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Abstract—The autonomous driving (auto-driving) technology
has been promoted significantly by the rapid advances in com-
puter vision and deep neural networks. Auto-driving vehicles,
nowadays, are fully equipped with numerous sensors such as
cameras, geo-sensors, and radar sensors, to capture real-time
data inside the vehicles and outside surroundings. Meanwhile,
the captured data contains lots of private information about
vehicles, drivers and passengers and thus faces a high risk of
privacy breaches. Especially, side-channel information can be
mined from camera data to identify vehicles’ locations and even
trajectories, raising serious privacy issues. Unfortunately, the
issue, how to resist location-inference attack for camera data in
auto-driving, has never been addressed in literature. In this paper,
we intend to fill this blank by developing a GAN-based image-to-
image translation method named Auto-Driving GAN (ADGAN).
Through performance comparisons between ADGAN and the
state-of-the-art, the superiority of ADGAN can be validated –
offering an effective tradeoff between recognition utility and
privacy protection for camera data.

Index Terms—Autonomous driving; Location privacy; Gener-
ative Adversarial Networks; Image generation.

I. INTRODUCTION

Over the last decade, the autonomous driving (auto-driving)

technology, combined with computer vision and deep learning,

has flourished in both industry and academia. This significantly

promotes some leading manufactures, including Tesla, Ford,

BMW and even Google, to produce their own auto-driving

vehicles [1]. These auto-driving vehicles have become a robust

and efficient stuff and already driven millions of miles without

human intervention [2], [3]. Such an incredible success is

inseparable from two core elements: perception and decision-

making, which are in desire of numerous data for performance

improvement. In other words, the auto-driving vehicles are

nothing but a car driven by an amount of data. The data

can be collected from a variety of sensors embedded in

the autonomous vehicles, e.g., GPS for navigation; a wheel

encoder for monitoring movement; behavior-relevant sensors

for capturing passengers’ behaviors; radar on the front and rear

bumpers for identifying traffic; and camera near the rear-view

mirror for color identification, lane departure, read collision,

and pedestrian alerts [4], [5]. Besides driving guidance, such

valuable data can benefit individuals and the society in various

ways, including traffic analysis, accident investigation, auto

insurance assessment, vehicular communication, and “smart

city function”, etc.

Yet, despite these attractive benefits, the volume-rich

data inevitably exposes the privacy of vehicles and

drivers/passengers to an extremely dangerous situation. The

auto-driving vehicles are very likely to become the targets

of malicious attackers no matter with what purposes. Once

attackers access to the collected data, personal privacy behind

the data will be leaked. For examples, by analyzing GPS data,

the attackers know passengers’ home addresses and moving

patterns; and by analyzing behavior-relevant data, the attackers

can infer the information of sex, age, hobby, etc.

As an indivisible part of the autonomous vehicles, cam-

era data definitely suffers from severe privacy threats. By

capturing real-time images, the cameras work as the eyes to

help monitor road conditions (e.g., recognizing pedestrians)

and guide driving behaviors (e.g., stopping and braking).

The captured images can be also collected for use in real

applications, such as building 3D street view, training detection

model, and arbitrating disputes in traffic accidents. However,

the cameras not only have the power to record images and

videos of ambient environment view for their host vehicles, but

also can collect other “over-needed information”, such as street

view background, faces of pedestrians by streets, license plate

and model of surrounding vehicles, and others. This “over-

needed information” becomes a breakthrough for attackers to

steal privacy. Fig. 1 illustrates an attack scenario: an attacker

gets an image captured by a victim’s camera as shown in

Fig. 1(a), and can learn that the victim was on a street at

the front of “Triumphal Arch”. In this scenario, the victim’s

location privacy is totally leaked via side-channel information

in the image without GPS data. Moreover, if the attacker can

obtain a set of victim’s images with time correlation (e.g.,
Fig. 1(a) and Fig. 1(b)), he can infer the victim’s possible

trajectory and driving speed as presented in Fig. 1(c).

Even worse is that with the developments of computer

vision and deep learning, attackers can strengthen their at-

tack ability by means of object recognition and image geo-

localization. Early before decade, some vocabulary tree-based

matching and feature-based matching methods have been

proposed to detect location in images, which can reach high

recognition accuracy above 70% [6], [7]. That is, attackers

are strong enough to easily recover real trajectory with large

probability by recognizing camera images.
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(a) camera data from victim near Triumphal arch (b) camera data from victim near Eiffel tower (c) leaked location and trajectory information

Fig. 1. An example to illustrate how victim’s location and trajectory privacy is inferred by Geo-localization attack (pictures source from Google Map).

Thus, in auto-driving, preventing camera data1 from
being attacked by location inference has become an urgent
problem to be solved. To protect camera data, three unprece-

dented challenges are ahead of us. (i) As no existing work

addresses this problem for auto-driving, the study of problem

formulation and technique design is an unknown exploration.

(ii) It is desired that the privacy-preserving camera images are

still usable in real applications. For this purpose, balancing

the tradeoff between image recognition and privacy protection

is critical to technique design, which is not a trivial issue.

