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Abstract—To promote development of Mobile Crowdsensing
Systems (MCSs), numerous auction schemes have been proposed
to motivate mobile users’ participation. But, task diversity of
MCSs has not been fully explored by most existing works.
To further exploit task diversity and improve performance
of MCSs, in this paper, we investigate the joint problem of
sensing task assignment and schedule with considering multi-
dimensional task diversity, including partial fulfillment, bilaterally-
multi-schedule, attribute diversity, and price diversity. First, task
owner-centric auction model is formulated and two distributed
auction schemes (CPAS and TPAS) are proposed such that each
task owner can locally process auction procedure. Then, mobile
user-centric auction model is established and two distributed
auction schemes (VPAS and DPAS) are developed to facilitate
local auction implementation. These four auction schemes differ
in their approaches to determine winners and compute payments.
We further rigorously prove that all the four auction schemes
(CPAS, TPAS, VPAS, and DPAS) are computationally-efficient,
individually-rational, and incentive-compatible and that both
CPAS and TPAS are budget-feasible. Finally, we comprehensively
evaluate the effectiveness of CPAS, TPAS, VPAS, and DPAS via
comparing with the state-of-the-art in real-data experiments.

Index Terms—Mobile crowdsensing system; truthful auction;
task assignment; task schedule; distributed algorithm.

I. INTRODUCTION

The recent years have witnessed the extraordinary pro-
gresses of Mobile Crowdsensing Systems (MCSs) which sig-
nificantly advance data collection and sharing via motivating
mobile users’ participation in sensing activities. As the core
component of MCSs, mobile users process sensing activities
using various mobile devices (e.g., smartphones and tablets)
and are paid rewards to compensate their costs such as re-
source consumption (e.g., energy and bandwidth) and privacy
leakage (e.g., location exposure [1]), and others. Since present
mobile devices (smartphones, tablets and vehicle-embedded
sensing devices (GPS)) are embedded more computing, com-
munication, and storage resources than traditional mote-class
sensors [2], the major superiorities of MCSs over the tra-
ditional mote-class sensor networks lie in the reduced cost
to deploy specialized sensing infrastructures as well as the
enhanced applicability to a variety of real applications that
demand resources and sensing modalities beyond the current
mote-class sensor processes. MCSs have been widely applied
to traffic congestion detection, wireless indoor localization,
pollution monitoring, etc [2]–[4]. Such power of MCSs roots
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at the active participation of mobile users to collect and share
sensory data. Thus, to become more efficient and applicable,
MCSs should first deal with the critical problem: “how to
motivate mobile users to perform sensing tasks?”

To encourage mobile users to join MCSs, a number of
auction-based incentive mechanisms have been developed
from various aspects to assign and schedule sensing tasks [3],
[5]–[18]. Nevertheless, the following crucial issues have been
overlooked in most of existing works. (i) In many auction
models [13], [15]–[20], a task is assigned to a mobile user
only if the task can be completely implemented by the mobile
user, which is impractical in many scenarios. As a matter of
fact, as a mobile user’s available working duration in an MCS
is limited, a task may not be completed by one mobile user
at a time (e.g., pollution monitoring within a specific area
during a long-term period). (ii) Task diversity in MCSs is
not fully investigated. On one hand, sensing tasks may have
different requirements in terms of location, implementation
duration, types of sensors, and so on; on the other hand, mobile
users also vary in their locations, available working duration,
equipped sensors. Ignoring task diversity in MCSs may lead to
inefficient task assignment and ineffective task implementation.
(iii) Moreover, due to the aforementioned diversities of task
requirement and user availability, the prices demanded by a
mobile user to process different tasks are also different. Since
auction is a kind of market-based scheme, this price diversity
should be well formulated in auction models. (iv) Last but
not least, with the dramatic increase in the scale of MCSs,
it becomes more difficult and expensive to find a centralized
institution authorized by third party to dominate the auction
process [3], [21].

Inspired by the above challenges, the intent of this paper is
to solve the joint problem of task assignment and scheduling in
MCSs taking into task diversity from different dimensions. (i)
Partial fulfillment, which means a task can get assignment if
it can be partially completed by mobile users in time domain.
For instance, a task requests sensory data at a certain location
from 9:00am to 11:00am, a mobile user who is the only user
can collect the required data from 9:30am to 10:30am, and
then the task is assigned to the mobile user. (ii) Bilaterally-
multi-schedule, where one mobile user can process multiple
tasks in both the time and space domains while a task can
be scheduled to multiple mobile users in time domain, further
improving task assignment efficiency. Partial fulfillment and
bilaterally-multi-schedule together reflect diverse assignment
in time and space domains. (iii) Attribute diversity, which
indicates that the task requirement and the user availability
vary in task attributes in terms of location, time duration, and

Authorized licensed use limited to: Georgia State University. Downloaded on May 27,2020 at 18:02:37 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2987881, IEEE
Transactions on Mobile Computing

2

types of sensors. (iv) Price diversity, which says that every
mobile user could require different prices to carry out different
tasks. The existing auction schemes [3], [13]–[18], [22] do not
consider task schedule in the time domain and thus cannot be
applied to solve our problem. More importantly, extending the
existing auctions to enable partial fulfillment, bilaterally-multi-
schedule, attribute diversity, and price diversity is nontrivial.
As a result, it is challenging to develop auction schemes to
possess the above four features.

To tackle this challenge, four auction schemes are elabo-
rately designed to satisfy different application requirements.
First, we model the proposed joint problem as a reverse
auction with task owners being auctioneers, where partial ful-
fillment, attribute diversity, and price diversity are considered.
Within such a framework, two distributed auction schemes,
cost-preferred auction scheme (CPAS) and time schedule-
preferred auction scheme (TPAS), are proposed. Then, to
achieve bilaterally-multi-schedule, we mathematically formu-
late the proposed joint problem to be an auction for mobile
users working as auctioneers. Correspondingly, two distributed
auction schemes, valuation-preferred auction scheme (VPAS)
and distance-preferred auction scheme (DPAS), are developed.
These four auction schemes differ in their approaches to deter-
mine winners and compute payments. By conducting thorough
theoretical analysis, we prove that all of CPAS, TPAS, VPAS,
and DPAS can achieve computational-efficiency, individual-
rationality, and incentive-compatibility and that both of CPAS
and TPAS can also ensure budget-balance. Meanwhile, these
four auction schemes differ in their approaches to deter-
mine winners and payments as well as their computational
complexities, so that they can adapt to different application
requirements, for which the major properties of the four
proposed auction schemes are summarized in Table I. Further-
more, via intensive real-data experiments, the performance of
our proposed auction schemes are validated. Our innovative
contributions are addressed below:

• To the best of our knowledge, this is the first work to study
auction models to achieve partial fulfillment, bilaterally-
multi-schedule, attribute diversity, and price diversity for
task assignment and schedule in MCSs.

• Distributed auction framework is designed to facilitate task
owners/mobile users to locally control their auctions without
collecting global information in MCSs, enhancing scalabil-
ity of MCSs and reducing communication cost at the side
of cloud platform.

• A cost-preferred auction scheme (CPAS) is proposed to
assign each winning mobile user multiple working durations
and a time schedule-preferred auction scheme (TPAS) is
proposed to allocate each winning mobile user one contin-
uous working duration.

• A valuation-preferred auction scheme (VPAS) and a
distance-preferred auction scheme (DPAS) are developed,
in which each mobile user can schedule a series of tasks
for implementation according to task values and locations,
respectively.

• In-depth theoretical analysis is performed to prove the
properties of our proposed auction schemes in terms

TABLE I
SUMMARY OF AUCTION SCHEMES PROPOSED IN THIS PAPER.

Auction Individual- Budget- Incentive- Time
schemes rationality balance compatibility complexcity
CPAS X X X O(n3 log(n))
TPAS X X X O(n2 log(n))
VPAS X N/A X O(m2 log(m) + nl)
DPAS X N/A X O(m log(m) + nl)

of computational-efficiency, individual-rationality, budget-
feasibility, and truthfulness.

• A comprehensive comparison with the state-of-the-art are
well conducted in real-data experiments to evaluate the
performance of our proposed auction schemes in terms of
allocation efficiency, working time utilization, STOs’ cost,
MUDs’ valuation, and truthfulness.
The rest of this paper is organized as follows. We briefly

summarize the related work in Section II. At the side of
task owners who act as auctioneers, the system model and
problem formulation are presented in Section III, and two
auction schemes are proposed in Section IV and Section
V, respectively. Next, we formulate the problem for mobile
users acting as auctioneers in Section VI and present two
auction schemes in Section VII and Section VIII, respectively.
After evaluating the performance of the four proposed auction
schemes in Section IX, we conclude this paper in Section X.

II. RELATED WORK

The existing auction-based task assignment mechanisms for
mobile crowdsensing are briefly summarized in this section.

Traditionally, auction mechanism can be controlled by
an auctioneer in a centralized fashion [13]–[17], [23]–[28].
In [13], a reverse auction was proposed for the cloud platform
to minimize cost, in which the service coverage of smart-
phones are taken into account. Jin et al. [14] designed a single-
minded and a multi-mined reverse combinatorial auctions
that can obtain sub-optimal social welfare by considering the
information quality of mobile users. In [15], with considering
mobile user dynamics and randomness of tasks, an offline
auction and an online auction were proposed. In [16] three
auction schemes were developed for three different scenarios
of mobile crowdsensing, including single-requester single-
bid model, single-requester multiple-bid model, and multiple-
requester multiple-bid model. Ji et al. [17] investigated the
discretization in crowdsensing systems and designed two auc-
tion mechanisms, in which each user has a uniform subtask
length. In [23], two incentive mechanisms were designed to
reduce the waste of sensory data due to the spatial correla-
tion of different mobile participants. In [24], the quality of
sensing is considered in platform’s valuation function, and a
budget-feasible auction was designed with approximating ratio
approaching 2e

e−1 . Tang et al. [25] developed an integrated
framework by combining a double auction-based incentive
mechanism and a data aggregation mechanism, which not only
achieves truthfulness, individual rationality, computational ef-
ficiency, and non-negative social welfare, but also generates
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high accuracy in the data aggregation results. In [26], the
incentive mechanism maximized the number of recruited users
and the utility functions. Khaledi et al. [27] proposed a multi-
dimensional auction to make task allocation among a set
mobile nodes in mobile cloud computing. In [28], a truthful
double auction mechanism was proposed to reach max-min
fairness. But, each of the above auction models just simply
considered one assignment condition, such as task’s loca-
tion [13], [23], [26], [27], quality requirement [14], demand
computing resource [25] and required sensing time [17], and
has limitation on fully exploiting task diversity for practical
applications.

