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Abstract—A new hybrid model of cascading failure is proposed,
which employs a detailed dynamic model to identify and correct
the cascade propagation path of QSS model. At every event
or failure, trajectory sensitivities for a few seconds following
that failure are computed using the detailed dynamic model.
Classification based on computed sensitivities reveal the accuracy
of QSS model’s prediction. If necessary, corrections are made
by simulating the detailed dynamic model for a sufficient time.
The proposed hybrid model along with a review of trajectory
sensitivity is presented. The effectiveness of the proposed model
is validated through case studies on IEEE 4-machine and 16-
machine systems.

Index Terms—Hybrid Model, Trajectory Sensitivity, Cascading
Failure, QSS Model, Dynamic Model, Blackout

I. INTRODUCTION

Cascading failures, wherein the initial failure of one or more
components causes subsequent failure of other components in
the system and finally results in the entire system collapse, are
a major cause of blackouts in electric power grids. According
to a recent report [1], cascading failure-based blackouts, such
as Indian nationwide blackout in 2012 have caused an amount
of customer-hours of lost electricity service that is comparable
to major natural disasters, such as the Hurricane Maria that
devastated Puerto Rico.

In order to understand, predict and prevent such cascading
failure phenomenon, appropriate modeling is required. Most
of the existing literature on this topic utilize quasi-steady-
state (QSS) DC power flow models [2]–[4] and QSS AC
power flow models [5]–[8] for modeling cascade propagation.
These models are capable of capturing only certain cascade
propagation paths, which are determined by thermal overloads
in post-contingency steady-state conditions. Reference [9]
proposed a DC load flow model augmented by a more accurate
representation of under-voltage and under-frequency load-
shedding. However, this model can not represent the small-
signal stability and voltage stability issues. Additionally, other
kinds of static models including statistical models [10]–[12]
and topological models [13], [14] are also suggested. Despite
their usefulness, they cannot produce insights into the cascading
mechanism similar to that of physics-based models. In practical

systems, cascading involves different complex mechanisms that
are governed by nonlinear dynamics, which could potentially
lead to mid- and long-term stability issues.

As an attempt to produce practical models for cascading
failures, dynamic models in [15], [16] and numerical methods
for faster simulation of these models [17], [18] were proposed.
However, these models did not consider the protection elements,
which play a critical role during cascading outages. Although
Song et-al [19] included such protective elements in their
proposed COSMIC model, this framework is too slow for
many large-scale statistical analyses.

This paper proposes a new hybrid model of cascading failure,
which takes advantage of both the computational ease of a
QSS model and accuracy of a detailed dynamic model. The
key idea is to employ a detailed dynamic model to identify and
correct the cascade propagation path of its QSS counterpart
model. At every event or failure, trajectory sensitivities for
a few seconds following that failure are computed using the
detailed dynamic model. Classification based on the computed
sensitivities reveal the accuracy of QSS model’s prediction.
If necessary, corrections are made by simulating the detailed
dynamic model for a sufficient time. The effectiveness of the
proposed hybrid model is validated through case studies on
IEEE 4-machine and 16-machine systems.

II. PROPOSED HYBRID MODEL OF CASCADING FAILURE IN
POWER SYSTEM

First, the typical structure of the QSS model as described
in [20] is reviewed. The proposed model is then presented as
an augmentation to this structure. The method of computing
trajectory sensitivities and classification-based on the same is
elaborated in Section III.

A. Existing QSS Model-based Methodology [20]:

Figure 1 shows both the typical methodology employed in
literature for simulating QSS model-based cascaded failure,
and the proposed methodology, which has the dynamic model-
based validation and correction step. In the existing QSS model-
based methodology, after applying the corresponding outages,



Initial state

Apply outage(s)

Compute relevant post-
contingency steady state

Any violations?

Test for additional outage(s)

Additional
outage(s)?

Record final consequences

Y

N

N

Run dynamic model for few sec 
Compute trajectory sentivities

Is QSS
model valid?

