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Abstract—To promote development of Mobile Crowdsensing
Systems (MCSs), numerous auction schemes have been proposed
to motivate mobile users’ participation. But, task diversity of
MCSs has not been fully explored by most existing works.
To further exploit task diversity and improve performance
of MCSs, in this paper, we investigate the joint problem of
sensing task assignment and schedule with considering multi-
dimensional task diversity, including partial fulfillment, bilaterally-
multi-schedule, attribute diversity, and price diversity. First, task
owner-centric auction model is formulated and two distributed
auction schemes (CPAS and TPAS) are proposed such that each
task owner can locally process auction procedure. Then, mobile
user-centric auction model is established and two distributed
auction schemes (VPAS and DPAS) are developed to facilitate
local auction implementation. These four auction schemes differ
in their approaches to determine winners and compute payments.
We further rigorously prove that all the four auction schemes
(CPAS, TPAS, VPAS, and DPAS) are computationally-efficient,
individually-rational, and incentive-compatible and that both
CPAS and TPAS are budget-feasible. Finally, we comprehensively
evaluate the effectiveness of CPAS, TPAS, VPAS, and DPAS via
comparing with the state-of-the-art in real-data experiments.

Index Terms—Mobile crowdsensing system; truthful auction;
task assignment; task schedule; distributed algorithm.

I. INTRODUCTION

The recent years have witnessed the extraordinary pro-
gresses of Mobile Crowdsensing Systems (MCSs) which sig-
nificantly advance data collection and sharing via motivating
mobile users’ participation in sensing activities. As the core
component of MCSs, mobile users process sensing activities
using various mobile devices (e.g., smartphones and tablets)
and are paid rewards to compensate their costs such as re-
source consumption (e.g., energy and bandwidth) and privacy
leakage (e.g., location exposure [1]), and others. Since present
mobile devices (smartphones, tablets and vehicle-embedded
sensing devices (GPS)) are embedded more computing, com-
munication, and storage resources than traditional mote-class
sensors [2], the major superiorities of MCSs over the tra-
ditional mote-class sensor networks lie in the reduced cost
to deploy specialized sensing infrastructures as well as the
enhanced applicability to a variety of real applications that
demand resources and sensing modalities beyond the current
mote-class sensor processes. MCSs have been widely applied
to traffic congestion detection, wireless indoor localization,
pollution monitoring, efc [2]-[4]. Such power of MCSs roots
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at the active participation of mobile users to collect and share
sensory data. Thus, to become more efficient and applicable,
MCSs should first deal with the critical problem: “how to
motivate mobile users to perform sensing tasks?”

To encourage mobile users to join MCSs, a number of
auction-based incentive mechanisms have been developed
from various aspects to assign and schedule sensing tasks [3],
[5]-[18]. Nevertheless, the following crucial issues have been
overlooked in most of existing works. (i) In many auction
models [13], [15]-[20], a task is assigned to a mobile user
only if the task can be completely implemented by the mobile
user, which is impractical in many scenarios. As a matter of
fact, as a mobile user’s available working duration in an MCS
is limited, a task may not be completed by one mobile user
at a time (e.g., pollution monitoring within a specific area
during a long-term period). (ii) Task diversity in MCSs is
not fully investigated. On one hand, sensing tasks may have
different requirements in terms of location, implementation
duration, types of sensors, and so on; on the other hand, mobile
users also vary in their locations, available working duration,
equipped sensors. Ignoring task diversity in MCSs may lead to
inefficient task assignment and ineffective task implementation.
(iii)) Moreover, due to the aforementioned diversities of task
requirement and user availability, the prices demanded by a
mobile user to process different tasks are also different. Since
auction is a kind of market-based scheme, this price diversity
should be well formulated in auction models. (iv) Last but
not least, with the dramatic increase in the scale of MCSs,
it becomes more difficult and expensive to find a centralized
institution authorized by third party to dominate the auction
process [3], [21].

Inspired by the above challenges, the intent of this paper is
to solve the joint problem of task assignment and scheduling in
MCSs taking into task diversity from different dimensions. (i)
Partial fulfillment, which means a task can get assignment if
it can be partially completed by mobile users in time domain.
For instance, a task requests sensory data at a certain location
from 9:00am to 11:00am, a mobile user who is the only user
can collect the required data from 9:30am to 10:30am, and
then the task is assigned to the mobile user. (ii) Bilaterally-
multi-schedule, where one mobile user can process multiple
tasks in both the time and space domains while a task can
be scheduled to multiple mobile users in time domain, further
improving task assignment efficiency. Partial fulfillment and
bilaterally-multi-schedule together reflect diverse assignment
in time and space domains. (iii) Attribute diversity, which
indicates that the task requirement and the user availability
vary in task attributes in terms of location, time duration, and
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types of sensors. (iv) Price diversity, which says that every
mobile user could require different prices to carry out different
tasks. The existing auction schemes [3], [13]-[18], [22] do not
consider task schedule in the time domain and thus cannot be
applied to solve our problem. More importantly, extending the
existing auctions to enable partial fulfillment, bilaterally-multi-
schedule, attribute diversity, and price diversity is nontrivial.
As a result, it is challenging to develop auction schemes to
possess the above four features.

To tackle this challenge, four auction schemes are elabo-
rately designed to satisfy different application requirements.
First, we model the proposed joint problem as a reverse
auction with task owners being auctioneers, where partial ful-
fillment, attribute diversity, and price diversity are considered.
Within such a framework, two distributed auction schemes,
cost-preferred auction scheme (CPAS) and time schedule-
preferred auction scheme (TPAS), are proposed. Then, to
achieve bilaterally-multi-schedule, we mathematically formu-
late the proposed joint problem to be an auction for mobile
users working as auctioneers. Correspondingly, two distributed
auction schemes, valuation-preferred auction scheme (VPAS)
and distance-preferred auction scheme (DPAS), are developed.
These four auction schemes differ in their approaches to deter-
mine winners and compute payments. By conducting thorough
theoretical analysis, we prove that all of CPAS, TPAS, VPAS,
and DPAS can achieve computational-efficiency, individual-
rationality, and incentive-compatibility and that both of CPAS
and TPAS can also ensure budget-balance. Meanwhile, these
four auction schemes differ in their approaches to deter-
mine winners and payments as well as their computational
complexities, so that they can adapt to different application
requirements, for which the major properties of the four
proposed auction schemes are summarized in Table I. Further-
more, via intensive real-data experiments, the performance of
our proposed auction schemes are validated. Our innovative
contributions are addressed below:

o To the best of our knowledge, this is the first work to study
auction models to achieve partial fulfillment, bilaterally-
multi-schedule, attribute diversity, and price diversity for
task assignment and schedule in MCSs.

« Distributed auction framework is designed to facilitate task
owners/mobile users to locally control their auctions without
collecting global information in MCSs, enhancing scalabil-
ity of MCSs and reducing communication cost at the side
of cloud platform.

e A cost-preferred auction scheme (CPAS) is proposed to
assign each winning mobile user multiple working durations
and a time schedule-preferred auction scheme (TPAS) is
proposed to allocate each winning mobile user one contin-
uous working duration.

e A valuation-preferred auction scheme (VPAS) and a
distance-preferred auction scheme (DPAS) are developed,
in which each mobile user can schedule a series of tasks
for implementation according to task values and locations,
respectively.

o In-depth theoretical analysis is performed to prove the
properties of our proposed auction schemes in terms

2
TABLE I
SUMMARY OF AUCTION SCHEMES PROPOSED IN THIS PAPER.

Auction | Individual- | Budget- Incentive- Time
schemes | rationality balance | compatibility complexcity

CPAS v v v O(n>log(n))

TPAS v v v O(n?log(n))

VPAS v N/A v O(m?Z1log(m) + nl)

DPAS v N/A v O(mlog(m) + nl)

of computational-efficiency, individual-rationality, budget-
feasibility, and truthfulness.

o A comprehensive comparison with the state-of-the-art are
well conducted in real-data experiments to evaluate the
performance of our proposed auction schemes in terms of
allocation efficiency, working time utilization, STOs’ cost,
MUDs’ valuation, and truthfulness.

The rest of this paper is organized as follows. We briefly
summarize the related work in Section II. At the side of
task owners who act as auctioneers, the system model and
problem formulation are presented in Section III, and two
auction schemes are proposed in Section IV and Section
V, respectively. Next, we formulate the problem for mobile
users acting as auctioneers in Section VI and present two
auction schemes in Section VII and Section VIII, respectively.
After evaluating the performance of the four proposed auction
schemes in Section IX, we conclude this paper in Section X.

II. RELATED WORK

The existing auction-based task assignment mechanisms for
mobile crowdsensing are briefly summarized in this section.

Traditionally, auction mechanism can be controlled by
an auctioneer in a centralized fashion [13]-[17], [23]-[28].
In [13], a reverse auction was proposed for the cloud platform
to minimize cost, in which the service coverage of smart-
phones are taken into account. Jin et al. [14] designed a single-
minded and a multi-mined reverse combinatorial auctions
that can obtain sub-optimal social welfare by considering the
information quality of mobile users. In [15], with considering
mobile user dynamics and randomness of tasks, an offline
auction and an online auction were proposed. In [16] three
auction schemes were developed for three different scenarios
of mobile crowdsensing, including single-requester single-
bid model, single-requester multiple-bid model, and multiple-
requester multiple-bid model. Ji et al. [17] investigated the
discretization in crowdsensing systems and designed two auc-
tion mechanisms, in which each user has a uniform subtask
length. In [23], two incentive mechanisms were designed to
reduce the waste of sensory data due to the spatial correla-
tion of different mobile participants. In [24], the quality of
sensing is considered in platform’s valuation function, and a
budget-feasible auction was designed with approximating ratio
approaching % Tang et al. [25] developed an integrated
framework by combining a double auction-based incentive
mechanism and a data aggregation mechanism, which not only
achieves truthfulness, individual rationality, computational ef-
ficiency, and non-negative social welfare, but also generates
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high accuracy in the data aggregation results. In [26], the
incentive mechanism maximized the number of recruited users
and the utility functions. Khaledi et al. [27] proposed a multi-
dimensional auction to make task allocation among a set
mobile nodes in mobile cloud computing. In [28], a truthful
double auction mechanism was proposed to reach max-min
fairness. But, each of the above auction models just simply
considered one assignment condition, such as task’s loca-
tion [13], [23], [26], [27], quality requirement [14], demand
computing resource [25] and required sensing time [17], and
has limitation on fully exploiting task diversity for practical
applications.

