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Abstract—The autonomous driving (auto-driving) technology
has been promoted significantly by the rapid advances in com-
puter vision and deep neural networks. Auto-driving vehicles,
nowadays, are fully equipped with numerous sensors such as
cameras, geo-sensors, and radar sensors, to capture real-time
data inside the vehicles and outside surroundings. Meanwhile,
the captured data contains lots of private information about
vehicles, drivers and passengers and thus faces a high risk of
privacy breaches. Especially, side-channel information can be
mined from camera data to identify vehicles’ locations and even
trajectories, raising serious privacy issues. Unfortunately, the
issue, how to resist location-inference attack for camera data in
auto-driving, has never been addressed in literature. In this paper,
we intend to fill this blank by developing a GAN-based image-to-
image translation method named Auto-Driving GAN (ADGAN).
Through performance comparisons between ADGAN and the
state-of-the-art, the superiority of ADGAN can be validated —
offering an effective tradeoff between recognition utility and
privacy protection for camera data.

Index Terms—Autonomous driving; Location privacy; Gener-
ative Adversarial Networks; Image generation.

I. INTRODUCTION

Over the last decade, the autonomous driving (auto-driving)
technology, combined with computer vision and deep learning,
has flourished in both industry and academia. This significantly
promotes some leading manufactures, including Tesla, Ford,
BMW and even Google, to produce their own auto-driving
vehicles [1]. These auto-driving vehicles have become a robust
and efficient stuff and already driven millions of miles without
human intervention [2], [3]. Such an incredible success is
inseparable from two core elements: perception and decision-
making, which are in desire of numerous data for performance
improvement. In other words, the auto-driving vehicles are
nothing but a car driven by an amount of data. The data
can be collected from a variety of sensors embedded in
the autonomous vehicles, e.g., GPS for navigation; a wheel
encoder for monitoring movement; behavior-relevant sensors
for capturing passengers’ behaviors; radar on the front and rear
bumpers for identifying traffic; and camera near the rear-view
mirror for color identification, lane departure, read collision,
and pedestrian alerts [4], [S]. Besides driving guidance, such
valuable data can benefit individuals and the society in various
ways, including traffic analysis, accident investigation, auto
insurance assessment, vehicular communication, and ‘“‘smart
city function”, etc.
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Yet, despite these attractive benefits, the volume-rich
data inevitably exposes the privacy of vehicles and
drivers/passengers to an extremely dangerous situation. The
auto-driving vehicles are very likely to become the targets
of malicious attackers no matter with what purposes. Once
attackers access to the collected data, personal privacy behind
the data will be leaked. For examples, by analyzing GPS data,
the attackers know passengers’ home addresses and moving
patterns; and by analyzing behavior-relevant data, the attackers
can infer the information of sex, age, hobby, etc.

As an indivisible part of the autonomous vehicles, cam-
era data definitely suffers from severe privacy threats. By
capturing real-time images, the cameras work as the eyes to
help monitor road conditions (e.g., recognizing pedestrians)
and guide driving behaviors (e.g., stopping and braking).
The captured images can be also collected for use in real
applications, such as building 3D street view, training detection
model, and arbitrating disputes in traffic accidents. However,
the cameras not only have the power to record images and
videos of ambient environment view for their host vehicles, but
also can collect other “over-needed information”, such as street
view background, faces of pedestrians by streets, license plate
and model of surrounding vehicles, and others. This “over-
needed information” becomes a breakthrough for attackers to
steal privacy. Fig. 1 illustrates an attack scenario: an attacker
gets an image captured by a victim’s camera as shown in
Fig. 1(a), and can learn that the victim was on a street at
the front of “Triumphal Arch”. In this scenario, the victim’s
location privacy is totally leaked via side-channel information
in the image without GPS data. Moreover, if the attacker can
obtain a set of victim’s images with time correlation (e.g.,
Fig. 1(a) and Fig. 1(b)), he can infer the victim’s possible
trajectory and driving speed as presented in Fig. 1(c).

Even worse is that with the developments of computer
vision and deep learning, attackers can strengthen their at-
tack ability by means of object recognition and image geo-
localization. Early before decade, some vocabulary tree-based
matching and feature-based matching methods have been
proposed to detect location in images, which can reach high
recognition accuracy above 70% [6], [7]. That is, attackers
are strong enough to easily recover real trajectory with large
probability by recognizing camera images.
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(a) camera data from victim near Triumphal arch

(b) camera data from victim near Eiffel tower

(c) leaked location and trajectory information

Fig. 1. An example to illustrate how victim’s location and trajectory privacy is inferred by Geo-localization attack (pictures source from Google Map).

