise direction. The strength of the trailing-edge vortex y, satisfies the Kutta condition, and its motion
obeys the emended Brown and Michael equation (Howe, 1996). The mathematical formulation of the aeroelastic system
is now described.

2.1. Mapping

The conformal mapping of the Joukowski airfoil between the physical z-plane and the mapped ¢-plane is described
by

(z) = % (z + V72— 4/\2) — fo, (1)

where fy is the origin of the unit circle in the f-plane, as shown in Fig. 2, and A is the transformation parameter of the
conformal mapping defined by A = /2 —fyz0 — fxo. Using Eq. (1), the Joukowski airfoil in the physical z-plane (z = x+iy)
with its trailing edge located at (24, 0) is mapped to a circle with radius r = 1 in the f-plane (f = f; + if), as shown in
Fig. 2. Note the offset of the circle center at fy = fxo + ifyo and the corresponding trailing edge at (A, 0). For the symmetric
Joukowski airfoils considered in this work, f,o = 0. The unit circle in the f-plane is then shifted by an elementary mapping
to the origin in the ¢-plane.

When time-dependent airfoil motions are considered, Eq. (1) becomes

()= [ste. 0+ Ve —a2] @)

where s(z, t) = z — ih(t). The airfoil displacement h(t) may be either prescribed or be part of the solution in the case of
aeroelastic airfoil motions.

2.2. Flow complex potential
The complex potential of the flow is
)\‘2
wi)=w, +wr+wp +U(C+fo+—F]), 3
() v r+wp (C fo §+fo) (3)

where w,(¢), wr(¢), and wp(¢) are the complex potential contributions due to the shed and free vorticity field, the
incident vortex, and the airfoil motion, respectively. The last term of Eq. (3) represents the uniform background flow.
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Fig. 2. Successive mappings of a generalized Joukowski airfoil in the physical z-plane to a unit circle centered at the origin in the ¢-plane. The red
dot indicates the position of the trailing edge through successive mappings and is located at the complex-valued position T in the ¢-plane.

The complex potential w(¢) of the incident vortex located instantaneously at ¢ is determined from the model of a
vortex moving around a cylinder (Howe, 2003), which yields

ir ir 1 ir

wr(¢)=—-—=log(¢ —¢r)+ -—log| ¢ — — | — -—log¢, (4)
2 2 Lr 2

where the last two terms guarantee that the total circulation inside the cylinder is initially zero, and the asterisk denotes

the complex conjugate. Similarly, the complex potential of the n vortices shed into the wake and located at positions ¢,

is

n . 1
wy(z)zz[—gﬁlog( —n) + log<z—*>] (5)

k=1 Yk

By appeal to Kelvin’s theorem, the bound vorticity inside the cylinder at any time has total circulation — Z;Zzl Yk, Which
is used to compute the aerodynamic lift force.
The complex potential of the airfoil motion is Batchelor (1967)

W) = iV (; - g) , 6)

where V = dh/dt is the instantaneous velocity of the airfoil in the downward direction.
2.3. Vortex shedding and the emended Brown and Michael equation

The motions of the shed vortices are described by the emended Brown and Michael equation (Howe, 1996),

dxy, - VY + Yidm _ vy,
dt v dt
where x,, denotes the position of the nth shed vortex with circulation y, that is tethered to the trailing edge, and v,,
is the fluid velocity when the self-induced local velocity of y; is excluded. A Cartesian coordinate system is used, where
= (x,y). ¥j(x, t) denotes the stream function of the complex potential of the flow in the j-direction. For a Joukowski
alrf01l mapped to the ¢-plane, the components of the stream function are Howe (2014)

l1/1zlml§+§} and lIQ:lm{—i(;—%)}. (8)

The instantaneous circulation of the tethered vortex y,(t) is obtained by enforcing the Kutta condition at the trailing
edge of each instant in time,

T*¢,, — 11 (25 (1 — Re{T*¢r}) Z’ I
|§Vn2—1 |T*§1"_1|2 4 *C _1|

Yk
in which T* is the complex conjugate of the tralllng edge T location (T = A — f) in the ¢-plane. The tethered trailing-
edge vortex is released and becomes a free vortex when dy, /dt changes sign, at which time another tethered vortex
is placed at the airfoil trailing edge whose motion and instantaneous circulation are determined by Egs. (7) and (9),
respectively (Howe, 1996; Graham, 1977, 1980). As described by Michelin and Llewellyn Smith (2009), this criterion for
vortex shedding is based on the physical argument that the intensity of the point vortex cannot decrease in value, else it
would imply a negative diffusion in the point vortex.