To enhance the performance of mobile crowdsensing, some
distributed incentive mechanisms have been designed [3], [21],
[29]. In [3], the authors first formulated the problem of task
selection for mobile users as a non-cooperative task selection
game and then investigated the equilibriums and convergence
of the game. In the proposed game, the objective is to maxi-
mize each mobile user’s utility by finding an order to complete
one or more sensing tasks that locate at different places.
To maximize social welfare, Duan et al. [21] proposed a
distributed algorithm, in which both task’s demand and mobile
user’s time allocation strategy change over the prices published
by a centralized cloud platform, and the centralized cloud
platform updated the prices according to the demands of tasks
and supplies of mobile users. In [29], a multi-stage stochastic
programming approach is designed based on distributed game
theoretic methodology under the multi-platform and multi-user
scenario, which stops once Walrasian equilibrium is reached.

Different from the prior works, in this paper, we pro-
pose to design more practical distributed truthful auction
schemes for task assignment and schedule in MCSs by fully
exploring multi-dimensional task diversity, including partial
Sulfillment, attribute diversity, price diversity, and bilaterally-
multi-schedule, which can further advance multi-dimensional
diversity in mobile crowdsensing systems. More importantly,
when the auction economic properties should be simultane-
ously achieved, performing a distributed auction to satisfy the
needs of multi-dimensional diversity is not a trivial problem.

III. AucCcTION FORMULATION FOR TASK OWNERS
A. System Model

The MCS consists of a set of task owners (STOs) to demand
sensing service, a set of mobile users who are equipped with
smart devices (MUDs) to supply sensory data, and a cloud
platform that provides connection and information announce-
ment for STOs and MUDs.

There exist m STOs, each of which requests a task imple-
mentation, denoted by IT = {7y, 7, -+ , 7y, } the set of tasks.
Since every STO has only one task request, “STO ¢’s task” and
“task ;" are interchangeable in this paper. Each task m; has
four attributes, including locations, starting time, ending time,
and resources (e.g., camera and gyroscope), which imply the
STOs’ requirements to process task. Each STO i’s sensing task
information can be expressed by fI = (L7,[aT, S|, RT),
where LT is the required location of task m;, of and B
are respectively the starting time and the ending time of task

m;, and RT is a set of required sensor resources to process
task ;. Each STO 4 also has a budget b; to complete task
m; per unit time. Let T' = {y1,72,--,7a} be the set of
MUDs, in which each MUD +y; is allowed to work for at
most one STO. Similarly, each MUD +; has initial location
L}, available starting time a;, available ending time B], a set
of sensor resources R]7 in smart device, and an average moving
rate /\7 The formal form of each MUD 'y] ’s sensing service
znformatzon is represented as f] = (L},[a],B]], R}, \]).
The cost of each MUD +; to 1mplement task e contams two
parts: i) moving cost from location Lz to location L7; and ii)
resource consumption cost on smart device. To cover the task
implementation cost, each MUD +~; submits a price vector
Aj =< a15,025, " ,Qmj > where Qij 1 < i< m)is an
asking price per unit time slot.

As MUD +; may need to move from L;Y to LT to process
the required task, we should calculate the actual starting time.
Given the Euclidean distance d(L7, L}) and the moving rate

™ vy
Aj, MUD v; arrives at LT at time ¢§; = % + aj. For

51mp1101ty, we assume that an MUD can start Worklng as soon
as it arrives at a task’s required location. Let T;; be MUD ~;’s
maximum available duration for performing 7; and |T;;| be the
number of time slots within T;;. Then T;; can be calculated
according to the following six cases:

o If t% > BT, task m; is finished when MUD +; arrives and
thus ~y; cannot process ;, i.e., T;; = 0;

o If 8] < of, task m; starts when MUD +;’s available
duratlon ends Therefore, «v; cannot process m;, and T;; =
0;

o If of <t2 < B] < B, MUD v; arrives when/after task
m; begins, and MUD +;’s available duration ends before
task 7;’s ending time. Thus, T;; = [t3, B]];

o If af <t < BT < B;-’, MUD +; arrives when/after
task m; begins and MUD +;’s available duration ends
when/after task m;’s ending time. Therefore, T;; =
[ YR ﬁ Tr]

o If 13 < af < 3] < B, MUD ~; arrives before task 7
begins and MUD +y;’s available duration ends before task
m;’s ending time. In this case, Tj; = [a], B]];

o If t& < of < BT < pJ, MUD ~; arrives before
task 7; begins and MUD +;’s available duration ends
when/after task m;’s ending time. As a result, we have
T = [af, B}].

Finally, the notations used in this paper are presented in

Table II.

B. Problem Formulation

Suppose MUD ~; obtains an assigned duration T7; for task
m; and the number of time slots within 7}, is |7;5|. Since Tj;
is the maximum available duration of MUD +y; for task 7;, we
have T C Tj; and 0 < |T35| < [T};]. The task assignment is
indicated by x;; € {0,1}; that is, z;; = 1 if and only if ; is
assigned to ;. As each MUD +; works for at most one STO,
there must be Z 1 iy < 1. 1f MUD i 1mplements task 7;,
«y; can obtain a payment p;; from STO i and receive a utility

v.
Uj : N -
Ul = uly = wii(pi — ai|T5). (1
i=1 =1
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TABLE II
LIST OF NOTATIONS USED IN THIS PAPER.
Notation Description
m Number of tasks
n Number of MUDs
11 Set of tasks
I Set of MUDs
T Task m;
Vi MUD v;
fr m;’s sensing task information
f; ;s sensing service information
LT m;’s required location
LJ. v;’s location
[aT, BF] Starting time and ending time of 7;
[a;.y, B;Y Starting time and ending time of ~;
RT Set of sensors resources required by ;
b; Budget for ;
R;.Y Set of sensors resources provided by ~;
)\;.Y ~;°s moving rate
aij v;’s asking price per time unit to process m;
d(LT,L7) Euclidean distance between LT, L7
T4 v;’s maximum available duration for performing ;
T35 7;’s assigned duration T for task m;
T;; Number of time slots of 75,
T;'j Number of time slots of Tl.sj
Tij Task assignment indicator

A practical crowdsensing scenario is taken into account, in
which each STO i independently decides the winning MUDs
and schedules their working time slots. In other words, each
STO 7 works as an auctioneer of its local task auction that is
formulated as a reverse auction:

Exuaw| (2a)
Jj=1
n
S.t. U -'L'”T Cc [ (673 aﬁ:‘rL (2b)
j=1
>zl T <167 = of|; (2¢)
j=1
wi; € {0,1},1 <5 <my 2d)
T CTij,1<j<n. (2e)

In Eq. (2), the objective is to minimize the cost for task as-
signment while ensuring the following constraints: i) Eq. (2b)
requests that the union of scheduled working durations cannot
exceed the task’s duration; ii) Eq. (2c) implies that the total
allocated time slots cannot be more than the number of slots of
the task’s duration' iii) Eqs. (2d) and (2e) represent the ranges
of x;; and T}, respectively.

C. Auction Economic Properties

In this paper, we aim to achieve the following economic

properties in each STO’s auction [24], [27], [30]:

« Individual-rationality. No MUD obtains a negative utility,
ie, U 7 > 0 for all v; € I', which can encourage MUDs to
join the auction

« Budget-balance. In each STO i s local auction, budget-

balance means Z 2504 T — E xi;pi; > 0 for all

1 <1< m, Wthh ensures that each STO has enough
payment paid to the winning MUDs.

1. Publish Task Information

1 ! 1 !
1 = 1 < [V S \\\ !
1 a | 1 I
, , A
: : 2. Submit Service Information & Prices : :
»
1 1 > 1 1
A o
1 - 1
: : 3. Announce Auction Results [ 1
1 1 & 1 1
1 1 - 1 1
1 = I 1 P I
- .. \N
: & : 4. Reply Final Decision : ""” W :
1 1 » | —" 1
' N — - / ' R 4
MUDs STOs
(Sellers ) (Buyers & Auctioneers )

Fig. 1. STOs’ distributed auction framework.

« Incentive-compatibility. In each STO 7’s auction, incentive-
compatibility ensures that each MUD +; € I's utility can
be maximized if and only if the asking price is a;; = a;; for
all m; € II, where a;; is the true asking price of MUD -;
for task ;. This is also called “truthfulness” making sure
that no MUD can increase utility by manipulating bidding
prices.

If an auction can simultaneously satisfy the above three
properties, it is economic robust and thus can attract more
mobile users’ participation.

