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Abstract. Bicomplexes of vector spaces frequently appear throughout algebra and geo-
metry. In Section 2 we explain how to think about the arrows in the spectral sequence of
a bicomplex via its indecomposable summands. Polycomplexes seem to be much more rare.
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via an action on the stable category of tricomplexes.
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1 Introduction

“The impact of spectral sequences on algebraic topology
was tremendous: Many major problems of topology, both
solved and unsolved, became exercises for students ...”
A. Fomenko and D. Fuchs [6, Preface]

Representation theory, which has been established for over a century, deals with linear actions
of groups and algebras. Much more recent is the discovery of interesting categorical actions
of groups, primarily discrete groups. In these examples discrete groups act by symmetries
of categories, which in many cases are triangulated, and the action preserves the triangular
structure. One of the first nontrivial examples appeared in [16], see also [10, 22]. There the n-
strand braid group Br, acts on the homotopy category of complexes of modules over a particular
finite-dimensional algebra A, _1. The action is by exact functors and on the Grothendieck group
the action descends either to the Burau representation of the braid group (if one keep tracks
of an additional grading on modules, in addition to the homological grading) or to the reduced
permutation action of the symmetric group. Neither of these linear actions is faithful, but its
categorical lifting was shown to be faithful in [16].

The algebra A,_; (the zigzag algebra) is the quotient of the path algebra of the quiver with
n — 1 vertices and edges connecting adjacent vertices in both directions (assuming n > 3, with
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minor changes necessary for n = 2, 3)

1/_\ /ﬂl—l/_\l/ﬂl-f—l/\ /‘\\n—l
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Generators of A,,_; corresponding to arrows in the quiver are denoted (i|i +1). The defining
relations

(ili+1i+2)=0,  (ili—1i—2)=0,  (ili— 1}i) = (ili + 1]d)

(for #’s for which both sides of a relation make sense) are quadratic, A,_1 is finite dimensional,
with a basis consisting of idempotents (7), edges (7,7 = 1) and length two paths (i|¢ + 1|7). For
1 < i < n indecomposable projective A,_1 module P; = A,,_1(i) is four-dimensional, with the
basis {(7), (¢ — 1]7), (¢ + 1|i), (¢|¢ — 1]¢)} and can be visualized as a diamond.

(ili — 114)
(ii—1) W
(1 — 1]4) (1 + 1/4).
(i—1]7) (i4+117)
(4)

The defining relations in A,_1 can be interpreted as the defining relations in the category of
bicomplexes. Namely, let

n—2 n—1
o= (li+1), = (ili—1).
=1 1=2

Then the defining relations in A,,_1 can be rewritten as
07 =0, 03 =0, 0102 = 020).

These are exactly the relations on the two differentials in a bicomplex. A bicomplex is built out
of vector spaces placed in the vertices of an integral lattice Z2, with the differentials going along
the two coordinates, with the unit step each.

One can introduce a grading on A,,_; by making, for instance, left-pointing arrows (edges)
in the quiver to have degree one and right-pointing edges degree zero. The unit element of A,
decomposes as the sum of n — 1 idempotents, one for each vertex of the graph, 1 = (1) + (2) +
-+ (n — 1), inducing the decomposition of an A,,_;-module into a sum of vector spaces

and the additional grading on M leads to the bigrading, with the left and right directed edges
changing the bigrading by (1,0) and (0, 1), respectively.

In this way, graded A, _i-modules may be identified with bicomplexes with nonzero terms
restricted to a suitable area of the lattice Z2. Changing the indexing of quiver vertices from
{1,2,...,n — 1} to Z by passing to the quiver that is infinite in both directions (see figure in
equation (2.2)) results in a non-unital algebra A, with a system of idempotents {(7)};cz such
that graded A.,-modules naturally correspond to bicomplexes.
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The braid group Br, acts on the homotopy category of (either graded or ungraded) A,_i-
modules by tensoring with a suitable complex of A,_i-bimodules. This works as well in the
limit of As-modules, with the braid group Brs, with strands (and generators o;) enumerated
by integers.