(iii) Although some existing methods aim to protect privacy

of small objects (such as face, number, and license plate) by

blurring or removing the objects from images, these methods

will lose the context structure of images and damage the

usability of images if the object is large (e.g., buildings). Since

the street view images have more complex context structures

containing a variety of objects, the aforementioned methods

are not suitable for protecting vehicular camera data.

To overcome these three challenges, in this paper, we

novelly propose a Generative Adversarial Networks (GAN)-

based approach named ADGAN. Our basic idea is that re-

ducing the risk of privacy breaches by removing location-

relevant information (e.g., background buildings) from the

camera images before being used in real applications. To be

concrete, we utilize image-to-image translation to eliminate

private objects in images while maintaining the utility of

valuable objects, so that the processed images can still be

used for real applications. Then, to effectively balance the

tradeoff between privacy and utility, we design a min-max loss

function to control image synthesis in ADGAN. Particularly,

we develop an innovative multi-discriminator setting in our

ADGAN for performance enhancement: (i) the loss of context

structure is reduced, improving image recognition; and (ii)

the guarantee of privacy protection is reinforced. Finally, our

multi-fold contributions are summarized below:

• To the best of our knowledge, this paper is the first work

to investigate the privacy issue of camera data for auto-

driving.

• A GAN-based image-to-image translation method

(ADGAN) is designed to generate privacy-preserving

1In this paper, we focus on the camera images in auto-driving, and thus
camera data and camera image are exchangeable.

images, which can resist location-inference attack

towards side-channel information of camera data.

• The results of real-dataset experiments validate that our

ADGAN can achieve privacy protection while simultane-

ously maintaining accuracy of image recognition, which

provides a more effective tradeoff between privacy and

utility compared with the state-of-the-art.

The rest of this paper is organized as follows. The pre-

liminaries and related works are introduced in Section II

and Section III, respectively. The details of our ADGAN

are presented in Section IV. After evaluating ADGAN in

Section V, this paper is concluded in Section VI.

II. PRELIMINARIES

In this section, the background and fundamentals of Gen-

erative Adversarial Network (GAN), Auto-Encoder (AE), and

image-to-image translation are briefly introduced.

A. Generative Adversarial Network

As the most creative idea of Deep Learning in recent years,

Generative Adversarial Network (GAN) has been widely ap-

plied in the field of computer vision since it was proposed

in 2014 [8]. GAN consists of two “adversarial” models: a
generator G and a discriminator D. The two adversarial

models play with each other to complete in a min-max game,

where G intentionally generates samples from a real data

distribution to fool D while D judges whether its input is

the fake data generated by G or the real data. Mathematically

speaking, G could be any form but a simple differentiable

function, and G(z) is the output sample drawn from pg where

z is a low dimensional vector sampled from a prior distribution

pz . Thus, the aim of D is to classify the data from G(z) as fake

and the data from training set pdata as real. Formally, GAN is

expressed as a structured probabilistic model to optimize the

following loss function:

min
G

max
D

LGAN (G,D) =Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[1− logD(G(z))],
(1)

where G aims to minimize LGAN (G,D) while D aims to

maximize it.

Furthermore, GAN can be extended to a conditional version

with an additional input y that could be any kind of auxiliary

information (e.g., the class labels or data from other domains).

669

Authorized licensed use limited to: Georgia State University. Downloaded on May 27,2020 at 17:45:45 UTC from IEEE Xplore.  Restrictions apply. 



The corresponding objective function of such min-max game

is formulated as:

min
G

max
D

LGAN (G,D) =Ex∼pdata(x)[logD(x|y)]+
Ez∼pz(z)[1− logD(G(z|y))].

(2)

B. Auto-Encoder and U-Net

The Auto-Encoder (AE) that is an unsupervised neural

network learns a mapping function from input data x to output

x̃ = h(x). The goal of learned mapping function is to get the

minimum distance between x and x̃. AE consists of two parts:

Encoder and Decoder [9]. The Encoder samples data x from a

real distribution and then encodes it into a latent representation

z, i.e., z ∼ Encoder(x) = q(z|x). The Decoder reconstructs

the real data x from the low-dimension representation z, i.e.,
x̃ ∼ Decoder(z) = p(x|z). Then the loss function of AE can

be defined as:

min
Enc,Dec

LAE(Enc,Dec) = Dis(x,Dec ◦ Enc(x)), (3)

where Enc and Dec represent Encoder and Decoder, re-

spectively; Dis could be any distance metrics (such as L1

distance [9] and Kullback-Leibler divergence [10]); and ◦ is

the composite function of Encoder and Decoder.

In this paper, we adopt a variation of AE, called “U-Net”.

Besides using the idea of traditional AE, “U-Net” also adds

some skip links between layers in Encoder and Decoder. To

improve the performance of data reconstruction, the skip links

are used to concatenate the i-th layer of Encoder and the (n−
i)-th layer of Decoder. The similarity and connection between

layers are enhanced by such a concatenation, thus promoting

U-Net to generate more similar result x̃. A comparison of the

structure between AE and U-Net is shown in Fig. 2. In the

traditional AE, latent z is obtained by passing input x through

the Encoder and then is recovered to x̃ by Decoder. While in

U-Net, each layer of Encoder produces an intermediate result

after convolution and pooling, and every intermediate result is

sent to the corresponding layer of Decoder where the result is

concatenated with additional recovered data and goes through

the rest of neural network.

