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Abstract. We examine how the introduction of a technology that automates research tasks
influences the rate and type of researchers’ knowledge production. To do this, we leverage
the unanticipated arrival of an automating motion-sensing research technology that oc-
curred as a consequence of the introduction and subsequent hacking of the Microsoft
Kinect system. To estimate whether this technology induces changes in the type of
knowledge produced, we employ novel measures based on machine learning (topic
modeling) techniques and traditional measures based on bibliometric indicators. Our
analysis demonstrates that the shock associated with the introduction of Kinect increased
the production of ideas and induced researchers to pursue ideas more diverse than and
distant from their original trajectories. We find that this holds for both researchers who had
published in motion-sensing research prior to the Kinect shock (within-area researchers)
and those who did not (outside-area researchers), with the effects being stronger among
outside-area researchers.
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1. Introduction
The automation of physical and mental tasks in the
production of goods and services is among the most
profound factors affecting the modern economy and
the role of human capital in economic output (Mokyr
2002). Recent work on this topic documents that the
extent to which automating technologies substitute
for or complement human labor depends on the ex-
tent to which such technologies substitute for the spe-
cific tasks associated with production (Deming 2017,
Acemoglu andRestrepo 2018, Brynjolfsson et al. 2018,
Felten et al. 2018). However, to date, most of the work
on this topic has focused on manufacturing or service
industries, whereas relatively less research examines
the impact of such automating technologies on the pro-
duction of new-to-the-world knowledge (Ding et al.
2010, Cockburn et al. 2017).

In this paper, we contribute to investigating the im-
pact of information technology (IT)–based automating
technology1 on the production of knowledge. This
is important because of the central role knowledge
production plays in economic growth and the unique
features of the knowledge production environment

that may provide insights into the role of automation
in other sectors. The impact of automating technol-
ogies on knowledge production may differ in im-
portant ways from the impact of such technologies on
goods and services production because of the variety
of tasks associated with knowledge work and the
extent of autonomy that knowledge workers possess
in allocating time across such tasks. These features
may enable knowledge workers to respond to auto-
mating technologies in ways that differ from those of
sectors that face greater rigidity in task reallocation
and, potentially, a greater chance for displacement
of tasks previously performed by humans (e.g.,
Acemoglu and Autor 2011). Furthermore, in knowl-
edge production, tasks are knowledge based in the
sense that the completion of a research task requires
a certain type of research expertise. Hence, we an-
ticipate that researchers’ response to automating
technologies will be influenced by the overlap in
knowledge that is being automated through the re-
search technology (Murray et al. 2016, Thomson and
Zyontz 2017, Teodoridis 2018). As a result, we dis-
tinguish between two types of researchers: those who
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had previously worked in the research area where the
tasks affected by the automating research technology
reside, whomwe call within-area researchers, and those
who had not previouslyworked in the area, whomwe
describe as outside-area researchers.

Estimating a relationship between the availability
of automating research technology and the rate and
type of knowledge output is difficult because nu-
merous unobservable factors are likely associated
with both research technology availability and re-
searchers’ project choices. To generate causal insights,
we exploit an unexpected arrival of research technol-
ogy as an instrument that is correlated with research
task automation but not with factors affecting re-
searchers’ efforts, other than through its effect on
automation. Building on Teodoridis (2018), we le-
verage the introduction of theMicrosoftKinect gaming
system as an unexpected shock that suddenly and
dramatically made available a technology that auto-
mates core motion-sensing research tasks. Kinect was
launched in November 2010 as an add-on for Micro-
soft’s Xbox 360 gaming console. Soon after its launch,
hackers developed and released through the open-
source community a driver that enabled devices other
than the Xbox to interact with Kinect, thus making it
possible for scholars in electrical engineering, computer
science, and electronics to harness Kinect’s motion-
sensing output for use in research applications.

Kinect automates several key tasks required to
track, collect, and analyze real-time complex three-
dimensional (3D) motion data. Prior to Kinect, in or-
der to complete these tasks, researchers had to rely on
developing complex custom algorithms for collecting,
analyzing, and attempting to augment the output of
two-dimensional (2D and 3D cameras. It is important
to note that full automation ofmotion-sensing research
tasks implies a system that can recognize and understand
any 3Dmotion scene. Whereas such a system is still to be
developed, Kinect helpedmove a large step closer toward
it (Han et al. 2013). In our email exchangeswith Kinect
researchers, one individual noted that

[with Kinect], researchers can get [motion] data without
worrying about how it is obtained in the most of indoor
scenes. Now, the research topics have beenmoving from
how to get to shape and motion to how to use that
information for applications such as robots and artificial
intelligence.

We use the Kinect shock in difference-in-differences
estimations to ascertain the impact of its introduction
on measures of researcher-level project choice in the
domains of computer science and electrical and elec-
tronics engineering research. To measure researchers’
rate and type of knowledge output, we rely on bib-
liometric indicators. Counts of academic publica-
tions and citations are established (though imperfect)
measures of research output.We use these to evaluate

the impact of Kinect on researchers’ rate of knowledge
output (i.e., productivity). Estimating changes in the
type of knowledge output presents a greater chal-
lenge because it requires tracking research trajecto-
ries in an ever-evolving multidimensional space of
ideas. We focus on two characteristics of the type of
knowledge output: changes in the diversity of research
projects and changes in the trajectory of research.2 We
propose novel measures of units of knowledge in idea
space based on topic modeling analysis using un-
assisted machine learning techniques that capture the
latent categorization of academic publications with-
out relying on an ex ante preimposed structure (such
as author-defined keywords or institutionally de-
fined research fields). Our analysis also considers
more traditional measures of research diversity and
trajectories based on observable characteristics of
academic publications. Each measure involves ad-
vantages and disadvantages that we discuss in our
analysis. Although each measure captures somewhat
different attributes of research behavior, we believe
that taken together they provide an informative win-
dow into the effects of automating research technology
on researchers’ type of knowledge output.
Contrary to concerns that automation displaces hu-

man labor and consistent with the idea that knowledge
workers face substantial latitude for shifting across
tasks, we find that the automation of key research tasks
leads both within-area researchers and outside-area
researchers to experience (1) an increase in research
output, (2) an increase in the diversity of their re-
search, and (3) a shift in their research trajectories. The
outside-area researchers experience the largest impact,
whereas within-area researchers experience a more
modest effect. Interestingly, outside-area researchers
achieve a boost both in their work on motion-sensing
research and in the set of their projects that do not
directly engage with motion-sensing. For example,
an outside-area researcher in our sample who, prior to
Kinect, focused on research involving sound waves
extended his research to the study of infant seizures
by developing detection techniques combining audio
and video inputs. Among the group of within-area
researchers, thosewhose researchwasmost focusedon
motion-sensing before Kinect experience the highest
benefits. This suggests that the automating research
technology allows within-area researchers to work
more efficiently and to engage in new types of projects.
For example, after Kinect, a within-area researcher
in our sample engaged in adapting computer vision
detection and visualization algorithms to developing
malaria diagnostic and tumor identification tech-
niques, whereas another researcher pushed forward
her motion-sensing agenda to include studies of vir-
tual reality. Although these results are consistent
with our hypotheses, they are not obvious ex ante.
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Automating technologies often increase returns for
incumbents relative to entrants and do not necessarily
enable organizational diversification.

Our analysis underscores the significant role played
by research technology in knowledge production and
sheds light on the processes by which the presence of
technologies that automate certain research tasks in-
fluences knowledge workers’ behavior. Understand-
ing these processes is thus important for the study of
the strategic management of science-based organi-
zations (Murray and O’Mahony 2007, Nelson 2016),
including research-oriented private firms competing
for profits and research institutions competing for
reputation and opportunities for knowledge creation.
Furthermore, our study suggests that firms’ deci-
sions to engage in technology development and their
technology commercialization strategy might influ-
ence knowledge flows and hence subsequent inno-
vation efforts.

2. Automating Technology and
Knowledge Production

2.1 Automating Technology in Knowledge
Production vs. Other Economic Sectors

While relatively little scholarly work has examined
the impact of automating technology on knowledge
production, a substantial amount of work has been
devoted to understanding the impact of such tech-
nological progress on the production of physical goods
and, more recently, services. Since the earliest days of
the industrial revolution, concerns about the impact of
automating technology on labor and society have been
a recurrent feature of public and academic debate
(Mokyr et al. 2015). Over the past few decades, re-
search in management and economics has examined
the impact of technology on multiple outcomes, in-
cluding firm-level outcomes such as productivity
(Pinsonneault and Kraemer 2002, Brynjolfsson and
Hitt 2003), competitive performance (Dos Santos and
Peffers 1995, Bloom et al. 2012), organizational change
(Dean et al. 1992, Argyres 1999, Volkoff et al. 2007),
and firm boundaries (Forman and McElheran 2012).
More recently, scholars have begun to study the eco-
nomic impact ofmachine learning on people, firms, and
society (Agrawal et al. 2018, Choudhury et al. 2018).

A persistent question in this literature regards
whether automating technologies constitute substitutes
or complements for human labor. Most recently, the
focus of the literature has shifted from approaching this
question with a view of whether technology and labor
are substitutes overall and toward the recognition
that the impact of automation on labor depends on the
extent to which technology substitutes for specific
tasks and affects the allocation of human effort across
tasks within a personnel function (Deming 2017,
Acemoglu andRestrepo 2018, Brynjolfsson et al. 2018,

Felten et al. 2018). This question is important for both
macro-level issues, such as the share of labor in the
economy (Karabarbounis and Neiman 2014), and
micro-level issues, such as the organization of work
and the level of firm productivity (Bresnahan et al.
2002, Bloom et al. 2012).
An important underlying assumption in tackling

this question is that automation is a process that re-
duces the cost of performing certain tasks. It is this
cost reduction that creates incentives for economic
actors to substitute automating technology for human
labor (Acemoglu and Autor 2011, Nordhaus 2007).
Thus, when automating technology improves the
productivity of a task, people and organizations shift
human labor away from that task and, under certain
conditions, onto other tasks.3

In knowledge production, we expect similar forces
at play but in a context where workers have sub-
stantial autonomy in choosing their tasks and a broad
array of tasks to choose from. As Smith (1776) ob-
served in his pin factory visits, manufacturing jobs
can often involve substantial task specialization. In
addition, manufacturing jobs characterized by task
specialization are often embedded in relatively rigid
hierarchies that provide relatively little worker au-
tonomy. By contrast, the job of knowledge pro-
duction, particularly for academic researchers, in-
volves both a broad array of potential tasks and
substantial autonomy (Aghion et al. 2008, Cohen et al.
2018). The tasks of a researcher are often extremely
varied and can include project conception, choice of
project partners and coauthors, grant writing, choice
of technical and support staff, and project execution
across a variety of dimensions (e.g., preparation of
research materials, conduct of specific analyses, project
presentations, conference attendance, collaboration
with industry). Further, research autonomy, including
the freedom to choose research topics and to choose
how to allocate time across a variety of research tasks, is
the hallmark of scientific scholarship (Merton 1938).
Although many service professions also involve a
wide breadth of tasks and enable some autonomy
(e.g., graphic design, civil engineering, legal practice,
investment banking, financial consulting), others
have a lesser degree of both (e.g., bank tellers, hair
stylists, fast-food workers, financial accountants). In
other words, we consider knowledge production to
be an area in which task variety and autonomy are
particularly great and thus a sector worthy of at-
tention, especially considering the impactful role of
knowledge production in the economy.