To enhance the performance of mobile crowdsensing, some
distributed incentive mechanisms have been designed [3], [21],
[29]. In [3], the authors first formulated the problem of task
selection for mobile users as a non-cooperative task selection
game and then investigated the equilibriums and convergence
of the game. In the proposed game, the objective is to maxi-
mize each mobile user’s utility by finding an order to complete
one or more sensing tasks that locate at different places.
To maximize social welfare, Duan et al. [21] proposed a
distributed algorithm, in which both task’s demand and mobile
user’s time allocation strategy change over the prices published
by a centralized cloud platform, and the centralized cloud
platform updated the prices according to the demands of tasks
and supplies of mobile users. In [29], a multi-stage stochastic
programming approach is designed based on distributed game
theoretic methodology under the multi-platform and multi-user
scenario, which stops once Walrasian equilibrium is reached.

Different from the prior works, in this paper, we pro-
pose to design more practical distributed truthful auction
schemes for task assignment and schedule in MCSs by fully
exploring multi-dimensional task diversity, including partial
fulfillment, attribute diversity, price diversity, and bilaterally-
multi-schedule, which can further advance multi-dimensional
diversity in mobile crowdsensing systems. More importantly,
when the auction economic properties should be simultane-
ously achieved, performing a distributed auction to satisfy the
needs of multi-dimensional diversity is not a trivial problem.

III. AUCTION FORMULATION FOR TASK OWNERS

A. System Model

The MCS consists of a set of task owners (STOs) to demand
sensing service, a set of mobile users who are equipped with
smart devices (MUDs) to supply sensory data, and a cloud
platform that provides connection and information announce-
ment for STOs and MUDs.

There exist m STOs, each of which requests a task imple-
mentation, denoted by Π = {π1, π2, · · · , πm} the set of tasks.
Since every STO has only one task request, “STO i’s task” and
“task πi” are interchangeable in this paper. Each task πi has
four attributes, including locations, starting time, ending time,
and resources (e.g., camera and gyroscope), which imply the
STOs’ requirements to process task. Each STO i’s sensing task
information can be expressed by fπi = (Lπi , [α

π
i , β

π
i ], Rπi ),

where Lπi is the required location of task πi, απi and βπi
are respectively the starting time and the ending time of task

πi, and Rπi is a set of required sensor resources to process
task πi. Each STO i also has a budget bi to complete task
πi per unit time. Let Γ = {γ1, γ2, · · · , γn} be the set of
MUDs, in which each MUD γj is allowed to work for at
most one STO. Similarly, each MUD γj has initial location
Lγj , available starting time αγj , available ending time βγj , a set
of sensor resources Rγj in smart device, and an average moving
rate λγj . The formal form of each MUD γj’s sensing service
information is represented as fγj = (Lγj , [α

γ
j , β

γ
j ], Rγj , λ

γ
j ).

The cost of each MUD γj to implement task πi contains two
parts: i) moving cost from location Lγj to location Lπi ; and ii)
resource consumption cost on smart device. To cover the task
implementation cost, each MUD γj submits a price vector
Aj =< a1j , a2j , · · · , amj > where aij (1 ≤ i ≤ m) is an
asking price per unit time slot.

As MUD γj may need to move from Lγj to Lπi to process
the required task, we should calculate the actual starting time.
Given the Euclidean distance d(Lπi , L

γ
j ) and the moving rate

λγj , MUD γj arrives at Lπi at time tαij =
d(Lπi ,L

γ
j )

λγj
+ αγj . For

simplicity, we assume that an MUD can start working as soon
as it arrives at a task’s required location. Let Tij be MUD γj’s
maximum available duration for performing πi and |Tij | be the
number of time slots within Tij . Then Tij can be calculated
according to the following six cases:
• If tαij ≥ βπi , task πi is finished when MUD γj arrives and

thus γj cannot process πi, i.e., Tij = ∅;
• If βγj ≤ απi , task πi starts when MUD γj’s available

duration ends. Therefore, γj cannot process πi, and Tij =
∅;

• If απi ≤ tαij < βγj < βπi , MUD γj arrives when/after task
πi begins, and MUD γj’s available duration ends before
task πi’s ending time. Thus, Tij = [tαij , β

γ
j ];

• If απi ≤ tαij < βπi ≤ βγj , MUD γj arrives when/after
task πi begins and MUD γj’s available duration ends
when/after task πi’s ending time. Therefore, Tij =
[tαij , β

π
i ];

• If tαij < απi < βγj < βπi , MUD γj arrives before task πi
begins and MUD γj’s available duration ends before task
πi’s ending time. In this case, Tij = [απi , β

γ
j ];

• If tαij < απi < βπi ≤ βγj , MUD γj arrives before
task πi begins and MUD γj’s available duration ends
when/after task πi’s ending time. As a result, we have
Tij = [απi , β

γ
j ].

Finally, the notations used in this paper are presented in
Table II.

B. Problem Formulation
Suppose MUD γj obtains an assigned duration T sij for task

πi and the number of time slots within T sij is |T sij |. Since Tij
is the maximum available duration of MUD γj for task πi, we
have T sij ⊆ Tij and 0 ≤ |T sij | ≤ |Tij |. The task assignment is
indicated by xij ∈ {0, 1}; that is, xij = 1 if and only if πi is
assigned to γj . As each MUD γj works for at most one STO,
there must be

∑m
i=1 xij ≤ 1. If MUD γj implements task πi,

γj can obtain a payment pij from STO i and receive a utility
Uγj :

Uγj =

m∑
i=1

uγij =

m∑
i=1

xij(pij − aij |T sij |). (1)
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TABLE II
LIST OF NOTATIONS USED IN THIS PAPER.

Notation Description
m Number of tasks
n Number of MUDs
Π Set of tasks
Γ Set of MUDs
πi Task πi
γj MUD γj
fπi πi’s sensing task information
fγj γj ’s sensing service information
Lπi πi’s required location
Lγj γj ’s location

[απi , β
π
i ] Starting time and ending time of πi

[αγj , β
γ
j ] Starting time and ending time of γj

Rπi Set of sensors resources required by πi
bi Budget for πi
Rγj Set of sensors resources provided by γj
λγj γj ’s moving rate
aij γj ’s asking price per time unit to process πi

d(Lπi , L
γ
j ) Euclidean distance between Lπi , Lγj

Tij γj ’s maximum available duration for performing πi
T sij γj ’s assigned duration T sij for task πi
|Tij | Number of time slots of Tij
|T sij | Number of time slots of T sij
xij Task assignment indicator

A practical crowdsensing scenario is taken into account, in
which each STO i independently decides the winning MUDs
and schedules their working time slots. In other words, each
STO i works as an auctioneer of its local task auction that is
formulated as a reverse auction:

min

n∑
j=1

xijaij |T sij |; (2a)

s.t.
n⋃
j=1

xijT
s
ij ⊆ [απi , β

π
i ]; (2b)

n∑
j=1

xij |T sij | ≤ |βπi − απi |; (2c)

xij ∈ {0, 1}, 1 ≤ j ≤ n; (2d)
T sij ⊆ Tij , 1 ≤ j ≤ n. (2e)

In Eq. (2), the objective is to minimize the cost for task as-
signment while ensuring the following constraints: i) Eq. (2b)
requests that the union of scheduled working durations cannot
exceed the task’s duration; ii) Eq. (2c) implies that the total
allocated time slots cannot be more than the number of slots of
the task’s duration; iii) Eqs. (2d) and (2e) represent the ranges
of xij and T sij , respectively.

C. Auction Economic Properties

In this paper, we aim to achieve the following economic
properties in each STO’s auction [24], [27], [30]:
• Individual-rationality. No MUD obtains a negative utility,

i.e., Uγj ≥ 0 for all γj ∈ Γ, which can encourage MUDs to
join the auction

• Budget-balance. In each STO i’s local auction, budget-

balance means
n∑
j=1

xijbi|T sij | −
n∑
j=1

xijpij ≥ 0 for all

1 ≤ i ≤ m, which ensures that each STO has enough
payment paid to the winning MUDs.

Fig. 1. STOs’ distributed auction framework.

• Incentive-compatibility. In each STO i’s auction, incentive-
compatibility ensures that each MUD γj ∈ Γ’s utility can
be maximized if and only if the asking price is aij = āij for
all πi ∈ Π, where āij is the true asking price of MUD γj
for task πi. This is also called “truthfulness” making sure
that no MUD can increase utility by manipulating bidding
prices.
If an auction can simultaneously satisfy the above three

properties, it is economic robust and thus can attract more
mobile users’ participation.

D. Task Owner’s Distributed Auction Framework

As shown in Fig. 1, there are four major stages in our
proposed auction framework:
• Stage 1: Publish Task Information. STOs announce their

task information and deadline of accepting bids from MUDs
on the cloud platform.

• Stage 2: Submit Service Information & Price. MUDs
submit their service information and asking prices to STOs.

• Stage 3: Announce Auction Results. After collecting
service information and asking prices from MUDs, STOs
compute the potential winners, working time, and payments,
and then announce auction results and deadline of accepting
final decision from MUDs.