Auto-Encoder

x

x

x

x
U-Net

Fig. 2. A comparison between Auto-Encoder and U-Net.

C. Image-to-Image Translation

Image-to-Image translation, which is a widely investigated

problem in image processing and computer vision, tries to

“translate” images from one domain to another corresponding

domain. For examples, translating RGB image into grayscale

image, and translating nighttime photos into daytime photos

etc. The first light of image-to-image translation [11] hired

a non-parametric model to implement translation on a paired

dataset. In recent research, as the deep learning technology

emerges, parametric models have made impressive progress

in computer vision. By using CNN, a semantic segmentation

method, called SegNet, was proposed to translate original

images into semantic segmented images [12]. The “Domain

Transfer Network” (DTN) in [13] defined an automatic image-

to-image translation framework. DTN is a universal translation

model covering many common domains, such as mapping pho-

tographs to edges, segments, or semantic labels, and mapping

labels and sketch inputs to realistic images.

III. RELATED WORK

The most relevant works are summarized along two direc-

tions: privacy protection in auto-driving and application of
GAN for privacy protection.

A. Privacy Protection in Auto-Driving

In the traditional Vehicular Ad hoc Networks (VANETs),

a number of methods have been proposed to protect pri-

vacy for the vehicles and drivers; especially, location and

trajectory privacy are the major focus as (i) most of the

vehicular applications are based on location information and

(ii) the location information is tightly related to driving safety.

In [14], a Social-based PRivacy-preserving packet forwardING

(SPRING) protocol was designed based on symmetric cryptog-

raphy and public key infrastructure. An efficient Social spot-

based Packet Forwarding (SPF) protocol is proposed by [15],

where the social spots are referred to as the locations in a city

environment that many vehicles often visit. By using differen-

tial privacy, a spatial division based method was developed

in [16] to protect location and trajectory privacy. In [17],

the authors presented an efficient packet forwarding proto-

col, named Social-Tier-Assisted Packet (STAP), for vehicular

networks. Particularly, STAP is effective not only in packet

dissemination, but also in protection of location privacy of

receiver. Notably, for location privacy preservation, almost all

of the current works focused on location-based services (LBS),

ignoring the leakage of side-channel information in location-

independent services. Therefore, these works cannot prevent

location-inference attack towards side-channel information.

On the other hand, in the autonomous vehicles, camera data

is an indispensable part to help monitor road conditions (e.g.,
recognizing pedestrians) and guide driving behaviors (e.g.,
stopping and braking). Although these road conditions and

driving behaviors are not determined by locations (e.g. in both

New York and San Francisco, the Stop sign has the same

meaning.), the location of a vehicle can be easily identified

through recognizing camera images. However, to the best of

our knowledge, no work has been proposed to address the

issue how to resist location-inference attack for camera data

in auto-driving. Such a blank will be filled by this paper.
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B. Application of GAN for Privacy Protection

By exploring the “adversarial” property of GAN, the gener-

ator G and the discriminator D can be modeled as a defender

and an attacker, respectively. The training process reflects

interactions between the defender and the attacker in a zero-

sum game, and terminates when a Nash equilibrium is reached

such that the defender can win the game.

In [18], [19], generative full body and face de-identification

methods were respectively proposed to avoid the recognition

of human ID or other biometrics identifiers while preserving

data utility and naturalness. Also, GAN-based visual secrets

protection methods were introduced by [20], [21], in which the

authors used GAN as obfuscation to decrease the probability

of successfully detecting secret pixels. To protect text privacy,

a GAN-based privacy-preserving method was developed to

prevent attackers from inferring age and sex of text author

as well as to remain most utility for NLP [22]. The prior

work [23] designed a VGAN-based image representation

learning for privacy-preserving facial expression recognition,

which can protect human ID and maintain expression recogni-

tion accuracy. In [24], a method is proposed using adversarial

regularization to protect the membership privacy of the train-

ing dataset. Additionally, GAN is combined with differential

privacy to generate a private dataset to keep enough utility

while preserving user privacy by adding designated noise upon

training parameters [25]–[27]. In addition to protection, a

distributed GAN model was used to recover individual victim’s

private data even though the data of victim is protected by

using distributed differential privacy [28].

For the privacy of image data, the existing GAN-based

methods mainly focused on small objects, e.g., face and num-

ber. These small objects are easy to be detected and modified

because they hold fixed features, and their modifications do

not destroy the entire context structure of the images. But,

this situation changes when it involves the street view images.

Since the street view images have more complex context

structures containing a variety of objects, the aforementioned

GAN-based methods cannot be applied directly to protect the

vehicular camera data. More importantly, the main challenge

of our work is that in the camera images, the location-relevant

information should be protected to avoid inference attack while

preserving data utility.