Thus, in auto-driving, preventing camera data' from
being attacked by location inference has become an urgent
problem to be solved. To protect camera data, three unprece-
dented challenges are ahead of us. (i) As no existing work
addresses this problem for auto-driving, the study of problem
formulation and technique design is an unknown exploration.
(ii) It is desired that the privacy-preserving camera images are
still usable in real applications. For this purpose, balancing
the tradeoff between image recognition and privacy protection
is critical to technique design, which is not a trivial issue.
(iii) Although some existing methods aim to protect privacy
of small objects (such as face, number, and license plate) by
blurring or removing the objects from images, these methods
will lose the context structure of images and damage the
usability of images if the object is large (e.g., buildings). Since
the street view images have more complex context structures
containing a variety of objects, the aforementioned methods
are not suitable for protecting vehicular camera data.

To overcome these three challenges, in this paper, we
novelly propose a Generative Adversarial Networks (GAN)-
based approach named ADGAN. Our basic idea is that re-
ducing the risk of privacy breaches by removing location-
relevant information (e.g., background buildings) from the
camera images before being used in real applications. To be
concrete, we utilize image-to-image translation to eliminate
private objects in images while maintaining the utility of
valuable objects, so that the processed images can still be
used for real applications. Then, to effectively balance the
tradeoff between privacy and utility, we design a min-max loss
function to control image synthesis in ADGAN. Particularly,
we develop an innovative multi-discriminator setting in our
ADGAN for performance enhancement: (i) the loss of context
structure is reduced, improving image recognition; and (ii)
the guarantee of privacy protection is reinforced. Finally, our
multi-fold contributions are summarized below:

« To the best of our knowledge, this paper is the first work
to investigate the privacy issue of camera data for auto-
driving.

¢ A GAN-based image-to-image translation method
(ADGAN) is designed to generate privacy-preserving

In this paper, we focus on the camera images in auto-driving, and thus
camera data and camera image are exchangeable.
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images, which can resist location-inference attack
towards side-channel information of camera data.

The results of real-dataset experiments validate that our
ADGAN can achieve privacy protection while simultane-
ously maintaining accuracy of image recognition, which
provides a more effective tradeoff between privacy and
utility compared with the state-of-the-art.

The rest of this paper is organized as follows. The pre-
liminaries and related works are introduced in Section II
and Section III, respectively. The details of our ADGAN
are presented in Section IV. After evaluating ADGAN in
Section V, this paper is concluded in Section VI.

II. PRELIMINARIES

In this section, the background and fundamentals of Gen-
erative Adversarial Network (GAN), Auto-Encoder (AE), and
image-to-image translation are briefly introduced.

A. Generative Adversarial Network

As the most creative idea of Deep Learning in recent years,
Generative Adversarial Network (GAN) has been widely ap-
plied in the field of computer vision since it was proposed
in 2014 [8]. GAN consists of two “adversarial” models: a
generator G and a discriminator D. The two adversarial
models play with each other to complete in a min-max game,
where G intentionally generates samples from a real data
distribution to fool D while D judges whether its input is
the fake data generated by G or the real data. Mathematically
speaking, G could be any form but a simple differentiable
function, and G(z) is the output sample drawn from p, where
z is a low dimensional vector sampled from a prior distribution
p.. Thus, the aim of D is to classify the data from G(z) as fake
and the data from training set pyq:, as real. Formally, GAN is
expressed as a structured probabilistic model to optimize the
following loss function:

mgn max Laan(G, D) =Eqrpora (@) [logD ()]
E.np. (sl —logD(G(2))],

where G aims to minimize Loan (G, D) while D aims to
maximize it.

Furthermore, GAN can be extended to a conditional version
with an additional input y that could be any kind of auxiliary
information (e.g., the class labels or data from other domains).
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The corresponding objective function of such min-max game
is formulated as:

HlGiIl I’HSX £GAN(G» D) :Eacrvpdam(m) [lOgD(l“y)}+

E.np.(2)[l — logD(G(z]y))].
B. Auto-Encoder and U-Net

The Auto-Encoder (AE) that is an unsupervised neural
network learns a mapping function from input data = to output
Z = h(x). The goal of learned mapping function is to get the
minimum distance between x and z. AE consists of two parts:
Encoder and Decoder [9]. The Encoder samples data = from a
real distribution and then encodes it into a latent representation
z, i.e., z ~ Encoder(xz) = q(z|z). The Decoder reconstructs
the real data « from the low-dimension representation z, i.e.,
Z ~ Decoder(z) = p(x|z). Then the loss function of AE can
be defined as:

2

EmiB Lag(Enc, Dec) = Dis(x, Dec o Enc(z)),

3

where Enc and Dec represent Encoder and Decoder, re-
spectively; Dis could be any distance metrics (such as L
distance [9] and Kullback-Leibler divergence [10]); and o is
the composite function of Encoder and Decoder.

In this paper, we adopt a variation of AE, called “U-Net”.
Besides using the idea of traditional AE, “U-Net” also adds
some skip links between layers in Encoder and Decoder. To
improve the performance of data reconstruction, the skip links
are used to concatenate the i-th layer of Encoder and the (n —
i)-th layer of Decoder. The similarity and connection between
layers are enhanced by such a concatenation, thus promoting
U-Net to generate more similar result . A comparison of the
structure between AE and U-Net is shown in Fig. 2. In the
traditional AE, latent z is obtained by passing input = through
the Encoder and then is recovered to & by Decoder. While in
U-Net, each layer of Encoder produces an intermediate result
after convolution and pooling, and every intermediate result is
sent to the corresponding layer of Decoder where the result is
concatenated with additional recovered data and goes through
the rest of neural network.
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Fig. 2. A comparison between Auto-Encoder and U-Net.