D. Task Owner’s Distributed Auction Framework

As shown in Fig. 1, there are four major stages in our
proposed auction framework:

« Stage 1: Publish Task Information. STOs announce their
task information and deadline of accepting bids from MUDs
on the cloud platform.

o Stage 2: Submit Service Information & Price. MUDs
submit their service information and asking prices to STOs.

o Stage 3: Announce Auction Results. After collecting
service information and asking prices from MUDs, STOs
compute the potential winners, working time, and payments,
and then announce auction results and deadline of accepting
final decision from MUDs.

« Stage 4: Reply Final Decision. If an MUD is selected as a
potential winner by one or more STOs, it should reply final
decision to STOs.

If a STO is rejected by the selected MUDs, the STO
continues its task auction to schedule the unassigned working
time slots in a multi-round manner until the task duration
is completely assigned or no MUD can be selected. In this
paper, the essence of auction implementation at the side of
STOs is performing a single-side auction iteratively until a
termination condition is satisfied, and any two rounds of the
auction are independent to each other. Since each round of the
auction is treated as a new one, it does not matter whether
MUDs change their bid prices or not. On the other hand,
if an MUD accepts a task, it exits auction; it continues to
compete for tasks until no task auction is conducted. Within
the proposed auction framework for STOs, two different
policies can be adopted for task assignment : i) cost-preferred
policy: i) STOs compute auction results according to the
non-decreasing order of MUDs’ asking prices; and ii) time
schedule-preferred policy: STOs compute auction results
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Algorithm 1 Auction Scheme for STO ¢

: Input: f7, b;, and &.

: Output: {z;;}, {Ts}

o Set {xi;} = {0}, {15} = {0}, and T} =
: Publish task 1nformat10n 1

Receive service information { f;} and asking prices {a;;} from
the MUDs;

o7, B7T;

[ RS I S R

6: repeat

7. if £ = cpas then

8: Run Alg. 2 to compute auction results;
9: end if

10:  if £ = tpas then

11: Run Alg. 3 to compute auction results;
12:  end if

13:  Collect replies from MUDs, record {z;;}, and update T;* =
T\ U 1 i T3
14: until 73" = () or no potential winner is selected.

based on the first-come-first-serve manner. The adoption of
policies and deadlines for publishing task information and
announcing auction results are determined through MUDs’
negotiation before the auction. The implementation of the
auction schemes is presented in Algorithm 1, and the auction
schemes are detailed in Section IV and Section V, respectively.

IV. COST-PREFERRED AUCTION SCHEME

In this section, a Cost-Preferred Auction Scheme (CPAS) is
proposed (i.e., £ = cpas in line 7 of Algorithm 1), where each
STO ¢ greedily schedule task according to the non-decreasing
order of the MUDs’ asking prices. Since CPAS is performed
in a multi-round manner and the auction procedure of each
round is the same, we just demonstrate the auction procedure
of a round in the following part of this section.

A. Potential Winner Determination & Payment Calculation

After receiving service information { f]} and asking price
{ai;} from MUDs, STO i determines a set of available MUDs
as: Fc(ﬂ'i) = {’)/j|<Tij N T1u) % 0,RY C RT, and a;; < bi},
where T7* is the currently unassigned time duration of task ;.
This is implemented in lines 2-7 of Algorithm 2.

1) Potential Winner Determination: The set of potential
winners is W (m;) = 0 initially. To schedule working time,
STO i first sorts MUDs in I'“(7;) in a non-decreasing order
in terms of their asking prices and obtains a sorted set
I“(m;) (line 8 in Algorithm 2). Next, STO i scans MUDs
in T'“(m;) and allocates unassigned time slots in a greedy
fashion. If MUD +;’s current available duration (T3; N T7")
is not fully scheduled to other available MUDs, i.e., (T;; N
n( U Th) # (Tiy nTE), MUD «; is selected

V5! EW (m;)
as a potential winner and assigned a set of time slots that
are not allocated to current potential winners in W (r;), i.e.,
Ty = (T NTONT; NnTEN (U T5) (lines 9-14 in
Vil eW (m;)
Algorithm 2).

2) Payment Calculation: STO ¢ computes payments for
each selected MUD +y; by identifying ~y;’s critical neighbor
who is an MUD +; in I'°(m;) such that ; can not be
selected if a;; is higher than a;;. Different from the existing
works [13], [15]-[20] in which each winner has only one

Algorithm 2 Cost-Preferred Task Scheduling & Pricing for
Task 7;
IHPUt fz 7b17T1u7F {fW} {a’U}
Output W(mi), {T3}, {pa}

: Set T°(m;) = 0, W (m;) = 0, {1

71 = {0}, and {ps;} = {0};

2 for each v; € I' with submitted f“’ and a;; do

3 Calculate T;;;

4 if (T;; NTY) #0, R} C R, and a;; < b; then

5: chm) =T"°(m;) U i3

6 end i

7: end for

8: Sort all MUDs in I'*(7r;) in non-decreasing order based on {a;; }

and obtain the sorted set T'“(mr;);
9: for j =1 to |T'“'(m;)| do

10: if (TZJ n T,Lu) N ( TZSJ/) 76 (le n Tzu) then

v’ eW(m;)
11: W(Tl'z) :W(m)Ufyj;
12: T =T nTONT;nTEn (U T))s
Vilew (;)
13: end if
14: end for
15: for each € W do
16:  Set {T;x} = {0} and T} =T};;

17:  Sort all the MUDs in I (m)\fy] in a non-decreasing order
based on {a;x} and obtain the sorted set T'Y, (;);

18:  Setk =1 and W_.Yj (mi) = 0;

19: while k < [I'?, ()| and T3} # 0 do

20: if (T, NT} ) ( U T;)) # (Tir N T;") then

Vi €Wy, ()

21: W,% (mi) = W, (i) U vk,

22: = (Tie NTI\(Tar N T O ( U T;))s
'Vj’eW_,Y]. (m3)

23: if T;3 N'T; # 0 then

24: pm = pij + ai| Ty, N T,

25: TS/ TFi\(T% N Ty

26: end 1f

27: end if

28: k=k+1;

29: end while
30 if T3 # 0 then

31: pij = pij + bi| T .
32: end if
33: end for

critical neighbor, each selected MUD +; in CPAS has one
or more critical neighbors because the time slots of 775 may
be assigned to one or more other MUDs if MUD +; does not
join the auction (lines 17 - 32 of Algorithm 2). Therefore, the
payment is calculated according to ;’s all critical neighbors.
To identify the critical neighbors, STO ¢ sorts MUDs in
Ie, (m) = I'“(m;) \ 7; in the non-decreasing order in terms
of their asking prices, selects winners again in the sorted
set 'Y, (m;), and allocates working time slots. An MUD
v is a critical neighbor of MUD +; if their allocated time
durations are overlapping, i.e., T;3 N1} # () where T} i
the time duration assigned to MUD ~y;, and T}/ records the
remaining time duration in 73 that is not allocated to others.
Accordingly, the critical payment is a;x |7} NT;7|. But, if no
critical neighbor is found for MUD +;, the cntlcal payment is
STO i’s budget b;|T}7|.

Remark: In Algorithm 2, each selected MUD receives
a working duration T} that contains one or more sub-
durations. For example, the duration of task m; is from
1:00pm to 5:00pm, <;’s working duration is Tj; =
{[2:00pm, 3:00pm], [4:30pm, 5:00pm]} containing two sub-
durations, and the number of working time slots is |7 | =90
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minutes.

B. Final Service Decision

MUDs make their service decision when the auction results
are published. Let II(-y;) be the set of tasks, of which their
owners select MUD +; as a potential winner, i.e., II(y;) =
{mi|v; € W(m;) and m; € II}. The decision is determined as
follows.

o If |II(y;)] = 0, MUD ~; loses all STOs’ local auctions,
does not need to reply, and remains in the auction until no
task auction is conducted.

o If [II(;)| = 1, MUD +; is a potential winner in a STO 4’s
location auction, accepts the service request, and exits the
auction.

o If |TII(;)| > 1, MUD +; is selected by multiple STOs and
chooses the task which yields the maximum utility, i.e., m; =
arg_max {(pny = ans T3, ):

W}Len('y

C. Property Analysis

In this subsection, we mathematically prove the perfor-
mance of CPAS.
Lemma 1: Algorithm 2 can terminate within O(n?log(n)).

Proof: From line 2 to line 7, the running time of forming
set I'“(m;) is at most n that is the number of MUDs in set T'.
In line 8, sorting the MUDs in I'“(7r;) costs at most n log(n)
time. The potential winner determination, in lines 9-14, has a
time complexity of O(n). Similarly, the time of sorting process
of line 17 is O(nlog(n)), and critical neighbors can be found
within O(n). The “for” loop from line 15 to line 33 has at most
n iterations and stops within O(n?log(n)). In a summary, the
time complexity of Algorithm 2 is O(n? log(n)). [ |

Theorem 1: The time complexity of Algorithm 1 with £ =
cpas is O(n®log(n)).

Proof: In Algorithm 1, each STO ¢ stops if and only if
either of the two conditions satisfies: i) T;* = @; and ii) no
potential winner is selected. In the worst case, STO ¢ picks
only one potential winner at each round but is rejected by
the potential winner. Under this situation, the potential winner
definitely accepts another STO’s task request and then exits the
auction. Thus, after at most n rounds, STO ¢ ends its auction
as no potential winner can be selected. From Lemma 1, we
can conclude that the time complexity of Algorithm 1 with
¢ = cpas is O(n®log(n)). [ |

Theorem 2: The auction scheme CPAS is individually-
rational to all MUDs.