Passing from modules over an algebra B to complexes of modules means working with suit-
ably graded modules over the algebra B[d]/ (dz). In our case, graded A,_1 or Ay modules can
be identified with bicomplexes (more precisely, there is an equivalence of corresponding abelian
categories). Consequently, complexes of A,_; and As-modules may be identified with tricom-
plexes, with the homological grading in A,_;[d]/(d*) corresponding to the additional, third,
grading in tricomplexes.

Passing from complexes to the homotopy category of complexes (of modules over an alge-
bra B) means modding out by null-homotopic morphisms. If one restricts to complexes of
projective B-modules, which is a common and important subcategory of the category of com-
plexes, this means killing morphisms which factor through a direct sum of objects of the form

0—B £> B—0

in various homological degrees. Specializing B to A, the above complex decomposes as a direct
sum of terms of the form

0—Auo (i) 25 A (i)—0 (1.1)

for various i € Z (cf. the next diagram below). By keeping track of the additional grading, one
can further shift these copies of Ay (i) and parametrize them by a pair of integers (i, j). To-
gether with the homological grading k, one gets a 3-parameter family of possible indecomposable
summands that each represent the zero complex in the homotopy category.

If this setup is converted into the language of bicomplexes and tricomplexes, the module Ay (i)
corresponds to a free rank one bicomplex in the bigrading associated to the idempotent (i) and
another independent grading j, see Definition 2.8. The complex (1.1) corresponds to a free rank
one tricomplex, with its generator placed in tridegree (i,0,0). We refer the reader to (3.15)
and (3.16) for the precise matching of trigradings and shifts:

(ili — 1}i) —— (ili — 1]i)

O

8 (i + 1]i) (i + 1]i)

Here in the diagram, the (basis elements of the) first copy of A (¢) in (1.1) is exhibited as the
left-most square in the cube, while the second copy of A, is displayed as the right-most square.
These two squares are connected by the homological differential labelled with Id maps.

In the homotopy category of projective graded A,.-modules, a morphism is zero if it factors
through the object which is a direct sum of complexes (1.1) over various 4, j, and k, where i
labels the idempotent, j is the additional grading parameter in A, and k is the homological
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grading. Converting this to tricomplexes, one unites the three integer grading parameters i, j, k
of different origins into a single trigrading on tricomplexes. The complex (1.1) becomes a free
tricomplex of rank one that can sit in any position relative to the trigrading. Killing morphisms
that factor through sums of such free rank one tricomplexes is equivalent to the condition that
one is working in the stable category of tricomplexes, that is in the category of tricomplexes
modulo the ideal of morphisms that factor through a free tricomplex.

Tricomplexes can be described as trigraded modules over the algebra As with generators
01, 09, 03 and relations

92 =0, i=1,2,3, 0:0; = 9;0;, i # j.

This 8-dimensional algebra is Frobenius, and it is even a Hopf algebra in the category of super-
vector spaces. Consequently, its stable category of trigraded modules is triangulated (and
monoidal, due to the Hopf algebra structure).

The braid group action on the homotopy category of A, 1 and A..-modules transfers to
the stable category of tricomplexes. Note that the homotopy category of As-modules and the
stable category of tricomplexes are not equivalent, but rather admit equivalent subcategories
with matching actions of the braid group. On the A, side, it is the homotopy category of
complexes of projective modules, and on the tricomplex side, the stable subcategory generated by
tricomplexes that restrict to free bicomplexes relative to the subalgebra generated by differentials
01, Jo. The braid group action respects these subcategories and the equivalence between them.

The braid group acts by exact functors on this triangulated category of tricomplexes. The
actions does not respect the monoidal structure, though, and choosing the action requires singling
out one differential out of three. Choosing different differentials gives three commuting braid
group actions.