2.2. Automating Research Technology and
Research Expertise

We hypothesize that technology automation will dif-
ferently affect researchers with substantial expertise
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in the research area into which the automating tech-
nology becomes available, that is, within-area re-
searchers, than those who do not have specialized
human capital in that area, that is, outside-area re-
searchers. The case of statistical analysis packages
provides an illustrative example. Statistical software
such as SAS, Stata, and R automates tasks that would
otherwise require substantial human capital invest-
ments, including merging data, computing test sta-
tistics, inverting matrices, and composing graphics.
Researchers could complete these tasks if they made
sufficient investments in their human capital. Alter-
natively, researchers could collaborate with people
who have made such human capital investments. The
ready availability of off-the-shelf software, however,
automates each of these tasks and, via revealed pref-
erence, appears to enable researchers to complete their
work more efficiently than would be possible in the
absence of such software. In addition, the software
packages may enable researchers to shift the time
made available by the automation of statistical analysis
to other research activities, including undertaking new
and different projects. Although these effects likely
hold for all researchers who conduct quantitative
analysis, they likely differ in their impact and nature
for experts in statistical analysis, for example, econo-
metricians, relative to other researchers. Econometri-
cians might be displaced from their core research tasks
and that could lead to exit or to additional time to be
spent on other projects such as advancing the field of
statistical analysis. For other researchers, the avail-
ability of the technology could enable them to employ
the technology as a substitute for performing the task
using specialized human capital.

As this example suggests, the automation of some
core research tasks could affect the knowledge pro-
duction function in several ways and may do so dif-
ferently for researchers who have developed special-
izedhuman capital related to the now-automated tasks
and for those who have not. We formalize these
thoughts in a set of hypotheses below.

2.2.1. Automating Research Technology and Within-
Area Researchers. Webeginby focusingon researchers
with historical expertise in the domain affected by the
automation. The automation of core research tasks can
have multiple effects for these people. If a researcher’s
entire efforts are focused on the area in which the
automation occurs, it is possible that the automation
will substitute for his or her efforts, and his or her
productivity will decline or he or she will exit the
domain of research or the conduct of research en-
tirely. This would be consistent with Autor et al.
(1998), who highlight the prospect that technology
substitutes for related human capital. If, however, the
automated tasks constitute a consequential fraction of

the researcher’s tasks but not the full set of those tasks,
he or she may reallocate his or her time to these other
tasks. Thus, because the productivity of the automated
tasks rises while the cost of the other tasks remains
constant, we expect the productivity of such researchers
to improve.4 Considering the variety of tasks associ-
ated with research and the extensive autonomy of
most researchers, we anticipate a positive net effect
of automating technology for within-area researchers.

Hypothesis 1a. The availability of research technology that
automates core research tasks boosts the rate of research
output of within-area researchers.

An additional first-order effect of research task au-
tomation regards its influence on researcher’s type of
knowledge output. Aghion et al. (2008) suggest that
research technology that affects the productivity of
domain-specific knowledge may induce greater mo-
bility across research trajectories. The idea is that the
increase in productivity of the automated task allows
these within-area researchers to spend the additional
time on either experimenting with new topics or ap-
plying their expertise to projects in other domains.
Thus, the availability of automating research technol-
ogymay boost the opportunities set amongwithin-area
researchers, facilitating tackling new research ques-
tions within their domain of expertise or branching out
into other research trajectories.

Hypothesis 1b. The availability of research technology that
automates core research tasks changes the composition of
research project types for within-area researchers.

2.2.2. Automating Research Technology and Outside-
Area Researchers. Researchers who have not inves-
ted in the specialized human capital associated with
the tasks automated by the research technology can
be affected by the automation in ways that differ from
those of within-area researchers. A core insight here is
that an automating research technology that re-
duces the cost of performing certain research tasks
compensates for the fixed costs of research expertise
within the knowledge area of the technology (Cohen
andKlepper 1992, 1996). This, in turn, reduces returns
to that within-area knowledge and, hence, opens
opportunities for outside-area researchers. For ex-
ample, Furman and Stern (2011) and Murray et al.
(2016) suggest that open access to research tools
can exert a democratizing influence on other fields
andmay compensate for the fixed costs of within-area
expertise. In addition, outside-area researchers’ lack
of specialized skills in the affected domain means that
they are less likely to experience substitution in any of
their research tasks. Thus, adopting the automating
technology will have a positive impact on researchers’
research productivity. Furthermore, the impact could
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be higher than that for within-area researchers who
experience a boost in productivity through some de-
gree of task substitution.

Hypothesis 2a. The availability of research technology that
automates core research tasks boosts the rate of research
output of outside-area researchers on all topics on which they
work. The effect is greater than for within-area researchers.

In addition to affecting productivity, we anticipate
that the automating technology will influence outside-
area researchers’ type of knowledge output. Teodoridis
(2018) shows that a democratizing change in the
availability of research technology alters team com-
position to include specialists from knowledge areas
outside the domain of the research technology. To the
extent that changes in collaboration reflect changes in
researchers’ project choices, this suggests the possi-
bility of a change in the project portfolio composition
of outside-area researchers. Moreover, we expect that
the automating research technology will influence the
composition of research project types of outside-area
researchers by creating opportunities for novel idea
recombinations (Uzzi et al. 2013) and, thereby, new
lines of inquiry. Thus, we expect that outside-area
researchers can leverage the availability of automat-
ing research technology to explore ideas that incor-
porate the automated tasks either directly in the re-
search domain of the technology or by broadening
lines of inquiry in their areas of historical focus. As
before, we expect the impact to be higher than that for
within-area researchers, who also experience a change
in the opportunities they face but through some de-
gree of task substitution.

Hypothesis 2b. The availability of technology that auto-
mates core research tasks changes the composition of research
project types of outside-area researchers. The effect will be
greater than for within-area researchers.

3. The Kinect Shock and the Automation of
Motion-Sensing Research

The shock we examine in this paper is the launch of
the Microsoft Kinect gaming system that suddenly
anddramaticallymade available a research technology
that automates certain motion-sensing research tasks.
We exploit the unexpected availability of this tech-
nology as an instrument that is correlated with task
automation in knowledge production but not with
factors affecting researchers’ efforts, other than through
its effect on automation.

The setting appears unusual at first glance: it is the
result of the unexpected impact of Microsoft’s suc-
cessful launch of a controller-free video game system
designed to compete with rival products launched by
Nintendo and Sony. In the two months following
Kinect’s launch on November 4, 2010, Microsoft sold

more than 8 million units (>130,000 Kinect units per
day), outpacing the iPhone and the iPad to become the
Guinness World Records’ all-time fastest-selling con-
sumer electronic device (Bilton 2011). The surprise
that makes Kinect valuable for our research context is
not, however, its commercial success but its wide-
ranging and near-immediate impact on scholarship in
some areas of computer science and engineering.

3.1. Microsoft’s Introduction of the Kinect System
OnNovember 4, 2010,Microsoft introduced the Kinect
system for its Xbox video game console with the aim
of competing with handheld gesture-recognition re-
motes introduced previously by Nintendo (Wii) and
Sony (PlayStation).With theKinect,Microsoft attempted
to leapfrog its video console rivals by creating the
first hands-free controller for electronic devices, a game
controller system that responded to the natural
movements of the player.5

In addition to being a treat for video gamers, Kinect
also constituted a feast for hackers, who descended
on the system with the aim of accessing the vast data
obtained byKinect’s sensors and linking them to other
devices, such as computers and robots. These efforts
received a twofold infusion of interest on Kinect’s
launch day. The first came fromAdafruit Industries, a
manufacturer of do-it-yourself electronics kits oper-
ated by alumni of MIT’s Media Laboratory, Limor
Fried and Phillip Torrone, that offered a $1,000 prize
for the first individual or organization to post an open-
source Kinect driver to GitHub (Carmody 2010a). The
second spur of interest arose as a result of Microsoft’s
active (and quixotic) effort to thwart the hackers. In a
same-day response to Adafruit’s prize offer, Micro-
soft released a statement to CNet: “Microsoft does
not condone the modification of its products . . . [and
will] . . . work closelywith law enforcement and product-
safety groups to keepKinect tamper-resistant” (Terdiman
2010, p. 1). Adafruit responded immediately by dou-
bling its Kinect driver bounty to $2,000, further in-
tensifying the race for the driver.
The race was won on November 11 by a Spanish

computer science undergraduate student, Héctor
Martı́n, who did not own an Xbox but who had
purchased a Kinect that morningwhen it went on sale
in Europe (Giles 2010). Within days of the driver’s
release, researchers and hobbyists had adapted Kinect
for numerous uses, including the creation of 3D
computer holograms and a modified iRobot Roomba
that could respond to human hand and voice com-
mands and could create visual maps of the rooms it
had visited (Wortham 2010).
During theweek that hackers had raced to create an

open-source driver to harvest Kinect’s data, con-
sumers purchased nearly amillion Kinect units. In the
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wake of its success, Microsoft initially continued to
resist working with the hacker community and even
refused to acknowledge that its system had been
hacked. Within 10 days of the release of Martı́n’s
open-source driver, however,Microsoft, convinced of
the value of embracing the experimentation of the
hobbyist and scientific communities, pivoted entirely
and announced that it would not pursue legal rem-
edies against thosewho adapted the Kinect system for
other purposes (Carmody 2010b).

3.2. Kinect as an Automating Research Technology
Motion-sensing research involves a series of topics in
the broader research area of computer vision, an in-
terdisciplinary field in computer science and elec-
trical engineering with the principal goal of enabling
machines to “see” as well as (or better than) humans.
Achieving this goal requires the ability to scan 3D
environments and recognize where objects appear in
both static and dynamic environments and under
various lighting conditions. While often taken for
granted by humans, vision is an exceptionally com-
plex task for machines. Humans use their eyes to
observe 3D scenes and their brains to process the
types of objects and movement in the scenes. Ma-
chines rely on cameras as their “eyes” and on human
developed software and hardware as their “brain.”