VY, j=1,2, (7)

ya(t) = -2V Re{T*}) , (9)
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Eq. (7) can be rearranged into the equivalent scalar form
dz*

1 dy

Yn n *
Hy — iH e
ir (Hy — iHy) T o
where z, =x—1ly and v

(10)
ivy. The functions H; and H, involve the stream functions ¥; and their derivatives
Eq. (10) is the equivalent scalar form of the emended Brown and Michael equation, which is employed for the theoretical

analysis in this work. Specific details related to the derivation of Eq. (10) and the expressions of H; and H, from Chen
and Jaworski (2018) are presented in Appendix A. Also

Yn

iynl'(z
U* _ Vn§ ( Vn) (zyn)v (]])
4r¢'(z,,) v
is the complex velocity of the shed vortex with self-potential velocity excluded (Howe, 2003). The first term on the right
side of Eq. (11) is the so-called Routh correction (Clements, 1973), and the second term is the desingularized complex
velocity at z,,,,

, dw 1yn 1 ]
F .
@) =18 [ i T,

2.4. Kinematics of the incident and free vortices

(12)
Similarly, the complex velocity of the incident line vortex at s is Howe (2003)
dst. ir:”(sr) ,
=——"———"+4F'(sp), 13
de amc(sy) TG (13)
where
ir il « 1 1
Fiisp) = o=t - 20Ny -
r 27 (;[2“ - 1){1" 27 ; { gl’k ;‘F - ]/g;ﬁk
R 1
+iVer (1 + —2) +U. (14)
{r
Note that ¢ = ¢p(s) and ¢, = &, (s)
Also, the equation of motion for each of the n — 1 free vortices is
ds} iveg" ()
Yk Yk /
e 4 s,), 15
dt amgi(s,) Tl 1>
where
ir 1 1
F/ (st) = —7¢/ < —
27 Sy —Cr

1 i ¢

- + 7> + ﬁ%
- 1/§r Sy 2n v — l/g,/k
n

l;yk < 1 )
Ym -
m= 2;&/( S = Sm

C)/k - 1/;;,"
. 1
+lV§yk 1 + CT + U.
Yk

2.5. Airfoil motion and loads

The airfoil moves aeroelastically under its lift force and the equation of motion of the elastic mount
d?h h
m— +c¢ knh = —

a2 + Ci— dt + Kn

(17)

a damped harmonic oscillator with airfoil mass m, damping coefficient c4, and spring stiffness k;. The unsteady sectional
lift force L’ on a thin airfoil is determined by Katz and Plotkin (2001)
c
a
U= pUn)+o [ g,
0 at

where the airfoil circulation I,(t) is the integrated vorticity bound to the airfoil, I, =

where h(t) denotes the plunge displacement of the airfoil with chord length c. The elastic suspension can be considered as

(18)

irfoil, fo ) dx. The first term is

the quasi-steady Kutta-Joukowski lift due to the instantaneous circulation, and the second term mcludes the unsteady
contributions to the lift due to the fluid loading on the airfoil (added mass) and the downwash effect of the wake
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The instantaneous circulation I, is determined by Kelvin’s theorem,
n
Li(t) = = w0, (19)
k=1

where y; denotes the strength of the kth shed vortex. The airfoil vorticity distribution may be rewritten analytically as a
trigonometric expansion of the following form (Glauert, 1983):

1 0 —
y(6,8) =2U |:A0(t)—:i§;s + 3" Adt)sin ne] , (20)
n=1

where the first term in the bracket is the vorticity distribution for the symmetric airfoil, and the second term summation
represents the camber distribution. Note that for symmetric airfoils with zero angle of attack, as considered in the present

work, Ay =A; = As; =... =A,;, =0, and only Aq(t) is not identically zero at all times. Eq. (18) can be expanded as
3 0A
L’:nchon—}—npczUZa—tO, (21)

where the first term is equivalent to the quasi-steady lift in Eq. (18), and the second term is equivalent to the lift
contribution due to time dependency. Details of this expansion can be found in Katz and Plotkin (2001).