C. Image-to-Image Translation

Image-to-Image translation, which is a widely investigated
problem in image processing and computer vision, tries to
“translate” images from one domain to another corresponding
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domain. For examples, translating RGB image into grayscale
image, and translating nighttime photos into daytime photos
etc. The first light of image-to-image translation [11] hired
a non-parametric model to implement translation on a paired
dataset. In recent research, as the deep learning technology
emerges, parametric models have made impressive progress
in computer vision. By using CNN, a semantic segmentation
method, called SegNet, was proposed to translate original
images into semantic segmented images [12]. The “Domain
Transfer Network” (DTN) in [13] defined an automatic image-
to-image translation framework. DTN is a universal translation
model covering many common domains, such as mapping pho-
tographs to edges, segments, or semantic labels, and mapping
labels and sketch inputs to realistic images.

III. RELATED WORK

The most relevant works are summarized along two direc-
tions: privacy protection in auto-driving and application of
GAN for privacy protection.

A. Privacy Protection in Auto-Driving

In the traditional Vehicular Ad hoc Networks (VANETS),
a number of methods have been proposed to protect pri-
vacy for the vehicles and drivers; especially, location and
trajectory privacy are the major focus as (i) most of the
vehicular applications are based on location information and
(ii) the location information is tightly related to driving safety.
In [14], a Social-based PRivacy-preserving packet forwardING
(SPRING) protocol was designed based on symmetric cryptog-
raphy and public key infrastructure. An efficient Social spot-
based Packet Forwarding (SPF) protocol is proposed by [15],
where the social spots are referred to as the locations in a city
environment that many vehicles often visit. By using differen-
tial privacy, a spatial division based method was developed
in [16] to protect location and trajectory privacy. In [17],
the authors presented an efficient packet forwarding proto-
col, named Social-Tier-Assisted Packet (STAP), for vehicular
networks. Particularly, STAP is effective not only in packet
dissemination, but also in protection of location privacy of
receiver. Notably, for location privacy preservation, almost all
of the current works focused on location-based services (LBS),
ignoring the leakage of side-channel information in location-
independent services. Therefore, these works cannot prevent
location-inference attack towards side-channel information.

On the other hand, in the autonomous vehicles, camera data
is an indispensable part to help monitor road conditions (e.g.,
recognizing pedestrians) and guide driving behaviors (e.g.,
stopping and braking). Although these road conditions and
driving behaviors are not determined by locations (e.g. in both
New York and San Francisco, the Stop sign has the same
meaning.), the location of a vehicle can be easily identified
through recognizing camera images. However, to the best of
our knowledge, no work has been proposed to address the
issue how to resist location-inference attack for camera data
in auto-driving. Such a blank will be filled by this paper.
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B. Application of GAN for Privacy Protection

By exploring the “adversarial” property of GAN, the gener-
ator G and the discriminator D can be modeled as a defender
and an attacker, respectively. The training process reflects
interactions between the defender and the attacker in a zero-
sum game, and terminates when a Nash equilibrium is reached
such that the defender can win the game.

In [18], [19], generative full body and face de-identification
methods were respectively proposed to avoid the recognition
of human ID or other biometrics identifiers while preserving
data utility and naturalness. Also, GAN-based visual secrets
protection methods were introduced by [20], [21], in which the
authors used GAN as obfuscation to decrease the probability
of successfully detecting secret pixels. To protect text privacy,
a GAN-based privacy-preserving method was developed to
prevent attackers from inferring age and sex of text author
as well as to remain most utility for NLP [22]. The prior
work [23] designed a VGAN-based image representation
learning for privacy-preserving facial expression recognition,
which can protect human ID and maintain expression recogni-
tion accuracy. In [24], a method is proposed using adversarial
regularization to protect the membership privacy of the train-
ing dataset. Additionally, GAN is combined with differential
privacy to generate a private dataset to keep enough utility
while preserving user privacy by adding designated noise upon
training parameters [25]-[27]. In addition to protection, a
distributed GAN model was used to recover individual victim’s
private data even though the data of victim is protected by
using distributed differential privacy [28].

For the privacy of image data, the existing GAN-based
methods mainly focused on small objects, e.g., face and num-
ber. These small objects are easy to be detected and modified
because they hold fixed features, and their modifications do
not destroy the entire context structure of the images. But,
this situation changes when it involves the street view images.
Since the street view images have more complex context
structures containing a variety of objects, the aforementioned
GAN-based methods cannot be applied directly to protect the
vehicular camera data. More importantly, the main challenge
of our work is that in the camera images, the location-relevant
information should be protected to avoid inference attack while
preserving data utility.