Proof: If MUD +y; loses all STOs’ auctions, Z z;; =0

and U’Y = 0. If MUD +~; wins task m;, 2;; = 1 and TS > 0.
Moreover a;r > ag; for v;’s every critical neighbor yk and
bi > ajj for STO i, thus pi; > a;|T};]. As a result, U] =

Z uz] = lel](plj |) > 0. n
Theorenb 3: The auction scheme CPAS achieves budget-
balance for all STOs
Proof: In Algorithm 2, all the potential winners are
selected from I'°(m;) and a;; < b; for all v; € I'°(m;). Line
24 and line 31 of Algorithm 2 show that b; > p;; for each

ai;| T,

6

winner ;. Therefore, Z z5bi | T35 — Z xipi; > 0,

CPAS achieves budget- balance for each STO i. [ ]
Lemma 2: In each STO ¢’s auction CPAS, if MUD «~; is

selected as a potential winner with a price a;;, it can still be a

potential winner with a smaller price a < a;and T35 C Tfjl,

where TSl is the assigned working duration corresponding to
1

a;;.

’ Proof: Suppose that pos(aj;) and pos(a;;) are the po-
sitions of MUD +; in the sorted set I'“(m;) when bidding
with a%j and a;;, respectively. Since a}j < asj, pos(a%j) <
pos(a;j;). According to lines 8 to 14 of Algorithm 2, MUD ~;
submitting a?! can be successfully scheduled a time duration
Ts! and T C T»Sjl. ]

Theorem 4: The auction scheme CPAS is incentive compat-
ible to all MUDs.

Proof: Proving this theorem is equivalent to prove that in
each STO 7’s local auction CPAS, each MUD +; € I' cannot
enhance utility by submitting a;; # @;;, which is analyzed
from the following cases.

Case 1: a;; < a;j (or a;; > a;;) and MUD ~y; loses the
auction with both a;; and a;;. In this case, ~y;’s utility received
from STO ¢’s auction is zero.

Case 2: a;; < @;; and MUD ~; wins the auction With both
a” and a;;. According to Lemma 2, T C T and |T35] <
|T%|, where T s and |TS | respectively denote the a551gned time
duration and the number of time slots of TS corresponding to
a;;. Accordingly, the payment p;; can be re- computed via two
parts: i) the payments p;; paid for time duration Ti‘} that is the
same for both a; j and a;;; and ii) payment Ap;; paid for time
duratlon T35\ T75, in which a5 T35 \ 175 < Apij < ag| T\

| as a;; < a;r < ag; for v;’s every crltlcal nelghbor yk
Correspondmgly, the received utility is u L= pij —G; J| =
(plj aljl 1j|) (épm al]i zy\ 1,]|)' Sll‘lCC a’lle;y\sz]i S
Api; < a;|T5 \ T (Apij — ai| T\ T5]) <
As a result, we obtain u}; = p;; — ai|T};| < pij — a
i.e., MUD +; cannot get a higher utility by bidding a;;.

Case 3: a;; < a;; and MUD ~; wins with a;; but loses
with @;;. In this case, a;; is higher than its critical neighbors’
asking prices {a;} or is higher than STO 4’s budget b;. That
is, @ij| T} > pij. Therefore, u]; = pij — ai;| T} < 0.

Case 4: a;; > a;; and MUD ~; wins with a;; but loses
with a;;. Thus, UZJ = (0 which cannot be higher than the
utility corresponding to a;.

Case 5: a;; > a;; and MUD ~; wins with both a;; and
a;;. Similar to the analysis of Case 2, we have T} C Tfj
and |T5| < [T};|. The payment p;; consists of two parts: i)
pi; paid for duration T7; that is the same for both a;; and
@ijs _and ii) Ap;; paid for tir_ne duration 7’ \ ”, in which
ai;| T3 \ T3] < Apij < aij|T55 \ Tj] as Giy < ai < a for
;s every critical neighbor ;. Thus, the received utility is
uj; = pig—ai| T3] < (ij — a5 T5 1)+ (Aps; — as | T\ T51):
that is, MUD ~;’s utility cannot be enhanced by submittmg
Q5 > Qij.

Therefore, each STO 7’s auction CPAS is truthful for all
MUDs. Furthermore, from Subsection IV-B, it can be found

that each MUD +y; cannot increase the value of ma(x {(psj—
m; €11 'Y]

1)} by cheating on a;; for each task ;. Therefore, the

aij|T;
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Algorithm 3 Time-Preferred Task Scheduling for Task 7;
Input fl 2 Tlu’ F {f’y}
: Output: {T};}.
. Set I'*(m;) = 0 and {T}

1:

2

3 5} = {0} for Vv; € T'(ms);

4: for each v; € I' with submitted f; and a;; do

5: Calculate to‘~ and T;j;

6: if (Ty; NI ) 75 ) and R} C RT then

7: thm) =T(m) Uy

8 end i

9: end for

0: Sort all MUDs in I'*(7;) in the non-decreasing order based on
{t3} and get the sorted set 'Y (m;);

11: Set Start = af

12: for j =1to |I‘t (m;)| do

—

J

13:if Start < min{B}, 57} and (T;; N T35) N (U T55) #
=1

(T OT“) then

14: [Start rnln{ﬁ;y,ﬂZ Hs

15: Start min{3}, 87 }.

16:  end if

17: end for

auction scheme CPAS can achieve truthfulness for all MUDs.
| |

V. TIME-PREFERRED AUCTION SCHEME

Notice that in the auction scheme CPAS, an MUD’s as-
signed working duration contains one or more sub-durations.
While, to allocate one single continuous duration to MUDs,
we propose a time schedule-preferred auction scheme (TPAS)
(i.e., & = tpas in line 10 of Algorithm 1), where STOs
schedule MUDs based on a first-come-first-serve manner in
the time domain and then computes their payments.

A. Potential Winner Determination & Payment Calculation

Before determining the potential winners, each STO ¢ com-
putes the set of available MUDs T (m;) = {v;|(T;; N T{*) #
0 and R} C RT}.

1) Potential Winner Determination: With the first-come-
first-serve policy, each STO ¢ greedily assigns a working
duration to each available MUD +y; according to the non-
d(L’r 7}
until no available MUD can be selected or the una551gned
working duration 7" becomes empty. To schedule a working
duration that is as long continuous as possible, STO ¢ assigns
each available MUD ~; € I'*(m;) a duration from ~;’s prior
MUD’s ending working time to the time min{5], 3]} if
this time duration is unassigned. The pseudo-code of the
schedpling srhemt i e nteAcBinpleeptiihehts of potential
winners, each STO 7 sorts all available MUDs’ based on
their asking prices in the non-decreasing order. Without loss
of generality, we assume that a; < ag < --- < Q|7 ()| -
Then, each STO ¢ finds a maximum index k] such that
agr < b; < akF +1 and determines winners according to the
following two cases.

e Case I: T5~ #0. If v; € I'(m;), 1 < j < kT and 5 # 0,
set W(m;) = W(m) U~y and p;; = b|T};|, where b; is the
critical price of all MUDs in STO 7’s auction.

decreasing order of MUDS’ arrival time ¢ = { =5

7

o Case 2: T} = (. If y; € I'(m;), 1 <j < kT and 5 # 0,
set W(m;) = W(m;) U 7v; and p;; = agr|T}5], in which
MUD Vir and a;r are the critical nelghbor and the critical
price of all MUDs in STO i’s auction, respectively.

B. Final Service Decision

In the scheme TPAS, MUDs make their final decision using
the method the same as that in Subsection IV-B.

C. Property Analysis

In this subsection, the performance of the auction scheme
TPAS is rigorously analyzed.

Lemma 3: The computational complexity of Algorithm 3 is
O(nlog(n)).

Proof: From line 4 to line 9, the construction of set I'*(7r;)
can be done within O(n). In line 10, the sorting process can
be completed within O(nlog(n)). From line 12 to line 17, the
scheduling process contains at most n iterations, each of which
has time complexity of O(1). Therefore, the computational
complexity of Algorithm 3 is O(nlog(n)). [ |

Lemma 4: The computational complexity of payment cal-
culation in TPAS is O(n).

Proof: To compute the payments, each STO ¢ identifies a
maximum index kT by scanning I'*(m;). As [Tt (7;)| < n, the
computation complexity of payment calculation is O(n). B

Theorem 5: The time complexity of Algorithm 1 with & =
tpas is O(n?log(n)).

Proof: From Lemma 3, Lemma 4 and Theorem 1, this
theorem can be proved. [ ]

Theorem 6: The auction scheme TPAS is individually-
rational for all MUDs. "

Proof: If an MUD +; is a loser, Z 235 = 0. Thus, for

any m; € IL, p;; = 0 and [T}5] = 0, 1nd1cat1ng Uj =0.1If
an MUD +; is a winner, Hm € II such that z;; = 1. So,
U/ = uj; = pij — ai;|Tj;| > 0. Therefore, TPAS achieves
1nd1v1dua1 -rationality for all MUDs. [ ]
Theorem 7: The auction scheme TPAS ensures budget-
balance for all STOs.
Proof: If task m; is successfully assigned, we have

Z x5 > 1, Z zi;|T;5| > 0, and p;; < by|T7;| for each MUD

Y in W(?Ti). ThUS, for STO i, Z .Z‘szlrfé| — Z Ti5Pij > 0.

Jj=1 Jj=1 -

Lemma 5: For each STO i, the scheduling results {77}

of Algorithm 3 are independent of all MUDs’ asking prices
{a;}.

Proof: As shown in lines 12 to 16 of Algorithm 3, the
calculation of v;’s working duration T;; does not depend on
any a;;. Therefore, this theorem holds. |

Lemma 6: In each STO 7’s local auction TPAS, if MUD ~;
is a potential winner with a;;, it can also become a potential
winner with a}; < a;;.