• Stage 4: Reply Final Decision. If an MUD is selected as a
potential winner by one or more STOs, it should reply final
decision to STOs.
If a STO is rejected by the selected MUDs, the STO

continues its task auction to schedule the unassigned working
time slots in a multi-round manner until the task duration
is completely assigned or no MUD can be selected. In this
paper, the essence of auction implementation at the side of
STOs is performing a single-side auction iteratively until a
termination condition is satisfied, and any two rounds of the
auction are independent to each other. Since each round of the
auction is treated as a new one, it does not matter whether
MUDs change their bid prices or not. On the other hand,
if an MUD accepts a task, it exits auction; it continues to
compete for tasks until no task auction is conducted. Within
the proposed auction framework for STOs, two different
policies can be adopted for task assignment : i) cost-preferred
policy: i) STOs compute auction results according to the
non-decreasing order of MUDs’ asking prices; and ii) time
schedule-preferred policy: STOs compute auction results
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Algorithm 1 Auction Scheme for STO i

1: Input: fπi , bi, and ξ.
2: Output: {xij}, {T sij}.
3: Set {xij} = {0}, {T sij} = {∅}, and Tui = [απi , β

π
j ];

4: Publish task information fπi ;
5: Receive service information {fγj } and asking prices {aij} from

the MUDs;
6: repeat
7: if ξ = cpas then
8: Run Alg. 2 to compute auction results;
9: end if

10: if ξ = tpas then
11: Run Alg. 3 to compute auction results;
12: end if
13: Collect replies from MUDs, record {xij}, and update Tui =

Tui \
⋃n
j=1 xijT

s
ij ;

14: until Tui = ∅ or no potential winner is selected.

based on the first-come-first-serve manner. The adoption of
policies and deadlines for publishing task information and
announcing auction results are determined through MUDs’
negotiation before the auction. The implementation of the
auction schemes is presented in Algorithm 1, and the auction
schemes are detailed in Section IV and Section V, respectively.

IV. COST-PREFERRED AUCTION SCHEME

In this section, a Cost-Preferred Auction Scheme (CPAS) is
proposed (i.e., ξ = cpas in line 7 of Algorithm 1), where each
STO i greedily schedule task according to the non-decreasing
order of the MUDs’ asking prices. Since CPAS is performed
in a multi-round manner and the auction procedure of each
round is the same, we just demonstrate the auction procedure
of a round in the following part of this section.

A. Potential Winner Determination & Payment Calculation

After receiving service information {fγj } and asking price
{aij} from MUDs, STO i determines a set of available MUDs
as: Γc(πi) = {γj |(Tij ∩ Tui ) 6= ∅, Rγj ⊆ Rπi , and aij ≤ bi},
where Tui is the currently unassigned time duration of task πi.
This is implemented in lines 2-7 of Algorithm 2.

1) Potential Winner Determination: The set of potential
winners is W (πi) = ∅ initially. To schedule working time,
STO i first sorts MUDs in Γc(πi) in a non-decreasing order
in terms of their asking prices and obtains a sorted set
Γc′(πi) (line 8 in Algorithm 2). Next, STO i scans MUDs
in Γc′(πi) and allocates unassigned time slots in a greedy
fashion. If MUD γj’s current available duration (Tij ∩ Tui )
is not fully scheduled to other available MUDs, i.e., (Tij ∩
Tui ) ∩ (

⋃
γj′∈W (πi)

T sij′) 6= (Tij ∩ Tui ), MUD γi is selected

as a potential winner and assigned a set of time slots that
are not allocated to current potential winners in W (πi), i.e.,
T sij = (Tij ∩ Tui )\(Tij ∩ Tui ∩ (

⋃
γj′∈W (πi)

T sij′)) (lines 9-14 in

Algorithm 2).
2) Payment Calculation: STO i computes payments for

each selected MUD γj by identifying γj’s critical neighbor
who is an MUD γk in Γc(πi) such that γj can not be
selected if aij is higher than aik. Different from the existing
works [13], [15]–[20] in which each winner has only one

Algorithm 2 Cost-Preferred Task Scheduling & Pricing for
Task πi
Input: fπi , bi, Tui ,Γ, {fγj }, {aij}.
Output: W (πi), {T sij}, {pij}.

1: Set Γc(πi) = ∅,W (πi) = ∅, {T sij} = {∅}, and {pij} = {0};
2: for each γj ∈ Γ with submitted fγj and aij do
3: Calculate Tij ;
4: if (Tij ∩ Tui ) 6= ∅, Rγj ⊆ R

π
i , and aij ≤ bi then

5: Γc(πi) = Γc(πi) ∪ γj ;
6: end if
7: end for
8: Sort all MUDs in Γc(πi) in non-decreasing order based on {aij}

and obtain the sorted set Γc′(πi);
9: for j = 1 to |Γc′(πi)| do

10: if (Tij ∩ Tui ) ∩ (
⋃

γj′∈W (πi)

T sij′) 6= (Tij ∩ Tui ) then

11: W (πi) = W (πi) ∪ γj ;
12: T sij = (Tij ∩ Tui )\(Tij ∩ Tui ∩ (

⋃
γj′∈W (πi)

T sij′));

13: end if
14: end for
15: for each γj ∈Wπ

i do
16: Set {T s′ik} = {∅} and T s′ij = T sij ;
17: Sort all the MUDs in Γc(πi)\γj in a non-decreasing order

based on {aik} and obtain the sorted set Γc′−γj (πi);
18: Set k = 1 and W−γj (πi) = ∅;
19: while k ≤ |Γc′−γj (πi)| and T s′ij 6= ∅ do
20: if (Tik ∩ Tui ) ∩ (

⋃
γj′∈W−γj (πi)

T s′ij′) 6= (Tik ∩ Tui ) then

21: W−γj (πi) = W−γj (πi) ∪ γk,
22: T s′ik = (Tik ∩ Tui )\(Tik ∩ Tui ∩ (

⋃
γj′∈W−γj (πi)

T s′ij′));

23: if T s′ik ∩ T s′ij 6= ∅ then
24: pij = pij + aik|T s′ik ∩ T s′ij |,
25: T s′ij = T s′ij \(T s′ik ∩ T s′ij );
26: end if
27: end if
28: k = k + 1;
29: end while
30: if T s′ij 6= ∅ then
31: pij = pij + bi|T s′ij |.
32: end if
33: end for

critical neighbor, each selected MUD γj in CPAS has one
or more critical neighbors because the time slots of T sij may
be assigned to one or more other MUDs if MUD γj does not
join the auction (lines 17 - 32 of Algorithm 2). Therefore, the
payment is calculated according to γj’s all critical neighbors.
To identify the critical neighbors, STO i sorts MUDs in
Γc−γj (πi) = Γc(πi) \ γj in the non-decreasing order in terms
of their asking prices, selects winners again in the sorted
set Γc′−γj (πi), and allocates working time slots. An MUD
γk is a critical neighbor of MUD γj if their allocated time
durations are overlapping, i.e., T s′ik ∩ T s′ij 6= ∅ where T s′ik is
the time duration assigned to MUD γk and T s′ij records the
remaining time duration in T sij that is not allocated to others.
Accordingly, the critical payment is aik|T s′ik ∩ T s′ij |. But, if no
critical neighbor is found for MUD γj , the critical payment is
STO i’s budget bi|T s′ij |.

Remark: In Algorithm 2, each selected MUD receives
a working duration T sij that contains one or more sub-
durations. For example, the duration of task πi is from
1:00pm to 5:00pm, γj’s working duration is T sij =
{[2:00pm, 3:00pm], [4:30pm, 5:00pm]} containing two sub-
durations, and the number of working time slots is |T sij | = 90
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minutes.

B. Final Service Decision

MUDs make their service decision when the auction results
are published. Let Π(γj) be the set of tasks, of which their
owners select MUD γj as a potential winner, i.e., Π(γj) =
{πi|γj ∈ W (πi) and πi ∈ Π}. The decision is determined as
follows.
• If |Π(γj)| = 0, MUD γj loses all STOs’ local auctions,

does not need to reply, and remains in the auction until no
task auction is conducted.

• If |Π(γj)| = 1, MUD γj is a potential winner in a STO i’s
location auction, accepts the service request, and exits the
auction.

• If |Π(γj)| > 1, MUD γj is selected by multiple STOs and
chooses the task which yields the maximum utility, i.e., πi =
arg max

πh∈Π(γj)
{(phj − ahj |T shj |)}.

C. Property Analysis

In this subsection, we mathematically prove the perfor-
mance of CPAS.

Lemma 1: Algorithm 2 can terminate within O(n2 log(n)).
Proof: From line 2 to line 7, the running time of forming

set Γc(πi) is at most n that is the number of MUDs in set Γ.
In line 8, sorting the MUDs in Γc(πi) costs at most n log(n)
time. The potential winner determination, in lines 9-14, has a
time complexity of O(n). Similarly, the time of sorting process
of line 17 is O(n log(n)), and critical neighbors can be found
within O(n). The “for” loop from line 15 to line 33 has at most
n iterations and stops within O(n2 log(n)). In a summary, the
time complexity of Algorithm 2 is O(n2 log(n)).

Theorem 1: The time complexity of Algorithm 1 with ξ =
cpas is O(n3 log(n)).

Proof: In Algorithm 1, each STO i stops if and only if
either of the two conditions satisfies: i) Tui = ∅; and ii) no
potential winner is selected. In the worst case, STO i picks
only one potential winner at each round but is rejected by
the potential winner. Under this situation, the potential winner
definitely accepts another STO’s task request and then exits the
auction. Thus, after at most n rounds, STO i ends its auction
as no potential winner can be selected. From Lemma 1, we
can conclude that the time complexity of Algorithm 1 with
ξ = cpas is O(n3 log(n)).

Theorem 2: The auction scheme CPAS is individually-
rational to all MUDs.

Proof: If MUD γj loses all STOs’ auctions,
m∑
i=1

xij = 0

and Uγj = 0. If MUD γj wins task πi, xij = 1 and T sij > 0.
Moreover, aik ≥ aij for γj’s every critical neighbor γk and
bi ≥ aij for STO i, thus pij ≥ aij |T sij |. As a result, Uγj =
m∑
i=1

uγij =
m∑
i=1

xij(pij − aij |T sij |) ≥ 0.

