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Abstract

Background: Research examining the relation between spatial skills and the science, technology, engineering and

mathematics (STEM) fields has focused on small-scale spatial skills, even though some STEM disciplines—particularly

the geography and geoscience (GEO) fields—involve large-scale spatial thinking at the core of their professional

training. In Study 1, we compared large-scale navigation skills of experienced geologists with those of experienced

psychologists, using a novel virtual navigation paradigm as an objective measure of navigation skills. In Study 2, we

conducted a longitudinal study with novice Geographic Information Systems (GIS) students to investigate baseline

navigational competence and improvement over the course of an academic semester.

Results: In Study 1, we found that geologists demonstrated higher navigational competence and were more likely

to be categorized as integrating separate routes, compared to their non-STEM counterparts. In Study 2, novice GIS

students showed superior baseline navigational competence compared to non-STEM students, as well as better

spatial working memory and small-scale mental rotation skills, indicating self-selection. In addition, GIS students’

spatial skills improved more over the course of a semester than those of non-STEM students.

Conclusions: Our findings highlight the importance of large-scale spatial thinking for enrollment and success in

the GEO fields but likely also across the broader range of thinking involving spatial distributions. We discuss the

potential of GIS tools to develop spatial skills at an early age.
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Significance
People with strong spatial skills are more likely to

pursue and succeed in science, technology, engineering

and mathematics (STEM) careers. Fortunately, spatial

skills are malleable, and improvements in them are both

durable and generalizable (Uttal et al., 2013). Improving

spatial skills during educational training may be an

effective way of increasing a gender-balanced STEM

workforce. However, there are two gaps in current

knowledge, which the current research addresses. First,

existing research focuses almost exclusively on small-scale

spatial skills, leaving a gap in our understanding of the re-

lation between large-scale navigation skills and STEM

learning, specifically related to the Geography and Geo-

science (GEO) fields. Using a large-scale virtual environ-

ment, we tested the navigation skills of expert geologists

and compared their performance with that of expert

psychologists. Second, there is a need for a sustainable

spatial training plan that can be integrated into class-

rooms; one possibility is the integration of Geographic In-

formation Systems (GIS) tools in STEM teaching. The

current project tested the effectiveness of GIS training in

improving spatial skills in novice students.

Background
Humans need spatial skills to survive and function in a

spatial world: to navigate from point A to point B, to

manipulate objects and to invent tools. Strong spatial

skills also predict interest and success in science,

technology, engineering, and mathematics (STEM) disci-

plines (Kell, Lubinski, Benbow, & Steiger, 2013; Shea,

Lubinski, & Benbow, 2001; Wai, Lubinski, & Benbow,

2009). However, these studies involve paper-and-pencil

assessments of “small-scale” object-based manipulations

such as mental rotation. Decades of behavioral research,

and more recent findings from neuroscience, suggest that

spatial thinking is a multidimensional construct involving
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different cognitive mechanisms and distinct neural net-

works for dealing with the space of objects (small scale) or

environments (large scale; Aguirre & D’Esposito, 1999;

Morris & Parslow, 2004; Philbeck, Behrmann, Black, &

Ebert, 2000). Thus, an important dimension to consider

when investigating the relation between STEM learning

and spatial skills is scale. An important gap in our under-

standing of the reciprocal relation between spatial skills

and STEM success involves whether large-scale spatial

skills, like small-scale skills, predict enrollment in STEM

fields and contribute to STEM success. Do good naviga-

tors make good scientists? Do good scientists develop

navigationally relevant skills?

Traditional attempts to define and categorize spatial

ability into constituent spatial skills (Carroll, 1993; Eliot,

1987; Linn & Petersen, 1985) have not highlighted the

scale distinction, likely because psychometric tests did

not really tap into large-scale skills. Montello (1993) dis-

cusses the importance of scale in understanding psycho-

logical spaces and defines four classes of psychological

spaces based on the projective and not the absolute size

of space relative to the human body—figural, vista, en-

vironmental and geographical. Small-scale spatial skills

are needed at the figural (e.g., a small object) and vista

(e.g., a single room) scales, where an individual can visu-

ally observe all spatial characteristics with minimal

movement (i.e., from a single vantage point). However,

large-scale spatial thinking comes into play at the envir-

onmental (e.g., a city) scale, where an individual may ob-

tain information about the spatial properties of the

space through considerable locomotion and at the geo-

graphical scale (e.g., a country), where direct locomotion

must be replaced by symbolic learning from maps and

models in order to obtain spatial information about the

space. If large-scale navigation skills are indeed relevant

for success in STEM fields, they should be most relevant

in fields that require spatial reasoning on a large scale.

The core of professional training in the GEO STEM dis-

ciplines (we use GEO to encompass the geography and

geoscience disciplines that focus on spatial patterns and

include geology, geography, geographic information sys-

tems, geophysics, oceanography and atmospheric sci-

ence, among others) is engagement in spatial encoding

and transformation on an environmental and geograph-

ical scale. Thus, GEO disciplines may rely on and hone

large-scale thinking, which may not be the case in STEM

fields like chemistry and physics or even engineering. So

far, the disproportionate focus on small-scale spatial

skills and their relation to general STEM learning ig-

nores the heterogeneity of both spatial skills as well as

that of STEM training.

A more nuanced approach motivated by findings from

neuroscience and psychology (Chatterjee, 2008) is to

categorize spatial skills based on the use of intrinsic/ex-

trinsic object information and static/dynamic movement

information, as illustrated in Fig. 1 (Newcombe, 2018;

Newcombe & Shipley, 2015; Uttal et al., 2013). Common

spatial measures used to test spatial skill in the la-

boratory exist in each of the four quadrants. For ex-

ample, the small-scale spatial skill of mental rotation

involves movement (dynamic) of a single object

(intrinsic), whereas the large-scale skill of navigation

frequently involves movement (dynamic) of oneself

with respect to a set of objects (extrinsic). Research

on skills in the extrinsic–dynamic cell at the bottom

right has been largely empty.

One of the main reasons for the gap in extrinsic–dy-

namic spatial research is the challenge associated with

conducting lengthy and standardized real-world naviga-

tion experiments (Choi, McKillop, Ward & L’Hirondelle,

Fig. 1 Categorization of spatial skills by intrinsic/extrinsic object information and static/dynamic movement information
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2006; Heth, Cornell & Alberts, 1997; Holscher, Tenbrink

& Wiener, 2011; Ishikawa & Montello, 2006; Schinazi,

Nardi, Newcombe, Shipley, & Epstein, 2013). Virtual

environment navigation paradigms overcome this

challenge. One paradigm—Virtual Silcton—has been used

with hundreds of participants of varying ages (Blacker,

Weisberg, Newcombe, & Courtney, 2017; Galati, Weisberg,

Newcombe, & Avraamides, 2017; Nazareth, Weisberg,

Margulis & Newcombe, 2018; Weisberg & Newcombe,

2016; Weisberg, Schinazi, Newcombe, Shipley, & Epstein,

2014). In Virtual Silcton, participants explore a virtual en-

vironment modeled along the lines of a college campus

comprising two main routes and two connecting routes.

Participants use computer arrow keys to navigate through

the virtual world and to learn the names and locations of

target buildings along the two main routes. Using this

methodological tool, participants exhibit large and robust

individual differences in their navigation skills. Both adults

and children can be categorized into three distinct naviga-

tor types: integrators, non-integrators and imprecise naviga-

tors. Integrators can connect different routes to create a

cognitive map of the environment; non-integrators can rep-

resent independent routes but are unable to relate them to

each other; and imprecise navigators have trouble even

representing independent routes. With this new tool, we

can now ask the question of whether large-scale spatial

skills contribute to STEM success.

In this article, we aim to address the gap in the spatial

and STEM literature by conducting two studies of GEO

disciplines to evaluate the relation between navigation

skills and experience with these kinds of science. In two

studies, we investigate individuals who differ in their

mode of learning and levels of domain expertise but

have visualization and manipulation of environmental

and geographical spaces at the core of their training.

There were two approaches, involving two designs with

two different disciplines at two different levels of expertise.

In Study 1, we investigated large-scale navigation skills in

experienced solid earth geologists—individuals who have

acquired a master’s or Ph.D. degree in geology accompan-

ied by field experience—in contrast with psychologists

with equivalent years of experience in that field. In Study

2, we examined self-selection and learning in undergradu-

ates taking a GIS course in contrast to those selecting a

nonspatial course.

Study 1
Geology is the study of observable large-scale environ-

mental features to deduce natural events that may have

occurred over a period of millions of years. Geologists

study physical processes that span large-scale spatial

relations of tectonic plates to more microscopic

phenomenon like the spatial organization of mineral

grains (Hegarty, Crookes, Dara-Abrams, & Shipley,

2010; Kastens, Agrawal, & Liben, 2008; Kastens et al.,

2009). Thus, one would expect that an experienced

geologist is comfortable making judgments pertaining to

spatial pattern detection and transformation associated

with geological events. However, do these domain-spe-

cific skills extend to spatial skills? Previous research has

established a connection between small-scale spatial

skills and geology training (Kali & Orion, 1996; Orion,

Ben-Chaim, & Kali, 1997; Piburn et al., 2005). In a re-

cent study, Hambrick et al. (2012) studied 67 geologists

with varying levels of experience who completed a realis-

tic bedrock-mapping task along with a battery of cogni-

tive ability tasks. The authors found that visuospatial

ability predicted performance on the bedrock-mapping

task for novice but not experienced geologists, suggest-

ing that high domain knowledge may sometimes allow

the circumvention of domain-general cognitive limita-

tions in domain-specific tasks.

In an initial study of large-scale spatial skills, Hegarty

et al. (2010) used an online questionnaire to collect

self-reports on spatial skills at different scales from 796

scientists and specialists in different disciplines. They

found that geoscientists (here, the term geoscientists re-

fers to specialists in geology, oceanography and meteor-

ology, but does not include geography or GIS) reported

the highest levels of navigational competence and confi-

dence as measured by the Santa Barbara Sense of Direc-

tion Scale (SBSOD). Geographers were a close second.