IV. METHODOLOGY OF ADGAN

To preserve location privacy while maintaining the utility

of the vehicular camera data, we propose an innovative mech-

anism termed Auto-Driving GAN (ADGAN).

A. Framework & Problem Formulation

As shown in Fig. 3, our ADGAN contains a generator

denoted by G and two discriminators respectively denoted by

D1 and D2.

The generator G is built based on “U-Net” [29] structure.

Let I and I ′ be the set of raw image from real camera data

and the set of synthesized image, respectively. For each real

camera image x ∈ I , we aim to train G to produce x′ = G(x).

Specifically, for each captured camera image, we feed it

into G and then perform the pixel-to-pixel transformation

to output a corresponding synthesized image, which is what

a generator does in the conditional GAN. The multi-fold

objectives of G include: (i) generate synthesized image as

realistic as possible; (ii) maintain the recognition accuracy

of non-sensitive information; and (iii) reduce the recognition

accuracy of sensitive information.

With the inputs coming from I and I ′, the goal of D1 and

D2 is to judge whether their inputs are the real images or

the synthesized images. Instead of using one discriminator

as the traditional GAN does, we deploy two discriminators

in ADGAN. Such a multi-discriminator setting stems from

the following consideration: (i) a single discriminator with the

fixed receptive field only reads a certain part of an image and

thus is easily fooled by the generator; and (ii) combining two

discriminators can enhance the ability to distinguish image,

which provides privacy protection guarantee when facing a

more powerful attacker. To achieve good performance of

image recognition with this multi-discriminator setting, D1

has a small receptive field to perceive the details of small

part in image, while D2 has a large receptive field to obtain

a relatively global view of the whole image structure.

By integrating the generator and the two discriminators, we

have the following loss function LADGAN :

LADGAN (G,D) =LcGAN (G,D) + λ1Lsim(G)

+ λ2Lpri(G),
(4)

where LcGAN is the loss function of the two discriminators,

Lsim(G) is the similarity loss indicating the similarity between

x and x′, Lpri(G) is the privacy loss implying the distance of

predefined sensitive objects between all real and synthesized

data, and λ1 and λ2 are system parameters. Accordingly, when

the training process terminates, we can obtain the optimal

result G∗ as

G∗ = argmin
G

max
D

[LcGAN (G,D) + λ1Lsim(G)

+ λ2Lpri(G)].
(5)

In Eq. (5), “min-max” means G is expected to beat D1 and D2

even though the capability of D1 and D2 is maximum. After

getting G∗, the auto-driving vehicles could use x′ = G∗(x)
for their own purposes without leaking location privacy.

B. Image Synthesis

In ADGAN, the generator and discriminators are utilized to

fulfill the task of image synthesis, i.e., obtaining x′ = G(x).
The design of G, D1 and D2 are described as follows.

Generator. Image-to-image translation is basically a func-

tion that takes an image of a certain domain as input and

outputs the image of another domain pixel by pixel. To keep

the desired similarity and recognition, the output should be

close to the original input. For the problem we consider, except

for the sensitive objects (e.g., the background buildings), the

other information of synthesized images should be similar

to those of real images. This requires the output and input

are different in appearance at background pixel location, but
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x G(x) input to D

Generator G

Encoder Decoder

Discriminator D

camera data x input to D

Lsim(G)
Lpri(G)

down
convolution  
up
convolution  
fully 
connected

concat ith and n-i th layer

D1(x)
D1[G(x)]

FC layers

D2(x)
D2[G(x)]

conv layers

Fig. 3. System framework of ADGAN, which contains a “U-Net” based generator G and a multi-discriminator structure D = {D1, D2}. The notation ⊕
between G(x) and x represents our adopted measurements for optimizing Lsim(G) and Lpri(G) rather than XOR operation.

have exactly same underlying structure. For this purpose, the

encoder-decoder based “U-Net”, which can reconstruct core

stuff in images, is adopted.
The generator contains an encoder to compress input images

as well as a decoder to recover output images from middle

hidden tensor. The hidden tensor layer, like a bottleneck in

neural networks, saves common underlying structure shared

by input and output. Also, there exist many effective skip links

between i-th layer of the encoder and (n− i)-th layer of the

decoder, performing copy and corp operations to compel the

output images to preserve more boundary in the input.
During the process of image synthesis, G has three ob-

jectives: (i) it should be able to mimic the real distribution

of the input image set, so that the generated images are

indistinguishable from real images; (ii) the generated images

should be as realistic as possible and look very similar to the

input images; and (iii) to protect the side-channel information

of privacy, this information in the generated images should be

dissimilar to that in the input images and unrecognizable by

either human or detection mechanism.
The objective (i), also called “adversarial loss”, can be

achieved by adjusting network weight to minimize the loss

function LcGAN in Eq. (6):

LcGAN = Ex∼I [logD(x)] + Ex′∼I′ [1− logD(x′)]. (6)

The remaining two objectives, including “similarity loss” (de-

noted by Lsim(G)) and “privacy loss” (denoted by Lpri(G)),
will be addressed in Section IV-C.