For now, we view this example as a curiosity. One natural question is whether our example
fits into the more general framework of Hopfological algebra [14, 21], where stable categories of
modules over Hopf algebras, such as Ag, are used as base categories for new constructions of
categorifications (see, e.g., [15]) or, perhaps, some other algebro-geometric structures. Another
open problem is whether homotopy categories of complexes over other algebras of importance
in categorification, such as arc algebras [12], can be rethought through some generalization of
the stable category of tricomplexes.

Tricomplexes seem to appear exceedingly rarely in mathematics. Currently, they have made
appearances in the BRST theory [23], in the deformation theory of Hopf algebras [28], and in
the algebraic K-theory [2]. A modified notion of a tricomplex, called quasi-tricomplex, occurs
in the theory of variation [20].

Beyond tricomplexes, polycomplexes can be related to (C*)"-equivariant coherent sheaves
on CP"! via a version of Beilinson-Gelfand-Gelfand-Koszul duality.

The braid group action on the stable category of tricomplexes is constructed in Section 3 of
this paper. In Section 2 we explain a way to think about arrows in the spectral sequence of
a bicomplex of vector spaces via indecomposable modules over the rings A, 1 and A.. This
relation was independently discovered by Stelzig [25].

2 Spectral sequences via indecomposable bicomplexes

“The subject of spectral sequences is elementary, but the
notion of the spectral sequence of a double complex in-
volves so many objects and indices that it seems at first
repulsive.” D. Eisenbud [5, Appendix 3.13]

The standard textbook approach to spectral sequences makes them seem sophisticated and
mysterious gadgets [1, 7, 18, 26, 27] and [5, Appendix 3.13]. Timothy Chow, in the introduction
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to his article on spectral sequences [3], quotes the opinions of experts who, essentially, say that
the definition is so complicated that you just have to get used to it.

The goal of this section is to explain spectral sequences, restricted to bicomplexes of vector
spaces, in a simple and straightforward way. Most of this section has appeared in lectures to
graduate students by the first author, see for instance the informal lecture notes [13]. Similar
results also appeared in Stelzig [25]. We warn the reader that this elementary approach works
only for a bicomplex of vector spaces. Bicomplexes and filtered complexes that appear in spectral
sequences in algebraic topology carry an enormous amount of extra structure, such as an action of
the Steenrod algebra when working over Z/p, and cannot be easily understood in this elementary
way. The complexity and beauty of these structures are captured in the Fomenko and Fuchs
classic [6] and other books, see McCleary [18].

2.1 Cohomology
Let k be a field and M

di— 1 . dz . di+1
S M M S

a complex of k-vector spaces. We allow unbounded complexes and infinite-dimensional vector
spaces. It is easy to see that M decomposes into the direct sum of length zero complexes

0—H'—0,

with a vector space H in degree i, and length one complexes

0—W 2L Wi, (2.1)

with two copies of a vector space W in degrees i and i + 1. Thus,
M =H oW oW,

although this direct sum decomposition of the vector space M* is not canonical. The inclusion
of the direct sum H? @ W1 C M? is canonical, being the inclusion ker(d’) ¢ M®. The i-th
cohomology group H*(M) of M is canonically isomorphic to H'. Direct summands (2.1) are
contractible (recall that a complex is called contractible if the identity endomorphism is null-
homotopic).

Example 2.1. Let X be a smooth compact manifold and (©2(X),d) the de Rham complex of
smooth forms on X. In this case H'(X, R) are finite-dimensional vector spaces, while the vector
spaces /(X) and hence W' are infinite-dimensional. The bulk of the complex Q(X) is occupied
by contractible “junk”, while the “valuable part” (cohomology) has small size. If we equip X
with a Riemannian metric g, the operator d* = + * dx adjoint to d gives rise to the Laplace
operator

A: QY(X)—QY(X), A=dd" +dd

The Laplace operator provides a canonical embedding of each complex 0—H!(X, R)—0 into
the complex (2(X), d), via the isomorphism H(X,R) = ker(A).