Other scientists reported lower skill levels. Although

self-reported navigation correlates with objective measures

of navigation behavior (e.g., Weisberg & Newcombe, 2016;

Weisberg et al., 2014), it is an indirect measure of ability

and it is important to determine whether geologists do in-

deed have better navigation skills.

In Study 1, we anticipated that our sample of experi-

enced geologists would point more accurately between

different points in the environment and be more likely

to be categorized as integrators, demonstrating higher

navigational competence as compared to experienced

psychologists. Thus, Study 1 addresses the gap in

spatial skills literature by directly linking large-scale

navigation skills to the GEO fields and taking the

claim beyond self-reporting.

Method
Participants

A total of 28 experienced geologists (12 female; mean (M)

age = 40.7 years, standard deviation (SD) = 9.7) were re-

cruited via email as well as in person at geology-centered

conferences with the goal of collecting as much data as

possible over a period of 1 year. The majority of geologists

(n = 20) held a Ph.D. at the time of participation in this

study. Data were also collected from geologists who had

completed a terminal master’s program (n = 5) and Ph.D.
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students nearing completion of their degree (n = 3). Geol-

ogists who had not completed a Ph.D. at the time of

this study performed as well as participants who had

completed a Ph.D., and, as such, their data were in-

cluded during analysis. All 28 geologists completed

the virtual environment navigation tasks. Eighteen ge-

ologists were also administered a psychometric meas-

ure, detailed in the following, and a questionnaire to

collect demographics, handedness, specific education

level, area of specialty and whether and how much

time they had in the field. Of the 18 geologists for

whom we have data, 17 identified as white and one

identified as mixed race.

For the expert comparison group, a total of 27

experienced psychologists (12 female; M age = 37

years, SD = 11.63) were recruited via email. The ma-

jority of psychologists (n = 19) held a Ph.D. at the

time of participation in this study. Data were also col-

lected from psychologists who had completed a

terminal master’s program (n = 4) and Ph.D. students

nearing completion of their degree (n = 4). All 27 psy-

chologists completed the virtual environment naviga-

tion tasks and were also administered a psychometric

measure, detailed in the following, and a question-

naire on demographics, handedness, specific education

level and area of specialty; however, data for one

psychologist was not recorded due to a computer

crash. Of the 26 psychologists who reported on racial in-

formation, 16 psychologists identified as white, six as

Asian, one as African-American and three as mixed race.

Our larger comparison group comprised 294 under-

graduate students (168 female, two did not report gender)

between the ages of 18 and 40 years from a large urban re-

search university who participated in one of four studies

which assessed them on Virtual Silcton performance.

These data were reported previously in two manuscripts

(Weisberg & Newcombe, 2016; Weisberg et al., 2014). In

those studies, undergraduates who did not complete the

second session of any study were excluded, but all under-

graduates for whom we have Virtual Silcton data are in-

cluded here. Age was not collected. One undergraduate

identified as American Indian, 26 as Asian, two as Black/

Hispanic, 37 as Black, six as Hispanic, 10 as White, 133 as

White/non-Hispanic, six as other, four omitted this infor-

mation and data were not collected for 69. Finally, we in-

cluded the 77 geoscientists tested by Hegarty et al. (2010)

for a comparison of self-reported SBSOD scores.

The current research received the university’s Institu-

tional Review Board approval (Protocol number 13394:

‘Computer-Based Spatial Abilities’).

Materials

Geologists who were recruited via email (N = 10) com-

pleted the study on their own personal computers. None

of these participants reported any technological issues.

Geologists who were recruited at conferences (N = 18)

and all other participants completed the study on a Win-

dows 10 64-bit computer. The computer had an Intel

Core i7-4720HQ CPU @ 2.60 GHz and Nvidia GeForce

GTX 960M video card. The virtual environment (VE)

was displayed on a 34.54 cm × 19.43 cm LCD monitor

with a refresh rate of 60 Hz and resolution of 1920 ×

1080. The VE was modeled on a real-world college cam-

pus (Schinazi et al., 2013; Weisberg et al., 2014) using

Unity3D and Google Sketchup. The VE was designed to

replicate the saliency and spatial location of buildings

and nonbuilding objects like trees, trashcans and so

forth, without replicating the exact architecture of the

real-world structures (Schinazi et al., 2013).

Virtual environment navigation paradigm (Virtual Silcton)

Virtual Silcton is a desktop-based virtual environment

(VE) navigation paradigm. It comprises two main routes

in different areas of the same VE and two connecting

routes (see Fig. 2). Each main route consists of four

unique target buildings for a total of eight target build-

ings. In the learning phase, participants were first

instructed to learn the names and locations of each of

the eight target buildings by virtually walking along each

main route indicated by red arrows. They were told to

pay attention to the front door of each building, as that

was the specific spot they would be asked to point at

later in the experiment. Target buildings in the VE were

indicated by a blue gem hovering near the name of the

target building. The two main routes were counterba-

lanced between participants. Participants walked from

the start of each route to the end and then back to the

start; thus, each route was completed twice before mov-

ing on to the next route. They were told not to veer off

the path marked by red arrows, but that they could take

as much time as they liked on each route. Each of the

routes was surrounded by invisible walls, which kept the

participant along the arrowed routes. Participants used

the arrow keys on a computer keyboard to move along

the virtual paths and a computer mouse to look 360o

around the VE. The experimenter encouraged partici-

pants to practice using the controls and to ask clarifica-

tion questions before beginning the task. After learning

the four target buildings on each main route, partici-

pants learned how the eight target buildings were related

by walking down two connecting routes.

Before starting the two connecting routes, participants

were told that these paths would “connect” or “go in be-

tween” the first two paths they had just learned. The ex-

perimenter noted that these connecting routes would

not include any new buildings for participants to re-

member, and that instead their role was to help partici-

pants understand how the buildings related to one
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another. Similar to the main routes, the connecting

routes were counterbalanced between participants (but

always occurred after the main routes were learned).

Participants were reminded to stay on the route marked

by red arrows and the invisible walls along the connecting

routes prevented participants from veering off-course.

In the testing phase, participants completed two

spatial tasks—a pointing task and a model-building

task—which tested the participant’s ability to create ac-

curate and integrated representations of the virtual en-

vironment. In addition to the two spatial tasks,

participants completed a cued building recognition task.

Pointing task

In the pointing task, participants were located next to

one of the eight target buildings and were prompted to

point in the direction of each of the other seven build-

ings using a virtual crosshair (see Fig. 3). Thus, three of

the seven buildings would be on the same route as that

of the participant in the VE and four buildings would be

on the second main route. Participants pointed a virtual

crosshair by rotating on the horizontal plane using the

mouse in the direction of the front door of the target

building and recorded their response by clicking. They

were instructed to point their crosshair, specifically, at

the front door of each building, and to be careful to only

click once to record their answer. This process was re-

peated for each of the eight buildings in the VE. A point-

ing error score for each participant was calculated based

on the absolute value of the participant’s answer minus

the correct answer. If that value exceeded 180, we cor-

rected it by subtracting the value from 360. Performance

on the pointing task was subdivided into a within-route

and a between-route pointing performance based on the

position of the target building in relation to the partici-

pant’s pointing location in the VE. A within-route error

score was calculated for trials in which the target build-

ing was on the same route as that of the participant. A

between-route error score was calculated for trials in

which the target building was on a different main route

to that of the participant. There were a total of 24

within-route trials and 32 between-route trials.

Model-building task

In the model-building task, participants were told that

they would construct a map of the virtual environ-

ment using a bird’s-eye view. Participants were shown

an aerial view of the eight buildings and their names

alongside a blank box on a computer screen. Partici-

pants had to drag and drop the miniature models of

the eight buildings into the blank box at spatial loca-

tions relative to each other in order to recreate a

Fig. 2 Aerial view map of Virtual Silcton showing the two main routes (solid lines A and B), the two connecting routes (dashed lines C and D)

and the layout of buildings on each route. The letter–number combinations are used to indicate the start and end points along each of the main

and connecting routes (i.e., participants walked from point 1 to point 2 and then back to point 1 for each of the main and connecting routes,

thus traversing each route twice). Participants had to learn the names and locations of four target buildings on each of the two main routes. The

presentation of the main routes were counterbalanced (A first or B first) and the presentation of the connecting routes were counterbalanced (C

first or D first)
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map-like representation of the virtual environment in

the blank box. A bidimensional regression analysis

(Friedman & Kohler, 2003; Tobler, 1994) was used to

calculate the R2 value for each participant. The R2

value corrects for rotational, translational and scale

differences between the participant map and the ac-

tual map, and indicates the remaining proportion of

variance in the participant’s map accounted for by the

actual map. It can be interpreted as configurational

accuracy.

Psychometric measures

The Santa Barbara Sense of Direction Scale (SBSOD;

Hegarty, Richardson, Montello, Lovelace, & Subbiah,

2002) is a self-report measure of one’s “sense of direc-

tion” or the ability to orient oneself within an environ-

ment. The measure consists of 15 items using a 7-point

Likert scale with statements such as “I very easily get

lost in a new city.”

Procedure

After consenting to participate, participants completed a

short demographic form to collect information such as

age, education level and area of expertise. Participants

then completed a computerized version of the SBSOD,

followed by the virtual environment navigation para-

digm. Participants were instructed to learn the names

and locations of the eight target buildings as they ex-

plored the two main routes and two connecting routes

in Virtual Silcton. Participants were then asked to

complete the pointing and model-building tasks. Finally,

participants were debriefed and thanked for their

participation. The entire study, from start to finish, took

approximately 45 min–1 h to complete.

Results
We first evaluated whether self-reported navigation skill

as measured by the SBSOD differed between psycholo-

gists and geologists in the current sample. We also

included the larger sample of 77 geoscientists (41 female;

M age = 34.98 years, SD = 11.96) tested by Hegarty et al.