Theorem 3: The auction scheme CPAS achieves budget-
balance for all STOs

Proof: In Algorithm 2, all the potential winners are
selected from Γc(πi) and aij ≤ bi for all γj ∈ Γc(πi). Line
24 and line 31 of Algorithm 2 show that bi ≥ pij for each

winner γj . Therefore,
n∑
j=1

xijbi|T sij | −
n∑
j=1

xijpij ≥ 0, i.e.,

CPAS achieves budget-balance for each STO i.
Lemma 2: In each STO i’s auction CPAS, if MUD γj is

selected as a potential winner with a price aij , it can still be a
potential winner with a smaller price a1

ij < aij and T sij ⊆ T s1ij ,
where T s1ij is the assigned working duration corresponding to
a1
ij .

Proof: Suppose that pos(a1
ij) and pos(aij) are the po-

sitions of MUD γj in the sorted set Γc′(πi) when bidding
with a1

ij and aij , respectively. Since a1
ij < aij , pos(a1

ij) ≤
pos(aij). According to lines 8 to 14 of Algorithm 2, MUD γj
submitting as1ij can be successfully scheduled a time duration
T s1ij and T sij ⊆ T s1ij .

Theorem 4: The auction scheme CPAS is incentive compat-
ible to all MUDs.

Proof: Proving this theorem is equivalent to prove that in
each STO i’s local auction CPAS, each MUD γj ∈ Γ cannot
enhance utility by submitting aij 6= āij , which is analyzed
from the following cases.

Case 1: aij < āij (or aij > āij) and MUD γj loses the
auction with both aij and āij . In this case, γj’s utility received
from STO i’s auction is zero.

Case 2: aij < āij and MUD γj wins the auction with both
aij and āij . According to Lemma 2, T̄ sij ⊆ T sij and |T̄ sij | ≤
|T sij |, where T̄ sij and |T̄ sij | respectively denote the assigned time
duration and the number of time slots of T̄ sij corresponding to
āij . Accordingly, the payment pij can be re-computed via two
parts: i) the payments p̄ij paid for time duration T̄ sij that is the
same for both āij and aij ; and ii) payment ∆pij paid for time
duration T sij \ T̄ sij , in which aij |T sij \ T̄ sij | ≤ ∆pij ≤ āij |T sij \
T̄ sij | as aij ≤ aik ≤ āij for γj’s every critical neighbor γk.
Correspondingly, the received utility is uγij = pij − āij |T sij | =
(p̄ij− āij |T̄ sij |)+(∆pij− āij |T sij \ T̄ sij |). Since aij |T sij \ T̄ sij | ≤
∆pij ≤ āij |T sij \ T̄ sij |, we have (∆pij − āij |T sij \ T̄ sij |) ≤ 0.
As a result, we obtain uγij = pij − āij |T sij | ≤ p̄ij − āij |T̄ sij |,
i.e., MUD γj cannot get a higher utility by bidding aij .

Case 3: aij < āij and MUD γj wins with aij but loses
with āij . In this case, āij is higher than its critical neighbors’
asking prices {aik} or is higher than STO i’s budget bi. That
is, āij |T̄ sij | ≥ pij . Therefore, uγij = pij − āij |T̄ sij | ≤ 0.

Case 4: aij > āij and MUD γj wins with āij but loses
with aij . Thus, uγij = 0 which cannot be higher than the
utility corresponding to āij .

Case 5: aij > āij and MUD γj wins with both āij and
aij . Similar to the analysis of Case 2, we have T sij ⊆ T̄ sij
and |T sij | ≤ |T̄ sij |. The payment p̄ij consists of two parts: i)
pij paid for duration T sij that is the same for both āij and
aij ; and ii) ∆p̄ij paid for time duration T̄ sij \ T sij , in which
āij |T̄ sij \ T sij | ≤ ∆p̄ij ≤ aij |T̄ sij \ T sij | as āij ≤ aik ≤ aij for
γj’s every critical neighbor γk. Thus, the received utility is
uγij = pij− āij |T sij | ≤ (p̄ij− āij |T sij |)+(∆p̄ij− āij |T̄ sij \T sij |);
that is, MUD γj’s utility cannot be enhanced by submitting
aij > āij .

Therefore, each STO i’s auction CPAS is truthful for all
MUDs. Furthermore, from Subsection IV-B, it can be found
that each MUD γj cannot increase the value of max

πi∈Π(γj)
{(pij−

aij |T sij |)} by cheating on aij for each task πi. Therefore, the
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Algorithm 3 Time-Preferred Task Scheduling for Task πi
1: Input: fπi , Tui , Γ, {fγj }.
2: Output: {T sij}.
3: Set Γt(πi) = ∅ and {T sij} = {∅} for ∀γj ∈ Γ(πi);
4: for each γj ∈ Γ with submitted fγj and aij do
5: Calculate tαij and Tij ;
6: if (Tij ∩ Tui ) 6= ∅ and Rγj ⊆ R

π
i then

7: Γt(πi) = Γt(πi) ∪ γj ;
8: end if
9: end for

10: Sort all MUDs in Γt(πi) in the non-decreasing order based on
{tαij} and get the sorted set Γt′(πi);

11: Set Start = απi ;
12: for j = 1 to |Γt′(πi)| do

13: if Start < min{βγj , β
π
i } and (Tij ∩ Tuij) ∩ (

j−1⋃
j′=1

T sij′) 6=

(Tij ∩ Tuij) then
14: T sij = [Start,min{βγj , β

π
i }];

15: Start = min{βγj , β
π
i }.

16: end if
17: end for

auction scheme CPAS can achieve truthfulness for all MUDs.

V. TIME-PREFERRED AUCTION SCHEME

Notice that in the auction scheme CPAS, an MUD’s as-
signed working duration contains one or more sub-durations.
While, to allocate one single continuous duration to MUDs,
we propose a time schedule-preferred auction scheme (TPAS)
(i.e., ξ = tpas in line 10 of Algorithm 1), where STOs
schedule MUDs based on a first-come-first-serve manner in
the time domain and then computes their payments.

A. Potential Winner Determination & Payment Calculation

Before determining the potential winners, each STO i com-
putes the set of available MUDs Γt(πi) = {γj |(Tij ∩ Tui ) 6=
∅ and Rγj ⊆ Rπi }.

1) Potential Winner Determination: With the first-come-
first-serve policy, each STO i greedily assigns a working
duration to each available MUD γj according to the non-
decreasing order of MUDs’ arrival time tαij = {d(Lπi , L

γ
j )

λγj
+αγj }

until no available MUD can be selected or the unassigned
working duration Tui becomes empty. To schedule a working
duration that is as long continuous as possible, STO i assigns
each available MUD γj ∈ Γt(πi) a duration from γj’s prior
MUD’s ending working time to the time min{βπi , β

γ
j } if

this time duration is unassigned. The pseudo-code of the
scheduling scheme is presented in Algorithm 3.2) Payment Calculation: To compute payments of potential
winners, each STO i sorts all available MUDs’ based on
their asking prices in the non-decreasing order. Without loss
of generality, we assume that a1 ≤ a2 ≤ · · · ≤ a|Γt(πi)|.
Then, each STO i finds a maximum index kπi such that
akπi ≤ bi < akπi +1 and determines winners according to the
following two cases.
• Case 1: T sikπi 6= ∅. If γj ∈ Γt(πi), 1 ≤ j ≤ kπi and T sij 6= ∅,

set W (πi) = W (πi) ∪ γj and pij = bi|T sij |, where bi is the
critical price of all MUDs in STO i’s auction.

• Case 2: T sikπi = ∅. If γj ∈ Γt(πi), 1 ≤ j < kπi and T sij 6= ∅,
set W (πi) = W (πi) ∪ γj and pij = aikπi |T

s
ij |, in which

MUD γkπi and aikπi are the critical neighbor and the critical
price of all MUDs in STO i’s auction, respectively.

B. Final Service Decision

In the scheme TPAS, MUDs make their final decision using
the method the same as that in Subsection IV-B.

C. Property Analysis

In this subsection, the performance of the auction scheme
TPAS is rigorously analyzed.

Lemma 3: The computational complexity of Algorithm 3 is
O(n log(n)).

Proof: From line 4 to line 9, the construction of set Γt(πi)
can be done within O(n). In line 10, the sorting process can
be completed within O(n log(n)). From line 12 to line 17, the
scheduling process contains at most n iterations, each of which
has time complexity of O(1). Therefore, the computational
complexity of Algorithm 3 is O(n log(n)).

Lemma 4: The computational complexity of payment cal-
culation in TPAS is O(n).

Proof: To compute the payments, each STO i identifies a
maximum index kπi by scanning Γt(πi). As |Γt(πi)| ≤ n, the
computation complexity of payment calculation is O(n).

Theorem 5: The time complexity of Algorithm 1 with ξ =
tpas is O(n2 log(n)).

Proof: From Lemma 3, Lemma 4 and Theorem 1, this
theorem can be proved.

Theorem 6: The auction scheme TPAS is individually-
rational for all MUDs.

Proof: If an MUD γj is a loser,
m∑
i=1

xij = 0. Thus, for

any πi ∈ Π, pij = 0 and |T sij | = 0, indicating Uγj = 0. If
an MUD γj is a winner, ∃πi ∈ Π such that xij = 1. So,
Uγj = uγij = pij − aij |T sij | ≥ 0. Therefore, TPAS achieves
individual-rationality for all MUDs.

Theorem 7: The auction scheme TPAS ensures budget-
balance for all STOs.

Proof: If task πi is successfully assigned, we have
n∑
j=1

xij ≥ 1,
n∑
j=1

xij |T sij | > 0, and pij ≤ bi|T sij | for each MUD

γj in W (πi). Thus, for STO i,
n∑
j=1

xijbi|T sij |−
n∑
j=1

xijpij ≥ 0.

Lemma 5: For each STO i, the scheduling results {T sij}
of Algorithm 3 are independent of all MUDs’ asking prices
{aij}.

Proof: As shown in lines 12 to 16 of Algorithm 3, the
calculation of γj’s working duration T sij does not depend on
any aij . Therefore, this theorem holds.

Lemma 6: In each STO i’s local auction TPAS, if MUD γj
is a potential winner with aij , it can also become a potential
winner with a1

ij < aij .
Proof: When MUD γj submits a smaller price a1

ij , γj’s
sorted position in Γt(πi) changes from j to j1. Since a1

ij <
aij , j1 ≤ j ≤ kπi .Lemma 5 shows that the assigned working
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duration T sij remains the same for MUD γj . Thus, γj can be
selected as a potential winner by STO i.