Proof: When MUD +; submits a smaller prlce a”, v;’s
sorted pos1t10n in T (m;) changes from j to j'. Since a}; <
aij, j' < j < kT Lemma 5 shows that the assigned Worklng
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duration 77 remains the same for MUD ;. Thus, ; can be
selected as a potential winner by STO 1. ]

Theorem 8: The auction scheme TPAS can guarantee incen-
tive compatibility for all MUDs.

Proof: Proving this theorem is equivalent to prove that in
each STO 7’s local auction TPAS, each MUD +; € I' cannot
enhance u;’j by asking for a price a;; # a;;, for which there
are five cases to be considered.

Case 1: a;; < a;; (or a;; > a;;) and MUD +; loses the
auction with both a;; and a;;. In this case, v;’s utility is zero.

Case 2: a;; < @;; and MUD +; wins with both a;; and
a;j. From Lemma 5, the assigned working duration is T3
for MUD +; with both a;; and a;;. The pricing approach in
TPAS and Lemma 6 imply that a;; < a;; < apr < by, ie.,
aij|T;;| < @ij|T5;| < pij. Therefore, the utility is unchanged,
i.e., uij = Pij — C_l1J|TZSJ|

Case 3: a;; < a;; and MUD +; wins with a;; but loses
with a;;, indicating a;; is higher than the critical price a;xr
or STO #’s budget b;. Thus, we have EL,;J-|TZ§| > p;; and qu =
pij — aij|T5| < 0.

Case 4: a;; > a;; and MUD +; wins with a;; but loses
with a;;. In this case, UZ] = 0 which cannot be higher than
the utility corresponding to @;.

Case 5: a;; > a;; and MUD ~y; wins with both a;; and a;;.
Similar to Case 2, we have: i) Tfj for MUD ~; with both a;;
and @;;; and ii) G;; < a;; < ajgr < b;. Thus, the utility keeps
the same, i.e., u?J = pij — dij|TZ|.

The above five cases prove that each STO 7’s auction is
incentive-compatible. Moreover, from Subsection IV-B, one

can see that each MUD +y; cannot increase ma(x ){(pij -
i €T (74
ai;|T};])} through cheating on a;; for any task ;. Therefore,

the auction scheme TPAS can ensure incentive-compatibility
for all MUDs.

Remark: In TPAS, the process of task scheduling is in-
dependent of MUDs’ asking prices. As a result, an MUD
that has been assigned a non-empty working duration cannot
win the auction if the MUD’s asking price is higher than
the critical price. In fact, any price-independent scheduling
algorithm can be applied in TPAS to obtain {7} without
impact on truthfulness for the MUDs.

VI. AUCTION FORMULATION FOR MOBILE USERS
A. Problem Formulation

In the aforementioned auction schemes (including CPAS
and TPAS), task owners work as auctioneers to schedule tasks,
and each mobile user is assigned at most one task. To further
enhance crowdsensing efficiency, in this section, a distributed
auction framework is proposed for mobile users where MUDs
can work as auctioneers to handle task assignment. Notably,
besides partial fulfillment, attribute diversity and price diver-
sity, bilaterally-multi-schedule is also taken into consideration,
i.e., each mobile user can process multiple tasks while each
task can be scheduled to multiple mobile users. Different from
CPAS and TPAS, there are two challenging issues in MUDs’
auctions.

e Due to location diversity, MUDs need enough time to
arrive at the requested location of next scheduled task.

To be concrete, suppose MUD -y; schedules working du-
rations T, ). = [a;_y ;. B0 1y;] Ty = log), B5;] and
Ts = [O‘fi+1)jv (Si+1)ﬂ for tasks m;_1, m; and w11,

i+1)j
o . AL, LT)
respectively. We have B(i—l)j + —=—=

d(LT,LT )
s ioig s
ij + ,Y;Y <«

5 < o

7 ;; and

(i+1)5°

« To guarantee incentive-compatibility for STOs, MUDs cal-
culate payments for each scheduled time slot rather than
each sub-duration. When MUD +y; schedules working dura-
tion 77, to task mr;, task owner STO ¢ should make a payment
pij(t) to ~y; for each time slot ¢ € 7. Accordingly, STO
©’s utility can be computed via Eq. (3).

USTO=3"ul 0 =303 )b —pu )], 3)

j=1 J=1teTy

where y;;(t) € {0,1} indicates whether MUD ~; is

accepted by STO ¢ to work for m; in time slot ¢, ie.,
¥i;(t) = 1 if and only if v; implements m; in time slot
t

Thus, the local auction of each MUD +; can be formulated
in Eq. (4).

max Z Z yij(t)bi;

(4a)
i=1 tGTfj
st YD yu(t) < 8] —a; (4b)
i=1teT};
D> w) <18 —af|; (40)
J=1teTy
yij(t) € {0,1}, 0<i<m,tela),B]];  (4d)

In Eq. (4), the objective is to maximize valuation of
sensing service assignment and schedule with considering
the following constraints: i) Eq. (4b) requires that the union
of scheduled working durations for all tasks cannot exceed
«v;’s available duration; ii) Eq. (4c) shows that the union of
scheduled working durations cannot exceed task’s duration;
and iii) Eq. (4d) and Eq. (4e) indicate the ranges of y;;(t) and
T3, respectively.

B. Auction Economic Properties

In each MUD’s local auction, two economic properties are

required [30]:

« Individual-rationality. In this paper, US7¢ > 0 for all
m; € 1L

« Incentive-compatibility. In each MUD -;’s auction,
incentive-compatibility ensures that each STO ¢ can receive
a maximum utility if and only if b; = b; for all v; €T,
where b; is the true value of STO i’s budget.

C. Mobile User’s Distributed Auction Framework

As shown in Fig. 2, both the distributed auction frameworks
of mobile users and task owners contain four stages, including
publish service/task information, submit task/service informa-
tion & budgets/prices, announce auction results, and replay
final decision, in which the main difference is that in MUDs’
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= | 1. Publish Service Information

-

2. Submit Task Information & Budgets

4

<

1 1 1
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1 1 1 1
1 1 1 1
1 ] 1 1
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1 a ALl 1 1

-\ _ coo e
: : 3. Announce Auction Results 1 1
1 1 > 1 1
1 1 - 1 1
1 |_| 1 1 I
- _\‘\;: ) 4. Reply Final Decision E A""" E
\ /I N ‘o /

MUDs STOs
(Sellers & Auctioneers ) (Buyers)

Fig. 2. MUDs’ distributed auction framework.

Algorithm 4 Auction Scheme for MUD -;
: Input: f; and Aj;, and €.
: Output: {y; (1)} {T;;}. and {pi; (1))}.
+ Set {yi; (1)} = {0}, {133} = {0}, and {pi; (1)} = {O}:
Publish sensing service information f
Receive sensing task information { f] i and budget {b;} from the
sensing task owners;
if ¢ = vpas then
Run Alg. 5 to compute auction results;
: end if
9: if £ = dpas then
10:  Run Alg. 7 to compute auction results;
11: end if
12: Collect replies from the STOs using Alg. 6.

Doa vy

® 3D

auctions, MUDs compute auction results and STOs make final
decisions. In the proposed auction framework for MUDs, we
also design two different policies for task assignment and
schedule: i) valuation-preferred policy: MUDs determine
potential winners according to the non-increasing order of
the differences between STOs’ budgets and MUDs’ prices;
and ii) distance-preferred policy: MUDs determine potential
winners based on a nearest-task-first manner. The adoption
of policy could be negotiated among MUDs before starting
auctions. The implementation of auction schemes within the
distributed auction framework is presented in Algorithm 4.
Since each MUD in Algorithm 4 can process multiple tasks,
the auction schemes, Alg. 5 and Alg. 7, just need to run once.
The details of Alg. 5 and Alg. 7 are illustrated in Section VII
and Section VIII, respectively.

VII. VALUATION-PREFERRED AUCTION SCHEME

When ¢ = wvpas in Algorithm 4, VPAS is performed for
each MUD, which is demonstrated in this section.

A. Potential Task Assignment & Payment Calculation

When MUD +; obtains task information { f} and budgets
{b;} from STOs, it identifies a set of available tasks as
HU(’YJ‘) = {7Ti|T”‘ 7é @,R;Y - Rf,and Qij < bz} where the
computation of Tj; is described in Section III-A. This is shown
in lines 3-8 of Algorithm 5.

1) Potential Task Assignment: In Algorithm 5, W (v;)
records the potential assigned tasks and is empty initially. To
schedule tasks, MUD ~; sorts all available tasks in II"(v;) in
a non-increasing order according to their budgets and receives
a sorted set IIV'(-y;) (i.e., line 9 of Algorithm 5). Then, MUD

«y; scans tasks in IT"(vy;) and greedily schedules working

Algorithm 5 Valuation-Preferred Task Scheduling & Pricing
for MUD +;
Input: f7, A;,1I, {STO i}, {f7 ), {b:}
Output: W (v;),{T3;}, {pi; (¢ )}

I Set IT”(7;) = 0, W (7;) = { }— {0}, and {p;(t)}={0};
,and g7 =B/

current cur7 ent
3: for each STO i with subrmtted fl and 27) do

2: L"/ _L’Y ’Y

4:  Calculate T} ;

5: if T3, #* 0, R;’ C RT, and ai; < b; then
6: 11" (7;) = 11"(v;) U mis

7: end if

8: end for

9

: Sort all tasks in IT”(+y;) in non-increasing order based on {b;}
and obtain the sorted set TI" (v;);

10: for i =1 to [II(v;)| do

11:  Update Tj;*"""™;

12:if TC“"e"t N U T3 #T5™ then

T EW(v;) ©J
13: W(’YJ) W () Umis
14: z‘] Tcu'rrent (T’;:jurrent N ( U T»LS/J))a

il €W (v5)

15: Set L”C“Mem = LT and aj-cu”em = ending time of T}};
16:  end if
17: end for
18: for each %Seﬂ/(%) do
19: Set L? = L7

20:  Sort all the tasks in TI” (v4)\; in a non- 1ncreas1ng order based
on {bx — ax;} and obtain the sorted set IIY, (v;), where
0<k = \Hv(’Yj)\WiD;

21: Set {Tj;} = {0} and T} = T}3;

2 Setk =1 and Wor, () = 0;

23:  while & < [TV, ( ~;)| and T # 0 do

24: Update cur'r‘ent’
25: if TC;“"””t N( U T7;) # T then
wir €EW_r (5)
26: W,,,l( i) = W, ; (vi) U,
. _ current current s/ .
27: Tg =T§; \(T N ( U 7))

il eW—ﬂ'i (v5)

28: if T3; N1 # 0 then

29: for each ¢t € T;;; N T do
30: Di (t) = ai; + (bk — ak]-);
31: ens(/l or o o

32: Tz’_j = Tij \(Tkj n Tij )’

33: end if current

34: Set L;* =L7;

35: end if

36: k=k+1;

37: end while
38 if T} # () then

39: for each ¢t € T} do
40: pij(t) = aij;

41: end %or !