(2010) and undergraduate students tested by Weisberg

et al. (2014, 2016). As hypothesized, one-way ANOVA

revealed significant differences across the four groups,

F(3,417) = 28.88, p < 0.001. A post-hoc test revealed

no significant differences in SBSOD scores between

the geologists in the current study (M = 5.12, SD = 1.06)

and geoscientists in the Hegarty et al. survey (M = 5.50,

SD = 0.86) (p = 0.18, d = 0.40, Bayes factor (B) = 1.04), sug-

gesting that the current sample is not likely to be different

from the discipline at large.

There was a significant difference in scores between

the psychologists (M = 4.65, SD = 1.18) and the geosci-

entists (p < 0.001, d = 0.82), but not between the psy-

chologists and the geologists (p = 0.08, d = 0.42). The

psychologists did not differ in scores from the under-

graduates (M = 4.35, SD = 0.99, p = 0.14, d = 0.28), but

the undergraduates’ scores were significantly lower

than the geologists (p < 0.001, d = 0.74) and the geo-

scientists (p < 0.001, d = 1.24). Thus, we largely

confirmed the self-reported findings of Hegarty et al.

(2010). However, do these differences in self-reports

of environmental spatial abilities extend to an object-

ive measure of navigation skill?

Fig. 3 Pointing task. Participants could rotate a virtual crosshair 360o along the horizontal plane to point in the direction of a target building
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Navigation performance in the virtual environment

There were significant group differences in the within-

route pointing task, F(2,345) = 4.10, p = 0.02, η
2 = 0.02.

Geologists (M = 16.9, SD = 10.0) significantly outper-

formed undergraduate students (M = 23.7, SD = 11.9)

(p = 0.004, d = 0.62). Psychologists and undergraduate

students did not differ (p = 0.82, d = 0.05). However,

there were no significant differences between geologists

and psychologists (M = 23.1, SD = 14.5) (p = 0.06, d =

0.50), although the d value is large.

There were also significant group differences in the

between-route pointing task, F(2,345) = 6.40, p= 0.002. Geol-

ogists (M= 35.7, SD= 19.3) significantly outperformed both

psychologists (M= 46.88, SD= 17.22) (p= 0.005, d= 0.61)

and undergraduate students (M= 45.7, SD= 13.7) (p= 0.001,

d= 0.60). Psychologists and undergraduate students did not

differ (d= 0.07).

Finally, there were significant group differences on

the model-building task, F(2,344) = 11.55, p < 0.001.

Geologists (M = 0.72, SD = 0.22) significantly outper-

formed both psychologists (M = 0.50, SD = 0.29) (p = 0.002,

d = 0.85) and undergraduate students (M = 0.47, SD = 0.26)

(p < 0.001, d = 1.04). Psychologists and undergraduate stu-

dents did not differ (d = 0.11).

Types of navigators

Previously we found that navigators clustered along two

dimensions—performance on within-route and between-

route pointing—into three groups (Weisberg & Newcombe,

2016; Weisberg et al., 2014). One group performed well on

both tasks (integrators), and another performed poorly on

both (imprecise navigators). A third group performed well

on within-route pointing but poorly on between-route

pointing (non-integrators). The ratio of navigators falling

into each of these groups was approximately 1:2:1 (integra-

tors:non-integrators:imprecise navigators).

Figure 4 displays the scatter plot resulting from plot-

ting the performance on between-route trials on the x

axis and the within-route pointing performance on the y

axis. As is visually apparent, more geologists are in the

lower left of the graph, proportionally, than psycholo-

gists and undergraduate students, relative to the

lower-right and upper-right quadrants. To address this

analytically, due to the small sample size of geologists, we

used the cutoff values from the undergraduate data to de-

termine the number of participants in each navigator group

(integrator:non-integrator:imprecise navigator). This re-

sulted in a significant cluster difference between geologists

(16:10:2), psychologists (9:9:8) and undergraduate students

(84:131:79), χ2 (4, N = 348) = 11.88, p = 0.02, Cramer’s V =

0.13. A post-hoc test—using adjusted residuals and a

Bonferroni correction for multiple comparisons be-

tween nine cells (three groups × three types of naviga-

tors)—showed that the number of geologists

categorized as integrators (p = 0.0019) was significantly

higher than integrators among psychologists and un-

dergraduates, respectively. No other cells were signifi-

cantly different from each other.

Fig. 4 Scatterplot of performance on between-route and within-route pointing trials grouped by geologists and non-STEM undergraduates.

Quadrants are based on cluster membership cutoff values—good between/good within (integrators), good between/bad within (non-integrators)

and bad between/bad within (imprecise navigators)—established in previous studies using Virtual Silcton (Weisberg & Newcombe, 2016;

Weisberg et al., 2014). STEM science, technology, engineering and mathematics
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Discussion
Study 1 broadens our understanding of the relation be-

tween spatial skills and STEM to an underinvestigated

kind of large-scale spatial reasoning, namely the extrin-

sic–dynamic spatial processes related to navigation. Our

results align with the findings of Hegarty et al. (2010) in

that geologists report significantly higher levels of navi-

gation skills as compared to psychologists who have

completed comparable years of study and experience in

the field and to non-STEM undergraduate students.

Using a virtual navigation paradigm, we found that geol-

ogists indeed exhibit higher navigational competence—

as measured by pointing and model-building tasks—as

compared to psychologists and non-STEM students.

Thus, geologists not only report higher levels of navigation

skills but also demonstrate superior navigation perform-

ance than their non-STEM counterparts, comparable in

years of professional training. The lack of significant dif-

ferences in navigation performance between psychologists

and non-STEM students further lends support to the hy-

pothesis that additional years of non-STEM education

alone do not suffice to improve large-scale spatial skills

substantially. Thus, our results provide evidence for the

link between large-scale navigation skills and training in

the GEO fields.

Such a link is not entirely surprising given the integral

nature of navigation in data collection for geology. Solid

earth data are often collected over a large field area

where one data collection location is not visible from an-

other. For a field-based project, most geology Ph.D. stu-

dents would collect data over an area greater than 100

km2 for their theses. Thus, GEO experts must coordin-

ate multiple extrinsic relationships—between the loca-

tion of the self and the map to record where data were

collected, among data points on the map, between the

spatial relations in a rock sample and regional spatial

patterns, and among locations in the field area to decide

where next to collect data (Shipley & Tikoff, in press).

Geologists, who are good at efficiently covering a map-

ping area, spending more time in the areas that provided

the highest quality information for discerning among

possible interpretations, tend to be more accurate in in-

ferring the underlying geological structure (Baker,

Johnson, Callahan, & Petcovic, 2016). Finally, there is

the practical advantage of being a good navigator in a

field that often requires working away from established

paths—good navigators are more likely to return quickly

and successfully to their vehicles at the end of the day.

One of the limitations of Study 1, however, is that it is

impossible to hypothesize about the domain expert’s

spatial competence prior to their domain training. Do

GEO experts get better at large-scale and/or small-scale

spatial tasks because of their training? Or do high-spatial

individuals self-select to specific STEM disciplines? Or

do both effects occur? To overcome this drawback as

well as to delineate the role of fieldwork in improving

spatial skills, we investigated novices in a related GEO

discipline requiring large-scale spatial reasoning and pat-

tern detection across space and time.

Study 2
In Study 2, we explored the links between self-selection

to a STEM field—Geographic Information Systems

(GIS)—and improvement in navigation skills after ex-

tended exposure to domain knowledge from that field.

GIS involves the use of an integrated toolbox of hard-

ware and software systems and processes designed to

allow an individual to store, retrieve, visualize and trans-

form spatial data. Over the last three decades, GIS appli-

cations have extended beyond the field of geography and

into various educational domains (Madsen & Rump,

2012) with the ultimate goal to enhance our ability to

address planning and management problems (National

Research Council, 2006). Not unlike the field of geology,

GIS entails large-scale spatial reasoning and transforma-

tions, albeit through a different medium of learning.

Where geology expertise often relies on fieldwork in the

real world, GIS training focuses on a technology-assisted

ability to store, visualize and manipulate digitized spatial

information. So, does a suite of spatial visualization and

analyses software at a figural scale demand high large-

scale spatial thinking and does domain-specific know-

ledge in this GEO field translate into better spatial skills,

specifically navigation skills?

Lee and Bednarz (2009) found that students enrolled

in a GIS course outperformed a control group on a

spatial test. In addition, GIS participants showed signifi-

cant improvement in spatial thinking during the semes-

ter. However, the questions on the spatial test created to

measure spatial thinking skill were closely related to the

GIS course work and as such may not have been reflect-

ive of domain-general large-scale and small-scale spatial

skills. Similarly, Hall-Wallace and McAuliffe (2002)

found a significant positive correlation between small-

scale spatial skills—measured by the surface develop-

ment and cubes comparison tasks—and GIS learning.

Although limited, there is a growing body of research

investigating the relation between spatial thinking skills

and GIS learning (e.g., Albert & Golledge, 1999; Baker &

Bednarz, 2003; Britz & Webb, 2016; Kim & Bednarz,

2013). However, research so far has been limited to

small-scale spatial thinking and to spatial tests closely

related to the GIS curriculum.

In Study 2, we compared large-scale and small-scale

spatial skills of novice GIS students with students en-

rolled in a nonspatial communications (COM) course at

the start (T1) and end (T2) of an academic semester. As

in Study 1, participants in Study 2 completed a virtual
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navigation paradigm in addition to mental rotation and

spatial working memory tasks. Spatial and nonspatial

skill at T1 was used as a baseline to examine improve-

ment over the course of a semester. We hypothesized

that: GIS students will have significantly better spatial

skills at T1 as compared to COM students; GIS students

will show greater improvement in spatial skills, specific-

ally in navigation skills, from T1 to T2 compared to

COM students; and mental rotation and spatial working

memory may mediate the relation between academic

course and spatial skills improvement.