Discriminator. The discriminator in ADGAN performs a

classification task, i.e., differentiating whether its input images

are from real captured camera dataset I or the generated

dataset I ′. In the scenario of auto-driving, the captured camera

images are usually complex street view scene, which has not

been well investigated in the previous GAN-based privacy

protection methods. As mentioned in [30], one fixed discrim-

inator has difficulty in differentiating real or fake on high-

resolution images, because it is hard for a discriminator to get

a comprehensive understanding about every part in the high-

resolution images.

Thus, to differentiate these complex high-resolution real

images and generated images, more than one discriminator is

needed to deal with images with different receptive fields in an

effective manner. In ADGAN, we creatively exploit a multi-

discriminator setting D = {D1, D2}, which is the most signifi-

cant difference from the existing GAN. The two discriminators

in D = {D1, D2} perform the binary classification with two

separate convolutional neural networks. For a generative task,

on one hand, we need to make the synthesized image under

the target distribution at a global aspect; and on the other

hand, we intend to make the generated images more realistic

in details. More specifically, to have delicate particulars in the

generated images, D1 is a CNN discriminator with a smaller

receptive field to capture details; and to have a better global

view in the generated images, D2 is a CNN discriminator with

a quite large receptive field to scan entire input. The output

of D1 and D2 is a scalar representing a probability of real

data, and the summation of both output is the loss function

of discriminator D = {D1, D2}. Accordingly, we need to

maximize the following “extended adversarial loss”:

LcGAN =
∑

D1,D2∈D

[Ex∼I [logDi(x)]+Ex′∼I′ [1− logDi(x
′)]].

(7)

C. Utility & Privacy

In this subsection, the “similarity loss” and the “privacy

loss” are introduced. These two types of loss are used to

improve G in GAN so that the synthesized images are similar

to the input images while preserving visual location privacy

in images.

Utility. Our multi-discriminator in LcGAN can ensure the

generated images are subject to the distribution of real images,

but can not guarantee that the generated image x′ and input

image x are similar in image space when images are complex
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TABLE I
NETWORK ARCHITECTURE

Layer Encoder Decoder Discriminator

1 5× 5× 64 conv, Leaky ReLU 5× 5× 512 deconv, B N, ReLU D1/D2 : 2× 2× 64/5× 5× 64 conv, Leaky ReLU
2 5× 5× 128 conv, B N, Leaky ReLU 5× 5× 512 deconv, B N, ReLU D1/D2 : 2× 2× 128/5× 5× 128 conv, B N, Leaky ReLU
3 5× 5× 256 conv, B N, Leaky ReLU 5× 5× 512 deconv, B N, ReLU D1/D2 : 2× 2× 256/5× 5× 256 conv, B N, Leaky ReLU
4 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 512 deconv, B N, ReLU D1/D2 : 2× 2× 512/5× 5× 512 conv, B N, Leaky ReLU
5 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 256 deconv, B N, ReLU Fully Connected, Sigmoid
6 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 128 deconv, B N, ReLU
7 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 64 deconv, B N, ReLU
8 5× 5× 512 conv, B N, Leaky ReLU 5× 5× 3 deconv, tanh

due to the model collapse property of GAN. This is the

weakness that some images generated by GAN-based models

may lost perceptual accuracy. Therefore, the similarity loss,

Lsim(G), can work as a kind of constraint to restrict percep-

tual loss. There exist a few methods to adjust the generator,

such as mean square error (MES) and the related quantity

of peak signal-to-noise ratio (PSNR), but these methods are

not suitable for human perceived quality. So we use the

Structure Similarity Index Measurement (SSIM) to access high

perceptual accuracy.

SSIM contains three parts: luminance similarity l(x, x′),
contrast similarity c(x, x′) and structural similarity s(x, x′):

SSIM(x, x′) = l(x, x′)α · c(x, x′)β · s(x, x′)γ . (8)

More details about SSIM could be referred to [31]. The output

of SSIM is a numerical number in range [0, 1] and represents

the similarity between x and x′, where 0 means totally

different and 1 means exactly same. In order to minimize the

entire loss function LADGAN , Lsim(G) is defined to be

Lsim(G) = Ex∼I,x′∼I′ [1− SSIM(x, x′)]. (9)

Privacy. For privacy protection, we aim to change private

information in the input images to irrelevant information in

the generated images. To achieve this, we need to locate

private information in the real images first. In semi-supervised

learning process, we use the paired data {image, label} in the

dataset to train a FCN8s model [32], which can tell us correct

classification of each pixel in images. Then, we can get the

label of each pixel for more new coming images through this

specific pre-trained model as long as the images are from the

same data source, e.g. street view. Thus, we can obtain the

location of private information in the images. In ADGAN,

we adopt L1 distance to measure the difference of selected

information between the input and generated images. With re-

spect to privacy protection, a larger L1 distance indicates more

privacy is preserved, and a smaller L1 distance means more

privacy is exposed. Therefore, the loss function, Lpri(G), can

be formulated as:

Lpri(G) =
1

Ex∼I,x′∼I′ [‖ xpri − x′pri ‖1] , (10)

where xpri represents private information defined in the real

image x, and x′pri is the corresponding private information in

the generated image x′.