Theorem 8: The auction scheme TPAS can guarantee incen-
tive compatibility for all MUDs.

Proof: Proving this theorem is equivalent to prove that in
each STO i’s local auction TPAS, each MUD γj ∈ Γ cannot
enhance uγij by asking for a price aij 6= āij , for which there
are five cases to be considered.

Case 1: aij < āij (or aij > āij) and MUD γj loses the
auction with both aij and āij . In this case, γj’s utility is zero.

Case 2: aij < āij and MUD γj wins with both aij and
āij . From Lemma 5, the assigned working duration is T sij
for MUD γj with both aij and āij . The pricing approach in
TPAS and Lemma 6 imply that aij < āij ≤ aikπi ≤ bi, i.e.,
aij |T sij | < āij |T sij | ≤ pij . Therefore, the utility is unchanged,
i.e., uγij = pij − āij |T sij |.

Case 3: aij < āij and MUD γj wins with aij but loses
with āij , indicating āij is higher than the critical price aikπi
or STO i’s budget bi. Thus, we have āij |T sij | ≥ pij and uγij =
pij − āij |T sij | ≤ 0.

Case 4: aij > āij and MUD γj wins with āij but loses
with aij . In this case, uγij = 0 which cannot be higher than
the utility corresponding to āij .

Case 5: aij > āij and MUD γj wins with both āij and aij .
Similar to Case 2, we have: i) T sij for MUD γj with both aij
and āij ; and ii) āij < aij ≤ aikπi ≤ bi. Thus, the utility keeps
the same, i.e., uγij = pij − āij |T sij |.

The above five cases prove that each STO i’s auction is
incentive-compatible. Moreover, from Subsection IV-B, one
can see that each MUD γj cannot increase max

πi∈Π(γj)
{(pij −

aij |T sij |)} through cheating on aij for any task πi. Therefore,
the auction scheme TPAS can ensure incentive-compatibility
for all MUDs.

Remark: In TPAS, the process of task scheduling is in-
dependent of MUDs’ asking prices. As a result, an MUD
that has been assigned a non-empty working duration cannot
win the auction if the MUD’s asking price is higher than
the critical price. In fact, any price-independent scheduling
algorithm can be applied in TPAS to obtain {T sij} without
impact on truthfulness for the MUDs.

VI. AUCTION FORMULATION FOR MOBILE USERS

A. Problem Formulation

In the aforementioned auction schemes (including CPAS
and TPAS), task owners work as auctioneers to schedule tasks,
and each mobile user is assigned at most one task. To further
enhance crowdsensing efficiency, in this section, a distributed
auction framework is proposed for mobile users where MUDs
can work as auctioneers to handle task assignment. Notably,
besides partial fulfillment, attribute diversity and price diver-
sity, bilaterally-multi-schedule is also taken into consideration,
i.e., each mobile user can process multiple tasks while each
task can be scheduled to multiple mobile users. Different from
CPAS and TPAS, there are two challenging issues in MUDs’
auctions.
• Due to location diversity, MUDs need enough time to

arrive at the requested location of next scheduled task.

To be concrete, suppose MUD γj schedules working du-
rations T s(i−1)j = [αs(i−1)j , β

s
(i−1)j ], T

s
ij = [αsij , β

s
ij ] and

T s(i+1)j = [αs(i+1)j , β
s
(i+1)j ] for tasks πi−1, πi and πi+1,

respectively. We have βs(i−1)j +
d(Lπi−1,L

π
i )

γγj
≤ αsij and

βsij +
d(Lπi ,L

π
i+1)

γγj
≤ αs(i+1)j .

• To guarantee incentive-compatibility for STOs, MUDs cal-
culate payments for each scheduled time slot rather than
each sub-duration. When MUD γj schedules working dura-
tion T sij to task πi, task owner STO i should make a payment
pij(t) to γj for each time slot t ∈ T sij . Accordingly, STO
i’s utility can be computed via Eq. (3).

USTOi =

n∑
j=1

uSTOij =

n∑
j=1

∑
t∈Tsij

yij(t)[bi − pij(t)], (3)

where yij(t) ∈ {0, 1} indicates whether MUD γj is
accepted by STO i to work for πi in time slot t, i.e.,
yij(t) = 1 if and only if γj implements πi in time slot
t.
Thus, the local auction of each MUD γj can be formulated

in Eq. (4).

max

m∑
i=1

∑
t∈Tsij

yij(t)bi; (4a)

s.t.
m∑
i=1

∑
t∈Tsij

yij(t) ≤ |βγj − α
γ
j |; (4b)

n∑
j=1

∑
t∈Tsij

yij(t) ≤ |βπi − απi |; (4c)

yij(t) ∈ {0, 1}, 0 ≤ i ≤ m, t ∈ [αγj , β
γ
j ]; (4d)

T sij ⊆ Tij , 0 ≤ i ≤ m. (4e)

In Eq. (4), the objective is to maximize valuation of
sensing service assignment and schedule with considering
the following constraints: i) Eq. (4b) requires that the union
of scheduled working durations for all tasks cannot exceed
γj’s available duration; ii) Eq. (4c) shows that the union of
scheduled working durations cannot exceed task’s duration;
and iii) Eq. (4d) and Eq. (4e) indicate the ranges of yij(t) and
T sij , respectively.

B. Auction Economic Properties

In each MUD’s local auction, two economic properties are
required [30]:
• Individual-rationality. In this paper, USTOi ≥ 0 for all
πi ∈ Π.

• Incentive-compatibility. In each MUD γj’s auction,
incentive-compatibility ensures that each STO i can receive
a maximum utility if and only if bi = b̄i for all γj ∈ Γ,
where b̄i is the true value of STO i’s budget.

C. Mobile User’s Distributed Auction Framework

As shown in Fig. 2, both the distributed auction frameworks
of mobile users and task owners contain four stages, including
publish service/task information, submit task/service informa-
tion & budgets/prices, announce auction results, and replay
final decision, in which the main difference is that in MUDs’
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Fig. 2. MUDs’ distributed auction framework.

Algorithm 4 Auction Scheme for MUD γj

1: Input: fγj and Aj , and ξ.
2: Output: {yij(t)}, {T sij}, and {pij(t)}.
3: Set {yij(t)} = {0}, {T sij} = {∅}, and {pij(t)} = {0};
4: Publish sensing service information fγj ;
5: Receive sensing task information {fπi } and budget {bi} from the

sensing task owners;
6: if ξ = vpas then
7: Run Alg. 5 to compute auction results;
8: end if
9: if ξ = dpas then

10: Run Alg. 7 to compute auction results;
11: end if
12: Collect replies from the STOs using Alg. 6.

auctions, MUDs compute auction results and STOs make final
decisions. In the proposed auction framework for MUDs, we
also design two different policies for task assignment and
schedule: i) valuation-preferred policy: MUDs determine
potential winners according to the non-increasing order of
the differences between STOs’ budgets and MUDs’ prices;
and ii) distance-preferred policy: MUDs determine potential
winners based on a nearest-task-first manner. The adoption
of policy could be negotiated among MUDs before starting
auctions. The implementation of auction schemes within the
distributed auction framework is presented in Algorithm 4.
Since each MUD in Algorithm 4 can process multiple tasks,
the auction schemes, Alg. 5 and Alg. 7, just need to run once.
The details of Alg. 5 and Alg. 7 are illustrated in Section VII
and Section VIII, respectively.

VII. VALUATION-PREFERRED AUCTION SCHEME

When ξ = vpas in Algorithm 4, VPAS is performed for
each MUD, which is demonstrated in this section.

A. Potential Task Assignment & Payment Calculation

When MUD γj obtains task information {fπi } and budgets
{bi} from STOs, it identifies a set of available tasks as
Πv(γj) = {πi|Tij 6= ∅, Rγj ⊆ Rπi , and aij ≤ bi} where the
computation of Tij is described in Section III-A. This is shown
in lines 3-8 of Algorithm 5.

1) Potential Task Assignment: In Algorithm 5, W (γj)
records the potential assigned tasks and is empty initially. To
schedule tasks, MUD γj sorts all available tasks in Πv(γj) in
a non-increasing order according to their budgets and receives
a sorted set Πv′(γj) (i.e., line 9 of Algorithm 5). Then, MUD
γj scans tasks in Πv′(γj) and greedily schedules working

Algorithm 5 Valuation-Preferred Task Scheduling & Pricing
for MUD γj

Input: fγj , Aj ,Π, {STO i}, {fπi }, {bi}.
Output: W (γj), {T sij}, {pij(t)}.

1: Set Πv(γj) = ∅,W (γj) = ∅, {T sij} = {∅}, and {pij(t)}={0};
2: Lγ

current

j = Lγj , αγ
current

j = αγj , and βγ
current

j = βγj ;
3: for each STO i with submitted fπi and bi do
4: Calculate Tij ;
5: if Tij 6= ∅, Rγj ⊆ R

π
i , and aij ≤ bi then

6: Πv(γj) = Πv(γj) ∪ πi;
7: end if
8: end for
9: Sort all tasks in Πv(γj) in non-increasing order based on {bi}

and obtain the sorted set Πv′(γj);
10: for i = 1 to |Πv′(γj)| do
11: Update T currentij ;
12: if T currentij ∩ (

⋃
πi′∈W (γj)

T si′j) 6= T currentij then

13: W (γj) = W (γj) ∪ πi;
14: T sij = T currentij \(T currentij ∩ (

⋃
πi′∈W (γj)

T si′j));

15: Set Lγ
current

j = Lπi and αγ
current

j = ending time of T sij ;
16: end if
17: end for
18: for each πi ∈W (γj) do
19: Set Lγ

current

j = Lγj ;
20: Sort all the tasks in Πv(γj)\πi in a non-increasing order based

on {bk − akj} and obtain the sorted set Πv′
−πi(γj), where

(0 ≤ k ≤ |Πv(γj)\πi|);
21: Set {T s′kj} = {∅} and T s′ij = T sij ;
22: Set k = 1 and W−πi(γj) = ∅;
23: while k ≤ |Πv′

−πi(γj)| and T s′ij 6= ∅ do
24: Update T currentkj ;
25: if T currentkj ∩ (

⋃
πi′∈W−πi (γj)

T s′i′j) 6= T currentkj then

26: W−πi(γj) = W−πi(γj) ∪ πk,
27: T s′kj = T currentkj \(T currentkj ∩ (

⋃
πi′∈W−πi (γj)

T s′i′j));

28: if T s′kj ∩ T s′ij 6= ∅ then
29: for each t ∈ T s′kj ∩ T s′ij do
30: pij(t) = aij + (bk − akj);
31: end for
32: T s′ij = T s′ij \(T s′kj ∩ T s′ij );
33: end if
34: Set Lγ

current

j = Lπk ;
35: end if
36: k = k + 1;
37: end while
38: if T s′ij 6= ∅ then
39: for each t ∈ T s′ij do
40: pij(t) = aij ;
41: end for
42: end if
43: end for

durations. A task πi ∈ Πv(γj) is selected if MUD γj has
enough time to move to the location of πi and provides valid
working duration, i.e., T currentij ∩(

⋃
πi′∈W (γj)

T si′j) 6= T currentij .