Method
Participants

A total of 90 undergraduate students (55 female) agreed

to participate in the current study. Participants were re-

cruited from introductory GIS (n = 47; 26 female) and

communication (n = 43; 29 female) courses at Temple

University. GIS introductory courses at the university

where data were collected have an average class size of

12 students, and the goal was to collect as much data as

possible over a period of 2 years (two Fall and two

Spring semesters). Of the 90 participants who signed up

for the study, 70 participants completed both pre-test

(T1) and post-test (T2) components of the study. An

equal number of GIS and COM students dropped out at

T2. Age was not recorded but ranged between 18 and

25 years, which was an eligibility criterion for participa-

tion. Of those participants who chose to disclose their

racial and ethnic information, four participants identified

as American Indian, eight as Asian, seven as Black/Afri-

can American, two as more than one race, one as Native

Hawaiian, 31 as White and two as other race. The

current research received the university’s Institutional

Review Board approval (Protocol number 23379: ‘Ex-

ploring Links between STEM Success and Spatial Skills:

Undergraduate GIS Courses and a Spatial Turn of

Mind’). Participants received a $15 gift card on comple-

tion of T1 and an additional $20 gift card on completion

of T2.

Materials

The study was administered on a Windows 7 64-bit

computer. The computer had an Intel Core i5–6600

CPU @ 3.30 GHz and Nvidia GeForce GT 610 video

card. The virtual environment (VE) was displayed on a

40 cm × 62 cm LCD monitor with a refresh rate of 60

Hz and resolution of 1680 × 1050.

Virtual environment navigation paradigm (Virtual Silcton)

The virtual environment navigation paradigm in Study 2

was identical to that of Study 1. After exploring the VE,

participants completed the pointing task followed by the

model-building task. In addition to Virtual Silcton, par-

ticipants completed three psychometric and self-report

measures: a mental rotation test, a spatial working mem-

ory task and a verbal ability test.

Psychometric and self-report measures

The Mental Rotation Test (MRT; Vandenberg & Kuse,

1978, adapted by Peters et al., 1995) consists of 20 items

each made up of one target figure and four response

items. Two of the four response items are identical to

the target figure, but presented at varying orientations.

The remaining two items are mirror images of the target

figure in varying orientations. Participants were asked to

identify the two response items that were identical but

rotated images of the target figure. Before beginning the

task, participants were given three practice trials. If they

got any of the practice problems incorrect, they reviewed

their answers with the experimenter and found the right

one before moving on to the actual task. Participants re-

ceived 2 points for each correct response and lost 2

points for each incorrect response.

The Spatial Working Memory Complex Span (Sym-

metry span; Unsworth, Heitz, Schrock, & Engle, 2005)

was also used. For the spatial working memory

(SWM) task, participants had to remember the loca-

tion of one red square in a 4 × 4 matrix of otherwise

white squares. They then had to judge whether a sep-

arate array of black and white squares were bilaterally

symmetrical or not. After a series of between three

and five items (e.g., red square, symmetry judgment,

red square, symmetry judgment, etc.), participants

must recall the red square locations in the correct

order. Participants’ scores are calculated by summing

all correctly recalled items.

The Wide Range Achievement Test, Word Reading

Subtest (WRAT-4; Wilkinson & Robertson, 2006) is a

measure of verbal IQ that correlates very highly with the

WAIS-III and WISC-IV (Strauss, Sherman, & Spreen,

2006). The WRAT-4 Word Reading Subtest requires

participants to pronounce 55 individual words. Each par-

ticipant’s score is the number of words pronounced cor-

rectly out of 55.

The Philadelphia Verbal Ability Scale (PVAS;

Hegarty et al., 2010) is a self-report measure of how

good participants feel their verbal ability is. The

measure comprises 10 items using a 7-point Likert

scale (Cronbach’s α = 0.78) with statements like “I

am very good at scrabble.”

The Philadelphia Spatial Ability Scale (PSAS; Hegarty

et al., 2010) is a self-report measure of how well partici-

pants feel they can perform on common small-scale

spatial tasks. The measure comprises 16 items using a

7-point Likert scale (Cronbach’s α = 0.77) with state-

ments like “I enjoy putting together puzzles.”
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Procedure

All participants completed the pre test (T1) within the

first 3 weeks of the semester and completed the post test

(T2) during the last 3 weeks of the semester. We en-

sured that the number of weeks between the pre and

post tests stayed approximately constant across partici-

pants. During the pre test (T1), participants signed a

consent form informing them about the two-timepoint

study. Participants could opt out at any point during the

study. On consenting to participate, the investigator first

administered the WRAT. Participants then filled out a

short demographic form and completed the online ver-

sion of the mental rotation task. This was followed by

the virtual environment navigation paradigm. Partici-

pants were instructed to explore the two main routes

and two connecting routes in Virtual Silcton, and to

complete the pointing and model-building tasks. Finally,

participants completed an e-prime version of the SWM

measure. The entire study from start to finish took ap-

proximately 1 h per session and not more than 2.5 h for

both sessions.

Results
To evaluate our three hypotheses, we ran repeated-mea-

sures ANOVA followed by post-hoc tests to compare

baseline competency and improvement over time in the

navigation and mental rotation skills of GIS and COM

participants. We also ran mediation models to investi-

gate the role of mental rotation and spatial working

memory in improving navigation skills.

Prior to analysis, the data were evaluated for multivari-

ate outliers by examining leverage indices for each indi-

vidual (Jaccard & Wan, 1993). No outliers were

detected. Further, a Levene’s test for homogeneity of

variance demonstrated that the assumption of equal var-

iances was met (all p > 0.05). Our sample had missing

data (approximately 22% attrition; i.e., participants who

completed T1 but did not return for testing at T2). To

deal with the missing data, we ran a multiple imputation

analysis using SPSS v20 and followed the guidelines for

multiple imputation analysis specified in Jeličić, Phelps,

and Lerner (2009) (see also Rezvan, Lee, & Simpson,

2015, for a review). The MI analysis was conducted

using 23 imputations so as to exceed the percentage of

attrition that was found to be approximately 22%

(White, Royston, & Wood, 2011). All of the following

analyses were conducted using the imputed dataset and

all figures/tables present in the imputed dataset.

Baseline and improvement in navigation skills

Table 1 presents descriptive statistics for the spatial tasks

and psychometric measures grouped by participant

course. In order to test for baseline competency and im-

provement in spatial performance over time moderated

by participant course, we ran repeated-measures ANO-

VAs followed by post-hoc t tests. GIS and COM partici-

pants were comparable on nonspatial verbal ability as

measured by the WRAT, t(88) = 1.49, p = 0.14, d = 0.32,

and the PVAS, t(88) = 0.94, p = 0.35, d = 0.20. There were

also no significant differences between the groups on the

PSAS, t(88) = 1.64, p = 0.10, d = 0.35.

Within-route pointing error

There was a significant main effect of participant course,

F(1,88) = 11.53, p < 0.001, partial η
2 = 0.12, and time,

F(1,88) = 13.74, p < 0.001, partial η
2 = 0.14. However,

there was no significant interaction between time and

course, F(1,88) = 1.88, p = 0.17, partial η
2 = 0.02 (see

Fig. 5a). Thus, overall, GIS participants outperformed

COM participants on the within-route pointing trials

and there was significant improvement from T1 to T2

for both groups. However, there was no significant dif-

ference in the rates of improvement from T1 to T2. A t

test revealed that at baseline GIS participants were signifi-

cantly better than COM participants on the within-route

pointing task, t(88) = 2.17, p = 0.03, d = 0.46. This task was

further divided into seen and unseen within-route trials

based on the intervisibility of target buildings along a

route. The pattern of results is consistent with the overall

within-route pointing error, with no significant differences

between trials when the target was visible or not.

Between-route pointing error

There was a significant main effect of course, F(1,88) =

8.00, p < 0.01, partial η2 = 0.08, and time, F(1,88) = 12.05,

p < 0.001, partial η2 = 0.12. More importantly, there was

a significant interaction between time and course,

F(1,88) = 6.02, p = 0.02, partial η
2 = 0.06 (see Fig. 5b).

The significant interaction between time and course is

indicative of the differences in slopes (i.e., differences in

Table 1 Descriptive statistics by course for T1 and T2

GIS
Mean (SD)

COM
Mean (SD)

T1 T2 T1 T2

Within-route 20.27 (11.47) 15.16 (8.86) 26.04 (13.73) 23.69 (10.34)

Between-route 43.61 (11.71) 35.16 (15.13) 47.58 (16.00) 46.13 (14.44)

Model-building 0.5277 (0.29) 0.6393 (0.28) 0.4503 (0.27) 0.4487 (0.29)

MRT 34.13 (21.79) 42.53 (22.09) 22.76 (17.93) 23.46 (23.63)

SWM 28.57 (7.31) 30.90 (7.44) 22.98 (9.32) 26.57 (9.72)

WRAT 47.98 (4.32) – 46.26 (6.48) –

PSAS 4.90 (0.75) – 4.64 (0.75) –

PVAS 4.68 (0.86) – 4.49 (1.05) –

COM Communication, GIS Geographic Information Systems, MRT Mental

Rotation Test, PSAS Philadelphia Spatial Ability Scale, PVAS Philadelphia Verbal

Ability Scale, SD standard deviation, SWM Spatial Working Memory, T1 pre test

(start of academic semester), T2 post test (end of academic semester), WRAT

Wide Range Achievement Test
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rates of improvement from T1 to T2 in favor of GIS par-

ticipants). At baseline, GIS participants were not signifi-

cantly better than COM participants on the between-route

pointing task, t(88) = 1.35, p = 0.18, d = 0.26.

Model-building (R2 value)

There was a significant main effect of participant course,

F(1,88) = 13.08, p < 0.001, partial η
2 = 0.13, and time,

F(1,88) = 4.44, p = 0.04, partial η
2 = 0.05 (see Fig. 5c).

More importantly, there was a significant interaction be-

tween time and course, F(1,88) = 4.70, p = 0.03, partial

η
2 = 0.05 (see Fig. 5c). Similar to the between-route

pointing task, there were differences in rates of improve-

ment from T1 to T2 in favor of GIS participants. At

baseline, GIS participants were not significantly better

than COM participants on the model-building task,

t(88) = 1.31, p = 0.19, d = 0.28.