Prior to the introduction of Kinect, there were two
main approaches to motion-sensing in computer vi-
sion. In a first generation, researchers employed 2D
cameras and developed software as the sole method
of inferring depth andmovement based on the images
captured by those cameras. This process was complex
and time consuming because it required sophisticated
mathematical calculations, such as those required to
infer depth based on known object sizes and move-
ment from serial images. Such custom-developed
software was not particularly fast to run, and it was
prone to errors because it relied heavily on factors
such as the resolution of the images, the frequency of
frames, and the ingenuity of the software developer in
coding efficient calculations. The second generation of
this work involved advances in images captured
from 2D cameras to 3D cameras, such as time-of-flight
cameras. These early 3D cameras operated with low
resolution,were subject to especially high sensitivity to
lighting conditions, andwere not particularly accurate
in tracking movements across all three dimensions.
Although the availability of such cameras lessened the
need for some of the coding development tasks re-
quired to process the image output, a broad set of such
tasks remained even after these cameras were intro-
duced, including the needs to clean image data, accu-
rately trace movement, speed up the processing of the
image output, infer missing pieces in various unfavorable

lighting conditions, and impute missing information
resulting from low-resolution images. Whereas some
algorithms for working with these cameras and their
output could be shared, the vast majority needed to be
customized for the environment in which individual
researchers were working.
By offering higher-resolution 3D images and an

embedded processing capability that more accurately
traced movement under a variety of lighting condi-
tions, Kinect represented a significant technical ad-
vance that eliminated a substantial set of coding tasks
that had previously fallen on motion-sensing re-
searchers. The advance enabled by Microsoft’s new
tool was sufficiently great that it allowed a novice to
extract and use Kinect’s output without the need for
specialist coding to process the data to render them
useful. As a result, Kinect automated many tasks that
previously required specialized humans involved in
developing software algorithms to process images
captured by cameras with a goal of uncovering the
same insights that a human would when observing a
3D scene inmovement. Kinect did not fully resolve all
challenges associated with computer vision; for ex-
ample, Kinect performedpoorly in bright sunlight but
automated a substantial set of tasks that had pre-
viously required specialized human coding.
The impact of Kinect was perceived by the com-

puter vision research community to be wide ranging.
For example, a computer vision researcher told us
that “Kinect had a game-changing effect on the re-
search possibilities. We work in robotics perception,
that is, how can robots perceive and act in the envi-
ronments. Because our world is 3D and Kinect gives
3D information, the data become extremely powerful.
This has enabled significant advances in applications
such as object detection, human activity recogni-
tion and anticipation for robots, as well as robotic
grasping and path planning.” In addition to its im-
pact in computer vision research, Kinect raised the
interest of researchers from other domains. Richards-
Riessetto et al. (2012) describe the value of Kinect for
work in archaeology, and Rafibakhsh et al. (2012)
describe its value for construction engineering and
management. In our own discussions with motion-
sensing researchers, a researcher noted that his group
provided a Kinect-based algorithm developed in his
laboratory to

ICT’s Medical VR group which applied [it] to various
motor rehabilitation applications. We’ve also researched
the use of Kinect for human activity analysis (examining
body language, fidgeting, etc.) to help therapists un-
derstand behavior of their patients. . . .Our lab’s director
and some of his students used the Kinect to create really
interesting education game experiences. We have put
together a number of other experiments, prototypes,
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and demonstrations involving the Kinect. It runs the
gamut from wide area tracking to virtual human pup-
peteering to 3D scanning, and more. I can’t list them all.

More broadly, after the launch of Kinect, motion-
sensing appears to have found its way into an in-
creasing variety of research projects with applications
in a wide set of domains, from artificial intelligence
and virtual reality to education, healthcare, music,
cinematography, market research, and advertising.
For example, faculty and graduate students at MIT’s
CSAIL laboratory have designed a motion-sensing
system, called Emerald, that tracks peoples’ move-
mentswithin their homes, can alertmedical personnel
in the event of a medical catastrophe or fall, and can
even be used to predict fall events.

In addition to reducing the need for specialized
human capital investments, a secondary impact of
Kinect is that it also reduced the monetary cost of
capturing and leveraging data from 3D images. As we
noted earlier, an important underlying aspect of au-
tomation that explains the incentives it generates for
economic actors to substitute the technology for hu-
man labor is that automation is a process that reduces
the cost of performing certain tasks with human labor
(Acemoglu and Autor 2011, Nordhaus 2007). While
Kinect indeed reduced the cost of executing certain
research tasks with human labor, for example, soft-
ware coding, the monetary cost of Kinect was lower
than that of the previous generation of 3D cameras:
whereas the cost of time-of-flight cameras ranged
from $10,000 to $20,000, Kinect cost $150 at launch.
To sharply isolate the reduction in cost via automa-
tion, we would have needed for Kinect to be priced in
the same range as the previous generation of motion-
sensing technology (e.g., time-of-flight cameras). While
this remains a limitation of our study, we believe that
the dominant effect is that of the reduction in cost
through automation. The reason is that for researchers
committed to computer vision research (within-area
researchers), this change in monetary cost was likely
not especially great relative to the overall cost of op-
erating their laboratories. In other words, we argue
that the Kinect impact would have been roughly the
same even if Kinect was to be priced in the same range
as the previous generation of motion-sensing tech-
nology. For outside-area researchers, however, the
change in cost may have enabled experimentation that
these researchers would not have considered if Kinect
were priced in the same range as time-of-flight cam-
eras. It may be, therefore, that changes in the mone-
tary cost of motion-sensing research technology drive
some of the effects we observe. We believe, however,
that the more substantial change enabled by Kinect is
not related to the price of the research technology but
is more related to the fact that the advent of Kinect

obviated the need for specialized human capital and
enabled researchers in other areas to appreciate the
potential value of motion-sensing techniques to sets
of problems related to their areas of interest.
Overall, the launchofMicrosoftKinect appears tohave

changed the opportunity set for innovation in computer
science andengineering. This development appears tobe
exogenous and to have been a surprise to the incumbent
research community, the community of potential users
that had been working outside traditional motion-
sensing topics, and even to Microsoft itself.

4. Data and Empirical Strategy
To examine the impact of Kinect on researchers’
productivity and portfolio of project types, we draw
on the population of publications, early-access pub-
lications, and conference proceeding papers included
in the Institute of Electrical and Electronics Engineers’
(IEEE) Xplore database, which covers nearly 200
computer science and electrical engineering journals
and more than 1,800 conference proceedings, be-
tween 2001 and 2014.6 We conduct our estimation on
the subset of papers published in the four years before
and four years after the launch of Kinect (2007–2014),
and we use the remainder of the data to obtain better
estimates of researchers’ pre-Kinect research behav-
ior and trends.

4.1. Empirical Strategy
We employ a difference-in-differences analysis to
compare research productivity and type of knowl-
edge output before and after the launch of Kinect.
Formally, we estimate for researcher i and year t

DVit � β(TreatedResearcheri × AfterKinectt)
+ Agei + Age2i + δi + γt + εit, (1)

where TreatedResearcheri is a dummy variable equal to
1 if research i is a treated unit and 0 otherwise. We
define treated researchers as individuals who were
publishing in motion-sensing before the launch of
Kinect or academicswho started to publish inmotion-
sensing only after the launch of Kinect. To identify
motion-sensing publications, we search the full text
and metadata of publications in the IEEE Xplore
database using carefully identified keywords and
through interviews with subject-matter experts and
cross-referenced with IEEE’s taxonomy.7 The term
AfterKinectt is a dummy variable equal to 1 if the
observation year is between 2011 and 2014, namely
after Kinect’s launch, and 0 otherwise.We also control
for a quadratic effect of peoples’ (research) age, cal-
culated as the number of years since the occurrence of
the first publication in our large data set, starting in
2001. The term δi represents individual fixed effects
and controls for time-invariant individual attri-
butes. The term γt captures year-specific fixed effects
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that account for changes in publication trends over
time. As a consequence of including individual and
time fixed effects, the terms TreatedResearcheri and
AfterKinectt drop out of the estimating equation.

We exploit three categories of dependent variables
of interest DVit. First, we estimate changes in re-
searchers’ productivity by employing two measures
of output: (1) PubCountit captures the number of ac-
ademic publications of researcher i at time t, and
(2) CitationWeightedPubCountit captures the number
of academic publications of researcher i at time t
weighted by the number of cumulative citations re-
ceived until 2014. Second, we distinguish between
two concepts capturing changes in researches’ port-
folios of project types: (1) the extent to which the
portfolio of researcher i is concentrated or diverse at
time t (Diversificationit) and (2) the extent to which the
portfolio of researcher i involves topics that are closer
or further from each other in ideas space at time t − 1
versus t (Trajectoryit). We do this because a researcher’s
work could be concentrated in a small number of
domains, but these domains could, theoretically, be
quite distant from one another. For example, a re-
searcher whose work includes topics in only labor eco-
nomics and materials science would have a high re-
search concentration, though his or her projects would
be quite distant in ideas space. We provide details on
the construction of these measures in the next section.

Our main coefficient of interest is β. We interpret
a positive value of β as indicating a higher increase in
productivity, diversification, or trajectory shift, respec-
tively, at the individual level for treated researchers
after the launch of Kinect compared with the change
in matched researchers from before to after the launch
of Kinect. In other words, a positive value of β indi-
cates a positive effect of the research technology on
researchers’ rate of knowledge output or their pro-
pensity to diversify their research projects or to shift
their research trajectories.

We construct a plausible counterfactual using coars-
ened exactmatching (CEM; Iacus and Porro 2011, 2012)
based on individual researcher characteristics in the
before period (2007–2010). Specifically, we match on
(1) yearly productivity in each of the four years before
Kinect’s launch, (2) the number of coauthors in each of
the four years before Kinect’s launch, (3) a measure of
diversification across knowledge topics between 2007
and 2010, and (4) distance in knowledge space to
the motion-sensing domain of knowledge before the
launch of Kinect.Wemeasure yearly productivity as a
count of publications weighted by citations and di-
versification as 1 minus the Euclidean distance in the
space of IEEE-defined research categories.8 We de-
fine distance in knowledge space to motion-sensing
based on the network of authorship with within-
area researchers. Specifically, we label within-area

researchers as being the closest to the motion-sensing
domain of knowledge (distance 1), followed by people
who coauthored with within-area researchers on other,
non-motion-sensing projects (distance 2), followed
by coauthors of coauthors of such researchers (dis-
tance 3). All other researchers are categorized as being
the furthest away in knowledge space from motion-
sensing, to a total of a four-level distance categorization.
We conduct two matching procedures, one for each of
our two sets of researchers: within-area researchers and
outside-area researchers. We include our measure of
distance in knowledge space to motion-sensing only in
the latter matching procedure, because, by construc-
tion, all researchers with an assigned distance of 1 are
labeled as treated in the former sample. We employ
CEMwith weights rather than one-on-one matching to
use as much of the available data as possible.
We match on productivity in the before period to

ensure that our results on changes in productivity,
diversity, and trajectory shift at the individual level
are not confounded by researchers at the right tail
of the productivity distribution. We match on the
number of coauthors in the before period to ensure
that our results are not driven by researchers’ abilities
or preferences for collaborating more intensely or
more broadly. This matters for the analysis because
higher levels of collaboration could be correlated
with more diverse output or with changes in research
trajectory because each new collaborator increases
the potential pool of expertise and perspectives. We
also match on the level of diversification in the pre-
Kinect period to ensure that the results are not driven
by people with a taste for exploring new avenues that
may manifest regardless of research technology
availability. Finally, we match on distance to motion-
sensing to ensure that our results are not driven
by proximity to the motion-sensing field that would
influence researchers’ project choices regardless of the
availability of motion-sensing technology. Our results
remain robust to using the full set of researchers in fixed-
effects estimations, under the assumption that all re-
searchers publishing in IEEE outlets are at risk for en-
gaging with new technological developments in their
research (see online appendixA). Furthermore, rawdata
trends displayed in Online Appendix A indicate the
presence of parallel pretrends ensuring that our CEM
procedure does not impose this structure on a phe-
nomenon that follows a different pattern.