Y

N

Y

Proposed Validation and Correction:

 Exisiting QSS 

methodology pathway

Fig. 1. Existing and proposed methodology for modeling cascading failure
using QSS model [20] and hybrid model, respectively.

i.e, changes to bus and line data, QSS model is directly used
to predict the post-contingency steady state condition. This is
followed by a check for additional outages and if required,
the outage or contingency list is updated and the process is
repeated.

A major concern for accuracy of existing QSS model-based
methodology lies in the computation of post-contingency steady
state condition. For a practical system, after the given outage(s)
is/are applied, the system could face stability issues. These
stability issues, if faced, could push the system away from the
steady state condition computed in existing QSS model-based
methodology.

B. Proposed Hybrid Model-based Methodology:

Proposed hybrid methodology for modeling cascade failure
utilizes both dynamic and QSS model for accurate and faster
simulation of the cascade propagation path. From the discussion
on shortcomings of the existing QSS model-based methodology,
it is clear that a major source of error in this method is
the prediction of the post-contingency steady state condition.
Proposed hybrid methodology employs dynamic model to
validate and correct the cascade propagation pathway of the
QSS model.

As shown in Fig. 1, at every iteration, dynamic model is first
initialized to pre-contingency steady state condition and the
required outage(s) is/are applied at some time t0. Trajectory
sensitivities are computed in parallel to the simulation of
dynamic model for few seconds after t0. These trajectory
sensitivities give an early indication about the condition of
stress and stability in the system. Therefore, based on trajectory
sensitivities, system can be classified into one the following
three conditions:

1) Asymptotically stable with high damping
2) Marginally stable/very poor damping

3) Unstable
The stability condition of the system reveals the accuracy

of the post-contingency steady state condition computed based
on QSS model. When the system is asymptotically stable with
high damping, most likely the system will reach the steady
state condition predicted using QSS model. When the system
is marginally stable or very poorly damped, the oscillations
can trip other protection systems, for example zone 3 relays,
and the propagation path could potentially deviate from QSS
model. When the system is unstable and detailed protection
systems are in place, then the system will definitely go through
other cascade propagation paths, which can only be captured
by dynamic model.

Therefore, in the case of marginally stable and unstable
scenarios, dynamic model is ran until a stable scenario is
encountered. When an asymptotically stable condition is
encountered, the dynamic model is abandoned and QSS model
is used to predict the relevant post-contingency steady state
condition. Therefore, dynamic model as shown in Fig. 1 is
employed to validate and correct the propagation pathway of
the QSS model in this way. Note that trajectory sensitivity-
based classification can be done much quicker than the time
taken for the system to reach steady state, which reduces the
computation time.

III. TRAJECTORY SENSITIVITY-BASED CLASSIFICATION

In this Section, we first give and overview of trajectory
sensitivity [21] and later present a numerical approximation
that was used in this paper to compute the same. Finally, the
method of classification implemented using computed trajectory
sensitivity is described.

A. Definition of Trajectory Sensitivity [21]:

A dynamic model of power system can be represented using
a set of Differential and Algebraic equations (DAEs). The
DAEs have the following form,

ẋ = f(x, z, λ)

0 = g(x, z, λ)
(1)

where, x, z and λ are vectors constructed from state variables,
algebraic variables and parameters, respectively. The trajectory
sensitivity matrices along the trajectories of x and z with
respect to the parameters λ are defined as,

xλ =
∂x

∂λ
and zλ =

∂z

∂λ
(2)

Differentiating the equations in (1) with respect to λ on both
sides gives us an analytical expression to compute trajectory
sensitivities,

ẋλ =
∂f

∂x
xλ +

∂f

∂z
zλ +

∂f

∂λ

0 =
∂g

∂x
xλ +

∂g

∂z
zλ +

∂g

∂λ

(3)

here, at the initial time t0, the sensitivities are set to zero, i.e.,
xλ(t0) = 0 and zλ(t0) = 0.



B. Numerical Approximation for Computing Trajectory Sensi-
tivity:

For a large dynamical system, obtaining a closed form ex-
pression for partial derivatives in eq (3) becomes a challenging
task. One way to get around this is to redefine parameters
as state variables whose derivative is always zero i.e., they
remain constant – and then compute trajectory sensitivities
w.r.t. initial condition of all state variables. In that scenario,
the partial derivatives required in eq (3) are directly obtained
as a byproduct of solving (1). However, this is true only if
implicit integration method were used to solve (1).