Mental rotation skill

There was a significant main effect of participant course,

F(1,88) = 15.47, p < 0.001, partial η
2 = 0.15, and time,

F(1,88) = 10.34, p = 0.002, partial η2 = 0.12. There was a

significant interaction between time and course,

F(1,88) = 7.42, p < 0.01, partial η
2 = 0.08 (see Fig. 5d).

Similar to the between-route and model-building perfor-

mances, we found differences in rates of improvement

from T1 to T2 in favor of GIS participants. At baseline,

GIS participants were significantly better than COM

participants on the MRT, t(88) = 2.69, p = 0.01, d = 0.57.

Spatial working memory

There was a significant main effect of participant course,

F(1,88) = 10.49, p = 0.002, partial η
2 = 0.12, and time,

F(1,88) = 30.88, p < 0.001, partial η2 = 0.26, but no signifi-

cant interaction between time and course, F(1,88) = 1.40,

p = 0.24, partial η2 = 0.02. Thus, overall, GIS participants

outperformed COM participants on SWM and there

was significant improvement from T1 to T2 for both

groups. However, there was no significant difference in

the rates of improvement from T1 to T2. At baseline,

GIS participants were significantly better than COM

participants on the SWM task, t(88) = 3.18, p < 0.001,

d = 0.67.

These analyses were also run using listwise deletion in-

stead of multiple imputations. All results stayed the

same except in the case of model-building performance.

Fig. 5 Change in large-scale navigation and small-scale mental rotation tasks, grouped by participant course. a Within-route pointing error. b

Between-route pointing error. c Model-building (R2 value). d Mental rotation skill. Overall, GIS participants significantly outperformed COM

participants and there was significant improvement in both groups from T1 to T2. In addition, GIS participants improved at a faster rate than

COM participants on all measures except the within-route pointing task. Error bars reflect ±1 standard error of the mean. COM Communication,

GIS Geographic Information Systems, T1 pre test (start of academic semester), T2 post test (end of academic semester). For within- and between-

pointing errors, a low value (error) indicates high accuracy
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There was no significant main effect of time or time ×

course interaction. However, listwise deletion is a less

optimal strategy for dealing with missing data in a longi-

tudinal design and can reduce statistical power with

small sample sizes (Acock, 2005). Hence, we used results

of the multiple imputations to interpret our findings.

The presented analyses were also run controlling for

verbal ability as measured by the WRAT. There were no

changes in our findings; we do not present these add-

itional analyses for the sake of brevity.

Types of navigators

Figure 6 is a quiver (velocity) plot of participant per-

formance along two dimensions: performance on within-

route and between-route pointing. The arrow length and

direction represent the scaled magnitude of change and

the direction of change in pointing performance from

T1 to T2 (down and to the left represent improvement).

As is visually apparent, on average GIS participants (blue

arrow) showed more improvement than COM partici-

pants (yellow arrow). To test this pattern statistically, we

ran a constrained cluster analysis (number of clusters =

3), similar to that conducted in Study 1 and in previous

studies (Weisberg & Newcombe, 2016; Weisberg et al.,

2014). At T1, there was no significant relation between

cluster-membership (integrators:non-integrators:impre-

cise navigators) between GIS (11:26:10) and COM

(10:15:18) participants, χ
2(2, N = 90) = 5.12, p = 0.08,

Cramer’s V = 0.24. At T2, a chi-square analysis found a

significant difference in cluster membership between

GIS (15:25:7) and COM (7:19:17) participants, χ2(2, N =

90) = 7.73, p = 0.02, Cramer’s V = 0.29. GIS participants

were more likely to be integrators and COM participants

were more likely to be imprecise navigators. Overall, 60

participants (GIS = 33, COM= 27) recorded no change

in cluster membership from T1 to T2, 17 participants

(GIS = 10, COM = 7) demonstrated a positive change

(i.e., they moved into a better navigator category from

T1 to T2) and 13 participants (GIS = 4, COM= 9) re-

corded a negative change (i.e., they moved into a lower

navigator category from T1 to T2). However, there was

no significant difference in change in cluster member-

ship between the two groups, χ2(2, N = 90) = 2.88, p =

0.24, Cramer’s V = 0.18.

Role of mental rotation and spatial working memory in

navigation skills

We found significant differences in mental rotation and

spatial working memory between GIS and COM partici-

pants, which were parallel to differences on the naviga-

tion tasks. Hence, mental rotation and spatial working

memory at T1 were assessed as potential mediators in-

fluencing the relation between course and navigation

performance at T2, controlling for baseline performance

at T1. However, neither MRT nor SWM were found to

mediate the relation between course and pointing

Fig. 6 Quiver plot of performance on between-route and within-route pointing trials at T1 and T2 grouped by participant course. Arrows depict

the magnitude (scaled) and direction of change in performance from T1 to T2. AVG average, COM Communication, GIS Geographic Information

Systems, T1 pre test (start of academic semester), T2 post test (end of academic semester)
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performance at T2, controlling for baseline pointing per-

formance. The strength of the direct effect of course on

within-route pointing was b = 5.72, t(87) = 3.74, p < 0.001,

and the bootstrapped indirect effect of course on within--

route pointing was b = 0.06 (standard error (SE) =

0.34, [−0.60, 0.84]) for MRT as a potential mediator

and b = 0.20 (SE = 0.48, [− 0.71, 1.26]) for SWM as a

potential mediator. The strength of the direct effect of

course on between-route pointing was b = 8.69, t(87) =

3.33, p = 0.001, and the bootstrapped indirect effect of

course on between-route pointing was b = 0.73 (SE = 0.82,

[− 0.50, 2.63]) for MRT as a potential mediator and

b = 0.12 (SE = 0.88, [− 1.48, 2.05]) for SWM as a po-

tential mediator. Similarly, MRT and SWM did not

significantly mediate the relation between course and

model-building performance at T2, controlling for

baseline model-building performance. The strength

of the direct effect of course on model-building was

b = − 0.16, t(87) = − 3.62, p < 0.001, and the boot-

strapped indirect effect of course on model-building

was b = − 0.02 (SE = 0.01, [− 0.05, 0.001]) for MRT as

a potential mediator and b = − 0.02 (SE = 0.02, [−

0.06, 0.004]) for SWM as a potential mediator. Thus,

the differences in navigation performance are attrib-

utable to improvements on navigation-specific pro-

cesses, and not small-scale spatial skill or spatial

working memory.

Sex differences in spatial, nonspatial and psychometric

measures

Although the current study was not designed specifically

to examine sex differences, we ran repeated-measures

analyses to examine whether improvement in spatial,

nonspatial and psychometric measures were moderated

by sex. Table 2 presents descriptive statistics for spatial,

nonspatial and psychometric performance at T1 and T2,

grouped by participant sex. For within-route pointing

performance, there were no significant effects of

participant sex, F(1,87) =2.78, p = 0.10, partial η2 = 0.03,

time, F(1,87) = 3.17, p = 0.08, partial η2 = 0.04, or inter-

action between time and sex, F(1,87) = 0.07, p = 0.81,

partial η2 = 0.00. Similarly, for between-route pointing

performance, there were no significant effects of par-

ticipant sex, F(1,87) = 3.83, p = 0.06, partial η
2 = 0.04,

time, F(1,87) = 0.58, p = 0.46, partial η2 = 0.01, or inter-

action between time and sex, F(1,87) = 0.36, p = 0.58,

partial η
2 = 0.00. For model-building performance,

there were no significant effects of participant sex,

F(1,87) = 2.46, p = 0.16, partial η
2 = 0.03, time,

F(1,87) = 1.18, p = 0.39, partial η2 = 0.01, or interaction

between time and sex, F(1,87) = 0.77, p = 0.51, partial

η
2 = 0.01. In addition, we checked for sex differences

in navigator type using a chi-square test of independ-

ence. There was no significant relation between

participant sex and cluster membership at T1, χ
2(4,

N = 90) = 8.07, p = 0.09, or at T2, χ
2(4, N = 90) = 7.15,

p = 0.13. Thus, males and females were equally likely

to be represented in each of the navigator clusters at

T1 and T2.

However, for mental rotation skill, there was a signifi-

cant main effect of participant sex, F(1,87) = 4.55, p < 0.05,

partial η2 = 0.05, in favor of male participants. There was

no significant main effect of time, F(1,87) = 0.53, p = 0.63,

partial η2 = 0.01, and no interaction between time and par-

ticipant sex, F(1,87) = 1.37, p = 0.39, partial η
2 = 0.02.

Thus, male participants outperformed female participants

on the MRT irrespective of time. However, there were no

significant differences in rates of improvement in males

and females from T1 to T2. For SWM, there was no sig-

nificant effect of participant sex, F(1,87) =1.22, p = 0.30,

partial η
2 = 0.01, time, F(1,87) = 0.73, p = 0.50, partial

η
2 = 0.01, or the interaction between time and sex,

F(1,87) = 0.77, p = 0.55, partial η2 = 0.01.

Finally, we examined the interaction of all three

variables: time, course and participant sex. For the

within-route pointing task, there was a significant

Table 2 Descriptive statistics by participant sex for T1 and T2

Male
Mean (SD)

Female
Mean (SD)

T1 T2 T1 T2

Within-route 20.16 (11.83) 16.36 (9.91) 24.85 (13.25) 21.06 (10.41)

Between-route 42.25 (15.24) 36.17 (15.71) 47.58 (12.84) 43.09 (15.34)

Model-building 0.5582 (0.2780) 0.5855 (0.3195) 0.4478 (0.2774) 0.5246 (0.2911)

MRT 35.89 (22.49) 38.47 (26.40) 24.12 (18.30) 30.20 (23.77)

SWM 27.08 (7.93) 30.38 (8.84) 25.15 (9.23) 27.84 (9.11)

WRAT 48.29 (4.97) – 46.44 (5.73) –

PSAS 4.74 (0.76) – 4.80 (0.76) –

PVAS 4.66 (0.92) – 4.55 (0.98) –

MRT Mental Rotation Test, PSAS Philadelphia Spatial Ability Scale, PVAS Philadelphia Verbal Ability Scale, SD standard deviation, SWM Spatial Working Memory, T1

pre test (start of academic semester), T2 post test (end of academic semester), WRAT Wide Range Achievement Test
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interaction, F(1,85) = 0.4.59, p = 0.04, partial η
2 = 0.05.