Remarks. In this paper, we define background buildings

as the private/sensitive objects, because background building

is a kind of important side-channel information for location-

inference attack. Nevertheless, we can protect any kind of in-

formation in images by locating and modifying them according

to the requirements of privacy protection.

In conclusion, the loss function of entire ADGAN,

LADGAN , can be expressed as the following explicit function:

LADGAN =
∑

D1,D2∈D

[Ex∼I [logDi(x)] + Ex′∼I′ [1− logDi(x
′)]]

+ λ1Ex∼I,x′∼I′ [1− SSIM(x, x′)]

+ λ2

1

Ex∼I,x′∼I′ [‖ xpri − x′pri ‖1] ,

(11)

where λ1 and λ2 are hyper-parameters that indicate the weight

of last two terms and also act as regularization terms when

their values are reduced to the scale of LADGAN with proper

adjudication.

D. Network Architecture

Our generator and discriminators are constructed based on

the architecture in [33]. Each layer of the networks contains

convolution/deconvolution, Batch Normalization, and a Leak

ReLU/ReLU activation function. Particularly, the Batch Nor-

malization is employed to normalize the input to zero mean

and unit standard deviation. In the encoder of generator, there

are 8 fully convolutional layers with filter size 5 × 5, each

of which has a Leaky ReLU and Batch Normalization except

the first layer. The structure of decoder is the opposite of that

of the encoder except for ReLU and the tanh activation of

the 8th layer. For the two discriminators, the receptive field of

D1 is 5 × 5, the receptive field of D2 is 61 × 61, and both

of two are traditional CNNs holding 4 convolutional layers

and end with fully connected layer. The details of the network

architecture are presented in TABLE I.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our ADGAN

model via intensive real-data experiments.
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A. Experiment Setting

1) Datasets: To explore the effectiveness and robustness of

our ADGAN under different scenarios, two different vehicular

camera datasets are adopted. (i) Cityscapes Dataset [34]. It

contains 2975 street view images from 18 cities for training

and 500 street view images from 3 cities for evaluating.

Besides, in Cityscapes, the labels for supervised learning are

provided. (ii) Google Street View [35]. There are 62,058

high-quality street view images and 10,343 related placemark

collected from 4 cities in USA. Every 6 of the images share

a placemark that works as an identifier to perform geo-

localization detection.

2) Adversary Model: Suppose an attacker can get raw

camera data from other vehicles or open source e.g., Google

Map API as the training reference dataset. Then the attacker

acquires camera data from target victim and performs feature

extraction and object detection to infer the victim’s location us-

ing Multi-KNN [35]. To avoid such attack, the most important

thing is to prevent feature extraction from location-relevant

side information. In our experiments, background buildings are

concealed as the sensitive location-relevant information while

other useful information is reserved in the generated images.

3) Comparisons: In the experiments, a comprehensive

comparison is set up between our ADGAN and other three

baseline models.

(i) pix2pix [30]. It uses a pure supervised method on labeled

pair data. Since it does not consider privacy protection, it can

be adopted as the benchmark for performance comparison.

(ii) pix2pix+pri. It is a combination of pix2pix and our

privacy-preserving mechanism. The major difference is loss

function and structure of discriminator. The loss function of

pix2pix+pri is L(G,D) = LcGAN (G,D)+λ1E[||y−G(x)||1]
+λ2Lpri(G), where Lpri(G) is defined in our ADGAN.

(iii) UNIT+pri. UNIT [36] is an unsupervised image-

to-image translation applied on street view, which does

not need any labeled data. For the purpose of compari-

son, we modify the part of GAN in UNIT to a privacy-

preserving version “UNIT+privacy”. The modified loss func-

tion is LGAN1
(G1, D1) = λ0E[logD1(x1)] + λ0E[1 −

log(D1(G1(z))] − λ1E[‖ x1 − G1(z)], where z is the shared

latent vector between the input and output domains.

4) Training Method: In all experiments, we set the epoch

is 200. Specially, in our ADGAN model, we set λ1 = 200
and λ2 = 10 to balance the entire loss function. In ADGAN,

each layer with a Leaky ReLU activation has a drop-out rate

of 50% and a slope of 0.2.

B. Analysis of Utility and Privacy

FCN-scores, which are used in image-to-image transla-

tion methods [30], [37], are employed to quantify privacy
preservation and recognition utility in the synthesized images.

Particularly, in FCN, pixel accuracy and interaction over union

(IoU) are two key indices to indicate the correct rate of object

detection in images. We first perform semantic segmentation

on the generated images, and then compare the predicted

segmentation of generated images and the ground truth of

TABLE II
FCN-SCORES COMPARISON OF 4 MODELS ON CITYSCAPES

Model pix2pix pix2pix+pri UNIT+pri ADGAN

global accuracy 85.04% 50.92% 47.67% 76.52%
sensitive accuracy 84.91% 46.80% 35.33% 64.65%
non-sens accuracy 84.93% 59.56% 55.54% 81.91%
global IoU 36.45% 10.16% 8.46% 22.36%
sensitive IoU 36.31% 7.45% 6.34% 11.75%
non-sens IoU 36.65% 14.21% 10.53% 29.93%

real images. It is expected that for the predefined sensitive

information (i.e., background buildings in this paper), the pixel

accuracy and IoU of should be lower than ground truth value,

which implies that an attacker can not recognize the object on

certain pixels and thus are not able to detect real location from

the generated images. On the other hand, for the non-sensitive

information, the predicted results should be the same as the

ground truth with a high probability.