T currentij for πi is determined by its current location Lγ
current

j

and current available time period [αγ
current

j , βγ
current

j ] with
βγ

current

j = βγj , in which the computation of T currentij is the
same as that of Tij described in Section III-A. The assigned
duration of MUD γj for task πi is the duration that has not
been scheduled to other tasks, i.e., T sij = T currentij \(T currentij ∩
(

⋃
πi′∈W (γj)

T si′j)) (see lines 10-17 of Algorithm 5). Next, update
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Algorithm 6 Final Decision of STO i

1: Input: Γ(i), fπi , {T sij}, and {pij(t)}.
2: Output: yij(t).
3: Set {yij(t)} = {0};
4: for Each time slot t ∈ [απi , β

π
i ] do

5: γj′ = arg min
γj′′∈{γh|γh∈Γ(i),t∈Ts

ih
}
{pij′′(t)};

6: Set yij′(t) = 1;
7: end for

αγ
current

j = ending time of T sij and T currentij based on the
Euclidean distance d(Lπi , L

γ
j ) and the moving rate λγj .

2) Payment Calculation: After the potential task assign-
ment, each MUD γj calculates payments for the corresponding
STOs. For each time slot t ∈ T sij , STO i pays pij(t) to MUD
γj , which is decided by STO i’s critical neighbor. To find
critical neighbor of task πi in each time slot, MUD γj sorts
all tasks in Πv(γj)\πi in the non-increasing order in terms of
bk−akj with bk−akj ≥ 0 (see line 20 of Algorithm 5). Next,
MUD γj chooses tasks again from Πv(γj)\πi and schedules
working durations. Any task πk ∈ Πv(γj)\πi is a critical
neighbor of task πi if their scheduled working durations
overlap, i.e., T s′kj ∩ T s′ij 6= ∅ (see line 28 of Algorithm 5).
Thus, STO i makes a payment pij(t) = aij + (bk − akj) to
MUD γj for each time slot t ∈ T s′kj ∩ T s′ij , which is computed
in lines 23-37 of Algorithm 5. If t ∈ T sij does not overlap with
any scheduled working duration of πi ∈ Πv(γj)\πi, task πi
does not have any critical neighbor in t and pij(t) = aij (see
lines 38-42 of Algorithm 5).
B. Final Schedule Decision

STOs need to make their final decisions to maximize
utilities since each of them might be selected by more than
one MUD. Let Γ(i) represent the set of MUDs who select πi
at the stage of potential task assignment, i.e., Γ(i) = {γj |πi ∈
W (γj) and γj ∈ Γ}. For each time slot t ∈ [απi , β

π
i ], STO i

selects MUD γj ∈ Γ(i) who requests the minimum payment
as shown in line 5 of Algorithm 6, accepts the service provided
by γj in time slot t, and sets yij(t) = 1.

C. Properties Analysis

In this section, the performance of auction scheme VPAS
is analyzed theoretically in terms of computational efficiency,
individual-rationality, and truthfulness.

Theorem 9: The time complexity of Algorithm 4 with ξ =
vpas is O(m2 log(m) +nl), where l is the maximum number
of time units in a sensing task’s available time duration.

Proof: We first analyze the time complexity of Algo-
rithm 5. From line 3 to line 8, forming the set Πv(γj) costs
m. In line 9, the running time of obtaining Πv(γj) is at most
m log(m). The time complexity of potential task assignment,
in lines 10-16, is O(m). To calculate payments, the sorting
process is performed again (see line 20). Since there are at
most m selected tasks, lines 18-43 are iterated at most m
times. In addition, the “while” loop (lines 23-37) terminate
within O(m). Thus, the time complexity of Algorithm 5 is
O(m2 log(m)). The time complexity of Algorithm 6 is O(nl),
where l is the maximum number of time units in a sensing
task’s available time duration.

In Algorithm 4, the running time of lines 3-5 is O(1), that
of line 7 is O(m2(log(m))), and that of line 12 is O(nl).
Thus, the time complexity of Algorithm 4 with ξ = vpas is
O(m2 log(m) + nl).

Theorem 10: The auction scheme VPAS guarantees
individual-rationality for all STOs.

Proof: If STO i loses in every MUD γj’s local auction,
USTOi = 0. If STO i is a winner in at least one MUD γj’s
auction, T sij > 0. For STO i’s each critical neighbor STO k,
we have bi ≥ bk. Since pij(t) for each time slot t ∈ T sij is the
critical price, bi ≥ pij(t) for each time slot t ∈ T sij . Therefore,

USTOi =
n∑
j=1

uSTOij =
n∑
j=1

∑
t∈T sij

yij(t)(bi − pij(t)) ≥ 0.

Lemma 7: In each MUD γj’s VPAS auction, if task πi is
selected with bi, task πi can be still selected with b1i > bi and
T sij ⊆ T s1ij , where T s1ij is working duration of γj for πi.

Proof: We use pos(b1i ) and pos(bi) to denote the positions
of task πi in the sorted set Πv′(γj) when STO i’s budget is b1i
and bi, respectively. Since b1i > bi, there is pos(b1i ) ≤ pos(bi).
By running Algorithm 5, MUD γj will decide to perform task
πi during T s1ij with T sij ⊆ T s1ij .

Theorem 11: The auction scheme VPAS guarantees
incentive-compatibility for all STOs.

Proof: To prove this theorem, we first show that each STO
i cannot increase utility through submitting a budget bi 6= bi
in any MUD γj’s local auction, which is analyzed via the
following cases.

Case 1: bi > bi (or bi < bi) and STO i loses the auction
with both bi and bi. Consequently, the utility of STO i is zero
in this auction.

Case 2: bi > bi and STO i wins the auction with both bi and
bi. According to Lemma 7, T

s

ij ⊆ T sij , in which T
s

ij and T sij
represent the working durations assigned by γj when STO i’s
budget is bi and bi, respectively. Formally, let pij(t) and pij(t)
be payments of πi for each t ∈ T sij and t ∈ T sij , respectively.
Thus, we have pij(t) = pij(t) for each t ∈ T

s

ij ∩ T sij and
bi ≥ pij(t) ≥ bi for each t ∈ T sij\T

s

ij . Thus, STO i’s
utility is uSTOij = [bi|T sij\T

s

ij | −
∑

t∈T sij\T
s
ij

pij(t)] + [bi|T
s

ij | −∑
t∈T sij

pij(t)]. Additionally, bi|T sij\T
s

ij | −
∑

t∈T sij\T
s
ij

pij(t) =∑
t∈T sij\T

s
ij

(bi − pij(t)) ≤ 0 because bi ≥ pij(t) ≥ bi. Since

uSTOij ≤ bi|T
s

ij | −
∑
t∈T sij

pij(t), we can conclude that STO i

cannot increase utility with bi.
Case 3: bi > bi and STO i wins with bi but loses with bi.

In this case, bi is smaller than its critical neighbors’ budgets
{bk} or MUD γj’s price aij , indicating bi|T sij | ≤

∑
t∈T sij

pij(t).

Thus, we have bi|T sij | −
∑
t∈T sij

pij(t) ≤ 0.

Case 4: bi < bi and STO i wins with bi but loses with bi.
In this case, uSTOij = 0 which is not larger than the utility
when STO i submits bi.

Case 5: bi < bi and STO i wins with both bi and bi. In
this case, we have T sij ⊆ T

s

ij according to Lemma 7 and
pij(t) = pij(t) for each t ∈ T sij ∩ T sij . As a result, STO i’s

Authorized licensed use limited to: Georgia State University. Downloaded on May 27,2020 at 18:02:37 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2987881, IEEE
Transactions on Mobile Computing

11

Algorithm 7 Distance-Preferred Task Scheduling & Pricing
for MUD γj

Input: fγj , Aj ,Π, {STO i}, {fπi }, {bi}.
Output: W (γj), {T sij}, {pij(t)}.