In this paper, for computing trajectory sensitivities w.r.t.
one parameter, the approximation described below, which was
presented in [21] is used,

xλ(t) =
∂x(t)

∂λ
≈ x(t, λ+ ∆λ) − x(t, λ)

∆λ

zλ(t) =
∂z(t)

∂λ
≈ z(t, λ+ ∆λ) − z(t, λ)

∆λ

(4)

This approximation is valid when ∆λ is small. In order to
realize this approximation, two DAEs of the form (1) are
simulated with two different parameter values λ + ∆λ and
λ, respectively. The resulting trajectories of x and z are then
used as shown in eq (4) to compute approximate trajectory
sensitivities.

C. Classification based on Trajectory Sensitivity:

As stated in Section II, trajectory sensitivities are employed
to classify post-contingency system’s stability. This is essential
to validate the accuracy of post-contingency steady state
condition obtained from QSS model. First, a specific sensitivity
norm Sλ in the context of the power system is defined.
Certain features of this sensitivity norm Sλ will be used for
classification.

The sensitivity norm Sλ in the context of the power system
is defined as,

Sλ =

[
n∑
i=1

((∂δi
∂λ

− ∂δref
∂λ

)2
+
(∂ωi
∂λ

)2)] 1
2

(5)

here, n represents number of generators, δi and ωi are the
angle and angular speed corresponding to the ith generator,
respectively; and δref is the reference angle w.r.t. which all
other angles are measured.

The classification of the system into one of the two, (i)
asymptotically stable or (ii) marginally stable or unstable
is done based on the location of occurrence of the peak in
sensitivity norm Sλ. For asymptotically stable systems, the
peak in sensitivity norm Sλ occurs at an earlier stage, i.e, in few
seconds. For marginally stable or unstable systems, the peak
in sensitivity norm Sλ occurs at a much later stage. Especially
for unstable systems, it is theoretically proven that Sλ will
reach infinity.

IV. SIMULATION RESULTS OF CASE STUDIES
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Fig. 3. System I - Case I: IEEE 4-machine system with D = 0.015 pu:
(a) Damping oscillations in relative angles and (b) Diminishing trajectory
sensitivity norm indicating asymptotic stability.

In order to validate the proposed model, two systems, IEEE
4-machine and IEEE 16-machine systems are considered. For
both the systems, parameter λ is chosen as governor droop
constant R1 corresponding to generator G1.

For System I, i.e., 4-machine system, two cases are con-
sidered. In one case, Case I, a damping coefficient of D =
0.015pu is assumed for all generators. In other case, Case II,
the damping coefficient is assumed to be D = 0.001pu for
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Fig. 2. System I - Case II: IEEE 4-machine, 2-area system with sequence of events in the dynamic model. Generator damping coefficient D = 0.001pu is
assumed. Power-flow from bus 7 to 9: 400MW.
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Fig. 4. System I - Case II: IEEE 4-machine system with D = 0.001 pu:
(a) Undamped oscillations in relative angles and (b) increasing trajectory
sensitivity norm indicating marginal oscillations.

all generators. In both the cases same initial disturbance, i.e.,
three-phase fault near bus#8 at t = 1.0s (Fig. 2(a)) and outage
of line#2 (Fig. 2(b)) is considered.