The system of dynamical equations is formed from Egs. (9), (10), (13), (15), and (21), which consists of 2(n + 2)
first-order ordinary differential equations for the position (sy.(t), s, -(t)) of the incident line vortex, the positions
(Sx,, (£), Sy,,,(£)) of n trailing-edge vortices, and the instantaneous airfoil displacement h(t) and the plunging velocity V(¢).
The system of equations is marched forward in time using ODE45 in MATLAB, where the relative and absolute solution
tolerances are set to 1078, Once solved, the results are mapped to the physical z-plane using z(t) = s(t) + ih(t).

3. Results

The numerical framework developed in Section 2 is verified against Manela (2013) in the limiting cases of a flat plate
that is either stationary or under prescribed harmonic plunging motions; further details of this verification are provided in
Appendix B. New results are now presented to examine the effect of airfoil thickness on gust interactions with stationary
bodies. These results are compared against the gust experiments conducted by Peng and Gregory (2015, 2017) to assess
the predictive limitations of the present theory. Aeroelastic gust-airfoil interactions are then explored, and the upstream
vortex conditions to achieve direct impingement are determined numerically.

The model problem is nondimensionalized by X = x/(2A),y = y/(21),t = Ut/(2), and I" = I" /(4w U). All simulations
are initialized with the initial trailing-edge vortex positioned at z,(0) = z,(0)/(2A) = (1, 107%). Unless otherwise stated,
the initial horizontal position of the vortex gust is Xx(0) = Re{z(0)} = —20. Note that the dimensionless parameters
in Section 3.2 follow those used by Peng and Gregory (2015, 2017) for the sake of comparison and are slightly different
from the parameters in other sections. The circle centers of the symmetric airfoils considered herein require f,o = 0.

3.1. Effect of airfoil thickness on vortex-gust interaction

The effect of airfoil thickness on a vortex gust interaction with a stationary, symmetric Joukowski airfoil is now
examined. The time histories of the bound circulation and the trajectories of the incident and shed trailing-edge vortices
are investigated as a function of airfoil thicknesses. Joukowski airfoils with thickness-to-chord ratios of 0%, 12%, 20%, and
25% corresponded to the mapped circle in the f-plane centered at horizontal positions fyg = {0, —0.092, —0.155, —0.2},
respectively. The initial vertical vortex location is y~(0) = Im{z;(0)} = 0.2, and the vortex strength is I" = 0.2. This
nondimensional vortex strength is selected to match the numerical simulations by Manela (2013) for the special case of
a fixed flat plate airfoil. Details of this verification are presented in Appendix B.

The numerical simulations produce three trailing-edge vortices as a result of gust encounter for all airfoil thickness
considered, which also occurs in the case of a stationary flat plate (Manela, 2013). Fig. 3 compares the trajectories of
the incident vortex I and shed vortices yy, y», and y3 for increasing values of airfoil thickness. The trajectories of y,
2, ¥3, and I" all have a similar shape for different values of the airfoil thickness, where greater deviations are observed
at long times for larger airfoil thicknesses. The comparison of airfoil circulation for each case is shown in Fig. 4. Despite
minor differences in the airfoil circulation for different cases, larger airfoil thicknesses lead to larger peak-to-peak values
of airfoil circulation and may result in larger sectional lift coefficients in the course of a vortex gust encounter.

3.2. Model comparison against experiments
The analytical-numerical model in this work permits comparisons of the present scheme against vortex gust experi-

ments for non-flat airfoils that are available in the literature. Here, a comparison is made with an experimental study by
Peng and Gregory (2015) on the interaction of an incident vortex with a stationary NACA0012 airfoil in a uniform flow.
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Fig. 3. Effects of thickness-to-chord ratio on the trajectories of an incident line vortex I" and the three shed vortices y4, y», and y; resulting from
its encounter with a stationary Joukowski airfoil in uniform flow with zero angle of attack: (a) trajectories of trailing edge vortex y;; (b) trajectories
of trailing edge vortex y,; (c) trajectories of trailing edge vortex ys; (d) trajectories of incident vortex I'. Initial vertical vortex position y,(0) = 0.2
and vortex strength I" = 0.2.
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Fig. 4. Time histories of scaled bound circulation of a vortex gust encounter with a stationary airfoil as a function of thickness-to-chord ratio. Initial
vertical vortex position y(0) = 0.2 and vortex strength I" = 0.2.