1: Set Πd(γj) = ∅,W (γj) = ∅, {T sij} = {∅}, {T currentij } = {∅},
and {pij(t)}={0};

2: Lγ
current

j = Lγj , αγ
current

j = αγj , and βγ
current

j = βγj ;
3: for each STO i with submitted fπi do
4: Calculate Tij ;
5: if Tij 6= ∅ and Rγj ⊆ R

π
i then

6: Πd(γj) = Πd(γj) ∪ πi;
7: end if
8: end for
9: Πd′(γj) = Πd(γj);

10: while Πd′(γj) 6= ∅ and αγ
current

j 6= βγ
current

j do

11: πi = arg min
πi′∈Πd

′
(γj)
{
d(Lπ

i′ , L
γcurrent

j )

λ
γ
j

};

12: Update T currentij ;
13: if T currentij 6= ∅ then
14: Set T sij = T currentij and Lγ

current

j = Lπi ;
15: Set αγ

current

j = ending time of T sij ;
16: end if
17: Πd′(γj) = Πd′(γj)\πi;
18: end while
19: Sort all tasks in Πd(γj) in a non-increasing order based on
{bk − akj} and obtain the sorted set Πd′′(γj), where (0 ≤ k ≤
|Πd(γj)|);

20: Find a maximum index k′ such that bk′ − ak′j ≥ 0;
21: if T sk′j 6= ∅ then
22: for each πi ∈ Πd′′(γj) do
23: if i ≤ k′ and T sij 6= ∅ then
24: W (γj) = W (γj) ∪ πi;
25: for Each t ∈ T sij do
26: pij(t) = aij ;
27: end for
28: end if
29: end for
30: else
31: for each πi ∈ Πd′′(γj) do
32: if i < k′ and T sij 6= ∅ then
33: W (γj) = W (γj) ∪ πi;
34: for Each t ∈ T sij do
35: pij(t) = aij + (bk′ − ak′j);
36: end for
37: end if
38: end for
39: end if

utility is uSTOij = bi|T sij |−
∑
t∈T sij

pij(t) ≤ bi|T sij |−
∑
t∈T sij

pij(t)+

(bi|T
s

ij\T sij | −
∑

t∈T sij\T sij

pij(t)) = bi|T
s

ij | −
∑
t∈T sij

pij(t). That

is, STO i’s utility cannot be improved by setting bi < bi.
To sum up, each MUD γj’s VPAS auction is truthful for all

STOs. Moreover, from Algorithm 6, one can see that each STO
i cannot enlarge the value of min

γj′′∈{γh|γh∈Γ(i),t∈T sih}
{pij′′(t)}

for each scheduled time slot by cheating on bi. As a result, the
auction scheme VPAS is incentive-compatible for all STOs.

VIII. DISTANCE-PREFERRED AUCTION SCHEME

To reduce moving distance of each mobile user, we in this
section propose a distance-preferred auction scheme (DPAS),
in which task schedule follows a nearest-task-first manner. The
auction scheme DPAS for each γj is called in Algorithm 4
when ξ = dpas, and the procedure of DPAS is presented in
Algorithm 7.

A. Potential Task Assignment & Payment Calculation

At this stage, each MUD γj decides a set of available
tasks, i.e., Πd(γj) = {πi|Tij 6= ∅ and Rγj ⊆ Rπi }. The
corresponding implementation is described in lines 3-8 of
Algorithm 7.

1) Potential Task Assignment: Each MUD γj iteratively and
greedily selects tasks and schedules working durations accord-
ing to the nearest-task-first manner. In each iteration, MUD γj

selects the nearest task πi = arg min
πi′∈Πd′ (γj)

{d(Lπ
i′ , L

γcurrent

j )

λγj
}

from Πd(γj). Then, γj updates currently maximum avail-
able working duration T currentij for πi based on its cur-
rent location Lγ

current

j and current available time period
[αγ

current

j , βγ
current

j ] with βγ
current

j = βγj , in which the
computation of T currentij is the same as that of Tij described
in Section III-A. If T currentij is not empty, MUD γj per-
forms three actions: i) assign working duration to πi with
T sij = T currentij ; ii) set πi’s location as current location, i.e.,
Lγ

current

j = Lπi ; and iii) update its current starting time to the
time when γj finishes its scheduled working duration T sij for
πi, i.e., αγ

current

j = ending time of T sij . The computation of
each iteration is shown in lines 10-18 of Algorithm 7. MUD γj
terminates the iterations when no available task can be selected
or its current available duration becomes empty.

2) Payment Calculation: Each MUD γj first sorts all
available tasks in Πd′′(γj) in a non-increasing order based
on bk − akj with bk − akj ≥ 0 (see line 19 of Algorithm 7).
Then, each MUD γj finds a maximum index k′ such that
bk′ − ak′j ≥ 0 and calculates payments as follows:
• Case 1: T sk′j 6= ∅. MUD γj selects each πi ∈ Πd′′(γj) with

0 ≤ i ≤ k′ and T sij 6= ∅ as the potential winner. In this case,
the payment for each t ∈ T sij of πi ∈W (γj) is pij(t) = aij .

• Case 2: T sk′j = ∅. MUD γj selects each πi ∈ Πd′′(γj)
with 0 ≤ i < k′ and T sij 6= ∅ as the potential winner and
computes pij(t) = aij + (bk′ − ak′j).

B. Final Schedule Decision

The approach of STOs to make final decisions is the same
as that in Subsection VII-B.

C. Property Analysis

In this subsection, we theoretically prove the desired prop-
erties of the auction scheme DPAS.

Theorem 12: When ξ = dpas, the time complexity of Algo-
rithm 4 is O(m log(m)+nl), where l is the maximum number
of time units in a sensing task’s available time duration.

Proof: The procedure of DPAS is outlined in Algorithm 7.
From line 3 to line 8, the construction of set Πd(γj) costs
O(m). The scheduling process shown in lines 10-18 has a
time complexity of O(m). In line 19, the sorting process
can be done within O(m log(m)). From line 21 to line 39,
the time complexity of potential winner determination and
payment calculation is O(m). In a summary, DPAS can be
completed within O(m log(m)). In the line 12 of Algorithm 4,
the time complexity of Algorithm 6 is O(nl), where l is the
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maximum number of time units in a sensing task’s available
time duration. Therefore, the time complexity of Algorithm 4
with ξ = dpas is O(m log(m) + nl).

Theorem 13: The auction scheme DPAS is individually-
rational for all STOs.

Proof: Once the auction scheme DPAS is done, there
are two cases for each STO i. If task πi is not selected
in all MUDs’ auctions, STO i’s utility is USTOi = 0. If
task πi is selected by at least one MUD γj and is assigned
working duration Tij(s), we have pij(t) ≥ aij for each

t ∈ T sij . Therefore, USTOi =
n∑
j=1

∑
t∈T sij

yij(t)(bi − pij(t)) ≥ 0.

In conclusion, DPAS can achieve individual-rationality for all
STOs.

Lemma 8: In each MUD γj’s local auction DPAS, the
schedule results {T sij} of Algorithm 7 are independent of all
STOs’ budgets {bi}.

Proof: From line 10 to line 18 of Algorithm 7, it is seen
that the values of {T sij} are determined by task information
{fπi } and MUD’s service information {fγi } instead of {bi}.
Thus, this lemma holds.

Lemma 9: In each MUD γj’s local auction DPAS, if task
πi is selected with bi, πi can be still selected with b1i > bi.

Proof: As analyzed by Lemma 8, the working duration
T sij assigned by MUD γj is independent of bi. When STO i
submits a larger budget b1i > bi, task πi’s position in the sorted
set Π(γj)

d′ changes from i to i1, and i1 ≤ i ≤ k′ because of
b1i > bi. Therefore, STO i can also become a potential winner
for MUD γj .

Theorem 14: The auction scheme DPAS is incentive-
compatible for all STOs.

Proof: This theorem can hold if and only if each STO
i cannot enhance uSTOij with bi 6= bi in any MUD γj’s local
auction. The analysis process is shown below.

Case 1: bi > bi (or bi < bi) and STO i is a loser with both
bi and bi. In this case, STO i’s utility received from MUD γj
is zero.

Case 2: bi > bi and STO i wins with both bi and bi. When
STO i submits bi, we use pij(t) to represent STO i’s unit
payment in MUD γj’s auction. From Lemma 9, bi − aij >
bi − aij ≥ bk′ − ak′j ≥ 0. According to Lemma 8, MUD
γj schedules the same working duration T sij to STO i with
both bi and bi. If T sk′j 6= ∅, pij(t) = pij(t) = aij with t ∈
T sij . Thus, uSTOij = uSTOij = (bi − aij)|T sij |. If T sk′j = ∅,
pij(t) = pij(t) = aij + (bk′ − ak′j) with t ∈ T sij . Thus,
uSTOij = uSTOij = (bi − aij − (bk′ − ak′j))|T sij |. One can see
that STO i’s utility remains the same with both bi and bi.

Case 3: bi > bi and STO i wins with bi but loses with bi.
According to Algorithm 7, we have bi−aij ≥ bk′−ak′j ≥ 0 >
bi−aij . If T sk′j 6= ∅, pij(t) = aij for each t ∈ T sij and uSTOij =

(bi−aij)|T sij | < 0. If T sk′j = ∅, pij(t) = aij +(bk′−ak′j) for
each t ∈ T sij and uSTOij = [bi − aij − (bk′ − ak′j)]|T sij | < 0.

Case 4: bi < bi and STO i wins with bi but loses with bi.
In this case, uSTOij = 0 which cannot exceed uSTOij .

Case 5: bi < bi and STO i wins with both bi and bi. Similar
to Case 2, MUD γj schedules the same working duration T sij

to task πi with both bi and bi, and bi − aij > bi − aij ≥
bk′ − ak′j ≥ 0. Thus, we obtain uSTOij = uSTOij .

The above five cases show that every MUD γj’s auction
is truthful for all STOs. Therefore, the auction scheme DPAS
can ensure truthfulness for all STOs.

IX. PERFORMANCE EVALUATION

In this section, the baseline schemes, the experiment set-
tings, and experiment results are presented.

A. Baseline Schemes

Since there is no distributed auction for assigning sens-
ing tasks in mobile crowdsensing, three centralized auction
schemes are adopted for comparison, i.e., Task-SRC, MUD-
SRC and TDAM. In each centralized scheme, a cloud platform
(CP) acts as an auctioneer to compute the auction results.

Both of Task-SRC and MUD-SRC are modified based on a
single-minded reverse combinatorial auction [14] to adapt to
our considered scenarios. In Task-SRC, the CP owns all the
sensing tasks and recruits MUDs to minimize the social cost
with consideration of working time scheduling requirement
instead of the QoI coverage constraint. In MUD-SRC, the CP
publishes information of all MUDs and assigns all MUDs to
work for sensing tasks according to the bids from STOs.

TDAM is a variant of max-min fairness-based truthful
double auction [28] with an aim of maximizing the valuation
of sensing service assignment and schedule.