There was no significant interaction for the

between-route pointing, model-building, MRT and

spatial working memory tasks.

Discussion
Study 2 addresses the bidirectional relation between

GEO training and spatial thinking skills. We had three

main hypotheses in Study 2. First, we hypothesized that

GIS students will have significantly better spatial skills at

baseline as compared to COM students. Our results in-

dicate that some (but not all) baseline spatial skills of

GIS students are better than those of COM participants.

Thus, high-spatial individuals may be self-selecting to

the high-spatial GIS discipline. However, differences in

spatial skills were limited to the large-scale within-route

pointing task and the small-scale mental rotation task.

At baseline, GIS participants are not significantly better

than COM participants at between-route pointing,

which involves integrating the different routes in the VE,

or at creating a map of the environment in the model-

building task. One explanation for this could be that our

sample size for the two groups was too small to detect

significant differences for small to medium effect sizes

for these variables (d < 0.3, Cramer’s V = 0.24). However,

it is possible that students enrolling in the high-spatial

GIS course may have some relevant spatial skills but that

this advantage is non-existent or weak for exactly those

kinds of abilities supported by thinking about spatial dis-

tributions and integrating them.

Second, we hypothesized that GIS students will show

greater improvement in spatial skills, specifically in navi-

gation skills from T1 to T2 as compared to COM stu-

dents. As hypothesized, GIS students recorded a

significantly faster rate of improvement from T1 to T2

in the between-route pointing and model-building tasks

compared to COM students. In addition, GIS students

showed a significantly faster rate of improvement in

small-scale mental rotation skills as compared to COM

students. Interestingly, spatial working memory im-

proved for both GIS and COM students from T1 to T2

but there were no significant differences in the rates of

improvement. These gains may reflect retesting effects.

Taken together, our findings not only suggest the pre-

dictive role of spatial skills in self-selection to the

high-spatial GIS courses but support GIS as a potential

tool for improving spatial skills. It is important to note

here that results of the listwise deletion approach to

missing data suggest that model-building performance

should be interpreted with some caution.

Finally, we hypothesized that mental rotation and

spatial working memory might mediate the relation be-

tween academic course and improvement in spatial

skills. However, our data did not support those ideas;

baseline small-scale mental rotation skills did not mediate

the relation between academic course and improvement

in large-scale navigational proficiency. This finding sup-

ports the dissociation between small-scale object-based

and large-scale environmental space transformations

(Hegarty, Montello, Richardson, Ishikawa, & Lovelace,

2006; Hegarty & Waller, 2004; Newcombe & Shipley,

2015). Perspective-taking skills seem to play a more im-

portant role than mental rotation skills in predicting navi-

gational performance in the VE (Nazareth, Weisberg,

Margulis, & Newcombe, in press; Schinazi et al., 2013)

and should be investigated in research on GIS in the fu-

ture. It is more surprising that baseline spatial working

memory was not found to mediate the relation between

academic course and improvement in large-scale naviga-

tional proficiency, because previous research has found

both verbal and spatial working memories to correlate

with navigation performance (Weisberg & Newcombe,

2016).

Why did GIS seem to improve mental rotation? Argu-

ably, GIS technology engages small-scale spatial manipu-

lations on a computer screen, which would explain

improvements in small-scale mental rotation skill over

the course of a semester. For example, an introductory

GIS course may require a student to solve a social or

management issue by creating a graphical representa-

tion, using computer software (e.g., create a map using

geographic information) and analyzing spatial patterns.

In contrast, the introductory communication course for

the control group may involve discussions on, but not

graphical visualizations of, social and strategic communi-

cation issues.

What about the GIS curriculum aids in the develop-

ment of large-scale navigation skills? One explanation is

that when GIS tools are used appropriately in the class-

room, the technology improves the quality of learning

by immersing a student in spatial analysis and making

all geographic assumptions explicit through graphical vi-

sualizations (Meyer, Butterick, Olkin, & Zack, 1999).

Interactive pattern learning coupled with the visual com-

ponent of GIS facilitates the understanding of the under-

lying geographic and spatial principles, and consequently

can help in the development of spatial reasoning skills

(Goodchild, 1993). In a way, GIS tools reduce the ambi-

guity associated with abstractions in scale, projections,

geometry and topology (Bednarz & Ludwig, 1997; Self,

Gopal, Golledge, & Fenstermaker, 1992). Even introduc-

tory GIS courses—like those in the current study—in-

clude large components of extrinsic–dynamic types of

spatial relations and application and require students to

develop GIS-based solutions to geographic (large-scale)

modeling tasks. A focus on mapping principles, map

overlays and cartography may further help develop

perspective-taking skills, which consequently improves
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large-scale navigation proficiency. Of course, variations

in the content and style of teaching GIS software at the

university level could greatly influence improvement in

large-scale navigation.

Conclusion
Spatial skills appear to be at the core of several scientific

disciplines. However, there may be differences in the

amount and type of spatial demands in the STEM fields.

For example, physicists and geographers study phenom-

ena that occur at different scales. There is growing evi-

dence for dissociations between small-scale object-based

spatial skills like mental rotation and large-scale

perspective-taking and navigation skills through behav-

ioral (Hegarty et al., 2010) and functional magnetic res-

onance imaging (Lambrey, Doeller, Berthoz, & Burgess,

2012) findings, allowing us to identify gaps in the litera-

ture linking spatial thinking to enrollment and success

in the different STEM fields. One such gap is the study

of large-scale navigation skills and its relation to training

and expertise in the GEO fields. Existing literature fo-

cuses almost exclusively on small-scale spatial skills and

therefore little is known about large-scale spatial skills

like navigation, which may be particularly important for

the GEO fields. The current study provides evidence for

the link between large-scale navigational competence

and geology training. In Study 1 we found that geologists

not only report higher self-ratings but also demonstrate

higher navigational competence in a VE than non-STEM

undergraduates.

Spatial skills are malleable, and gains through spatial

training are durable and transfer to other skills (Uttal et

al., 2013). Thus, early improvement in large-scale and

small-scale spatial skills may be one route toward in-

creasing the STEM workforce overall, and addressing a

potential factor responsible for the underrepresentation

of women in STEM. However, we lack a sustainable

spatial training model that can be integrated into class-

rooms with minimum disruption in existing school and

university curricula; achieving this goal requires the as-

sessment of spatial training tools and interventions that

impact the relation between STEM and spatial skills.

GIS software and courses present a viable spatial train-

ing tool that can be integrated into existing school and

university curricula. The effective use of GIS to promote

spatial thinking depends on our ability to understand

the technology, its benefits and shortcomings and its re-

lation to specific spatial skills. Although the relation be-

tween the field of geography and the development of a

“spatial turn of mind” has received some attention (e.g.,

Albert & Golledge, 1999; Goodchild & Janelle, 2010;

Oldakowski, 2001), particularly with regard to cartog-

raphy or map-reading, there is a lack of research exam-

ining how the use of GIS tools may enhance spatial

thinking skills (Britz & Webb, 2016). From a cognitive

perspective, the lack of systematic empirical research

examining the effectiveness of GIS training in improving

spatial thinking makes it difficult to identify how spatial

skills are impacted by new spatial visualization software.

We are already beginning to see the benefits of geospa-

tial curriculum at the school level on small-scale spatial

thinking (Jant, Uttal, & Kolvoord, 2014). The current

article extends the literature on the benefits of GIS train-

ing to large-scale navigational skills at the university

level. In Study 2, we found that novice GIS students

show higher baseline mental rotation skills and, to some

extent, navigational skills. However, over the course of

an academic semester, GIS students improve at a faster

rate than non-STEM undergraduates in both large-scale

and small-scale spatial skills.

In conclusion, the current study broadens our under-

standing of the relation between spatial skills and STEM

fields to a hitherto underinvestigated type of spatial rea-

soning—navigation skills. Logically, large-scale spatial

skills involved in navigation should be related to STEM

fields like the GEO disciplines that involve encoding and

transformation of geographical and environmental space,

and the current study empirically supports the bidirec-

tional nature of this linkage.

Limitations

In Study 1, we were limited by the amount of testing

time available with expert geologists and psychologists.

As a result, we were unable to administer many

small-scale and large-scale assessments. Geologists may

not only be better on large-scale navigation skills but may

also have superior mental rotation and perspective-taking

skills, which mediate the relation between discipline and

navigation performance. In the absence of these data, we

were unable to test more complex statistical models of dif-

ference in spatial skills between the experimental and

comparison groups. Secondly, the convenience afforded

by a virtual navigation paradigm comes at the cost of im-

portant proprioceptive and vestibular cues and a limited

field of view (FOV), which are important for navigation

(Maguire, Burgess & O’Keefe, 1999; Richardson, Montello

and Hegarty, 1999). Arguably, GIS students may simply

have more experience using virtual interfaces, and in the

absence of this advantage may not demonstrate better

navigation skills as compared to communication students

in a real-world environment. Finally, we only used one

measure of spatial working memory (i.e., Symmetry span)

and hence findings pertaining to working memory should

be interpreted with caution.

Abbreviations

COM: Communication; FOV: Field of view; GEO: Geography and Geoscience;

GIS: Geographic Information Systems; MRT : Mental Rotation Test;

PSAS: Philadelphia Spatial Ability Scale; PVAS: Philadelphia Verbal Ability

Nazareth et al. Cognitive Research: Principles and Implications            (2019) 4:17 Page 15 of 17



Scale; SBSOD: Santa Barbara Sense of Direction Scale; STEM: Science,

technology, engineering and mathematics; SWM : Spatial working memory;

T1: Pre test (start of academic semester); T2: Post test (end of academic

semester); VE: Virtual environment; WRAT : Wide Range Achievement Test

Acknowledgments

Prior work on the development of the Silcton virtual environment paradigm

and the current manuscript preparation were supported by NSF Science of

Learning Collaborative Network (grant 1640800), NSF National Robotics

Initiative (grant 1734365) and NSF Education and Human Resources Core

(grant 1660996). The authors have no competing interests in the current

manuscript.