Their study tracked the change in the incident vortex strength due to its encounter with the airfoil in addition to the
trajectory of this vortex as a function of the initial vertical vortex positions.

To furnish a comparison, the present numerical simulations use a symmetric Joukowski airfoil with 12% thickness,
where f,o = —0.092. Since the present area of interest is the parabolic airfoil leading edge, small differences in airfoil
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Fig. 5. Comparison of incident vortex gust trajectory near a 12% thickness airfoil against the experiments data of Peng and Gregory (2015, Fig. 16)
for I" /(Uc) = —0.48 (clockwise). The nondimensional vortex strength in the numerical simulation matches the value in the experiments prior to the
airfoil encounter. (a) Dependence of vortex trajectory on initial vortex placement. Splitting occurs for experiments with the vortex aligned with the
airfoil. The radius of the vortex core in the experiment is 0.1c. (b) Variation of the vortex strength as a function of initial position and downstream
locations. The point vortex does not change its initial strength and is denoted by the dashed line. Asterisks denote averaged experimental data. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

shape are negligible in this comparison. The dimensionless initial vertical locations are y(0)/c = {0, —0, 1, —0.2, —0.33},
where the chord length of the airfoil is related to A by the expression ¢ = 31 —2f,0 — A2 /(2fxo — A). For a NACA0012 airfoil,
c/\ ~ 4.034. The strength of the incoming vortex is matched with the experiments with I" /(Uc) = —0.48 (clockwise). It
is worth noting that the vortex strength does not change in the current analytic work due to its representation as a point
vortex.

Fig. 5 compares results from the current inviscid model simulations with available experimental measurements. The
experimental results are denoted by asterisks whose different colors correspond to various vortex positions, and the
associated simulation results are indicated by dashed lines. For initial vortex locations y,(0)/c = —0.2 (blue), and
—0.3 (black), the numerical and experimental results for trajectories agree when the vortex is far from the airfoil. Small
deviations of the vortex trajectory results are observed once the vortex passes beyond x/c > —0.3, which is likely due
to the displacement effect of the airfoil boundary layer. However, for initial vortex position y(0)/c = {—0.1, 0}, large
deviations are observed between the predicted vortex trajectories of the numerical simulation and the experimental data
when the vortex is close to the airfoil. As shown in Fig. 5(b), Peng and Gregory (2015) report a significant (30% to 40%)
drop in vortex strength due to deceleration effects of the strong adverse pressure gradient near the leading-edge of the
airfoil, where the vortex decay may not be sufficient to explain completely the large deviations of the vortex trajectories. A
collision of the vortex with the airfoil leading-edge is observed in the experiment when the initial incident vortex location
is yr(0)/c = 0.1n this case, the incident vortex with a finite core radius of 0.1c is split by the airfoil leading edge, as shown
in Fig. 5(a). Clearly, the point vortex model in the inviscid numerical simulation cannot represent the physics associated
with finite vortex cores nor any viscous—inviscid interactions between the vortex and airfoil. Thus, our inviscid simulation
model cannot predict the experimental trends in vortex strength and trajectories when the vortex passes sufficiently near
the airfoil to have significant viscous interactions with the airfoil. However, our model shows good agreement with the
experimental results when there is sufficient distance between the vortex and the airfoil for the inviscid assumption of
the model to hold.

A second comparison is made between the current analytic simulations and a separate experiment by Peng and
Gregory (2017) for I" /(Uc) = —0.196 (clockwise). Fig. 6(a) compares the incident vortex trajectories from initial locations
yr(0)/c = {0.05, —0.05}. The large deviations of vortex trajectories observed in Fig. 6(a) are similar to the results in
Fig. 5(a) for small separation distances between the vortex and airfoil. We note that the higher vortex initial position
yr(0)/c = 0.05 allows the vortex to pass above the airfoil in the experimental measurements, whereas the vortex
continues to take a path below the airfoil in the numerical simulation. The abrupt change in vortex path to ‘dive’ below the
oncoming edge was observed experimentally by Ziada and Rockwell (1982) for shear layer impingement on an edge and
was modeled analytically by Rogler (1978) for patch vortices encountering a flat plate. Fig. 6(b) shows that the increasing
of vortex initial location y-(0) significantly affects the corresponding vortex trajectories. Adjustment of the initial vortex
position in the numerical simulation indicates that above y(0)/c = 0.111, the vortex finally passes above the airfoil and
the vortex trajectory offsets downward due to its clockwise direction and its interaction with the airfoil.