42: end if

43: end for

durations. A task m; € II"(v;) is selected if MUD +; has
enough time to move to the location of 7; and provides valid
- .o ¢ ¢
working duration, i.e., TG "N (U Tj,) # Tt
i EW (75) .

Tiprrent for m; is determined by its current location L7

current
2 Y

current
and current available time period [o] s Bj ] with
current

B} = f3], in which the computation of T """ is the
same as that of T;; described in Section III-A. The assigned
duration of MUD +; for task m; is the duration that has not
been scheduled to other tasks, i.e., Tj; = T/ ™"\ (TN
(U T7;)) (see lines 10-17 of Algorithm 5). Next, update

Tl €W (v5)
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Algorithm 6 Final Decision of STO ¢

1: Input: U'(é), f7, {133}, and {p:;(t)}.

2: Output: y;;(t).

3: Set {yy;(t)} = {0}

4: for Each time slot ¢ € [a], 5]] do

5: = ar min i ()}
& 8 wjuemmem),tem}{p” ol

6:  Sety;(t)=1;

7: end for

current
o = ending time of T} and T;""*"" based on the

Euclidean distance d(LT,L}) and the movmg rate .

2) Payment Calculation: After the potential task assign-
ment, each MUD +; calculates payments for the corresponding
STOs. For each time slot ¢t € TZ‘;, STO i pays p;;(t) to MUD
«j, which is decided by STO i’s critical neighbor. To find
critical neighbor of task 7; in each time slot, MUD ~; sorts
all tasks in ITV(v;)\7; in the non-increasing order in terms of
b, — ay; with by, —ar; > 0 (see line 20 of Algorithm 5). Next,
MUD +; chooses tasks again from II”(v;)\7; and schedules
working durations. Any task 7, € IIV(vy;)\m; is a critical
neighbor of task m; if their scheduled working durations
overlap, i.e., Tpi NI # 0 (see line 28 of Algorithm 5).
Thus, STO ¢ makes a payment p;;(t) = a;; + (bx — ag;) to
MUD +; for each time slot ¢ € 777 N7}/, which is computed
in lines 23-37 of Algorithm 5. If ¢ € T3 does not overlap with
any scheduled working duration of m; € II(vy;)\m;, task ;
does not have any critical neighbor in ¢ and p;;(t) = a;; (see
lines 38-42 of Algorithm 5).

B. Final Schedule Decision

STOs need to make their final decisions to maximize
utilities since each of them might be selected by more than
one MUD. Let I'(¢) represent the set of MUDs who select m;
at the stage of potential task assignment, i.e., I'(:) = {v;|m; €
W (~,) and «y; € T'}. For each time slot ¢ € [a], 8], STO i
selects MUD +y,; € I'(¢) who requests the minimum payment
as shown in line 5 of Algorithm 6, accepts the service provided
by +y; in time slot ¢, and sets y;;(t) = 1.

C. Properties Analysis

In this section, the performance of auction scheme VPAS
is analyzed theoretically in terms of computational efficiency,
individual-rationality, and truthfulness.

Theorem 9: The time complexity of Algorithm 4 with £ =
vpas is O(m? log(m) + nl), where [ is the maximum number
of time units in a sensing task’s available time duration.

Proof: We first analyze the time complexity of Algo-
rithm 5. From line 3 to line 8, forming the set II"(vy;) costs
m. In line 9, the running time of obtaining IT”(~y;) is at most
mlog(m). The time complexity of potential task assignment,
in lines 10-16, is O(m). To calculate payments, the sorting
process is performed again (see line 20). Since there are at
most m selected tasks, lines 18-43 are iterated at most m
times. In addition, the “while” loop (lines 23-37) terminate
within O(m). Thus, the time complexity of Algorithm 5 is
O(m?log(m)). The time complexity of Algorithm 6 is O(nl),
where [ is the maximum number of time units in a sensing
task’s available time duration.

10

In Algorithm 4, the running time of lines 3-5 is O(1), that
of line 7 is O(m?(log(m))), and that of line 12 is O(nl).
Thus, the time complexity of Algorithm 4 with £ = vpas is
O(m?log(m) + nl). [

Theorem 10: The auction scheme VPAS guarantees
individual-rationality for all STOs.

Proof: If STO i loses in every MUD +y;’s local auction,
USTO = 0. If STO i is a winner in at least one MUD #;’s
auction, Tfj > 0. For STO 4’s each critical neighbor STO k,
we have b; > by.. Since p;;(t) for each time slot ¢ € T}, is the
critical price b > pi;(t ) for each time slot ¢ € T} Therefore,

ZUSTO ZZyu()( —py()>0. m

J=1teTy;

Lemma 7. In each MUD 7;-’5 VPAS auction, if task m; is
selected with b;, task ; can be still selected with b} > b; and
Ty C TSl where 77! is working duration of ~y; for ;.

Proof We use pos(bl) and pos(b;) to denote the positions
of task m; in the sorted set IT” (v;) when STO 4’s budget is b}
and b;, respectively. Since b} > b;, there is pos(b}) < pos(b;).
By running Algorithm 5, MUD +; will decide to perform task
m; during T3! with T C T [ ]

Theorem I 1: The auction scheme VPAS guarantees
incentive-compatibility for all STOs.

Proof: To prove this theorem, we first show that each STO
i cannot increase utility through submitting a budget b; # b;
in any MUD +;’s local auction, which is analyzed via the
following cases.

Case 1: b; > b; (or b; < b;) and STO i loses the auction
with both b; and b;. Consequently, the utility of STO i is zero
in this auction.

Case 2: b; > b; and STO 5 wins the auction with both b; and
bi. According to Lemma 7, T;; C T, in which T'; and T},
represent the working durations assigned by v; when STO ¢’s
budget is b; and b;, respectively. Formally, let p,; () and py;(t)
be payments of ; for each ¢ € T ;and t € 17, respectively.
Thus, we have Dy, (t) = pi;(¢) for each t € T N T} and

b; > p;j(t) > b; for each t € T“’\T Thus STO i’s

USTO

utility is ug@ = [B|T5\T5 = > pm()l (i T —
teT\T;;

Y Py()]. Additionally, bi|TH\T5l — > pi(t) =

teTy; teTy \T5,

Z (BL —p”(t)) < 0 because bl > p”(t) > Bl Since
teT;i\Tjj
uTO < b|T;;| — 3 By;(t), we can conclude that STO i
teTs;
cannot increase utility with b;.

Case 3: b; > b; and STO ¢ wins with b; but loses with b;.
In this case, b; is smaller than its critical neighbors’ budgets

{bx} or MUD #;’s price ay, indicating b;|T35| < > pi;(t).

teTy;
T3l — > pij(t) <0.
teTy;

Case 4: b; < b; and STO i wins with b; but loses with b;.
In this case, uf;"® = 0 which is not larger than the utility
when STO i submits b;.

Case 5: b; < b; and STO i wins with both b; and b;. In
this case, we have T3 T according to Lemma 7 and

Thus, we have b;|

cT

ij = Tig

P;j(t) = pij(t) for each t € Tfj NT}. As a result, STO 7’s
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Algorithm 7 Distance-Preferred Task Scheduling & Pricing
for MUD -,

Input: /7, 4,1, {STO i}, {/7}, {bi}

Output: W (3)). {751, {ps; ()}

11 Set () = 0, W (y;) = 0. {T5} = {0}, {5
and {py (1)}={0};

~CuTTEen

= {0},

cur'r‘cnt current

2: =L], a , and (] =A7;
3: for each STO i w1th submltted fl do
4: Calculate T;;
5. ifT;; #0 and R"’ C R then
6 T(y) = T(y) Ui
7: end if
8: endd for
9: H (’y]) (’y ) current current
10: while 1% (v,) # 0 and o # B7 do

) d(L?r, i L,Ycinwent
11: T, = arg min i )\JA, };

T End, ("/j) J
12:  Update T{}“”"‘m;
13: if Tij“”e"t # () then
current

14: Set T = T7*""*"* and Ly =1LT;
15: Set anNm = ending time of T}};
16: er}id if -
17: 11 (v ) =% (y)\ms;

18: end while ) d ) ) )
19: Sort all tasks in II(v;) in a non-increasing order based on

{br, — ax;} and obtain the sorted set n’ (7;), where (0 < k <
11 (7)));