IV. METHODOLOGY OF ADGAN

To preserve location privacy while maintaining the utility
of the vehicular camera data, we propose an innovative mech-
anism termed Auto-Driving GAN (ADGAN).

A. Framework & Problem Formulation

As shown in Fig. 3, our ADGAN contains a generator
denoted by G and two discriminators respectively denoted by
D1 and Ds.

The generator G is built based on “U-Net” [29] structure.
Let I and I’ be the set of raw image from real camera data
and the set of synthesized image, respectively. For each real
camera image x € I, we aim to train G to produce z' = G(z).
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Specifically, for each captured camera image, we feed it
into G and then perform the pixel-to-pixel transformation
to output a corresponding synthesized image, which is what
a generator does in the conditional GAN. The multi-fold
objectives of G include: (i) generate synthesized image as
realistic as possible; (ii) maintain the recognition accuracy
of non-sensitive information; and (iii) reduce the recognition
accuracy of sensitive information.

With the inputs coming from I and I’, the goal of D; and
Dy is to judge whether their inputs are the real images or
the synthesized images. Instead of using one discriminator
as the traditional GAN does, we deploy two discriminators
in ADGAN. Such a multi-discriminator setting stems from
the following consideration: (i) a single discriminator with the
fixed receptive field only reads a certain part of an image and
thus is easily fooled by the generator; and (ii) combining two
discriminators can enhance the ability to distinguish image,
which provides privacy protection guarantee when facing a
more powerful attacker. To achieve good performance of
image recognition with this multi-discriminator setting, D;
has a small receptive field to perceive the details of small
part in image, while D, has a large receptive field to obtain
a relatively global view of the whole image structure.

By integrating the generator and the two discriminators, we
have the following loss function Lapgan:

Lapaan(G, D) =Lcaan(G, D) 4+ M Lsim(G)
+ XLy (G),

where L.can is the loss function of the two discriminators,
Lsim (G) is the similarity loss indicating the similarity between
x and 2/, L,,;(G) is the privacy loss implying the distance of
predefined sensitive objects between all real and synthesized
data, and A\; and \g are system parameters. Accordingly, when
the training process terminates, we can obtain the optimal
result G* as

G* = arg mci;n mgx[ﬁcGAN (G, D)+ M Lsim(G)
+ XLy (G)).

In Eq. (5), “min-max” means G is expected to beat Dy and Dy
even though the capability of D; and Dy is maximum. After
getting G*, the auto-driving vehicles could use 2’ = G*(x)
for their own purposes without leaking location privacy.

“

(&)

B. Image Synthesis

In ADGAN, the generator and discriminators are utilized to
fulfill the task of image synthesis, i.e., obtaining 2’ = G(z).
The design of GG, D and D, are described as follows.

Generator. Image-to-image translation is basically a func-
tion that takes an image of a certain domain as input and
outputs the image of another domain pixel by pixel. To keep
the desired similarity and recognition, the output should be
close to the original input. For the problem we consider, except
for the sensitive objects (e.g., the background buildings), the
other information of synthesized images should be similar
to those of real images. This requires the output and input
are different in appearance at background pixel location, but
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Fig. 3. System framework of ADGAN, which contains a “U-Net” based generator G and a multi-discriminator structure D = {D1, D>}. The notation &
between G(x) and x represents our adopted measurements for optimizing Lsim (G) and Lpr;(G) rather than X OR operation.

have exactly same underlying structure. For this purpose, the
encoder-decoder based “U-Net”, which can reconstruct core
stuff in images, is adopted.

The generator contains an encoder to compress input images
as well as a decoder to recover output images from middle
hidden tensor. The hidden tensor layer, like a bottleneck in
neural networks, saves common underlying structure shared
by input and output. Also, there exist many effective skip links
between i-th layer of the encoder and (n — i)-th layer of the
decoder, performing copy and corp operations to compel the
output images to preserve more boundary in the input.

During the process of image synthesis, G has three ob-
jectives: (i) it should be able to mimic the real distribution
of the input image set, so that the generated images are
indistinguishable from real images; (ii) the generated images
should be as realistic as possible and look very similar to the
input images; and (iii) to protect the side-channel information
of privacy, this information in the generated images should be
dissimilar to that in the input images and unrecognizable by
either human or detection mechanism.

The objective (i), also called “adversarial loss”, can be
achieved by adjusting network weight to minimize the loss
function L.can in Eq. (6):

Legan = EporllogD(x)] + Ey o [1 — logD(z")].  (6)

The remaining two objectives, including “similarity loss™ (de-
noted by L, (G)) and “privacy loss” (denoted by L,.;(G)),
will be addressed in Section IV-C.

Discriminator. The discriminator in ADGAN performs a
classification task, i.e., differentiating whether its input images
are from real captured camera dataset I or the generated
dataset I'. In the scenario of auto-driving, the captured camera
images are usually complex street view scene, which has not
been well investigated in the previous GAN-based privacy
protection methods. As mentioned in [30], one fixed discrim-
inator has difficulty in differentiating real or fake on high-
resolution images, because it is hard for a discriminator to get
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a comprehensive understanding about every part in the high-
resolution images.