3.3. Aeroelastic vortex—airfoil interactions

Attention is now turned to the aeroelastic interactions between the airfoil, the incident, wake and bound vorticity.
The investigations are separated into two parts. First, the effects of different lift contributions to the aerodynamic model
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Fig. 6. Comparison of incident vortex gust trajectory near a 12% thickness airfoil against the experiments data of Peng and Gregory (2017, Fig. 9)
for I' /(Uc) = —0.196 (clockwise). (a) Dependence of vortex trajectory on initial vortex placement. The radius of the vortex core in the experiment
is 0.1c. The point vortex does not change its initial strength and is denoted by the dashed line. Asterisks denote averaged experimental data. (b)
Computed vortex trajectories from various initial vertical vortex locations.

are examined numerically. Second, the conditions to achieve direct vortex impingement on the airfoil are explored with
respect to different aerodynamic parameters.

The linear airfoil suspension described by Eq. (17) introduces additional three dimensionless parameters to the
simulations: the reduced natural frequency @, = (2w,A)/U, the mass ratio 4 = m/my, and the damping ratio & =
cq4/(2mw,), where m; = 7 pc? /4 is the apparent mass of the fluid. The mass ratio is fixed to . = 10, which is representative
of a typical aluminum airfoil in air. The airfoil thickness-to-chord ratio of 12% corresponds to f,, = —0.092 in the
conformal mapping, and the angle of attack is identically zero. Structural damping is neglected (¢ = 0) in all simulations
presented.

3.3.1. Comparison of aerodynamic lift contributions in vortex-gust interaction

Per the full unsteady lift expression (18), the unsteady aeroelastic motion of the airfoil is influenced by force
contributions from quasi-steady circulatory lift, apparent mass effects, and the unsteady wake. Thus, the effects of the
aerodynamic model are assessed for cases of increasing physical sophistication, from the quasi-steady case to the full
unsteady case. In this assessment, the reduced natural frequency is set to w, = 0.5, the initial y-coordinate of the incident
vortex is ¥ ~(0) = 0.2, and the strength of incident vortex is I = 0.2. A more complete examination of aerodynamic model
assumptions may be carried out over various ranges of @y, y-(0), and I, but such an examination is beyond the scope of
this work and is not carried out here.

Fig. 7(a) compares the time variations of the scaled airfoil circulation for all these aerodynamic models. The airfoil
circulation history for each model increases with time from the beginning as the incident line vortex approaches to the
airfoil and has a sharp change at time t ~ 19.7. The sharp response results from the strong gust-airfoil interaction of
the incident line vortex approaching and passing by the airfoil, after which there is a damped oscillation in the bound
circulation (i.e., airfoil lift). In the quasi-steady case, the incident vortex passes by the leading-edge of the airfoil at
t = 19.24, and passes by the trailing edge at t = 20.03. Similarly in the added mass case, the incident vortex passes
by the leading-edge of the airfoil at t = 19.31, and passes by the trailing edge at t = 20.19, and in the full unsteady case,
the incident vortex passes by the leading-edge of the airfoil at t = 19.24, and passes by the trailing edge at t = 20.06.
Therefore, the total vortex passage times over the airfoil for the three aerodynamic model variations are At = 0.79,
0.89, and 0.82, respectively. Moreover, compared to the quasi-steady case, the added mass and full unsteady results
have lower-frequency responses in airfoil circulation due to the inclusion of the inertia of the fluid about the airfoil in
these cases. Note that the full unsteady case has a stronger initial response to the gust-airfoil interaction and engenders
additional aerodynamic damping due to the downwash effect of the wake. Fig. 7(b) shows the time histories of the airfoil
displacement for the three aerodynamic model variations, which have a similar response to the airfoil circulation histories
in Fig. 7(a).