4.2. Measuring Changes in the Portfolio of
Project Types

We attempt to distinguish between diversification
and changes in research trajectories because the two
concepts capture research behavior that reflects dis-
tinct features of a researcher’s portfolio of project
types. We define diversification as the breadth of a
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researcher’s portfolio of projects at one point in time t.
We define trajectory as the distance in knowledge
space between a researcher’s portfolio of projects at
times t − 1 and t. The measurement challenge is that
estimating such changes requires delineating the
boundaries of research trajectories. This involves a
paradox, however, because the boundaries of re-
search trajectories are part of the core unknown to be
estimated. Unlike physical space, which consists of a
well-known number of dimensions and distances
between locations, ideas space consists of an un-
known number of dimensions, the distances between
which cannot be uniquely measured, and that evolve
over time inways that cannot be anticipated until they
are realized.

Aghion et al. (2008)model the development of ideas
along research trajectories. In some cases, such as in
mathematics, fields are relatively well defined, and
stable field distinctions can form the basis for inquiry
about location and movement in ideas space (Borjas
and Doran 2012, 2015; Agrawal et al. 2016). In most
fields, however, it is difficult to measure such tra-
jectories or identify where they branch. To overcome
these challenges, scholars often focus on measures of
research breadth (Grupp 1990; Rafols and Meyer
2010) or other measures of topic overlap to reflect
whether researchers are roughly in the same domain
(Boudreau et al. 2017); consider the development of
ideas based on references to papers in a stream of
research (e.g., Furman et al. 2012) or rely on a pro-
fessionally curated tools such as the PubMed related
article algorithm (Azoulay et al. 2015, Myers 2018).

These analyses, however, typically rely on observ-
able indicators of innovation output, such as key-
words, taxonomies, or citation maps. While helpful in
providing some evidence of the evolution of research
trajectories, these approaches face many of the chal-
lenges described earlier. For example, research that
categorizes trajectories based on curated taxonomies
has the advantage of consistency but faces the trade-off
of either being stable and therefore comparable over
time, though at the cost of inflexibility, or being dy-
namic and therefore evolving with the changing re-
search landscape, though at the cost of consistency and
classification standardization. Author-assigned key-
words or any other set of keywords not extracted from
a defined vocabulary fare better in capturing new
knowledge trajectories but lack structure and may be
more subject to gaming. This also limits the inter-
pretability of hierarchical connections between key-
words and changes in such relationships over time.
Similarly,while the citation revolution, as amethod for
tracing knowledge linkages (Griliches 1990), signifi-
cantly helped advance our understanding of factors
influencing the process of knowledge creation, it is
subject to the same concerns because measuring

diversity in citation maps requires some form of
categorization. As with author-assigned keywords,
the selection of backward and forwards citations is
subject to social processes and strategic behaviors
that complicate their interpretation for understand-
ing changes in research trajectories.9

The research context we examine is not character-
ized by a relatively stable set of keywords and re-
search topics. Indeed, the past two decades have seen
the emergence of many new domains of research and
associated new keywords enabled by ever-advancing
computing power and methods within these fields.
To measure research diversification and trajectory
in these fields, we leverage advances in machine
learning to develop measures that make use of more
complete information in academic publications. We
propose measures based on topic modeling algo-
rithms, which we have adapted for inference in our
context. Our empirical analysis also includes a set of
more traditional measures of research diversification
and trajectory based on observable characteristics of
academic publications, including a measure of di-
versification based on the stable taxonomy main-
tained by the IEEE, a measure of research trajectory as
a count of new authors, and a measure of research
trajectory as a count of new publication outlets.
The main advantage and, hence, contribution of

measures based on machine learning analysis10 is the
ability to identify similarities between bodies of text
without predefined assumptions about their struc-
ture. Note that the intended purpose of these algo-
rithms is prediction, not inference. Their success rests
with their ability to reveal the latent structure of a
corpus of texts in order to predict with high accuracy
where a new text would fit in the structure. We are
interested in identifying the latent categorization of
research publications in ways that (1) are less sub-
ject to the strategic behavior of researchers and
(2) are sensitive to the fact that research fields evolve
over time.
In the service of these objectives, we employ the

hierarchical Dirichlet process (HDP; Teh et al. 2006),11

which we adapt for our purposes. The algorithm falls
into the topic modeling category of unassisted ma-
chine learning. HDP is a probabilistic model that
employs a hierarchical Bayesian analysis of text (see,
e.g., Hofmann 1999, Buntine and Jakulin 2004, Teh
et al. 2006). The intuition is that of a generative
process in which the data are assumed to be char-
acterized by a set of observed variables (words in the
document or vocabulary) that develop from a set of
hidden variables (the topic structure) (Teh et al. 2006).
The algorithm generates collections of words (topics)
that are found to appear together in the input text
with a certain probability. In other words, the input
text is “assigned” to topics with a certain probability.
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We conduct our analysis using the abstracts of the
academic publications in our data set as input text into
HDP.12 We run the algorithm per year for the full set
of publications available in our data set. We modify
the algorithm to output the set of words describing
each topic13 and to list the publication identifications
(IDs) of each abstract used to identify those topics.
Each publication ID is assigned a score, which can be
thought of as a probability of “belonging” to a topic.
All scores add up to 100% probability per publica-
tion ID.

The algorithm has advantages and limitations. First,
HDP has the advantage of identifying the optimal
number of topics per corpus of text analyzed. This
differs from other topic modeling algorithms, such as
latent Dirichlet allocation (LDA), which require the
analyst to input the number of topics into which he
or she would like the algorithm to group the text. We
also run a sensitivity algorithm on multiple instances
of LDA, consistent with state-of-the-art practices
in computer science, to identify the number of opti-
mal topics with the highest probability of accuracy.14

Second, both algorithms treat the input text as a one-
time group for which the latent categorization needs
to be revealed. In other words, the algorithms cannot
automatically track the evolution of topics over time
by updating the set of keywords in each category over
time. We address this limitation by calculating a co-
sine vector similarity between the yearly topics gen-
erated by the HDP algorithm. Specifically, we em-
ploy a term frequency–inverse document frequency
(TFIDF) cosine similarity where the frequency of
words is weighted by the HDP-generated score that
captures the relevance of each word for each topic. In
addition, we use the HDP output in a regression with
time fixed effects; hence, our results are not hindered
by the fact that the algorithms are executed on a per-
year basis and thus reveal the latent categorization of
topics for each year in our data set.15

We calculate diversification as a yearly measure
of spread across categories, as identified by the HDP
algorithm. Specifically, we calculate an intensive mea-
sure of diversification equal to the sum of the number
of topics where the focal researcher has his or her
papers assigned by the HDP in the focal year. We
also calculate an extensive measure of diversification
equal to a count of unique topics where the focal re-
searcher has his or her papers assigned by the HDP in
the focal year. We also present results using more
traditional measures of diversification based on pub-
lication attributes. Specifically, we calculate a yearly
reversed Euclidean distance in the space of 51 IEEE
categories in computer science, electrical engineering,
and electronics. To calculate this measure, we apply
Equation (2) to yearly publication data over the period

of interest (2007–2014), four years before and four
years after the launch of Kinect.
To generate measures that capture changes in re-

search trajectory, we use the yearly topics generated
by the HDP and the cosine similarity index between
such topics. Specifically, we first calculate the distance
between topics in consecutive years as one minus the
similarity index between all such topic pairs. Next, for
each researcher, we sum the distance between all pairs
of topics in year t − 1 and t and then divide the sum by
the number of unique topics covered in year t − 1. The
measure captures the average number of new topics
for researcher i in year t relative to year t − 1, weighted
by the distance between the topics. One can think of
this measure as capturing the yearly new areas of
interest; the smaller the value, the less of a change in
interests there will be from one year to the next.
In addition, we employ two other measures based

on traditional publication output. The first such mea-
sure counts the number of new coauthors that the focal
author has in the observation year relative to previous
years. To count the number of new coauthors, we take
advantage of our full data set going back to 2001.We do
so because, by definition, the count of new coauthors
requires a few years of reference data to get closer to
reflecting the true number of new coauthors and to not
be upward biased owing to left-side data truncation.
This measure indicates changes in research trajecto-
ries to the extent that collaboration patterns reflect
changes in the bases of expertise associated with a re-
searcher’s project choices. The second measure re-
flects the number of new publication outlets in which
a researcher publishes each year, relative to each prior
year, going back to 2001. This measure indicates
changes in research trajectories to the extent that
different journals address different audiences and
cover different areas of the ideas space.
Each measure has its own limitations and merits.

The HDP-based measures are more flexible in cap-
turing changes in knowledge space over time.
However, the HDP categorization lacks stability and
trackability over time. The IEEE diversification mea-
sure fairs well on these dimensions, but its disad-
vantage stems from the same attributes that we dis-
cussed earlier. In particular, thefixed taxonomy fails to
capture changes in the categorization structure over
time thatwould otherwise indicate changes in research
trajectories. Similarly, themeasures based on counts of
new coauthors and new publication outlets, while
perhaps easier to grasp than interpreting the HDP
measure, are focused on outcomes that indirectly re-
flect the content or intellectual focus of academic re-
search. Specifically, it is possible to change coauthors
and publication outlets while continuing to work on
the same knowledge trajectory, and it is also possible to
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continue working with old coauthors and publish in
the same journals while shifting one’s research focus.

As a result, we prefer our more novel measures,
which we think are more likely to reflect changes in
research diversification and trajectory because they
are more tied to the content of researchers’ published
works. At the same time, we believe that the other
measures complement the HDP measures and enrich
the insights than can be drawn from our analysis.
Each measure captures different attributes of diver-
sification and trajectory. Taken together, we argue,
they paint an informative picture of changes in re-
searchers’ projects triggered by the availability of
automating research technology.