Thus, to differentiate these complex high-resolution real
images and generated images, more than one discriminator is
needed to deal with images with different receptive fields in an
effective manner. In ADGAN, we creatively exploit a multi-
discriminator setting D = { D1, D2}, which is the most signifi-
cant difference from the existing GAN. The two discriminators
in D = {D;, Dy} perform the binary classification with two
separate convolutional neural networks. For a generative task,
on one hand, we need to make the synthesized image under
the target distribution at a global aspect; and on the other
hand, we intend to make the generated images more realistic
in details. More specifically, to have delicate particulars in the
generated images, D; is a CNN discriminator with a smaller
receptive field to capture details; and to have a better global
view in the generated images, D2 is a CNN discriminator with
a quite large receptive field to scan entire input. The output
of D; and D, is a scalar representing a probability of real
data, and the summation of both output is the loss function
of discriminator D = {D;, Do}. Accordingly, we need to
maximize the following “extended adversarial loss™:

> [EonillogDi(a)]+Eprnr (1~ logD;(2')]].
D1,D>eD
@

Legan =

C. Utility & Privacy

In this subsection, the “similarity loss” and the “privacy
loss” are introduced. These two types of loss are used to
improve GG in GAN so that the synthesized images are similar
to the input images while preserving visual location privacy
in images.

Utility. Our multi-discriminator in L.g4nx can ensure the
generated images are subject to the distribution of real images,
but can not guarantee that the generated image x’ and input
image x are similar in image space when images are complex
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TABLE I
NETWORK ARCHITECTURE

Layer Encoder Decoder Discriminator
1 5 X 5 x 64 conv, Leaky ReLU 5% 5 x 512 deconv, B_LN, ReLU  D;/D2 :2 x 2 X 64/5 x 5 x 64 conv, Leaky ReLU
2 5 X 5 x 128 conv, B_N, Leaky ReLU 5 X 5 X 512 deconv, BN, ReLU  D; /D3 :2 x 2 x 128/5 x 5 x 128 conv, B_N, Leaky ReLU
3 5 X 5 x 256 conv, B_N, Leaky ReLU 5 x 5 x 512 deconv, B_LN, ReLU  D;/D3 :2 x 2 x 256/5 X 5 x 256 conv, B_N, Leaky ReLU
4 5 X 5 x 512 conv, B_N, Leaky ReLU 5 X 5 x 512 deconv, B_LN, ReLU D;/D3:2 x 2 x 512/5 x 5 x 512 conv, B_N, Leaky ReLU
5 5 X 5 x 512 conv, B_N, Leaky ReLU 5 x 5 x 256 deconv, B_N, ReLU  Fully Connected, Sigmoid
6 5 X% 5 x 512 conv, B_N, Leaky ReLU 5 x 5 x 128 deconv, B_N, ReLU
7 5 x 5 x 512 conv, B_N, Leaky ReLU 5 X 5 x 64 deconv, B_N, ReLU
8 5 X% 5 x 512 conv, B_N, Leaky ReLU 5 x 5 x 3 deconv, tanh

due to the model collapse property of GAN. This is the
weakness that some images generated by GAN-based models
may lost perceptual accuracy. Therefore, the similarity loss,
Lsim(G), can work as a kind of constraint to restrict percep-
tual loss. There exist a few methods to adjust the generator,
such as mean square error (MES) and the related quantity
of peak signal-to-noise ratio (PSNR), but these methods are
not suitable for human perceived quality. So we use the
Structure Similarity Index Measurement (SSIM) to access high
perceptual accuracy.

SSIM contains three parts: luminance similarity I(z,2’),
contrast similarity ¢(x,z’) and structural similarity s(z,’):

SSIM (z,2') = l(z,2")* - ¢(z,2")’ - s(z,2')7.  (8)

More details about SSIM could be referred to [31]. The output
of SSIM is a numerical number in range [0, 1] and represents
the similarity between z and z/, where 0 means totally
different and 1 means exactly same. In order to minimize the
entire loss function £apgan, Lsim(G) is defined to be

Esim(G) = ExNI,z’NI’ [1 - SSIM(iC,:L'/)] (9)

Privacy. For privacy protection, we aim to change private
information in the input images to irrelevant information in
the generated images. To achieve this, we need to locate
private information in the real images first. In semi-supervised
learning process, we use the paired data {image, label} in the
dataset to train a FCN8s model [32], which can tell us correct
classification of each pixel in images. Then, we can get the
label of each pixel for more new coming images through this
specific pre-trained model as long as the images are from the
same data source, e.g. street view. Thus, we can obtain the
location of private information in the images. In ADGAN,
we adopt L, distance to measure the difference of selected
information between the input and generated images. With re-
spect to privacy protection, a larger L distance indicates more
privacy is preserved, and a smaller L, distance means more
privacy is exposed. Therefore, the loss function, £,,;(G), can
be formulated as:

1

EacNI,x’NI'[” xp'ri _ x/pri Hl] ’

Lyri(G) = 10)
where 2P"? represents private information defined in the real
image x, and x'P" is the corresponding private information in
the generated image .
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Remarks. In this paper, we define background buildings
as the private/sensitive objects, because background building
is a kind of important side-channel information for location-
inference attack. Nevertheless, we can protect any kind of in-
formation in images by locating and modifying them according
to the requirements of privacy protection.