3.3.2. Vortex impingement

The present scenario fixes the values of the mass ratio x = 10 and the structural damping & = 0. Therefore, the
mathematical model is controlled by two dimensionless parameters: the strength of the incident vortex I", and the
reduced natural frequency of the oscillator w,. Different initial locations of the incident vortex result in the passage of the
incident vortex either above or below the airfoil. Here, the bisection method is used to infer the initial vortex position y ~(0)
to achieve direct airfoil impingement given I" and @,. The accuracy of y(0) is controlled by the tolerance of the bisection
method, which is set to @ = @/(21) = 0.01 in the present work. Fig. 8 shows the incident vortex trajectories for different
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Fig. 8. Time histories of incident vortex trajectories and the bound circulation for different initial vortex positions, with reduced natural frequency
@, = 0.5 and incident vortex strength I" = 0.1: (a) time-varying trajectories of the incident line vortex I" (denoted 1, 2, 3, 4) resulting from
an incident vortex I with different initial positions y-(0) = {—0.4, —0.3, —0.1, 0} past a symmetrical Joukowski airfoil with 12% thickness. The
streamlines in the flow field are for the case when all vortices are absent, and the motion of the incident vortex across these lines under the influence
of the airfoil is noted. (b) Time variations of corresponding bound circulation on the airfoil during the shedding of the first two trailing-edge vortices.

initial vortex positions and the corresponding time histories of the airfoil circulation. Fig. 8(a) plots the trajectories of
the incident vortex in the aeroelastic simulations with different initial locations, atop the steady streamlines of the flow
field in the absence of vortices for visual reference. For y(0) = —0.4, the incident vortex follows initially the steady
streamline from the left inflow locations and moves below the airfoil at large times. As the initial location moves up to
the impingement location y(0) = —0.31, the incident vortex aligns with the steady streamline at early times. However,
near the airfoil, the vortex path deviates backward under influence of the shed vorticity and airfoil motion and moves
along a path near the stagnation streamline at the airfoil. As the initial location of the incident vortex moves upward,
smaller deviation of the path of the incident vortex is observed in Fig. 8(a).

Fig. 8(b) presents time variations of the airfoil circulation that occur over the initial time period where only the first
two trailing-edge vortices are shed. For the cases when the initial vortex location is y(0) = {0, —0.1}, which cause the
incident vortex to move above the airfoil, the corresponding magnitudes of the airfoil circulation time histories increase
similarly at early times. These time histories have a sharp change when the incident vortex passes closest to the airfoil
due to the shedding of the second vortex. However, for the case when the initial vortex moves below the airfoil, a smaller
peak-to-peak value and an extended flat response in the airfoil circulation with respect to time is observed in Fig. 8(b),
which may infer a weak interaction between the incident vortex and the airfoil. The initial vortex location y(0) = —0.31
that results in vortex impingement demonstrates a similar flat circulation response. However, the shedding of the second
vortex is delayed when the incident vortex passes near the stagnation streamline at the airfoil.

The effects of different aeroelastic parameters such as I" and @, are now studied with respect to the selection of
initial incident vortex locations to achieve vortex impingement. In the current numerical scheme, vortex impingement
commonly occurs while only the first trailing-edge vortex exists and has convected downstream of the airfoil, where
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Fig. 10. Variations of selection of initial incident vortex location ¥~(0) with varying strength of incident vortex I" when vortex impingement occurs,
with reduced natural frequency w, = 0.5.

its downwash effect on the airfoil may be neglected. Fig. 9 presents results for the vortex initial vertical position to
achieve direct airfoil impingement as a function for @, for I’ = 0.1. In these simulations, the downwash effect of
the airfoil wake has been neglected in the aerodynamic model. It is clear from Fig. 9 that there are upper and lower
asymptotic limits on the initial vertical vortex positions to have impingement, where y-(0) — —0.17 for small values of
wp and y(0) — —0.328 for large values. Recalling that these simulations are performed at fixed mass ratio and without
structural damping, the lower and upper limits correspond to negligible spring restoring force (free airfoil) and dominant
spring (rigid support) limits. Importantly, the results demonstrate a monotonic change in initial vortex position y(0)
with respect to the reduced natural frequency for a given value, and these values of ¥-(0) are bounded by the low and
high frequency limits of @,.

Lastly, Fig. 10 determines y-(0) for impingement for fixed reduced frequency w, = 0.5 as a function of the incident
vortex strength I". The value the initial vertical position of the incident vortex decreases monotonically with increasing
I' and indicates the need for lower vortex positioning for direct impingement for stronger incident vortices.