B. Experiment Settings

We evaluate the performance of seven auction schemes,
including CPAS, TPAS, VPAS, DPAS, Task-SRC, MUD-SRC,
and TDAM, by utilizing real data from Google Maps. The
crowdsensing scenarios are set as follows: i) the number of
tasks varies from 5 to 30; ii) the number of MUDs varies
from 10 to 35; iii) the locations of all tasks and MUDs are
selected from restaurants, tourist sites, and shopping malls
within downtown in Atlanta with area of four-square miles; iv)
each MUD walks from one location to another location; and
v) the moving time of each MUD between any two locations
is calculated through Google Maps app. We consider 10 types
of sensors and the number of each type of sensor is one. Each
task requests a certain number of sensors, which is a random
number uniformly picked from [3, 10]; similarly, each MUD is
equipped with a certain number of sensors, which is a random
number uniformly chosen from [1, 10]. Each STO’s budget
(and each MUD’s asking price) is an integer that is uniformly
selected from [10, 25] at random. In the experiments, the unit
time slot is one minute and the longest duration is 300 minutes.
There are three performance metrics adopted in our evaluation:
• Allocation Efficiency. The allocation efficiency of a task is

the ratio of the total number of assigned working time slots
to the number of requested working time slots.

• Working Time Utilization. The working time utilization
of an MUD is the ratio of the number of assigned working
time slots to the number of available working time slots.

• STOs’ Cost. The cost of a STO is defined in Eq. (2), and
the average cost of all STOs will be evaluated.
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Fig. 3. Ave. tasks’ allocation effi-
ciency (m=15).

Fig. 4. Ave. tasks’ allocation effi-
ciency (n=20).

Fig. 5. Ave. MUDs’ working time
utilization (m=15).

Fig. 6. Ave. MUDs’ working time
utilization (n=20).

Fig. 7. Ave. STOs’ cost (m=15). Fig. 8. Ave. MUDs’ valuation (n=20).

• MUDs’ Valuation. The valuation of an MUD is defined
in Eq. (4), and the average valuation of all MUDs will be
evaluated.

• Truthfulness. To examine the received utility when biding
truthfully and untruthfully, at each time, one MUD (or one
STO) is randomly selected with being set fake asking prices
(or budgets).

C. Experiment Results and Analysis

The performance is evaluated under two scenarios: (i) the
number of tasks is 15, and the number of MUDs increases
from 10 to 35; and (ii) the number of tasks changes from 5 to
30, and the number of MUDs is fixed at 20. The results are
shown in Fig. 3 through Fig. 8.

First, from the average allocation efficiency of all tasks in
Fig. 3 and Fig. 4, we obtain the following observations:
1) As shown in Fig. 3, the average allocation efficiency

increases when the number of MUDs increases. This is
because if more MUDs participate in crowdsensing, each
STO can recruit more MUDs to process task.

2) The results of Fig. 4 imply that the average allocation
efficiency decreases when the number of tasks increases,
because each STO may have less MUDs to work when
more STOs compete in crowdsensing.

3) VPAS and DPAS perform batter than CPAS and TPAS.
This is because each MUD in VPAS and DPAS can
implement multiple tasks but in CPAS and TPAS is allowed
to work for at most one task. That is, in VPAS and
DPAS, a larger portion of required working duration can be
scheduled to MUDs, bringing a higher allocation efficiency
for each STO.

4) CPAS performs better than TPAS. The reason mainly lies in
two aspects: i) compared with TPAS, CPAS could assign

more working time slots to MUDs; ii) the working time
schedule of TPAS is independent of MUDs’ asking prices,
leading to that some MUDs who have been scheduled a
working duration may still lose if their prices are higher
than the critical price.

5) The performance of VPAS is better than DPAS. This is due
to that working time schedule of DPAS is independent of
the MUDs’ asking prices and some MUDs who have been
scheduled a working time duration may become losers if
their prices are higher than the critical price.

6) Even both Task-SRC and MUD-SRC implement task as-
signment and scheduling in a centralized manner, the
performance of CPAS, TPAS, CPAS, and DPAS proposed
in this paper is very close to the performance of Task-
SRC and MUD-SRC (see DPAS vs Task-SRC and VPAS
vs MUD-SRC). This can validate the effectiveness of our
distributed auction schemes.

7) Moreover, all the four distributed schemes perform much
better than TDAM. In TDAM, each mobile user bids for
different tasks with one price, thus a mobile user either
wins all workable tasks or losses all workable tasks, reduc-
ing the allocation efficiency and working time utilization.

Then, we analyze the average working time utilization of
all MUDs, in which the results are presented in Fig. 5 and
Fig. 6. From Fig. 5, one can observe that the average working
time utilization of all MUDs decreases when the number of
MUDs increases, as more intense competition exists among
MUDs. On the other hand, as shown in Fig. 6, the average
working time utilization of all MUDs is increased when more
tasks are published, because it becomes easier for any MUD to
be scheduled to process tasks. In addition, VPAS and DPAS
perform better than CPAS and TPAS. This is because each
MUD can work for at most one task in CPAS and TPAS
but can work for multiple tasks in VPAS and DPAS. With
respect to the average MUD’s working time utilization, the
performance of CPAS and TPAS is close to that of TDAM,
the performance of VPAS is close to that of MUD-SRC, and
the performance of DPAS is close to that of Task-SRC. The
corresponding reasons are the same as those of observations
from 4) to 7) for Fig. 3 and Fig. 4.

Next, we compare the performance of CPAS, TPAS, Task-
SRC, and TDAM in terms of average cost of all STOs and
report the results in Fig. 7. According to Eq. (2), with more
assigned time slots, a STO’s auction cost is higher. As shown
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Fig. 9. MUD’s truthfulness in CPAS. Fig. 10. MUD’s truthfulness in
TPAS.

Fig. 11. STO’s truthfulness in VPAS. Fig. 12. STO’s truthfulness in DPAS.

in Fig. 7, the average cost of all STOs increases when the
number of MUDs increases because if more MUDs participate
in crowdsensing, more time slots of a task are assigned to
MUDs and more cost is spent to pay for MUDs’ sensing
service. Besides, Task-SRC has the largest average cost as it
has the highest MUDs’ working time utilization, and TDAM
has the smallest average cost as it has the lowest MUDs’
working time utilization. In particular, the average cost of
CPAS is very close to that of Task-SRC, and the average cost
of CPAS or TPAS is higher than that of TDAM, indicating
that our distributed auctions can obtain effective solutions to
the optimization problem in Eq. (2).

For each MUD’s local auction, the average valuation of
all MUDs in VPAS, DPAS, MUD-SRC, and TDAM is com-
pared via Fig. 8. As defined in Eq. (4), an MUD’s auction
valuation is increased as the number of assigned time slots
grows. The results in Fig. 8 show that the average MUDs’
valuation increases when the number of tasks increases. This
is because more tasks lead to more assigned time slots and
higher valuation for MUDs. In addition, MUD-SRC performs
best and TDAM performs worst; especially, the performance
of VPAS and DPAS is close to that MUD-SRC. Thus, the
effectiveness of our distributed auctions, VPAS and DPAS,
can be validated.

Furthermore, we verify truthfulness of CPAS, TPAS, VPAS
and DPAS, in which there are 20 tasks and 20 MUDs. In the
experiments, we randomly selected one MUD in CPAS and
TPAS (or one STO in VPAS and DPAS) at a time, set fake
asking prices (or budgets) to the selected MUD (or STO),
and compare received utilities when truthfully bidding and
untruthfully bidding. We totally select five different MUDs
and five different STOs and present the results in Figs. 9-12.
Notice that all the selected MUDs (or STOs) cannot receive
higher utilities via cheating on asking prices (or budgets). For
example, in Fig. 9, the selected MUDs are the 1st MUD, the
3rd MUD, the 5th MUD, the 15th MUD, and the 17th MUD.
The situations of these MUDs are illustrated in the following:
i) the 1st MUD’s utility is reduced to a negative value when
cheating; ii) the 3rd MUD wins the auction when bidding
truthfully and untruthfully, but its utility is reduced when
bidding untruthfully; iii) the 5th MUD receives the reduced
utility when bidding untruthfully; iv) the 15th MUD obtains a
positive utility with truthful prices but a negative utility with
fake prices; and v) the 17th MUD’s utility is reduced to a

negative value when cheating. Similarly, for the selected STOs
in Fig. 11, there are four different situations: i) the utilities of
the 6th and the 11th STOs are reduced from a positive value to
a negative value; ii) the utility of the 7th STO remains zero;
iii) the utility of the 10th STO is decreased from zero to a
negative value; and iv) utility of the 16th STO is decreased
from a positive value to zero. Therefore, the results of Figs. 9-
12 demonstrate that no MUD or STO can enhance the received
utility via cheating in our four proposed auction schemes.

From the above comparison, the adoption of CPAS, TPAS,
VPAS, and DPAS in different crowdsensing scenarios can be
briefly summarized as follows. Under the STOs’ distributed
auction framework, STOs should select CPAS to improve
allocation efficiency and working time utilization, and should
select TPAS if they would like small auction cost and low time
complexity. On the other hand, under the MUDs’ distributed
auction framework, VPAS should be adopted is the goal of
MUDs is to enhance allocation efficiency and working time
utilization, and DPAS should be adopted if they prefer low
time complexity.

X. CONCLUSION

To motivate mobile users to implement sensing tasks in
MCSs, we propose two distributed auction frameworks and
four novel distributed auction schemes, including CPAS,
TPAS, VPAS, and DPAS, for task assignment and schedule.
Our proposed auction schemes have the following major inno-
vations: i) the auction model is practical by taking into account
multi-dimensional task diversity, including partial fulfillment,
bilaterally-multi-schedule, attribute diversity, and price diver-
sity; ii) the four auction schemes can be implemented within
well-designed distributed auction frameworks, in which each
task owner/mobile user can locally and independently mange
auction process; iii) all the four auction schemes possess
nice properties, including computational-efficiency, individual-
rationality and incentive-compatibility, and CPAS and TPAS
can also satisfy budget-feasibility. Finally, comprehensive real-
data experiments well confirm the effectiveness of our pro-
posed auction schemes.
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