The results of pixel accuracy and IoU of the four models are

compared in TABLE II and TABLE III, where “global accu-

racy” is the average accuracy of each pixel in an image being

classified into correct class for all objects (i.e., true positive),

“sensitive accuracy” represents the average accuracy of each

pixel being classified into correct class for pre-defined private

objects, and “non-sens accuracy” is the average accuracy of

each pixel being classified into correct class for non-sensitive

objects. For “global IoU”, “sensitive IoU”, and “non-sens

IoU”, their definitions are similar to those of pixel accuracy

for all, sensitive and non-sensitive objects, respectively. The
pixel accuracy and IoU for all and non-sensitive objects are
used to estimate recognition utility, and those for sensitive
objects are used to evaluate privacy protection.

From TABLE II that shows the results on Cityscapes, we

can obtain the following observations.

(i) Since pix2pix does not consider privacy protection, it

gets the highest recognition utility. Meanwhile, an attacker can

recognize the sensitive objects from the synthesized images

with the highest accuracy, resulting in serious privacy leakage.

(ii) For privacy preservation, all of pix2pix+pri, UNIT+pri,

and ADGAN perform better than pix2pix. But, the recognition

utilities of pix2pix+pri, UNIT+pri, and ADGAN are reduced,

because hiding sensitive objects has negative impact on recog-

nizing non-sensitive objects. Among these three models, our

ADGAN achieves the best recognition utility. What’s more,

the recognition utility of ADGAN is comparable to that of

pix2pix. In TABLE II, the pixel accuracy of ADGAN and

pix2pix for non-sensitive objects is 81.91% and 84.93%, re-

spectively; and IoU of ADGAN and pix2pix for non-sensitive

objects are 29.93% and 36.65%, respectively.

(iii) Although both pix2pix+pri and UNIT+pri can preserve

more private information than our ADGAN does, they nearly

lose all useful information and have worse recognition utility.

As shown in TABLE II, for non-sensitive objects, the pixel

accuracy of pix2pix+pri and UNIT+pri are dramatically re-

duced to 59.56% and 55.54%, respectively, while our ADGAN
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TABLE III
FCN-SCORES COMPARISON OF 4 MODELS ON GOOGLE STREET VIEW

Model pix2pix pix2pix+pri UNIT+pri ADGAN

global accuracy 82.75% 59.87% 31.70% 72.31%
sensitive-accuracy 83.07% 58.25% 25.05% 62.82%
non-sens accuracy 82.73% 66.69% 34.69% 78.97%
global IoU 29.65% 11.01% 5.52% 18.37%
sensitive IoU 30.13% 8.71% 3.27% 13.40%
non-sens IoU 29.74% 13.81% 6.54% 21.89%

keeps this accuracy at 81.91%. Such low pixel accuracy

of pix2pix+pri and UNIT+pri is very likely to cause the

synthesized images to be useless in real applications.

The reasons for the performance of pix2pix+pri and

UNIT+pri are analyzed below. Our ADGAN has a framework

similar to pix2pix+pri, where the most significant difference

lies in the discriminator structure and SSIM loss function. In

our ADGAN, the multi-discriminator deployment greatly con-

tributes to the improvement of recognition utility. UNIT+pri

works as a symmetric cycGAN structure, which trains the final

model by minimizing the distance between hidden vector of

two domains. Even we grab the private information in input

images, it is still hard to control what the hidden vector is after

being processed by the encoder. So, the generated images of

UNIT+pri has a bad recognition utility.

We also implement the four models on Google Street View

dataset. Recall that pix2pix is a supervised method, UNIT is

an unsupervised method, and our ADGAN utilizes the semi-

supervised idea to handle data augmentation. We first grab a

small part of images with labels to train a fully convolutional

image segmentation model, and then use the pre-trained model

to generate large amount of labeled data as an indicator

for the targeted private information. The results on Google

Street View dataset are given via TABLE III, of which the

observations are the same as those of TABLE II.

Summary of Analysis. For the synthesized images, recog-

nition utility and privacy protection conflict with each other.

Enhancing recognition utility makes the images suitable for

real applications (e.g., object detection and data mining) but

causes the images to suffer from severe privacy threats. On

the other hand, the improvement of privacy protection is

achieved at the cost of recognition utility, leading to the useless

synthesized images. Thus, balancing the tradeoff between

recognition utility and privacy protection is the challenging

issue for protecting camera data. Notably, the above experi-

ment results well validate that our ADGAN can provide an

effective tradeoff.