Some additional commentary is warranted at this point with respect to the validity of this inviscid model to
predict vortex impingement conclusions accurately for real fluids. A comparison of the present model against the airfoil
experiments in Section 3.2 indicates clearly that the airfoil boundary layer has a strong influence on the trajectories of
vortices passing closely above or below the airfoil. However, it remains unclear what influence if any the boundary layer
has the conditions for direct impingement for fixed or aeroelastic airfoil. Companion experimental efforts to test the
validity of the present model predictions would be valued but have not yet conducted to the authors’ knowledge.
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4. Conclusions

An analytical system of equations is developed to simulate numerically the aeroelastic interactions of an incident line
vortex with a Joukowski airfoil on a linear elastic suspension. The mathematical framework is modeled by using dynamic
conformal mapping techniques. The dynamical problem for the incident vortex motion and trailing edge wake evolution
is studied using potential flow theory and the Brown and Michael equation for vortices shed from the airfoil trailing edge.

Numerical simulations of the analytical model are verified in the limiting cases of stationary and harmonically-plunging
flat plates, and the effect of airfoil thickness on the vortex gust interaction is systematically examined for stationary,
symmetric Joukowski airfoils. Comparisons of the numerical solutions against vortex gust interaction data for fixed real
airfoils indicate good agreement for vortex path prediction when the incident vortex is sufficiently far from the airfoil to
have mild to negligible viscous interactions with the airfoil and its boundary layer. However, the numerical agreement
of vortex path predictions is increasingly poor for incident vortex positions closer to the airfoil. The change in strength
of the incident vortex due to viscous effects of the airfoil boundary layer that was identified by Peng and Gregory (2015)
is shown to be a good indicator of the degree of violation of the inviscid model assumptions and of the disagreement
between the model and experimental observation.

The influence of lift contributions in the aerodynamic model are assessed in the context of the aeroelastic vortex
gust-airfoil framework. The aeroelastic results of all three aeroelastic models of increasing sophistication (quasi-steady,
added mass, and full unsteady) demonstrate an oscillatory damping of airfoil circulation and plunge displacement in long
times in the absence of structural damping. The full unsteady case adds more aerodynamic damping to the aeroelastic
model and imparts a larger impulse to the airfoil circulation and structural response from its gust encounter relative to
other variations of the aerodynamic model that is due to the unsteady wake contribution to the lift.

The aeroelastic framework is then used to determine the conditions for achieving direct impingement of an incident
line vortex with the elastically-mounted airfoil. The aeroelastic results of a symmetric Joukowski airfoil with 12%
thickness-to-chord ratio demonstrate that the incident vortex follows initially the steady streamline in the uniform
flow, but deviates backward and then moves along a path near the stagnation streamline at the airfoil near where
the vortex impingement occurs. The initial vortex placement for airfoil impingement changes monotonically with the
reduced natural frequency in a specific range that depends on the vortex strength. However, for fixed incident vortex
strength, asymptotic limits on the vortex placement to achieve impingement are discussed numerically in the limits of
high and low reduced natural frequency of the elastic suspension. Therefore, there is a finite range of vortex positions
where vortex impingement occurs for aeroelastic vortex gust encounters that depends upon the strength of the incident
vortex. Companion experimental comparisons of aeroelastic vortex-airfoil interactions and the associated fluid effects on
impingement prediction have not yet been carried out to the authors’ knowledge and are desired for validation and to
identify any necessary improvements to the physics modeling.
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Appendix A. Scalar form of emended Brown and Michael equation

The original emended Brown and Michael equation is Howe (1996)

dx,, v; dyy, .
L.V 4+ — =v, - VY, i=1,2. 22
dt it yn dt va ! (22)
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Eq. (22) can be reexpressed in vector format as

dx dy 8l1/1 3'1’1 "2} d)/n 8'1’1 311/1

=. 2. L — il = (vy, =, —, 23
(dt dt) ( ax ~ dy ) * Yo dt () ( dx 8y> (23)

dx dy 8'1/2 8% v, d)/n 3W2 811/2

— = |\ = = — — = (U, N =) 24
(dt dt) ( ax ~ dy ) * Yo dt (e, ) ( ax ~ dy ) (24)

which can be also expanded respectively as
dx 8l111 dy 3'1/1 "2} d]/n 811/1 8l111