20: Find a maximum index &’ such that by, — ayj > 0;

21: if Tj; # 0 then

22:  for each m; € I1¢ (%) do

23: if i < k" and T} # 0 then

24: W(v;) = W(’yj) U s

25: for Each te1;; do

26: — a"Lj )

27: end f‘or

28: end if

29:  end for

30: else "

31:  for each m; € TI (v;) do

32: if i <k’ and T}; # () then

33: W(y;) = Wi(y)Um;

34: for Each ¢t € 1;; do

35: pi;(t) = as; + (bpr — ak/]-);

36: end for

37: end if

38:  end for

39: end if

utlity is uSTO = BT~ X piy(t) < BT = X By(t)+
teTy, teTy,

GITATS ~ Y By(0) = BT
teT ;\T5;
is, STO 4’s utility cannot be improved by setting b; < b;.
To sum up, each MUD +;’s VPAS auction is truthful for all
STOs. Moreover, from Algorithm 6, one can see that each STO

i cannot enlarge the value of min i (t
vj//G{vhlvhef(i)vtETfh}{ (0}

for each scheduled time slot by cheating on b;. As a result, the
auction scheme VPAS is incentive-compatible for all STOs. &
VIII. DISTANCE-PREFERRED AUCTION SCHEME

— Y Py, (t). That
teTy,

To reduce moving distance of each mobile user, we in this
section propose a distance-preferred auction scheme (DPAS),
in which task schedule follows a nearest-task-first manner. The
auction scheme DPAS for each +; is called in Algorithm 4
when £ = dpas, and the procedure of DPAS is presented in
Algorithm 7.

11

A. Potential Task Assignment & Payment Calculation

At this stage, each MUD +; decides a set of available
tasks, ie., 11%(v;) = {m|T;; # 0 and R] C Rf}. The
corresponding implementation is described in lines 3-8 of
Algorithm 7.

1) Potential Task Assignment: Each MUD -; iteratively and
greedily selects tasks and schedules working durations accord-
ing to the nearest-task-first manner. In each iteration, MUD -

) d(Lﬂ_/’ L,Y(‘urreﬂf)
min (AL )
myr €14 (v;5) J
from I1%(y;). Then, v; updates currently maximum avail-
able working duration ﬂcf”rem for m; based on its cur-

selects the nearest task m; = arg

current

rent location L7 and current available time period
current
] with 5] = g7

[a] B8] /. in which the
computation of Tcu"e”t is the same as that of T;; described
in Section III-A. If Tc,“”'mt is not empty, MUD ~; per-
forms three actions: i) assign working duration to m; with

TS = T-Cj“”e"t; ii) set 7;’s location as current location, i.e.,

current

L; = LT; and iii) update its current starting time to the
time when ~; ﬁmshes its scheduled working duration 77 for

current current

current

5, Le., a;-’ = ending time of T{‘;. The computation of
each iteration is shown in lines 10-18 of Algorithm 7. MUD ~;
terminates the iterations when no available task can be selected
or its current available duration becomes empty.

2) Payment Calculation: Each MUD ~; first sorts all
available tasks in I1¢" (7;) in a non-increasing order based
on by — ax; with by, — ap; > 0 (see line 19 of Algorithm 7).
Then, each MUD +y; finds a maximum index k' such that
bir — agr; > 0 and calculates payments as follows:

o Case 1: Tj;,; # (. MUD +; selects each m; € 1% (y;) with
0<i<k'and Tfj # () as the potential winner. In this case,
the payment for each ¢ € T35 of m; € W (v;) is pi;(t) = aij.

o Case 2: Tjy; = 0. MUD ~; selects each m; € 17" (v;)
with 0 < i < k' and 175 # () as the potential winner and
computes p;;(t) = a;; + (bk/ — Qprj).

B. Final Schedule Decision

The approach of STOs to make final decisions is the same
as that in Subsection VII-B.

C. Property Analysis

In this subsection, we theoretically prove the desired prop-
erties of the auction scheme DPAS.

Theorem 12: When & = dpas, the time complexity of Algo-
rithm 4 is O(mlog(m)+nl), where [ is the maximum number
of time units in a sensing task’s available time duration.

Proof: The procedure of DPAS is outlined in Algorithm 7.
From line 3 to line 8, the construction of set I1%(v;) costs
O(m). The scheduling process shown in lines 10-18 has a
time complexity of O(m). In line 19, the sorting process
can be done within O(mlog(m)). From line 21 to line 39,
the time complexity of potential winner determination and
payment calculation is O(m). In a summary, DPAS can be
completed within O(m log(m)). In the line 12 of Algorithm 4,
the time complexity of Algorithm 6 is O(nl), where [ is the
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maximum number of time units in a sensing task’s available
time duration. Therefore, the time complexity of Algorithm 4
with £ = dpas is O(mlog(m) + nl). [ |

Theorem 13: The auction scheme DPAS is individually-
rational for all STOs.

Proof: Once the auction scheme DPAS is done, there
are two cases for each STO . If task m; is not selected
in all MUDs’ auctions, STO i’s utility is US79 = 0. If
task 7; is selected by at least one MUD «; and is assigned
working duration T;;(s), we have pij(t) > a;; for each

t € Ty;. Therefore, USTC = Z > yi () (b — pij(t)) > 0.
J=1teT?,

In conclusion, DPAS can achieve individual- -rationality for all

STOs. ]

Lemma 8: In each MUD +;’s local auction DPAS, the
schedule results {77} of Algorithm 7 are independent of all
STOs’ budgets {b;}.

Proof: From line 10 to line 18 of Algorithm 7, it is seen
that the values of {7} are determined by task information
{f7} and MUD’s service information {f;'} instead of {b;}.
Thus, this lemma holds. [ |

Lemma 9: In each MUD ;’s local auction DPAS, if task
7; is selected with b;, m; can be still selected with b% > b;.

Proof: As analyzed by Lemma 8, the working duration
T7 assigned by MUD +; is independent of b;. When STO 1
submits a larger budget b} > b;, task m;’s position in the sorted
set H(vj) ' changes from i to ¢t, and ¢! < ¢ < k' because of
b,} > b;. Therefore, STO i can also become a potential winner
for MUD +;. [ ]

Theorem 14: The auction scheme DPAS is incentive-
compatible for all STOs.

Proof: This theorem can hold if and only if each STO
i cannot enhance u;"© with b; # b; in any MUD ~;’s local
auction. The analysis process is shown below.

Case 1: b; > b; (or b; < b;) and STO 3 is a loser with both
b; and b;. In this case, STO i’s utility received from MUD +y;
is zero.

Case 2: b; > b; and STO i wins with both b; and b;. When
STO i submits b;, we use Py;(t) to represent STO 4’s unit
payment in MUD +;’s auction. From Lemma 9, b; — a;; >
b; — a;; 2> b — ap; > 0. According to Lemma 8, MUD
7; schedules the same working duration 73 to STO i with
both b; and b;. If T # 0, pij(t) = py(t) = aij with t €
T5. Thus, u’o = *S]TO = (b — aiy)|Ty). I Ty, = 0,
pij(t) = p”() = a;; + (b — ar;) with ¢ € T5. Thus,

ugT? =uto = (b — ai; — (b — anry))|T5]. One can see

tthlt STO +¢’s utility remains the same with both b; and b;.
Case 3: b; > b; and STO i wins with b; but loses with b;.
According to Algorithm 7, we have b;—a;; > by —ap; > 0 >
bi—aij. T3 # 0, pij(t) = aij foreach t € T} and uSTO
(5 a”)| | <0.If Tk’ =0, p”( ) = Qjj (bk/ — QK j ) for
each ¢ € T and uj"© = [b; — ai; — (ber — apy)]| T35 < 0.
Case 4: b <b and STO i wins with b; but loses with b;.

In this case, uSTO = 0 which cannot exceed uSTO.

Case 5: b; < b; and STO ¢ wins with both b; and b;. Similar
to Case 2, MUD +; schedules the same working duration T3

12

to task m; with both b; and b;, and b; — a;; > b; — a;; >
by — agj > 0. Thus, we obtain ug"© = uplo.

The above five cases show that every MUD ;s auction
is truthful for all STOs. Therefore, the auction scheme DPAS

can ensure truthfulness for all STOs. |

IX. PERFORMANCE EVALUATION

In this section, the baseline schemes, the experiment set-
tings, and experiment results are presented.

A. Baseline Schemes

Since there is no distributed auction for assigning sens-
ing tasks in mobile crowdsensing, three centralized auction
schemes are adopted for comparison, i.e., Task-SRC, MUD-
SRC and TDAM. In each centralized scheme, a cloud platform
(CP) acts as an auctioneer to compute the auction results.

Both of Task-SRC and MUD-SRC are modified based on a
single-minded reverse combinatorial auction [14] to adapt to
our considered scenarios. In Task-SRC, the CP owns all the
sensing tasks and recruits MUDs to minimize the social cost
with consideration of working time scheduling requirement
instead of the Qol coverage constraint. In MUD-SRC, the CP
publishes information of all MUDs and assigns all MUDs to
work for sensing tasks according to the bids from STOs.

TDAM is a variant of max-min fairness-based truthful
double auction [28] with an aim of maximizing the valuation
of sensing service assignment and schedule.