In conclusion, the loss function of entire ADGAN,
LApcan, can be expressed as the following explicit function:

LADGAN =

> [BonillogDi(w)] + Eprpr[1 — logDi(a')]
D,,D2eD
+ MEprpor [l — SSIM (z,2"))
1

Eonrarmp (|| 2P — 227 [|1]

an

+ A2

)

where A1 and A, are hyper-parameters that indicate the weight
of last two terms and also act as regularization terms when
their values are reduced to the scale of £4pgan Wwith proper
adjudication.

D. Network Architecture

Our generator and discriminators are constructed based on
the architecture in [33]. Each layer of the networks contains
convolution/deconvolution, Batch Normalization, and a Leak
ReLU/ReLU activation function. Particularly, the Batch Nor-
malization is employed to normalize the input to zero mean
and unit standard deviation. In the encoder of generator, there
are 8 fully convolutional layers with filter size 5 x 5, each
of which has a Leaky ReLU and Batch Normalization except
the first layer. The structure of decoder is the opposite of that
of the encoder except for ReLU and the tanh activation of
the 8th layer. For the two discriminators, the receptive field of
D, is 5 x b, the receptive field of Ds is 61 x 61, and both
of two are traditional CNNs holding 4 convolutional layers
and end with fully connected layer. The details of the network
architecture are presented in TABLE 1.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our ADGAN
model via intensive real-data experiments.
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A. Experiment Setting

1) Datasets: To explore the effectiveness and robustness of
our ADGAN under different scenarios, two different vehicular
camera datasets are adopted. (i) Cityscapes Dataset [34]. It
contains 2975 street view images from 18 cities for training
and 500 street view images from 3 cities for evaluating.
Besides, in Cityscapes, the labels for supervised learning are
provided. (ii) Google Street View [35]. There are 62,058
high-quality street view images and 10,343 related placemark
collected from 4 cities in USA. Every 6 of the images share
a placemark that works as an identifier to perform geo-
localization detection.

2) Adversary Model: Suppose an attacker can get raw
camera data from other vehicles or open source e.g., Google
Map API as the training reference dataset. Then the attacker
acquires camera data from target victim and performs feature
extraction and object detection to infer the victim’s location us-
ing Multi-KNN [35]. To avoid such attack, the most important
thing is to prevent feature extraction from location-relevant
side information. In our experiments, background buildings are
concealed as the sensitive location-relevant information while
other useful information is reserved in the generated images.

3) Comparisons: In the experiments, a comprehensive
comparison is set up between our ADGAN and other three
baseline models.

(i) pix2pix [30]. It uses a pure supervised method on labeled
pair data. Since it does not consider privacy protection, it can
be adopted as the benchmark for performance comparison.

(ii) pix2pix+pri. It is a combination of pix2pix and our
privacy-preserving mechanism. The major difference is loss
function and structure of discriminator. The loss function of
pix2pix+pri is L(G, D) = Legan(G, D) +ME[|ly—G(z)|]1]
+X2Lyri(G), where L,;(G) is defined in our ADGAN.

(iii) UNIT+pri. UNIT [36] is an unsupervised image-
to-image translation applied on street view, which does
not need any labeled data. For the purpose of compari-
son, we modify the part of GAN in UNIT to a privacy-
preserving version “UNIT+privacy”. The modified loss func-
tion is ['GANl (Gl,Dl) )\(ﬂE[lOng(Jil)] + )\OE[l —
log(D1(G1(2))] = ME[|| 1 — G1(2)], where z is the shared
latent vector between the input and output domains.

4) Training Method: In all experiments, we set the epoch
is 200. Specially, in our ADGAN model, we set \; = 200
and Ao = 10 to balance the entire loss function. In ADGAN,
each layer with a Leaky ReLU activation has a drop-out rate
of 50% and a slope of 0.2.

B. Analysis of Utility and Privacy

FCN-scores, which are used in image-to-image transla-
tion methods [30], [37], are employed to quantify privacy
preservation and recognition utility in the synthesized images.
Particularly, in FCN, pixel accuracy and interaction over union
(IoU) are two key indices to indicate the correct rate of object
detection in images. We first perform semantic segmentation
on the generated images, and then compare the predicted
segmentation of generated images and the ground truth of
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TABLE II
FCN-SCORES COMPARISON OF 4 MODELS ON CITYSCAPES

Model | pix2pix | pix2pix+pri UNIT+pri ADGAN
global accuracy 85.04% 50.92% 47.67% 76.52%
sensitive accuracy | 84.91% 46.80% 35.33% 64.65%
non-sens accuracy | 84.93% 59.56% 55.54% 81.91%
global ToU 36.45% 10.16% 8.46% 22.36%
sensitive IoU 36.31% 7.45% 6.34% 11.75%
non-sens IoU 36.65% 14.21% 10.53% 29.93%

real images. It is expected that for the predefined sensitive
information (i.e., background buildings in this paper), the pixel
accuracy and IoU of should be lower than ground truth value,
which implies that an attacker can not recognize the object on
certain pixels and thus are not able to detect real location from
the generated images. On the other hand, for the non-sensitive
information, the predicted results should be the same as the
ground truth with a high probability.