Funding

Data collection for this project was funded by NSF Spatial Intelligence and

Learning Center (grant SBE-1041707). Data collection, analysis and manu-

script preparation was supported by NSF Science of Learning Collaborative

Network (grant 1640800), NSF National Robotics Initiative (grant 1734365)

and NSF Education and Human Resources Core (grant 1660996).

Availability of data and materials

The datasets used and/or analyzed during the current study are available

from the corresponding author on reasonable request.

Authors’ contributions

AN, NSN, TFS and SMW made substantial contributions to conception and

design, analysis and interpretation of data. AN and MV made substantial

contributions to acquisition of data. AN drafted the manuscript and all

authors were involved in revising it critically for important intellectual

content. All authors take public responsibility for the accuracy and integrity

of the current version of the manuscript. All authors read and approved the

final manuscript.

Ethics approval and consent to participate

Study 1 has received Temple University’s Institutional Review Board approval

(Protocol number 13394: ‘Computer-Based Spatial Abilities’). Study 2 has

received Temple University’s Institutional Review Board approval (Protocol

number 23379: ‘Exploring Links between STEM Success and Spatial Skills:

Undergraduate GIS Courses and a Spatial Turn of Mind’).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. 2Center

for Cognitive Neuroscience, University of Pennsylvania, Philadelphia, PA

19104, USA.

Received: 12 December 2018 Accepted: 25 April 2019

References

Acock, A. C. (2005). Working with missing values. Journal of Marriage and Family,

67(4), 1012–1028.

Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: a synthesis and

taxonomy. Brain, 122(9), 1613–1628. https://doi.org/10.1093/brain/122.9.1613.

Albert, W. S., & Golledge, R. G. (1999). The use of spatial cognitive abilities in

geographical information systems: the map overlay operation. Transactions in

GIS, 3(1), 7–21. https://doi.org/10.1111/1467-9671.00003.

Baker, K. M., Johnson, A. C., Callahan, C. N., & Petcovic, H. L. (2016). Use of

cartographic images by expert and novice field geologists in planning

fieldwork routes. Cartography and Geographic Information Science, 43(2), 176–

187. https://doi.org/10.1080/15230406.2015.1072735.

Baker, T. R., & Bednarz, S. W. (2003). Lessons learned from reviewing research in

GIS. Journal of Geography, 102, 231–233.

Bednarz, S. W., & Ludwig, G. (1997). Ten things higher education needs to know

about GIS in primary and secondary education. Transactions in GIS, 2(2), 123–

133. https://doi.org/10.1111/j.1467-9671.1997.tb00020.x.

Blacker, K. J., Weisberg, S. M., Newcombe, N. S., & Courtney, S. M. (2017). Keeping

track of where we are: spatial working memory in navigation. Visual

Cognition, 25(7–8), 691–702. https://doi.org/10.1080/13506285.2017.1322652.

Britz, H. W., & Webb, P. (2016). The effect of an intervention using GIS-generated

geo-spatial data on the promotion of spatial cognition and spatial

perspective taking in grade 11 learners. South African Geographical Journal,

98(1), 182–193. https://doi.org/10.1080/03736245.2014.977815.

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies.

Cambridge: Cambridge University Press.

Chatterjee, A. (2008). The neural organization of spatial thought and language.

Seminars in Speech and Language, 29(03), 226–238. https://doi.org/10.1055/s-

0028-1082886.

Choi, J., McKillop, E., Ward, M., & L’Hirondelle, N. (2006). Sex-specific relationships

between route-learning strategies and abilities in a large-scale environment.

Environment and Behavior, 38(6):791–801. https://doi.org/10.1177/

0013916506287004

Eliot, J. (1987). Models of psychological space. New York: Spriger-Verlag.

Friedman, A., & Kohler, B. (2003). Bidimensional regression: assessing the

configural similarity and accuracy of cognitive maps and other two-

dimensional data sets. Psychological Methods, 8(4), 468–491. https://doi.org/

10.1037/1082-989X.8.4.468.

Galati, A., Weisberg, S. M., Newcombe, N. S., & Avraamides, M. N. (2017). When

gestures show us the way: co-thought gestures selectively facilitate

navigation and spatial memory. Spatial Cognition & Computation, 18(1), 1–30.

https://doi.org/10.1080/13875868.2017.1332064.

Goodchild, M. F. (1993). Ten years ahead: Dobson’s automated geography in

1993. The Professional Geographer, 45(4), 444–446. https://doi.org/10.1111/j.

0033-0124.1993.00444.x.

Goodchild, M. F., & Janelle, D. G. (2010). Toward critical spatial thinking in the

social sciences and humanities. GeoJournal, 75(1), 3–13. https://doi.org/10.

1007/s10708-010-9340-3.

Hall-Wallace, M. K., & McAuliffe, C. M. (2002). Design, implementation, and

evaluation of GIS-based learning materials in an introductory geosciences.

Journal of Geoscience Education, 50(1), 5–14.

Hambrick, D. Z., Libarkin, J. C., Petcovic, H. L., Baker, K. M., Elkins, J., Callahan, C., &

Ladue, N. D. (2012). A test of the circumvention-of-limits hypothesis in

geological bedrock mapping. Journal of Experimental Psychology: General,

141(3), 397–403. https://doi.org/10.1037/a0025927.

Hegarty, M., Crookes, R. D., Dara-Abrams, D., & Shipley, T. F. (2010). Do all science

disciplines rely on spatial abilities? Preliminary evidence from self-report

questionnaires. In C. Hölscher, T. F. Shipley, M. O. Belardinelli, J. A. Bateman, &

N. S. Newcombe (Eds.), Spatial cognition VII. LNAI 6222, (pp. 85–94). Berlin:

Springer. https://doi.org/10.1007/978-3-642-14749-4_10.

Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006).

Spatial abilities at different scales: individual differences in aptitude-test

performance and spatial-layout learning. Intelligence, 34(2), 151–176. https://

doi.org/10.1016/j.intell.2005.09.005.

Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002).

Development of a self-report measure of environmental spatial ability.

Intelligence, 30(5), 425–447. https://doi.org/10.1016/s0160-2896(02)00116-2.

Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and

perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/

10.1016/j.intell.2003.12.001.

Heth, C. D., Cornell, E. H., & Alberts, D. M. (1997). Differential use of landmarks by 8-and

12-year-old children during route reversal navigation. Journal of Environmental

Psychology, 17(3):199–213. https://doi.org/10.1006/jevp.1997.0057

Hölscher, C., Tenbrink, T., & Wiener, J. M. (2011). Would you follow your own

route description? Cognitive strategies in urban route planning. Cognition

121(2):228–247. https://doi.org/10.1016/j.cognition.2011.06.005

Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct

experience in the environment: individual differences in the development of

metric knowledge and the integration of separately learned places. Cognitive

Psychology, 52(2), 93–129. https://doi.org/10.1016/j.cogpsych.2005.08.003.

Jaccard, J., & Wan, C. K. (1993). Statistical analysis of temporal data with many

observations: Issues for behavioral medicine data. Annals of

BehavioralMedicine, 15(1), 41–50. https://doi.org/10.1093/abm/15.1.41

Nazareth et al. Cognitive Research: Principles and Implications            (2019) 4:17 Page 16 of 17

https://doi.org/10.1093/brain/122.9.1613
https://doi.org/10.1111/1467-9671.00003
https://doi.org/10.1080/15230406.2015.1072735
https://doi.org/10.1111/j.1467-9671.1997.tb00020.x
https://doi.org/10.1080/13506285.2017.1322652
https://doi.org/10.1080/03736245.2014.977815
https://doi.org/10.1055/s-0028-1082886
https://doi.org/10.1055/s-0028-1082886
https://doi.org/10.1177/0013916506287004
https://doi.org/10.1177/0013916506287004
https://doi.org/10.1037/1082-989X.8.4.468
https://doi.org/10.1037/1082-989X.8.4.468
https://doi.org/10.1080/13875868.2017.1332064
https://doi.org/10.1111/j.0033-0124.1993.00444.x
https://doi.org/10.1111/j.0033-0124.1993.00444.x
https://doi.org/10.1007/s10708-010-9340-3
https://doi.org/10.1007/s10708-010-9340-3
https://doi.org/10.1037/a0025927
https://doi.org/10.1007/978-3-642-14749-4_10
https://doi.org/10.1016/j.intell.2005.09.005
https://doi.org/10.1016/j.intell.2005.09.005
https://doi.org/10.1016/s0160-2896(02)00116-2
https://doi.org/10.1016/j.intell.2003.12.001
https://doi.org/10.1016/j.intell.2003.12.001
https://doi.org/10.1006/jevp.1997.0057
https://doi.org/10.1016/j.cognition.2011.06.005
https://doi.org/10.1016/j.cogpsych.2005.08.003
https://doi.org/10.1093/abm/15.1.41


Jant, E. A., Uttal, D. H., & Kolvoord, R. (2014). Spatially enriched curriculum

improves students’ critical thinking and spatial reasoning. In Spatial Cognition

2014: Poster Presentations, (p. 52).

Jeličić, H., Phelps, E., & Lerner, R. M. (2009). Use of missing data methods in

longitudinal studies: the persistence of bad practices in developmental

psychology. Developmental Psychology, 45(4), 1195–1199. https://doi.org/10.

1037/a0015665.

Kali, Y., & Orion, N. (1996). Spatial abilities of high-school students in the

perception of geologic structures. Journal of Research in Science Teaching,

33(4), 369–391. https://doi.org/10.1002/(SICI)1098-2736(199604)33:4<369::AID-

TEA2>3.0.CO;2-Q.