3.3. Sample Construction and Descriptive Statistics
We collect data on every publication, early-access
publication, and conference proceeding paper avail-
able through IEEE Xplore between 2001 and 2014. These
data include 2,492,451 publications and 1,670,888 unique
author names in the fields of computer science, elec-
trical engineering, and electronics. Because of the im-
portance of publications in conference proceedings
in computer science and related fields, the IEEE da-
tabase possesses advantages relative to other libraries
of publications, including the Web of Science and
Scopus.

We focus our analysis on the four years leading up
to and the four years following the launch of Kinect at
the end of 2010, that is, 2007–2010 and 2011–2014. We
do so to ensure comparable timeframes and to al-
low for some publication data for controls and other
measures that require a longer-run observation of
publication trends, such as author age and changes in
the number of yearly new coauthors and new pub-
lication outlets. The 2007–2014 data set consists of
1,776,125 publications authored by 1,391,313 people
as identified by the IEEE. Within this subset, we
further distinguish between researchers active both
before and after Kinect’s launch (430,779), only in the
period before 2010 (442,395), and researchers who
enter the sample after 2010 (518,139). We do so (1) to
ensure that our main results are not driven by zeroes
as a result of exits from or entry into our observation
period and (2) to allow for an observable period before
Kinect’s launch from which we can identify trends
and construct plausible counterfactuals.We focus our
main analysis on the first data set, and we further
eliminate outliers, namely people with fewer than
three and more than 50 publications before Kinect’s
launch (2007–2010). We eliminate researchers with
fewer than three publications because some of our
measures rely on peoples’ breadth of publications,
and low productivity mechanically translates into
low diversification. Note that this set of researchers
also includes authors who occasionally publish in

outlets tracked by the IEEE. We eliminate authors
with more than 50 publications in the before period to
account for potential disambiguation effects in the
IEEE algorithm assigning unique author identifiers.
Such author IDswould appear as very productive and
potentially diversified individuals, risking an up-
ward bias to our diversification-based estimations.
We identify a total of 3,200 researchers with over 50
publications in the four-year period before Kinect’s
launch, less than 1% of our main sample.16

Our final sample includes 12,549 within-area re-
searchers, 9,590 outside-area researchers, and 160,845
other researchers.Wepresent descriptive statistics that
show the balance in our CEM procedure for within-
area and outside-area researchers in Tables B1.a and
B1.b of Online Appendix B. We show average values
for all our covariates used in the matching procedure,
in both the full sample (columns (1)–(3)) and the
matched sample (columns (4)–(6)). Across all defi-
nitions, treated researchers are more productive.17

They have a higher number of coauthors and pub-
lish in more IEEE categories than the rest of the
population. However, this fact results from a more
skewed distribution in the full sample. The CEM
procedure balances these observables for each of our
two definitions of treated researchers. Our sample
size is reduced by the matching procedure and by our
eliminating outliers, as described earlier.
In Tables 1–3, we present average values of all our

dependent variable measures across the two groups
of treated researchers: two measures of publication
rate, three measures of diversification, and three
measures of research trajectory. The descriptive sta-
tistics foreshadow our main findings: (1) an increase
in quality publication output for both within- and
outside-area researchers, (2) a positive impact on
diversification that is more pronounced for outside-
area researchers than for within-area researchers, and
(3) a positive impact on the trajectory of research that
is more pronounced for outside-area researchers than
for within-area researchers. Further, we observe
differences across all ourmeasures relative to baseline
trends. Some of the effects come from mitigating the
overall decrease in a productivity, diversification, or
trajectory shift, whereas others come from an accen-
tuated baseline trend of an increasing productivity,
diversification, or trajectory shift, respectively. Spe-
cifically, the increase in productivity measured by the
count of academic publications is absolute and offsets
an overall trend of a decrease in publication output.
Our measure of productivity based on publication
output weighted by citation count offsets an overall
downward-sloping trend that can be explained not
only by the average decrease in academic publication
but also by the skewed nature of citation accumula-
tion over time. Similarly, our Euclidean measure of
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diversification, which captures the information con-
tained in IEEE’s taxonomy relative to changes in the
ideas space, shows an overall trend of decreasing
diversification, with the research technology damp-
ening that effect. The same trends can be observed in
our measure of diversification based on counts of new
publication outlets. This is important for at least two
reasons. First, it underscores our point regarding
the difficulty of crafting all-encompassing measures
of diversification and research trajectory. Second, it
highlights the differences in the various aspects of the
knowledge creation process captured by each mea-
sure. For example, the overall trend of a decrease in
diversification as captured by the Euclidean mea-
sure appears to contrast with the overall trend of
an increase in diversification captured by our topic

modeling measures. This apparent inconsistency may,
however, result from an increase in the fragmenta-
tion of research trajectories, an effect aligned with the
“knowledge burden” effect (Jones 2009, 2010) that
cannot be captured by a measure that relies on a fixed
taxonomy. More broadly, the differences suggest a
need for approaching studies on changes in research
diversification and trajectories using empirical strat-
egies that triangulate across multiple measures.

5. Empirical Analysis
5.1. Did the Kinect Shock Induce Changes in

Researchers’ Productivity?
We begin our analysis by estimating the impact of
Kinect on the researchers’ productivity. To do this,
we estimate Equation (1) using the annual count of

Table 3. Changes in Researchers’ Trajectory for Our Matched Sample: Descriptive Statistics

Descriptive statistics: Trajectory (mean (SD))

Treated as

Yearly new HDP
topics by distance Yearly new coauthors Year new publication outlets

Treated Controls Treated Controls Treated Controls

Within-area researchers Before 3.466 (5.599) 3.114 (5.163) 2.242 (3.086) 2.258 (3.074) 0.839 (0.964) 0.883 (1.014)
After 4.415 (7.133) 3.970 (6.525) 2.565 (4.555) 2.359 (4.387) 0.789 (1.111) 0.739 (1.055)

Observations 13,168 111,936 13,168 111,936 13,168 111,936
Outside-area researchers Before 2.957 (5.156) 2.707 (5.085) 2.061 (3.428) 2.048 (3.367) 0.783 (0.951) 0.806 (0.973)

After 5.613 (8.208) 3.554 (6.105) 3.512 (5.574) 2.126 (4.195) 1.063 (1.298) 0.674 (0.991)
Observations 11,936 79,008 11,936 79,008 11,936 79,008

Table 2. Changes in Researchers’ Diversification for Our Matched Sample: Descriptive Statistics

Descriptive statistics: Diversification (mean (SD))

Treated as
HDP topic count, intensive HDP topic count, extensive

Euclidean diversification
using IEEE taxonomy

Treated Controls Treated Controls Treated Controls

Within-area researchers Before 4.106 (4.634) 4.098 (4.654) 3.091 (2.951) 3.017 (2.890) 0.360 (0.296) 0.358 (0.294)
After 4.899 (6.858) 4.455 (6.489) 3.189 (3.356) 2.919 (3.216) 0.313 (0.288) 0.283 (0.285)

Observations 13,168 111,936 13,168 111,936 13,168 111,936
Outside-area researchers Before 3.642 (4.432) 3.662 (4.537) 2.751 (2.872) 2.709 (2.867) 0.325 (0.296) 0.323 (0.297)

After 6.530 (8.198) 3.934 (5.991) 3.913 (3.583) 2.665 (3.102) 0.372 (0.286) 0.262 (0.281)
Observations 11,936 79,008 11,936 79,008 11,936 79,008

Table 1. Changes in Researchers’ Productivity for Our Matched Sample: Descriptive Statistics

Descriptive statistics: Rate (mean (standard deviation (SD)))

Treated as
Publication count

Publication count
weighted by citations

Treated Controls Treated Controls

Within-area researchers Before 1.182 (1.241) 1.214 (1.295) 2.291 (3.346) 2.256 (3.327)
After 1.249 (1.669) 1.153 (1.600) 1.767 (3.034) 1.585 (2.941)

Observations 13,168 111,936 13,168 111,936
Outside-area researchers Before 1.068 (1.199) 1.086 (1.240) 1.900 (3.048) 1.891 (3.058)

After 1.676 (1.994) 1.022 (1.469) 2.408 (3.740) 1.404 (2.672)
Observations Before 11,936 79,008 11,936 79,008
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academic publications at the individual level as
the dependent variable as well as an annual count
weighted by citations accumulated by 2014. We
should note that we observe this effect in descriptive
data, because the average number of publications for
within-area researchers increases from 1.18 to 1.25,
whereas in the matched control group the average
number of publications changes from 1.21 to 1.15. In
the group of outside-area researchers, the average
number of publications changes from 1.07 to 1.68,
whereas in the control group it changes from 1.09
to 1.02.

We show the results of our main difference-in-
differences estimation in Table 4. In column (1), we
estimate the effect on the productivity of within-area
researchers. We find evidence of a 9% increase in
publication count for within-area researchers com-
pared with matched controls, or one additional paper
for every 10, in line with Hypothesis 1a. Column (2)
shows results for outside-area researchers, and column
(3) shows results for the same group of outside-area
researchers when excluding their motion-sensing
publications. In both cases, we find evidence of an
increase in the productivity of such researchers com-
pared with the group of control researchers, as iden-
tified through our CEM procedures, in line with

Hypothesis 2a. Treated outside-area researchers in-
crease their number of publications by 65%more than
the control group, an effect that corresponds to an
increase of three additional papers for every two.18

In column (3), we show evidence that the increase in
publication output is not driven by publications in
motion-sensing. This is important because it suggests
that the effect of research technology does not lead
mechanically to increases in productivity via direct
engagement with the technology, but rather access to
the research technology affects the productivity of
outside-area researchers on all topics on which they
work, in line with our Hypothesis 2a. Specifically,
outside-area researchers experience a disproportion-
ate increase of 36%, approximately one additional
paper for every three publications, in their publica-
tions on topics outside of motion-sensing. Further-
more, themagnitude of the effects is higher for outside-
area researchers than for within-area researchers,19 in
line with Hypothesis 2a. All these trends persist when
focusing on a measure of publication output weighted
by citations (Table 5), suggesting that the increase in
productivity does not arise as a result of a jump in
studies of lesser quality.
Next, we examine the timing of this effect in or-

der to ensure that our estimates of the boost in

Table 4. Estimated Changes in Publication Count

Controls determined through CEM

Count of publications

Within-area researchers Outside-area researchers
Outside-area researchers

(exclude motion-sensing papers)

Treated × AfterKinect 0.083*** (0.017) 0.497*** (0.017) 0.305*** (0.019)
Quadratic age Yes Yes Yes
Individual and year fixed effects (FEs) Yes Yes Yes
Log likelihood −270,358.60 −187,776.56 −186,346.70
Observations 231,666 166,212 166,212

Notes. The data are a panel at the researcher level based on publication data between 2007 and 2014. All models are Poissonwith robust standard
errors clustered at the individual level. CEM, coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.