The results of pixel accuracy and IoU of the four models are
compared in TABLE II and TABLE III, where “global accu-
racy” is the average accuracy of each pixel in an image being
classified into correct class for all objects (i.e., true positive),
“sensitive accuracy” represents the average accuracy of each
pixel being classified into correct class for pre-defined private
objects, and “non-sens accuracy” is the average accuracy of
each pixel being classified into correct class for non-sensitive
objects. For “global IoU”, “sensitive IoU”, and “non-sens
IoU”, their definitions are similar to those of pixel accuracy
for all, sensitive and non-sensitive objects, respectively. The
pixel accuracy and IoU for all and non-sensitive objects are
used to estimate recognition utility, and those for sensitive
objects are used to evaluate privacy protection.

From TABLE II that shows the results on Cityscapes, we
can obtain the following observations.

(1) Since pix2pix does not consider privacy protection, it
gets the highest recognition utility. Meanwhile, an attacker can
recognize the sensitive objects from the synthesized images
with the highest accuracy, resulting in serious privacy leakage.

(ii) For privacy preservation, all of pix2pix+pri, UNIT+pri,
and ADGAN perform better than pix2pix. But, the recognition
utilities of pix2pix+pri, UNIT+pri, and ADGAN are reduced,
because hiding sensitive objects has negative impact on recog-
nizing non-sensitive objects. Among these three models, our
ADGAN achieves the best recognition utility. What’s more,
the recognition utility of ADGAN is comparable to that of
pix2pix. In TABLE 1I, the pixel accuracy of ADGAN and
pix2pix for non-sensitive objects is 81.91% and 84.93%, re-
spectively; and IoU of ADGAN and pix2pix for non-sensitive
objects are 29.93% and 36.65%, respectively.

(iii) Although both pix2pix+pri and UNIT+pri can preserve
more private information than our ADGAN does, they nearly
lose all useful information and have worse recognition utility.
As shown in TABLE II, for non-sensitive objects, the pixel
accuracy of pix2pix+pri and UNIT+pri are dramatically re-
duced to 59.56% and 55.54%, respectively, while our ADGAN
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TABLE III
FCN-SCORES COMPARISON OF 4 MODELS ON GOOGLE STREET VIEW

Model | pix2pix | pix2pix+pri UNIT+pri ADGAN
global accuracy 82.75% 59.87% 31.70% 72.31%
sensitive-accuracy | 83.07% 58.25% 25.05% 62.82%
non-sens accuracy | 82.73% 66.69% 34.69% 78.97 %
global IoU 29.65% 11.01% 5.52% 18.37%
sensitive IoU 30.13% 8.71% 3.27% 13.40%
non-sens IoU 29.74% 13.81% 6.54% 21.89%

keeps this accuracy at 81.91%. Such low pixel accuracy
of pix2pix+pri and UNIT+pri is very likely to cause the
synthesized images to be useless in real applications.

The reasons for the performance of pix2pix+pri and
UNIT+pri are analyzed below. Our ADGAN has a framework
similar to pix2pix+pri, where the most significant difference
lies in the discriminator structure and SSIM loss function. In
our ADGAN, the multi-discriminator deployment greatly con-
tributes to the improvement of recognition utility. UNIT+pri
works as a symmetric cycGAN structure, which trains the final
model by minimizing the distance between hidden vector of
two domains. Even we grab the private information in input
images, it is still hard to control what the hidden vector is after
being processed by the encoder. So, the generated images of
UNIT+pri has a bad recognition utility.

We also implement the four models on Google Street View
dataset. Recall that pix2pix is a supervised method, UNIT is
an unsupervised method, and our ADGAN utilizes the semi-
supervised idea to handle data augmentation. We first grab a
small part of images with labels to train a fully convolutional
image segmentation model, and then use the pre-trained model
to generate large amount of labeled data as an indicator
for the targeted private information. The results on Google
Street View dataset are given via TABLE III, of which the
observations are the same as those of TABLE II.

Summary of Analysis. For the synthesized images, recog-
nition utility and privacy protection conflict with each other.
Enhancing recognition utility makes the images suitable for
real applications (e.g., object detection and data mining) but
causes the images to suffer from severe privacy threats. On
the other hand, the improvement of privacy protection is
achieved at the cost of recognition utility, leading to the useless
synthesized images. Thus, balancing the tradeoff between
recognition utility and privacy protection is the challenging
issue for protecting camera data. Notably, the above experi-
ment results well validate that our ADGAN can provide an
effective tradeoff.