Kastens, K. A., Agrawal, S., & Liben, L. S. (2008). Research in science education: the

role of gestures in geoscience teaching and learning. Journal of Geoscience

Education, 54, 262–268.

Kastens, K. A., Manduca, C. A., Cervato, C., Frodeman, R., Goodwin, C., Liben, L. S.,

… Titus, S. (2009). How geoscientists think and learn. EOS Transactions

American Geophysical Union, 90, 265–272.

Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and

technical innovation: spatial ability’s unique role. Psychological Science, 24(9),

1831–1836. https://doi.org/10.1177/0956797613478615.

Kim, M., & Bednarz, R. (2013). Effects of a GIS Course on Self-Assessment of Spatial

Habits of Mind (SHOM). Journal of Geography, 112(4), 165–177. https://doi.

org/10.1080/00221341.2012.684356.

Lambrey, S., Doeller, C., Berthoz, A., & Burgess, N. (2012). Imagining being

somewhere else: neural basis of changing perspective in space. Cerebral

Cortex, 22(1), 166–174. https://doi.org/10.1093/cercor/bhr101.

Lee, J., & Bednarz, R. (2009). Effect of GIS learning on spatial thinking. Journal of

Geography in Higher Education, 33(2), 183–198.

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex

differences in spatial ability: a meta-analysis. Child Development, 56(6), 1479–

1498. https://doi.org/10.1111/j.1467-8624.1985.tb00213.x.

Madsen, L. M., & Rump, C. (2012). Considerations of how to study learning

processes when students use GIS as an instrument for developing spatial

thinking skills. Journal of Geography in Higher Education, 36(1), 97–116.

https://doi.org/10.1080/03098265.2011.576336.

Maguire, E. A., Burgess, N., & O’Keefe, J. (1999). Human spatial navigation:

cognitive maps, sexual dimorphism, and neural substrates. Current opinion in

neurobiology, 9(2), 171–177. https://doi.org/10.1016/S0959-4388(99)80023-3

Meyer, J. W., Butterick, J., Olkin, M., & Zack, G. (1999). GIS in the K-12 curriculum: a

cautionary note. The Professional Geographer, 51(4), 571–578. https://doi.org/

10.1111/0033-0124.00194.

Montello, D. R. (1993). Scale and multiple psychologies of space. In A. U. Frank, &

I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS, (pp.

312–321). Berlin: Springer.

Morris, R. G., & Parslow, D. M. (2004). Neurocognitive components of spatial

memory. In G. L. Allen, & D. Haun (Eds.), Remembering where: Advances

in understanding spatial memory, (pp. 217–247). Mahwah: Lawrence

Erlbaum Associates.

National Research Council (2006). Learning to think spatially. Washington, DC:

National Academies Press.

Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018).

Charting the development of cognitive mapping. Journal of experimental

child psychology, 170, 86-106. https://doi.org/10.1016/j.jecp.2018.01.009

Newcombe, N. S. (2018). Three kinds of spatial cognition. In J. Wixted (Ed.), Stevens'

handbook of experimental psychology and cognitive neuroscience (pp. 1-31). Wiley

Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New

typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial

reasoning for design creativity, (pp. 179–192). Dordrecht: Springer.

Oldakowski, R. K. (2001). Activities to develop a spatial perspective among

students in introductory geography courses. Journal of Geography, 100(6),

243–250. https://doi.org/10.1080/00221340108978451.

Orion, N., Ben-Chaim, D., & Kali, Y. (1997). Relationship between earth-science

education and spatial visualization. Journal of Geoscience Education, 45(2),

129–132. https://doi.org/10.5408/1089-9995-45.2.129.

Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995).

A redrawn Vandenberg and Kuse mental rotations test-different versions and

factors that affect performance. Brain and Cognition, 28(1), 39–58. https://doi.

org/10.1006/brcg.1995.1032.

Philbeck, J. W., Behrmann, M., Black, S. E., & Ebert, P. (2000). Intact spatial updating

during locomotion after right posterior parietal lesions. Neuropsychologia,

38(7), 950–963. https://doi.org/10.1016/s0028-3932(99)00156-6.

Piburn, M. D., Reynolds, S. J., McAuliffe, C., Leedy, D. E., Birk, J. P., & Johnson, J. K.

(2005). The role of visualization in learning from computer-based images.

International Journal of Science Education, 27(5), 513–527. https://doi.org/10.

1080/09500690412331314478.

Rezvan, P. H., Lee, K. J., & Simpson, J. A. (2015). The rise of multiple imputation: a

review of the reporting and implementation of the method in medical

research. BMC Medical Research Methodology, 15(1), 30. https://doi.org/10.

1186/s12874-015-0022-1.

Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge

acquisition from maps and from navigation in real and virtual environments

Memory & cognition. https://doi.org/10.3758/BF03211566

Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013).

Hippocampal size predicts rapid learning of a cognitive map in humans.

Hippocampus, 23(6), 515–528. https://doi.org/10.1002/hipo.22111.

Self, C. M., Gopal, S., Golledge, R. G., & Fenstermaker, S. (1992). Gender-related

differences in spatial abilities. Progress in Human Geography, 16(3), 315–342.

https://doi.org/10.1177/030913259201600301.

Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial

ability in intellectually talented young adolescents: a 20-year longitudinal

study. Journal of Educational Psychology, 93(3), 604–614. https://doi.org/10.

1037//0022-0663.93.3.604.

Shipley, T. F., & Tikoff, B. (2018). Collaboration, cyberinfrastructure, and cognitive

science: the role of databases and dataguides in 21st century structural

geology. Journal of Structural Geology. https://doi.org/10.1016/j.jsg.2018.05.007.

Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of

neuropsychological tests: Administration, norms, and commentary. New York:

Oxford University Press.

Tobler, W. R. (1994). Bidimensional regression. Geographical Analysis, 26(3), 187–

212. https://doi.org/10.1111/j.1538-4632.1994.tb00320.x.

Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated

version of the operation span task. Behavior Research Methods, 37(3), 498–

505. https://doi.org/10.3758/BF03192720.

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., &

Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of

training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.

1037/a0028446.

Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-

dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.

https://doi.org/10.2466/pms.1978.47.2.599.

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains:

aligning over 50 years of cumulative psychological knowledge solidifies its

importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.

org/10.1037/a0016127.

Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a

cognitive map? Routes, places, and working memory. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 42(5), 768–785. https://doi.org/

10.1037/xlm0000200.

Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A.

(2014). Variations in cognitive maps: understanding individual differences in

navigation. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 40(3), 669–682. https://doi.org/10.1037/a0035261.

White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained

equations: issues and guidance for practice. Statistics in Medicine, 30(4), 377–

399. https://doi.org/10.1002/sim.4067.

Wilkinson, G. S., & Robertson, G. J. (2006). WRAT 4: Wide Range Achievement Test.

Lutz: Psychological Assessment Resources.

Nazareth et al. Cognitive Research: Principles and Implications            (2019) 4:17 Page 17 of 17

https://doi.org/10.1037/a0015665
https://doi.org/10.1037/a0015665
https://doi.org/10.1002/(SICI)1098-2736(199604)33:4<369::AID-TEA2>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1098-2736(199604)33:4<369::AID-TEA2>3.0.CO;2-Q
https://doi.org/10.1177/0956797613478615
https://doi.org/10.1080/00221341.2012.684356
https://doi.org/10.1080/00221341.2012.684356
https://doi.org/10.1093/cercor/bhr101
https://doi.org/10.1111/j.1467-8624.1985.tb00213.x
https://doi.org/10.1080/03098265.2011.576336
https://doi.org/10.1016/S0959-4388(99)80023-3
https://doi.org/10.1111/0033-0124.00194
https://doi.org/10.1111/0033-0124.00194
https://doi.org/10.1016/j.jecp.2018.01.009
https://doi.org/10.1080/00221340108978451
https://doi.org/10.5408/1089-9995-45.2.129
https://doi.org/10.1006/brcg.1995.1032
https://doi.org/10.1006/brcg.1995.1032
https://doi.org/10.1016/s0028-3932(99)00156-6
https://doi.org/10.1080/09500690412331314478
https://doi.org/10.1080/09500690412331314478
https://doi.org/10.1186/s12874-015-0022-1
https://doi.org/10.1186/s12874-015-0022-1
https://doi.org/10.3758/BF03211566
https://doi.org/10.1002/hipo.22111
https://doi.org/10.1177/030913259201600301
https://doi.org/10.1037//0022-0663.93.3.604
https://doi.org/10.1037//0022-0663.93.3.604
https://doi.org/10.1016/j.jsg.2018.05.007
https://doi.org/10.1111/j.1538-4632.1994.tb00320.x
https://doi.org/10.3758/BF03192720
https://doi.org/10.1037/a0028446
https://doi.org/10.1037/a0028446
https://doi.org/10.2466/pms.1978.47.2.599
https://doi.org/10.1037/a0016127
https://doi.org/10.1037/a0016127
https://doi.org/10.1037/xlm0000200
https://doi.org/10.1037/xlm0000200
https://doi.org/10.1037/a0035261
https://doi.org/10.1002/sim.4067

	Abstract
	Background
	Results
	Conclusions

	Significance
	Background
	Study 1
	Method
	Participants
	Materials
	Virtual environment navigation paradigm (Virtual Silcton)
	Pointing task
	Model-building task

	Psychometric measures
	Procedure

	Results
	Navigation performance in the virtual environment
	Types of navigators

	Discussion
	Study 2
	Method
	Participants
	Materials
	Virtual environment navigation paradigm (Virtual Silcton)
	Psychometric and self-report measures
	Procedure

	Results
	Baseline and improvement in navigation skills
	Within-route pointing error
	Between-route pointing error
	Model-building (R2 value)
	Mental rotation skill
	Spatial working memory

	Types of navigators
	Role of mental rotation and spatial working memory in navigation skills
	Sex differences in spatial, nonspatial and psychometric measures

	Discussion
	Conclusion
	Limitations
	Abbreviations

	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