In Case I, due to the higher damping available in the system,
and following the outage of line#2, the oscillations are damped
out as shown in Fig. 3(a). Corresponding to the asymptotic
behavior of the system, as shown in Fig. 3(b), the trajectory
sensitivity norm, SR1 peaked early on and started to diminish.
Accordingly, in hybrid model decision on validity of QSS
model is made in a short time as highlighted in Fig. 3(b). The
outage of line#2 increased power flow of line#1 to 400MW.
However, no cascading failure is observed as the thermal limit
of line#1 is assumed to be 450MW and the same is captured
by the QSS model.
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In Case II, due to poor damping, the system is set into
marginally stable oscillations following the fault at t = 1.0s
and outage of line#2. Figure 2 illustrate the sequence of events
following this undamped oscillations. Due to these undamped
oscillations, zone 3 relay near bus#9 trips the breaker at t
= 20.0s and line#3 is taken out, see Fig. 2(c). Following
the outage of the line#3, system becomes unstable and all
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Fig. 6. System II: Frequency dynamics following fault and line outage at
bus#30: (a) Stable oscillations with Kpss = 0.2, (b) Poorly damped oscillations
with Kpss = 0.006 and (c) Unstable oscillations with Kpss = -0.02.
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Fig. 7. System II: Trajectory sensitivity norm: (a) Diminishing when system
is stable, (b) Growing when system is marginally stable and (c) Rapidly
escalating when system is unstable.

the generators are disconnected at some t > 20.0s, see Fig.
2(d). Corresponding to the marginally stable behavior of the
system, as shown in Fig. 3(b), the trajectory sensitivity norm,
SR1 is gradually increased. Importantly the peak of trajectory
sensitivity norm did not occur in the first few seconds following
the initial outage as highlighted in Fig. 3(b). Also, for t >
20.0s, when the system is unstable, the trajectory sensitivity
norm is tending to approach infinity.

In order to further validate the proposed hybrid methodology,
System II, a larger IEEE 16-machine system as shown in Fig.
5 is considered. Three cases, each corresponding to different
values of power system stabilizer (PSS) gains, Kpss located
at generator G9 is considered. For Case I, Kpss = 0.2, for
Case II, Kpss = 0.006 and for case III, Kpss = -0.02. These
PSS gains set such that in Case I, Case II, and Case III
following a fault near bus#30 and line (30-61) outage at t
= 1s, stable, marginally stable and unstable oscillations are
produced, respectively. These oscillations in frequencies of
the generators are shown in Fig. 6, wherein each subplot
corresponds to each case. Particularly in Case II, due to high
amplitude of oscillation in G9 (blue trace), a zone 3 relay near
bus#27 trips line (26-27) at t = 15s, as shown in Fig. 5. This
resulted in higher amplitude undamped oscillations see Fig.



TABLE I
SUMMARY OF CASE STUDIES

Test System QSS Model Dynamic Model
Case I Case II Case III

IEEE
4-machine

line#2 outage,
no cascade

line#2 outage,
no cascade

line#2 outage,
followed by cascade -

IEEE
16-machine

line (30-61)
outage, no cascade

line (30-61)
outage, no cascade

line (30-61) outage, followed
by line (26-27) outage

line (30-61) outage,
followed by instability

6(b), which can potentially cause further failures (not simulated
here).

Figure 7 shows the oscillatory behavior in all three cases
as reflected in trajectory sensitivity norm, SR1. Clearly, in
Fig. 7(a), which corresponds to stable oscillatory behavior the
sensitivity norm peaked early on and started diminishing. In the
case of marginal stability, as shown in Fig. 7(b) the sensitivity
norm is gradually growing and did not peak early on. In the
unstable case, as shown in Fig. 7(c) the sensitivity norm is
tending to approach infinity. Therefore, classification based on
trajectory sensitivity norm is valid for System II.

As summarized in Table I, the QSS model based methodolo-
gies are valid only for Case I, in other cases a dynamic model
is required. Proposed hybrid methodology employs trajectory
sensitivity norm to distinguish between Case I and II, and
validate the use of QSS model in a short time.

V. CONCLUSION

A new hybrid methodology for modeling cascading failure
in power systems was proposed. The proposed methodology
employed a detailed dynamic model to identify and correct
the cascade propagation path of QSS model. At every event or
failure, trajectory sensitivity norm as defined is computed for a
few seconds. Classification based on sensitivity norm revealed
the oscillatory behavior of the system, which validates the
accuracy of QSS model’s prediction. If necessary, corrections
are made by simulating the detailed dynamic model for a
sufficient time. The effectiveness of the proposed methodology
was validated through case studies on IEEE 4-machine and
16-machine systems.
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