C. Analysis of Discriminator

Different from the previous works, we build a multi-
discriminator structure to constrain the generated images by
using different receptive fields. With this novel structure, the
discriminators together can provide more effective feedback to
the generator in ADGAN, because they are able to have better
understanding on what is real or fake. We evaluate the advan-
tage of multi-discriminator over single-discriminator by fixing
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TABLE IV
FCN-SCORES COMPARISON FOR DIFFERENT DISCRIMINATOR

Metrics | single-D  multi-D
global accuracy 75.19% 76.52%
sensitive-accuracy 64.03% 64.65%
non-sens accuracy 80.11% 81.91%
global ToU 19.87% 22.36%
sensitive IoU 10.46% 11.75%
non-sens IoU 26.75% 29.93%

the generator and loss function structure. The FCN-scores in
TABLE IV clearly demonstrate that our multi-discriminator
performs better than single-discriminator in terms of pixel
accuracy and IoU.

D. Perception Comparison
TABLE V

AMAZON MECHANICAL TURK (AMT) TEST “REAL v.s. FAKE” TEST ON
CITYSCAPES AND GOOGLE STREET VIEW

Model Cityscapes Google Street View
% Turkers labeled real % Turkers labeled real
pix2pix 18.9%+2.5% 11.2%+1.3%
pix2pix+pri 9.9%40.4% 6.1%+0.5%
UNIT+pri 2.6%+1.1% 2.1%+1.0%
ADGAN 10.1%+0.3% 8.7% +0.6 %

To evaluate the perceptual effectiveness of ADGAN, we
perform the Amazon Mechanical Turk (AMT) test, image
quality comparison and semantic segmentation comparison.

AMT Evaluation. For the AMT experiments, the protocol
in [38] states: Turkers were presented with a series of trials
that need to be labeled with “real” if facing raw data and
“fake” if it is generated data by image-to-image model. During
each trial, each image appears for 1 second, after which the
images disappear and Turkers are given limited time (random
time from 1/8 second to 8 second [39]) to respond which one
was fake. The first 10 images of each session are practice
and then Turkers are given feedback. No feedback is provided
on the 40 trials of the main experiment. Each session tests
just one method at one time, and Turkers are not allowed
to complete more than one session. There are 50 Turkers to
evaluate each model. At last, we can get a percentage for each
model which represents how much percentages of Turkers is
fooled to give a wrong answer. TABLE V shows the AMT
test results. It can be seen that our ADGAN can fool 10.1%
of participants on Cityscapes and 8.7% on Google Street View,
which is the best AMT recognition performance among three
models that consider privacy. Compared with pix2pix that
does not consider privacy, the degradation of AMT recognition
performance of ADGAN is not too much.

Image Quality Comparison. In Fig. 4, we show the random
sampled images from our model G(x) and the three baselines.
From these images, we observe that: (i) the output of ADGAN
are very similar to the original input images; (ii) our results
are closer to those of pix2pix with clear boundary and details;
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(f) ground truth (g) pix2pix (h) pix2pix+pri (i) UNIT+pri (j) ADGAN

Fig. 4. Visual quality comparison of generated images for Cityscapes dataset and Google Street View dataset. The first row is Cityscapes, and second row
is Google Street View. Figures from left to right column is ground truth of input, pix2pix result, pix2pix+pri result, UNIT+pri result and ADGAN result
respectively.

(a) ground truth (b) pix2pix (c) pix2pix+pri (e) ADGAN

(f) ground truth (g) pix2pix (h) pix2pix+pri (i) UNIT+pri (j) ADGAN

Fig. 5. Semantic segmentation comparison of generated images for Cityscapes dataset and Google Street View dataset. The first row is Cityscapes, and second
row is Google Street View. Figures from left to right column is ground truth of input, pix2pix result, pix2pix+pri result, UNIT+pri result and ADGAN result
respectively.

and (iii) the quality of images from ADGAN are better than tion, to generate privacy-preserving camera images for protect-

that from both pix2pix+pri and UNIT+pri. ing location privacy in auto-driving. We use two real datasets
Semantic Segmentation. Semantic segmentation is an im- to evaluate the performance of ADGAN, and comprehensive

portant research topic in computer vision and auto-driving. In comparisons between ADGAN and the baselines well confirm

the prior work, conditional GANs have been proved workable the advantages of our ADGAN. With limited experimental

in semantic segmentation [40]. To explore what extent our environment and hardware, in this paper, we implement our

ADGAN can achieve after adding privacy consideration, we model on 256 x 512 and 400 x 512 scale. In our future work,

train a FCN8s model to segment sample images generated we will further investigate the performance improvement of

from the four models. The segmentation results in Fig. 5 our model for higher resolution camera data.

show that our ADGAN outperforms the other three models

in a qualitative view. As the pre-defined sensitive objects, the
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