—— 4+ = — —— = v— +vy—, 25
dt oax dt8y+yndt X8x+y8y (25)
dx o dy oW ¥, d o, o
o Yo% Jﬁ:vxiz_,_vyiz_ (26)
dt ox dt ady v dt 0x oy
From Egs. (25) and (26), the general scalar form of emended Brown and Michael equation may be written as
dx 1 dy,
4L H — = v, 27
a Ty T (27)
dy 1 dy,
= _ =, 28
de Ty e T Y (28)
where
W 8 g, 2
y ay
Hi = So50, w00y (29)
ax oy ax  dy
v 22—, 2
Hy = 55 au)/; _ &dxﬂ (30)
dy ox dy ox

Expressions (27) and (28) can be combined using z;n =x —1iy, and v;jn = vy — ivy to create the complex-valued scalar

form of the emended Brown and Michael equation:

dz} 1 dy

¥Yn . n *
4+ (Hy —iH))——— =] . 31

ar (i) =, (31)
Once the stream function ¥; (i = 1, 2) is known, it is possible to determine V¥; = (3W¥;/dx, d¥;/dy). Thus, H; and H, are
known, and the vortex motion can be analyzed from Eq. (31).

Appendix B. Verification of simulations

Consider the degenerate case of the generalized model in Fig. 1 that results in a rigid, flat plate of length 4A immersed
in a uniform flow with speed U in the x-direction. An incident line vortex of constant strength I is released into the flow
at the initial instant in time (t = 0) and passes near the airfoil. The airfoil moves harmonically in the y-direction with the
prescribed heaving motion

h(t) = eicos(wt), t >0, (32)

where ¢ <« 1 and w is the frequency of the heaving motion. Vortex shedding is produced to satisfy the Kutta condition
at the trailing edge of the airfoil. In this problem, we consider multiple vortices shedding which is discretized as a set
of line vortices whose positions z,, = x,, +1iy,, (n = 1,2,3,...) and strengths y, (n = 1, 2, 3,...) change with time.
This scenario has been previously investigated by Manela (2013) and furnishes a verification case for the more general
framework developed in this paper.

The dimensionless parameters and initial conditions replicate those in Manela (2013) to furnish a direct comparison:
X=2x/(21), 7 =y/(21), t = Ut/(21), ® = w(2A)/U and I" = I'" /(4w UX). For a flat plate airfoil, the center fy in Eq. (2) is
set to the origin, and the initial line-vortex location is Z-(0) = (—20, 0.2). The strength of the incident vortex is I" = 0.2.
As also observed by Howe (1996), the numerical results are insensitive to this initial placement provided it is sufficiently
near the edge. Initial placements of the vortex within a non-dimensional distance of 0(10~3) to the trailing-edge did not
affect the present numerical results. However, at the instant when a new point vortex is produced at the trailing edge
vortex, the Brown and Michael equation has a singularity that can affect numerical simulations with very small time steps.
Michelin and Llewellyn Smith (2009) resolve this issue by solving analytically for the motion of the shed vortex in its first
time step using the analysis of Cortelezzi (1995). This correction has not been incorporated here and was found to not be
necessary in the present simulations to achieve numerical convergence.
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Fig. 11. Trajectories of an incident line vortex I" and three shed vortices y4, y,, and y; from a stationary flat plate airfoil in uniform flow: (a)
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Fig. 12. Time histories of scaled airfoil circulation for different frequencies of prescribed heaving motions of a flat plate with ¢ = 0.01.

B.1. Stationary flat plate

When the flat plate airfoil is stationary (¢ = 0), the numerical results of the vortex-interaction indicate that dy;/dt does
not change sign after the third vortex is shed from the trailing edge. Therefore, the trailing edge wake can be described
by only three trailing-edge vortices shed into the wake under the emended Brown and Michael framework. Numerical
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results for the trajectories of the three shed vortices and their strengths are illustrated in Fig. 11 and replicate Fig. 2 of
Manela (2013).

B.2. Flat plate under prescribed plunging motion

For a flat plate is under prescribed harmonic heaving motion (¢ = 0.01), the results shown in Fig. 12 verify and
replicate Fig. 4(d) in Manela (2013).
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