C. Analysis of Discriminator

Different from the previous works, we build a multi-

discriminator structure to constrain the generated images by

using different receptive fields. With this novel structure, the

discriminators together can provide more effective feedback to

the generator in ADGAN, because they are able to have better

understanding on what is real or fake. We evaluate the advan-

tage of multi-discriminator over single-discriminator by fixing

TABLE IV
FCN-SCORES COMPARISON FOR DIFFERENT DISCRIMINATOR

Metrics single-D multi-D

global accuracy 75.19% 76.52%
sensitive-accuracy 64.03% 64.65%
non-sens accuracy 80.11% 81.91%
global IoU 19.87% 22.36%
sensitive IoU 10.46% 11.75%
non-sens IoU 26.75% 29.93%

the generator and loss function structure. The FCN-scores in

TABLE IV clearly demonstrate that our multi-discriminator

performs better than single-discriminator in terms of pixel

accuracy and IoU.

D. Perception Comparison

TABLE V
AMAZON MECHANICAL TURK (AMT) TEST “REAL v.s. FAKE” TEST ON

CITYSCAPES AND GOOGLE STREET VIEW

Model Cityscapes Google Street View
% Turkers labeled real % Turkers labeled real

pix2pix 18.9%±2.5% 11.2%±1.3%
pix2pix+pri 9.9%±0.4% 6.1%±0.5%
UNIT+pri 2.6%±1.1% 2.1%±1.0%
ADGAN 10.1%±0.3% 8.7%±0.6%

To evaluate the perceptual effectiveness of ADGAN, we

perform the Amazon Mechanical Turk (AMT) test, image

quality comparison and semantic segmentation comparison.

AMT Evaluation. For the AMT experiments, the protocol

in [38] states: Turkers were presented with a series of trials

that need to be labeled with “real” if facing raw data and

“fake” if it is generated data by image-to-image model. During

each trial, each image appears for 1 second, after which the

images disappear and Turkers are given limited time (random

time from 1/8 second to 8 second [39]) to respond which one

was fake. The first 10 images of each session are practice

and then Turkers are given feedback. No feedback is provided

on the 40 trials of the main experiment. Each session tests

just one method at one time, and Turkers are not allowed

to complete more than one session. There are 50 Turkers to

evaluate each model. At last, we can get a percentage for each

model which represents how much percentages of Turkers is

fooled to give a wrong answer. TABLE V shows the AMT

test results. It can be seen that our ADGAN can fool 10.1%

of participants on Cityscapes and 8.7% on Google Street View,

which is the best AMT recognition performance among three

models that consider privacy. Compared with pix2pix that

does not consider privacy, the degradation of AMT recognition

performance of ADGAN is not too much.

Image Quality Comparison. In Fig. 4, we show the random

sampled images from our model G(x) and the three baselines.

From these images, we observe that: (i) the output of ADGAN

are very similar to the original input images; (ii) our results

are closer to those of pix2pix with clear boundary and details;

675

Authorized licensed use limited to: Georgia State University. Downloaded on May 27,2020 at 17:45:45 UTC from IEEE Xplore.  Restrictions apply. 



(a) ground truth (b) pix2pix (c) pix2pix+pri (d) UNIT+pri (e) ADGAN

(f) ground truth (g) pix2pix (h) pix2pix+pri (i) UNIT+pri (j) ADGAN

Fig. 4. Visual quality comparison of generated images for Cityscapes dataset and Google Street View dataset. The first row is Cityscapes, and second row
is Google Street View. Figures from left to right column is ground truth of input, pix2pix result, pix2pix+pri result, UNIT+pri result and ADGAN result
respectively.

(a) ground truth (b) pix2pix (c) pix2pix+pri (d) UNIT+pri (e) ADGAN

(f) ground truth (g) pix2pix (h) pix2pix+pri (i) UNIT+pri (j) ADGAN

Fig. 5. Semantic segmentation comparison of generated images for Cityscapes dataset and Google Street View dataset. The first row is Cityscapes, and second
row is Google Street View. Figures from left to right column is ground truth of input, pix2pix result, pix2pix+pri result, UNIT+pri result and ADGAN result
respectively.

and (iii) the quality of images from ADGAN are better than

that from both pix2pix+pri and UNIT+pri.

Semantic Segmentation. Semantic segmentation is an im-

portant research topic in computer vision and auto-driving. In

the prior work, conditional GANs have been proved workable

in semantic segmentation [40]. To explore what extent our

ADGAN can achieve after adding privacy consideration, we

train a FCN8s model to segment sample images generated

from the four models. The segmentation results in Fig. 5

show that our ADGAN outperforms the other three models

in a qualitative view. As the pre-defined sensitive objects, the

background buildings are hard to be recognized as buildings

no matter in computer vision or even in human vision, which is

consistent with the observations of TABLE II and TABLE III.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design a novel method called ADGAN,

which seamlessly integrates GAN and image-to-image transla-

tion, to generate privacy-preserving camera images for protect-

ing location privacy in auto-driving. We use two real datasets

to evaluate the performance of ADGAN, and comprehensive

comparisons between ADGAN and the baselines well confirm

the advantages of our ADGAN. With limited experimental

environment and hardware, in this paper, we implement our

model on 256× 512 and 400× 512 scale. In our future work,

we will further investigate the performance improvement of

our model for higher resolution camera data.
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