Table 5. Estimated Changes in Citation Weighted Publication Count

Controls determined through CEM

Count of publications weighted by citations

Within-area researchers Outside-area researchers
Outside-area researchers

(exclude motion-sensing papers)

Treated × AfterKinect 0.083*** (0.023) 0.537*** (0.024) 0.330*** (0.027)
Quadratic age Yes Yes Yes
Individual and year FEs Yes Yes Yes
LL −424,738.03 −285,514.28 −283,379.44
Observations 231,666 166,212 166,212

Notes. The data are a panel at the researcher level based on publication data between 2007 and 2014. All models are Poissonwith robust standard
errors clustered at the individual level. CEM, coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.
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productivity are not driven by secular trends toward
increased publication or changes in productivity that
occur later during our after period and which could
therefore be attributed to events other than the launch
of Kinect. To do this, we replace AfterKinectt with a set
of year-specific dummy variables.We plot the estimated
value of the interaction between these year dummies
with our treated dummy in Figures 1 and 2. All esti-
mates consider 2010 as our baseline year (Kinect was
launched on November 4, 2010). Each point on the
graphs represents the estimated difference between
the number of publications of treated versus control
researchers, for each year, relative to the same dif-
ference in 2010. In each graph, the difference is small and
close to zero before the launch of Kinect, as expected
given our CEM procedure, and increases immedi-
ately thereafter, consistent with the conclusion that the
availability of motion-sensing technology triggered an
increase in researchers’ productivity. In line with the
discussion of coefficient magnitudes in Tables 4–5,
the effect is higher for outside-area researchers than
for within-area researchers.

5.2. Did the Kinect Shock Induce
Research Diversification?

Ourfirst evidence comes fromdescriptive statistics on
entry into motion-sensing research. Our estimation
strategy precludes including authors who published

only in the post-Kinect period; that is, we do not observe
a before period in order to identify an appropriate
counterfactual. In Table 6, we report the number of
new unique authors (based on IEEE database author
identifiers) that appear in the data set over the eight-
year course of our sample. We distinguish between
researchers entering our sample with at least one
motion-sensing publication in their first year (column
(1)) and researchers entering with other types of
publications (column (2)). Column (3) reports the ratio
of new entries in motion-sensing research. These
data suggest diversification via entry into motion-
sensing research. Prior to the Kinect launch, ap-
proximately 1%of entries into the IEEEdata set occurs
via publications in motion-sensing, but this per-
centage increases by 31% immediately following the
Kinect launch and continues to increase, up to 2.5
times in 2014, relative to the period before Kinect.
To investigate this question in a more formal way,

we return to our main difference-in-differences esti-
mation from Equation (1). First, we focus on the im-
pact on within-area researchers in Tables 7 and 8. Ta-
ble 7 presents estimates using a dummy variable for
treated people, and Table 8 shows estimates using a
continuous measure of involvement in motion-sensing
before Kinect. Specifically, we replace TreatedResearcheri
in Equation (1) with a variable capturing the level of
specialization inmotion-sensing before Kinect, calculated

Figure 1. Estimated Changes in Yearly Publication Counts

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in publication counts between treated and control authors in that year. The bars surrounding each
point represent the 95% confidence interval. All values are relative to the base year of 2010.

Figure 2. Estimated Changes in Yearly Publication Counts Weighted by Citations

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in publication counts between treated and control authors in that year. The bars surrounding each
point represent the 95% confidence interval. All values are relative to the base year of 2010.
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as the sum of motion-sensing publications over the
period before the launch of Kinect (2007–2010) and
divided by the total publication output of researcher
i over the same period. The table presents estimates
using our three different diversificationmeasures, the
intensive and extensive HDP topic counts and the
Euclidean diversification measure based on the IEEE
taxonomy.

Table 7, columns (1) and (2), shows evidence of an
8% increase in the number of HDP topics covered
yearly and a 5% increase in the number of unique
HDP topics covered yearly relative to the control

group, consistent with Hypothesis 1b. This amounts
to a modest increase of 0.33 topic (and 0.16, re-
spectively) of approximately 50 topics covering the
complete set of research in computer science and
engineering. These findings are consistent with those
obtained using the traditional diversification mea-
sure (which indicates a 7% increase in the Euclidean-
based diversification) but have the added benefit of
ease of interpretation of magnitude relative to the
number of additional topics. Table 8 shows that the
increase in diversification is more pronounced for
those who had previously focused their research in

Table 6. New Researcher Entries in Electrical Engineering, Computer Science, and Electronics, per Year, as Observed through
Publications Logged in the IEEE Xplore Database, 2007–2014

Number of authors entering IEEE Xplore academic publication

Year
Number of authors entering with at least

one motion-sensing publication
Number of authors entering with

publications in other areas
Percentage of

motion-sensing entry

2007 1,103 122,322 0.90
2008 1,307 124,670 1.04
2009 1,188 120,554 0.99
2010 1,502 152,237 0.99
2011 1,794 137,233 1.31
2012 2,449 135,514 1.81
2013 2,805 116,184 2.41
2014 2,985 119,265 2.50

Table 8. Specialists in Motion-Sensing Experience a Higher Level of Change in Diversification after Kinect

Treated as within-area researchers; controls determined through CEM

Diversification
HDP topic count

(intensive)
HDP topic count

(extensive)
Euclidean diversification
using IEEE taxonomy

Fraction of MS publications
before × AfterKinect

0.195*** (0.042) 0.146*** (0.030) 0.064*** (0.009)

Quadratic age Yes Yes Yes
Individual and year FEs Yes Yes Yes
LL/R2 −765,971.96 −527,554.55 0.045
Observations 231,263 231,263 231,263

Notes. The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Columns (1) and (2) estimate a Poisson model. Column (3) estimates a linear regression model (ordinary least
squares (OLS)). CEM, coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.

Table 7. Estimated Changes in the Level of Diversification of Within-Area Researchers

Treated as within-area researchers; controls determined through CEM

Diversification
HDP topic count

(intensive)
HDP topic count

(extensive)
Euclidean diversification
using IEEE taxonomy

Treated × AfterKinect 0.075*** (0.018) 0.052*** (0.013) 0.025*** (0.004)
Quadratic age Yes Yes Yes
Individual and year FEs Yes Yes Yes
LL/R2 −765,976.57 −527,561.97 0.045
Observations 231,263 231,263 231,263

Notes. The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Columns (1) and (2) estimate a Poisson model. Column (3) estimates a linear regression model (ordinary least
squares (OLS)). CEM, coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.
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motion-sensing as opposed to researchers who also
published in other domains. This suggests that
rather than frustrating opportunities for within-area
researchers, the automating technology facilitates ex-
ploration of ideas in their domains of expertise.

As before, we test the timing of these effects by
replacing the postshock dummy, AfterKinectt, with a
series of dummy variables reflecting each year of the
analysis. We plot the estimated difference in yearly level
of diversification between our treated and control re-
searchers in Figure 3. All values are computed relative
to 2010. In each case, we confirm the absence of

pretrends as constructed through our CEMprocedure
and find evidence of an increase in average researcher
diversification that begins in the year after the Kinect
launch and persists across time.
Next, we turn our attention to the effect for outside-

area researchers and show results in Tables 9 and 10.
As before, Table 9 presents estimates using our three
different diversification measures, the intensive and
extensive HDP topic counts and the Euclidean di-
versification measure based on the IEEE taxonomy,
considering the motion-sensing publications produced
by these researchers after the launch of Kinect. Table 10

Table 10. TheChange inDiversification of Outside-Area Researchers Persists Outside the Set ofNewlyAddedMotion-Sensing
Publications

Treated as outside-area researchers; controls determined through CEM

Diversification
HDP topic count

(intensive)
HDP topic count

(extensive)
Euclidean diversification
using IEEE taxonomy

Treated × AfterKinect 0.310*** (0.021) 0.191*** (0.015) 0.048*** (0.005)
Quadratic age Yes Yes Yes
Individual and year Fes Yes Yes Yes
LL/R2 −534,765.16 −372,990.12 0.046
Observations 165,844 165,844 166,212

Notes. The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Columns (1) and (2) estimate a Poisson model. Column (3) estimates a linear regression model (OLS). CEM,
coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.

Table 9. Estimated Changes in the Level of Diversification of Outside-Area Researchers

Treated as outside-area researchers; controls determined through CEM

Diversification
HDP topic count

(intensive)
HDP topic count

(extensive)
Euclidean diversification
using IEEE taxonomy

Treated × AfterKinect 0.500*** (0.019) 0.358*** (0.013) 0.103*** (0.004)
Quadratic age Yes Yes Yes
Individual and year FEs Yes Yes Yes
LL/R2 −537,282.06 −373,937.94 0.048
Observations 165,868 165,868 166,212

Notes. The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Columns (1) and (2) estimate a Poisson model. Column (3) estimates a linear regression model (OLS). CEM,
coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.

Figure 3. Estimated Changes in the Level of Diversification of Within-Area Researchers

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in diversification between treated and control authors in that year. The bars surrounding each
point represent the 95% confidence interval. All values are relative to the base year of 2010.

Furman and Teodoridis: Automating Research Technology and Innovation
Organization Science, 2020, vol. 31, no. 2, pp. 330–354, © 2020 INFORMS 345



eliminates the motion-sensing publications and fo-
cuses on the impact on diversification for all other
projects of these researchers.

Table 9, columns (1) and (2), shows evidence of a
65% increase in the number of HDP topics covered
yearly and a 43% increase in the number of unique
HDP topics covered yearly, relative to the control
group, in line with Hypothesis 2b. This amounts to an
increase of 2.37 topics (and 1.18, respectively) of
approximately 50 topics. These findings are consis-
tent with those obtained using the traditional di-
versification measure, which indicates a 32% increase
in Euclidean-based diversification, but with the added
benefit of ease of interpretation of magnitude relative
to the number of additional topics. Additionally, we
observe that the effect on outside-area researchers is
larger than that on within-area researchers, in line
with Hypothesis 2b. As before, we include more for-
mal estimates of the difference inmagnitude in Table C2
of Online Appendix C.

Table 10 demonstrates that this boost in diversifi-
cation persists when we exclude motion-sensing pub-
lications. Specifically, the automation of motion-sensing
technology facilitates a 36% increase in the number of
HDP topics covered yearly by all other non-motion-
sensing publications produced by these researchers

relative to the matched control group. Similarly,
column (2) indicates a 21% increase in the number of
unique HDP topics covered yearly by all other non-
motion-sensing publications produced by these re-
searchers, relative to the control group. The change in
diversification amounts to an increase of 1.31 topics
(and 0.58, respectively).
As before, we test the timing of these effects by

replacing AfterKinectt with a set of dummy variables
for each sample year.We plot the estimated difference
in yearly level of diversification between our treated
and control researchers in Figures 4 and 5. All values
are computed relative to 2010. In each case, we con-
firm the absence of pretrends as constructed through
our CEM procedure and find evidence of an increase
in average researcher diversification following the
launch of Kinect that begins immediately after the
launch and persists across time.