B. Experiment Settings

We evaluate the performance of seven auction schemes,
including CPAS, TPAS, VPAS, DPAS, Task-SRC, MUD-SRC,
and TDAM, by utilizing real data from Google Maps. The
crowdsensing scenarios are set as follows: i) the number of
tasks varies from 5 to 30; ii) the number of MUDs varies
from 10 to 35; iii) the locations of all tasks and MUDs are
selected from restaurants, tourist sites, and shopping malls
within downtown in Atlanta with area of four-square miles; iv)
each MUD walks from one location to another location; and
v) the moving time of each MUD between any two locations
is calculated through Google Maps app. We consider 10 types
of sensors and the number of each type of sensor is one. Each
task requests a certain number of sensors, which is a random
number uniformly picked from [3, 10]; similarly, each MUD is
equipped with a certain number of sensors, which is a random
number uniformly chosen from [1,10]. Each STO’s budget
(and each MUD’s asking price) is an integer that is uniformly
selected from [10, 25] at random. In the experiments, the unit
time slot is one minute and the longest duration is 300 minutes.
There are three performance metrics adopted in our evaluation:
« Allocation Efficiency. The allocation efficiency of a task is

the ratio of the total number of assigned working time slots

to the number of requested working time slots.

+ Working Time Utilization. The working time utilization
of an MUD is the ratio of the number of assigned working
time slots to the number of available working time slots.

e STOs’ Cost. The cost of a STO is defined in Eq. (2), and
the average cost of all STOs will be evaluated.
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Fig. 3. Ave. tasks’ allocation effi-
ciency (m=15).

Fig. 4. Ave. tasks’ allocation effi-
ciency (n=20).
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e MUDs’ Valuation. The valuation of an MUD is defined
in Eq. (4), and the average valuation of all MUDs will be
evaluated.

o Truthfulness. To examine the received utility when biding
truthfully and untruthfully, at each time, one MUD (or one
STO) is randomly selected with being set fake asking prices
(or budgets).

C. Experiment Results and Analysis

The performance is evaluated under two scenarios: (i) the
number of tasks is 15, and the number of MUDs increases
from 10 to 35; and (ii) the number of tasks changes from 5 to
30, and the number of MUDs is fixed at 20. The results are
shown in Fig. 3 through Fig. 8.

First, from the average allocation efficiency of all tasks in
Fig. 3 and Fig. 4, we obtain the following observations:

1) As shown in Fig. 3, the average allocation efficiency
increases when the number of MUDs increases. This is
because if more MUDs participate in crowdsensing, each
STO can recruit more MUDs to process task.

The results of Fig. 4 imply that the average allocation
efficiency decreases when the number of tasks increases,
because each STO may have less MUDs to work when
more STOs compete in crowdsensing.

VPAS and DPAS perform batter than CPAS and TPAS.
This is because each MUD in VPAS and DPAS can
implement multiple tasks but in CPAS and TPAS is allowed
to work for at most one task. That is, in VPAS and
DPAS, a larger portion of required working duration can be
scheduled to MUDs, bringing a higher allocation efficiency
for each STO.

CPAS performs better than TPAS. The reason mainly lies in
two aspects: i) compared with TPAS, CPAS could assign

2)

3)

4)

30

Ave. MUDs' working time utilization {m:
Ave. MUDs' working time utilization (n=20)

15
Number of tasks

= U i U
20 25 5 10

Number of MUDs

H
16

10 30 36 20 25 30

Fig. 5. Ave. MUDs’ working time
utilization (m=15).

Fig. 6. Ave. MUDs’ working time
utilization (n=20).

more working time slots to MUDs; ii) the working time
schedule of TPAS is independent of MUDs’ asking prices,
leading to that some MUDs who have been scheduled a
working duration may still lose if their prices are higher
than the critical price.

The performance of VPAS is better than DPAS. This is due
to that working time schedule of DPAS is independent of
the MUDs’ asking prices and some MUDs who have been
scheduled a working time duration may become losers if
their prices are higher than the critical price.

Even both Task-SRC and MUD-SRC implement task as-
signment and scheduling in a centralized manner, the
performance of CPAS, TPAS, CPAS, and DPAS proposed
in this paper is very close to the performance of Task-
SRC and MUD-SRC (see DPAS vs Task-SRC and VPAS
vs MUD-SRC). This can validate the effectiveness of our
distributed auction schemes.

Moreover, all the four distributed schemes perform much
better than TDAM. In TDAM, each mobile user bids for
different tasks with one price, thus a mobile user either
wins all workable tasks or losses all workable tasks, reduc-
ing the allocation efficiency and working time utilization.

5)

6)

7

Then, we analyze the average working time utilization of
all MUDs, in which the results are presented in Fig. 5 and
Fig. 6. From Fig. 5, one can observe that the average working
time utilization of all MUDs decreases when the number of
MUDs increases, as more intense competition exists among
MUDs. On the other hand, as shown in Fig. 6, the average
working time utilization of all MUDs is increased when more
tasks are published, because it becomes easier for any MUD to
be scheduled to process tasks. In addition, VPAS and DPAS
perform better than CPAS and TPAS. This is because each
MUD can work for at most one task in CPAS and TPAS
but can work for multiple tasks in VPAS and DPAS. With
respect to the average MUD’s working time utilization, the
performance of CPAS and TPAS is close to that of TDAM,
the performance of VPAS is close to that of MUD-SRC, and
the performance of DPAS is close to that of Task-SRC. The
corresponding reasons are the same as those of observations
from 4) to 7) for Fig. 3 and Fig. 4.

Next, we compare the performance of CPAS, TPAS, Task-
SRC, and TDAM in terms of average cost of all STOs and
report the results in Fig. 7. According to Eq. (2), with more
assigned time slots, a STO’s auction cost is higher. As shown
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in Fig. 7, the average cost of all STOs increases when the
number of MUDs increases because if more MUDs participate
in crowdsensing, more time slots of a task are assigned to
MUDs and more cost is spent to pay for MUDs’ sensing
service. Besides, Task-SRC has the largest average cost as it
has the highest MUDs’ working time utilization, and TDAM
has the smallest average cost as it has the lowest MUDs’
working time utilization. In particular, the average cost of
CPAS is very close to that of Task-SRC, and the average cost
of CPAS or TPAS is higher than that of TDAM, indicating
that our distributed auctions can obtain effective solutions to
the optimization problem in Eq. (2).

For each MUD’s local auction, the average valuation of
all MUDs in VPAS, DPAS, MUD-SRC, and TDAM is com-
pared via Fig. 8. As defined in Eq. (4), an MUD’s auction
valuation is increased as the number of assigned time slots
grows. The results in Fig. 8 show that the average MUDs’
valuation increases when the number of tasks increases. This
is because more tasks lead to more assigned time slots and
higher valuation for MUDs. In addition, MUD-SRC performs
best and TDAM performs worst; especially, the performance
of VPAS and DPAS is close to that MUD-SRC. Thus, the
effectiveness of our distributed auctions, VPAS and DPAS,
can be validated.

Furthermore, we verify truthfulness of CPAS, TPAS, VPAS
and DPAS, in which there are 20 tasks and 20 MUDs. In the
experiments, we randomly selected one MUD in CPAS and
TPAS (or one STO in VPAS and DPAS) at a time, set fake
asking prices (or budgets) to the selected MUD (or STO),
and compare received utilities when truthfully bidding and
untruthfully bidding. We totally select five different MUDs
and five different STOs and present the results in Figs. 9-12.
Notice that all the selected MUDs (or STOs) cannot receive
higher utilities via cheating on asking prices (or budgets). For
example, in Fig. 9, the selected MUDs are the 1st MUD, the
3rd MUD, the 5th MUD, the 15th MUD, and the 17th MUD.
The situations of these MUDs are illustrated in the following:
1) the Ist MUD’s utility is reduced to a negative value when
cheating; ii) the 3rd MUD wins the auction when bidding
truthfully and untruthfully, but its utility is reduced when
bidding untruthfully; iii) the 5th MUD receives the reduced
utility when bidding untruthfully; iv) the 15th MUD obtains a
positive utility with truthful prices but a negative utility with
fake prices; and v) the 17th MUD’s utility is reduced to a

negative value when cheating. Similarly, for the selected STOs
in Fig. 11, there are four different situations: i) the utilities of
the 6th and the 11th STOs are reduced from a positive value to
a negative value; ii) the utility of the 7th STO remains zero;
iii) the utility of the 10th STO is decreased from zero to a
negative value; and iv) utility of the 16th STO is decreased
from a positive value to zero. Therefore, the results of Figs. 9-
12 demonstrate that no MUD or STO can enhance the received
utility via cheating in our four proposed auction schemes.

From the above comparison, the adoption of CPAS, TPAS,
VPAS, and DPAS in different crowdsensing scenarios can be
briefly summarized as follows. Under the STOs’ distributed
auction framework, STOs should select CPAS to improve
allocation efficiency and working time utilization, and should
select TPAS if they would like small auction cost and low time
complexity. On the other hand, under the MUDs’ distributed
auction framework, VPAS should be adopted is the goal of
MUDs is to enhance allocation efficiency and working time
utilization, and DPAS should be adopted if they prefer low
time complexity.

X. CONCLUSION

To motivate mobile users to implement sensing tasks in
MCSs, we propose two distributed auction frameworks and
four novel distributed auction schemes, including CPAS,
TPAS, VPAS, and DPAS, for task assignment and schedule.
Our proposed auction schemes have the following major inno-
vations: 1) the auction model is practical by taking into account
multi-dimensional task diversity, including partial fulfillment,
bilaterally-multi-schedule, attribute diversity, and price diver-
sity; ii) the four auction schemes can be implemented within
well-designed distributed auction frameworks, in which each
task owner/mobile user can locally and independently mange
auction process; iii) all the four auction schemes possess
nice properties, including computational-efficiency, individual-
rationality and incentive-compatibility, and CPAS and TPAS
can also satisfy budget-feasibility. Finally, comprehensive real-
data experiments well confirm the effectiveness of our pro-
posed auction schemes.
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