5.3. Did the Kinect Shock Induce Changes in
Researchers’ Trajectories?

To turn to the question of whether the Kinect shock
induced changes in researchers’ trajectory of in-
quiry, we apply the same estimation strategy as in the
preceding section but replace the diversification
variables with three alternative measures designed to

Figure 4. Estimated Changes in the Level of Diversification of Outside-Area Researchers

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in diversification between treated and control authors in that year. The bars surrounding each
point represent the 95% confidence interval. All values are relative to the base year of 2010.

Figure 5. Estimated Changes in the Level of Diversification of Outside-Area Researchers, When Excluding Their Motion-
Sensing Publications

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in diversification between treated and control authors in that year. The bars surrounding each
point represent the 95% confidence interval. All values are relative to the base year of 2010.
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reflect differences in the distance in knowledge space
between researchers’ portfolios of projects at times t− 1
and t. Tables 11 and 12 present the results of changes
in trajectory for within-area researchers. Tables 11
presents estimates using a dummy variable for
treated people, and Table 12 shows estimates using a
continuous measure of involvement in motion-sensing
before Kinect. Column (1) of Table 11 estimates that
within-area researchers experience a 7% increase in
new topics, equivalent to a modest shift of 0.24 topic.
Column (2) estimates a 5% increase in the number of
new coauthors (1 in 10 new coauthors), and column
(3) estimates an 8% increase in the number of new
publication outlets (1 in 15 new publication outlets).

The advantage of the HDP measure is that it allows
us to estimate the number of additional topics the
researcher undertakes; an increase in the number of
authors and publication outlets does not necessarily
imply an increase in the number of topics because
researchers canworkwith new coauthors and publish
in different journals without changing their topics of
interest or, alternatively, by abandoning old topics
and undertaking new ones. The effects are most
pronounced for researchers who have a greater de-
gree of involvement in motion-sensing research be-
fore Kinect (Table 12). We test the timing of these
effects and display the yearly estimated coefficients
in Figure 6. We interpret the results as implying that

Table 11. Estimated changes in the trajectory of research of within-area researchers

Treated as within-area researchers; controls determined through CEM

Trajectory Yearly new HDP topics by distance Yearly new coauthors Year new publication outlets

Treated × AfterKinect 0.241** (0.096) 0.051** (0.020) 0.074*** (0.017)
Quadratic age Yes Yes Yes
Individual and year Fes Yes Yes Yes
R2/LL 0.028 −527,103.78 −208,371.97
Observations 231,266 230,770 231,026

Notes. The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Column (1) estimates a linear regression model (OLS). Columns (2) and (3) estimate a Poisson model. CEM,
coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.

Table 12. Specialists in Motion-Sensing Experience a Higher Level of Shift in Their Trajectory of Research

Treated as within-area researchers; controls determined through CEM

Trajectory Yearly new HDP topics by distance Yearly new coauthors Year new publication outlets

Fraction of MS publications before × AfterKinect 0.859*** (0.196) 0.170*** (0.051) 0.228*** (0.039)
Quadratic age Yes Yes Yes
Individual and year Fes Yes Yes Yes
R2/LL 0.028 −527,090.78 −208,366.32
Observations 231,266 230,770 231,026

Notes. The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Column (1) estimates a linear regression model (OLS). Columns (2) and (3) estimate a Poisson model. CEM,
coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.

Figure 6. Estimated Changes in the Type of Knowledge Output of Within-Area Researchers

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in diversification between treated and control authors in that year. The bars surrounding each
point represent the 95% confidence interval. All values are relative to the base year of 2010.
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Kinect induced within-area researchers to expand
their research into areas inwhich they had notworked
before, in line with our hypothesis Hypothesis 1b.

Tables 13 and 14 suggest that the same holds—
though to a larger degree20—for outside-area re-
searchers, in line with Hypothesis 2b. As in prior
analyses, Table 13 presents estimates of the three
trajectory measures, including motion-sensing pub-
lications produced by these researchers after the
launch of Kinect. Table 14 eliminates the motion-
sensing publications and focuses on the impact on
trajectory for all other projects of these researchers.
Table 13, column (1), indicates a 66% increase in new
topics, equivalent to a shift in trajectory of two new
topics. Column (2) of the same table estimates a 59%
increase in the number of new coauthors (1.25 new
coauthors), and column (3) estimates a 57% increase
in the number of new publication outlets (1 in 2 ad-
ditional publication outlets). The effects persist when
eliminating the set of motion-sensing publications
from the portfolio of these researchers, suggesting
that the effect is not mechanically driven by in-
corporating motion-sensing into the portfolio of
projects (Table 14), in line with Hypothesis 2b. Spe-
cifically, outside-area researchers increase the num-
ber of yearly new topics by 22% (0.45 new topic of
approximately 50), the number of new coauthors by

30% (more than 1 in 2 new coauthors), and the number
of new publication outlets by 61% (1 in 2 new outlets).
As before, we test the timing of these effects and
display the yearly estimated coefficients in Figures 7
and 8.

5.4. Complementary Descriptive Analyses
The results of our regression analyses suggest that
the availability of this motion-sensing technology
induces greater research diversity and a shift in the
trajectory of researchers’ project portfolios. Ideally, we
also want to gain insight into the type of knowledge
these people create as part of the identified effects.
However, the difficulty of capturing changes in the
type of knowledge produced also poses challenges to
our ability to speak directly to the measured increase
in diversification and shift in trajectory. To shed some
light on this, in addition to the examples mentioned
earlier, we provide some descriptive examples we
collected through a different bibliographic database,
Scopus, and its analyze function, which allows user to
select a group of papers and analyze their attributes
in terms of, for example, spread across domains of
knowledge, counts of authors affiliated with various
institutions, and spread across different publication
outlets. We observe two broad avenues through
which researchers enhance the trajectory of their

Table 14. The Shift in the Trajectory of Outside-Area Researchers Persists Outside the Set of Newly Added Motion-Sensing
Publications

Treated as outside-area researchers; controls determined through CEM

Trajectory Yearly new HDP topics by distance Yearly new coauthors Year new publication outlets

Treated × AfterKinect 0.451*** (0.052) 0.261*** (0.024) 0.474*** (0.016)
Quadratic age Yes Yes Yes
Individual and year Fes Yes Yes Yes
R2/LL 0.028 −370,110.33 −145,752.72
Observations 166,212 165,515 165,876

Notes: The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Column (1) estimates a linear regression model (OLS). Columns (2) and (3) estimate a Poisson model. CEM,
coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.

Table 13. Estimated Changes in the Trajectory of Research of Outside-Area Researchers

Treated as outside-area researchers; controls determined through CEM

Trajectory Yearly new HDP topics by distance Yearly new coauthors Year new publication outlets

Treated × AfterKinect 1.962*** (0.110) 0.461*** (0.022) 0.448*** (0.016)
Quadratic age Yes Yes Yes
Individual and year Fes Yes Yes Yes
R2/LL 0.035 −372,894.72 −145,186.49
Observations 166,212 165,547 165,876

Notes: The data are a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors
clustered at the individual level. Column (1) estimates a linear regression model (OLS). Columns (2) and (3) estimate a Poisson model. CEM,
coarsened exact matching.

*p < 0.05; **p < 0.01; ***p < 0.001.
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inquiry following Kinect: (1) an increase in the num-
ber of areas where they publish and (2) an increase
in the percentage of their publications across knowl-
edge areas in their portfolio. We include these data
and additional information in Online Appendix D.

Additionally, we use the Scopus analyze feature to
provide a glimpse into themechanism throughwhich
the benefits of the automating technologymanifest by
attempting to identify the types of institutions that
benefit most from the availability of Kinect as auto-
matingmotion-sensing research technology.21 On the
one hand, the benefit of Kinect as a technology that
automates research tasks might manifest more for
research institutions that are or aim to be leaders in
research. The assumption is that these institutions are
time constrained rather than financially constrained,
and the automation would help propel their pro-
ductivity forward. On the other hand, the benefit of
Kinect as technology that reduces the costs of per-
forming certain research tasks might manifest more
for institutions that are financially constrained. It
follows that a research technology that is automat-
ing by significantly reducing the cost of performing
certain research tasks should benefit both types
of institutions. It is important to remember that we

cannot separate these effects from those resulting
from the low monetary cost of Kinect. In addition to
reducing the cost of executing certain research tasks
via automation, Kinect’s low monetary cost (relative
to the previous generation of motion-sensing tech-
nology) may have enabled experimentation that
might not have been considered if Kinect were priced
in the same range as the previous generation tech-
nology. It may be, therefore, that changes in the
monetary cost of motion-sensing research technology
drive some of the effects we observe. However, if
these effects were dominant, then we would expect to
see financially constrained institutions dispropor-
tionally benefiting from the Kinect phenomenon.
In fact, when collecting author affiliations for the top
25% and top 10% most cited motion-sensing publi-
cations during the period before and after Kinect, we
observe that the set of institutions experiencing the
highest increase in the number of top-cited publica-
tions is comprised of both highly ranked universities
and private institutions with few financial constraints
and lower-ranked institutions with presumably more
financial constraints. This finding is aligned with the
idea that the automating research technology re-
duces the cost of performing certain research tasks by

Figure 8. Estimated Changes in the Type of Knowledge Output of Outside-Area Researchers, When Excluding Their
Motion-Sensing Publications

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in our direction measures between treated and control authors in that year. The bars surrounding
each point represent the 95% confidence interval. All values are relative to the base year of 2010.

Figure 7. Estimated Changes in the Type of Knowledge Output of Outside-Area Researchers

Notes. We base this figure on our 2007–2014 data set. Each point on the graph represents the coefficient value on the covariate TreatedResearcher×
Year and thus describes the relative difference in our direction measures between treated and control authors in that year. The bars surrounding
each point represent the 95% confidence interval. All values are relative to the base year of 2010.
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substituting for human capital and thus benefiting
both leading institutions racing tomaintain their frontier
position and more financially constraining institutions.
We include these data and additional information in
Online Appendix E.

6. Discussion and Conclusion
Automating technologies are transforming the nature
of work and competition across industries. Scholar-
ship in management and economics has investigated
the impact of such technologies on themanufacturing
and service sectors and has documented the extent to
which and the conditions under which these technol-
ogies substitute for or complement human labor. Al-
though research on innovation emphasizes the impor-
tance of research tools, less work investigates the role
of such automating technologies in the production of
knowledge. In this paper, we contribute to addressing
this gap by examining the impact of an automating tech-
nology on the rate and type of knowledge production.

Ideas production differs in key ways from the
production of goods and services. We believe that a
core contribution of this paper involves training a lens
on the way in which automating technologies affect
the organization of knowledge production. In contrast
to some traditional manufacturing positions (e.g.,
assembly-line work) and service positions (e.g., fast-
food preparation), knowledge work is characterized
by a particularly wide range of tasks (e.g., problem
selection, grant writing, data analysis, paper compo-
sition, and seminar presentation) and a substantial
amount of autonomy for knowledge workers to se-
lect their tasks. This task variety and authority over
their own work may enable knowledge workers to
adapt to the introduction of automating technologies
in ways that vary from those of workers—and even
managers—in manufacturing and service sectors.
Our results suggest that this is the case. Researchers
with prior involvement in motion-sensing are not
negatively impacted by the availability of motion-
sensing technology that automates core research tasks.
Moreover, such researchers, on average, accelerate the
pace of their work in response to automation and spread
their knowledge wider.

A second area to which we believe this paper
contributes is to the study of research technology as
an input into knowledge production. In particular,we
document that the availability of this motion-sensing
research technology enables gains in production and
movement in ideas space. Further, we demonstrate
that the ability to leverage research technology varies
across researcher types. While the Kinect shock sup-
ports some benefits among within-area researchers,
its greatest impact is among researchers who have
not previously engaged in motion-sensing research.

Acemoglu (2002, 2012) and Bryan and Lemus (2017)
worry that economic incentives lead to an under-
provision of research diversity that is especially pro-
nounced among for-profit firms and that can be al-
leviated by increasing research diversity among
academics. This paper suggests that automating re-
search technology can lessen this problemby enabling
wider exploration of research ideas.
A third contribution we seek to make in this paper

involves the adaptation of machine learning tools to
develop generalizablemeasures of type of knowledge
production. In our main specifications, we employ
HDP,whichwe train on paper abstracts to parsefields
of research into multiple categories. The approach
has several advantages over bibliometric measures
for capturing the diversity and trajectory of research
output. Furthermore, unlike LDA, one of the most-
often used topic modeling tools, HDP identifies the
optimal number of topics within a body of text. While
the technique cannot automatically track the evolu-
tion of topics over time, we address this limitation
by augmenting it with a clustering technique, TFIDF
cosine similarity, to calculate a cosine vector simi-
larity between the yearly topics generated by the HDP
algorithm. We believe that this approach adds to sim-
ilar early efforts of employing machine learning tech-
niques in developing measures of type of knowledge
output (Kaplan and Vakili 2015) and, importantly, rep-
resents an advance in measuring changes in the type
of knowledge output.
Lastly, a fourth contribution we hope to make is to

expand the discussion of automation in literature
in strategic management and organization studies.22

Although a substantial and insightful literature on the
impact of digital technologies exists, much of it ap-
pears in journals focused on information systems and
economics, and we hope that this work contributes to
expanding attention to these topics in core strategy
and management research.
One of the advantages of our context is that the

peculiar surprise associated with the Kinect technol-
ogy supports a closer to causal analysis of its impact on
the community of researchers in computer science and
electrical engineering research. There are numerous
analogues outside these areas in which specific re-
search tasks have been automated, including the au-
tomation of statistical analysis via tools such as
SAS, Stata, and R and the automation associated with
combinatorial chemistry techniques. By focusing on
a relatively narrow research area and an unantici-
pated increase in the availability of a key automating
technology in that area, we are able to get closer to
obtaining causal identification, albeit at the cost of
some external validity. Our approach is also limited in
disentangling the effects of automation from those of
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publicity of the technology; the launch of Kinect and
subsequent hype were highly public. Moreover, Kinect
is an automating technology that reduces the cost of
executing the tasks it automates with minimal ad-
justments or coinvention costs. This differs from other
technologies, such as mainframes, servers, and cloud
computing (Jin and McElheran 2018), where the au-
tomation effects might manifest in more complex
ways. In addition, Kinect was offered at a lower mon-
etary cost than previous generations of motion-sensing
technology. It is possible that the magnitude of the effects
we observe are in part explained by these circumstances.

Overall, our analysis underscores the important
role of IT-based research technology for innovation.
Understanding this relationship should be of central
interest for research-oriented organizations focused
on being ahead of competitors in knowledge pro-
duction. Our study suggests that both access to re-
search technology and the type of knowledgeworkers
employed by these organizations matter. In addition
to productivity benefits, automating research tech-
nologies may induce benefits of greater research di-
versity among innovation-focused firms. Whereas
absorptive capacity has focused on the complemen-
tarity between internal research and development
(research and development) efforts and external
knowledge, this paper highlights the fact that ex-
pertise can be embedded in a research technology and
suggests that externally developed research tech-
nologies may have effects on productivity and idea
mobility within firms. Furthermore, the magnitude of
impact of research technology in knowledge pro-
duction draws attention to the role ofmarket power in
technology development and retailing, as well as the
complex implications of technology development and
pricing strategies. For example, offers of discounted
technologies could lead to indirect returns in the form
of accelerated rates of innovation. Thus, while our
analysis has been conducted at the level of individual
researchers, we hope the paper invites continuedwork
on the impact of automating technologies on inno-
vating firms and sectors and lights a path toward such
investigations.
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Endnotes
1Throughout this paper, we use the terms automating technology, IT-
based technology, and research technology and similar variants in-
terchangeably to refer to IT-based devices (including both software
and hardware) that are used in the process of research and that
automate certain research tasks, for example, data-collection tasks
and data-analysis tasks.
2We consider diversification to be the breadth of a researcher’s pub-
lication portfolio at each point in time t and trajectory to be the
distance in knowledge space between a researcher’s portfolio of
projects at times t − 1 and t.
3 In one illustrative and compelling example, Bessen (2015) de-
scribes the impact of automatic teller machines (ATMs) on bank
tellers and bank branches between the 1980s and 2000s. He notes
that, on the one hand, ATMs constituted a cheaper, strict substitute
for the tasks provided by bank tellers and thus enabled the closing
of some locations and a reduction in the number of tellers per
branch. On the other hand, however, the diffusion of ATMs in-
duced net gains in bank teller employment by enabling bank
branches to be opened in new locations and by enabling tellers to
focus on tasks in which ATMs were poor substitutes, such as re-
lationship banking.
4This requires the additional assumption that the standards for
quality for publication in the domain of automation do not change in
response to the automation. We anticipate that shifting standards in
the affected the domain would be a second-order impact of research
tool automation, though we hope that this issue will be examined
more fully by further research.
5The Kinect system comprises a color camera, a depth sensor, and a
multiarray microphone. These physical features, along with artificial
intelligence pattern-recognition software, enabledKinect to recognize
in three dimensions and in real time the movements and facial ex-
pressions of multiple people and to acknowledge and distinguish
their voice commands (Zhang, 2012). The Kinect system translated
this motion-sensing information into actions enabling players to
control gameplay.
6The datawere collected during late 2014. Hence, there is a truncation
in the 2014 data coverage, which is evident in Figures 1–8 as a
decrement in estimated effects in the year 2014. All results are robust
to dropping the 2014 data.
7These terms are available on request and are described in greater
detail in Teodoridis (2018).
8 IEEE assigns each publication to 1 of the 51 main categories listed
in its taxonomy. We calculate the Euclidean distance based on the
percentage of keywords from each category that a researcher collects
in his or her publication portfolio between 2007 and 2010. Formally,
we calculate

DiversificationIndexi � 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑51
k�1

CategoryPercentage2ik

√
, (2)

where i is the individual researcher, and CategoryPercentage2ik
represents the squared percentage of keywords assigned to re-
searcher i’s publications in each of the k main 51 categories of the
IEEE taxonomy. Note that by construction, themeasure is less than
or equal to 1 and never 0, and it increases with higher levels of
keywords spread across IEEE categories.
9Alternatives to using bibliometric measures to capture movement
in the ideas space do exist. For example, Krieger et al. (2018) use
the Tanimoto distance, which reflects the similarity of chemical
structures, to measure mobility in the ideas space in the pharma-
ceutical industry.
10Machine learning algorithms evolved from the study of pattern
recognition in computer science but have increasingly found
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applications in a variety of fields, including genetics, medical im-
aging, computational biology and bioinformatics, image recognition,
social network analysis, and economics and public policy (Athey and
Imbens, 2015). Currently, a large number of algorithms are cus-
tomized for various tasks. Although limitations remain, the com-
plexity and accuracy of the algorithms are rapidly evolving.
11TheHDP is amore advanced version of themorewell-known latent
Dirichlet allocation (LDA).
12Despite substantial advances in computing power, each process is
computationally intensive. Each run of HDP using our data requires
days of computing time. As a result, we have run the current analysis
allocating papers to topics using article abstracts but not full texts. In
addition, the large volume of data in our data set prevents us from
running the HDP or LDA algorithm on multiple years of data at once
to, for example, compare the structure generated by these algorithms
with the IEEE taxonomy that covers the entire corpus of publications
across all years.
13We consulted with experts in computer science, electrical engi-
neering, and electronics to ensure that the topics identified by the
HDP algorithm reflect credible categorizations in this line of research.
14All our results remain robust to using the LDA algorithm with 40,
60, and 90 topics.We chose the number of topics based on the optimal
number of topics identified by the HDP algorithm, cross-checked
against a sensitivity algorithm on multiple instances of LDA. We do
not include these results because of space limitations but are happy to
provide them on request.
15Computer scientists are working on a variety of extensions of these
algorithms. We chose to use algorithms that are considered robust
among computer scientists rather than current experimental ones
aimed at advancing the frontier in topic modeling.
16All core results are robust to altering these cutoff choices and to
including the full set of data available to us. Specifically, the results
remain robust (1) to considering the full data set, 2001–2014, (2) to
considering other cutoff points for the minimum and maximum
number of publications, and (3) to eliminating cutoffs for the mini-
mum and maximum number of publications and using the full set of
2007–2014 authors.
17Our data set is a balanced panel where the productivity in non-
publishing years is taken into account as years with zero publications.
18The publication boost is consistent with that in other work, which
examines shocks to the availability of research tools. For example,
Furman and Stern (2011) find that making life science research
materials available through public resource collections, biological
resource centers (BRCs), induces between 50% and 125% increase in
research referencing these materials. Similarly, Murray et al. (2016)
find that open access to certain types of research mice yields a 22% to
43% boost in research citing the use of such mice.
19 In addition to observing these differences across estimations, we
perform a CEM procedure on our main sample that includes both
within-area and outside-area researchers. We add both interaction
terms in the same estimations to better compare the magnitude of the
effects and observe that indeed the impact on within-area researchers
was smaller in magnitude than the impact on outside-area re-
searchers (see Table C1 in Online Appendix C).
20As before, we include more formal estimates of the difference in
magnitude in Table C3 of Online Appendix C.
21Data limitations prevent us from providing comprehensive evi-
dence at the individual researcher level.
22We are grateful to an anonymous reviewer for proposing this point.
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