A complex of k-vector spaces is the same as a graded module over the exterior k-algebra A
on one generator d of degree 1:

Ay = Kk[d]/(d?).



6 M. Khovanov and Y. Qi

The i-th homogeneous piece of a graded Aj-module M is a vector space M?, and the action of d
is exactly the differential d: M*—s M1,

The category M, of graded modules over A; is Krull-Schmidt, and any module (even infinite-
dimensional) decomposes into a direct sum of indecomposable modules S* and P?. Here S° is the
one-dimensional k-vector space placed in degree i, and corresponds to the complex 0—k—0.
The differential acts by 0 and the module S is simple. The module P! = A;{i} is free and
corresponds to the complex

0—k —1> k—0.
Thus,

M = '?Z(Hi ®S5) e (We P,

and the cohomology of M only catches the first terms in the sum. Recall that an object M of
an additive category is called indecomposable if M is not isomorphic to a direct sum Ny @ No
with both Ny, N2 nontrivial.

2.2 Bicomplexes

Let us now move on to bicomplexes. A bicomplex M over a field k is a family {M i.J } of vector
spaces, for i, j € Z, and maps

O MY — M 9y MY — MBI
subject to the equations

6% =0, 8% =0, 0109 + 0201 = 0,

0o 8o

O a9 ittt O
0o BN

O apid O il O
02 02

Let Ay be the exterior k-algebra on two generators 01, 0s, so that the above equations are
the defining relations for the generators. As has a natural bigrading by

deg(al) = (170)7 deg(OQ) = (O’ 1)
A bicomplex M is the same as a bigraded left Ao-module. We denote the category of bicomplexes
by Mas.
We say that a bicomplex M is bounded if only finitely many M®*/ are not 0.

Example 2.2. Let us describe some bounded indecomposable bicomplexes.
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(1) The bicomplex S%/ is one-dimensional with a copy of k sitting in the (i, 7)-th bidegree:

In other words, S/ is the simple As-module sitting in bidegree (i, 7).

(2) The indecomposable bicomplex P“ 2 As{i,j} is a free rank one module (looking like
a square on a planar lattice), a copy of Ag with bigrading shifted, so that the nonzero term
in the southwest corner sits in (4, j)-th degree:

0 0

P

(3) The bicomplex Zl_f ; has the top leftmost term in bidegree (i, j) and goes zigzag to the
right and down. The number | € IN denotes the number of nonzero arrows, [ + 1 is the
dimension of the vector space underlying this bicomplex

k——k

|

k——k
Zﬁf,l: T

.——k
k.

(4) Likewise, the bicomplex Z;]l starts from the bidegree (i,j) and goes zigzag down and to

the right.
k
k——k
e |
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Theorem 2.3. Any bounded bicomplex M € My (possibly with infinite-dimensional vector
spaces M%) breaks up into a direct sum of indecomposable bicompleves S™, P%, ZL’]Z, Zﬁ
described above.

We will postpone the proof of the theorem until Section 2.4.
Let Tot(M) be the total complex of the bicomplex M, with the differential d = 9; + 02 and
the terms given by direct sums over M%7 for i + j fixed,

o Ttk (M)~ TothH (M) L

where Tot*(M) = @© M™.
itj=k
A common situation is that we want to compute the homology of Tot(M) with respect to
the differential d and already know the homology of M with respect to, say, differential dy (the

upward differential in our conventions). These homology groups H(M, d;) are bigraded,

H(Mv 82) = @ HiVj(Ma 82)7
ijen
and we would like to understand the relation between them and H(Tot(M), d). If we write M as

a (possibly infinite) direct sum of indecomposable bicomplexes M, for « in some index set A,
then both H(M, 02) and H(Tot(M),d) decompose as direct sums of cohomology groups of M,:

H(M, ) = @& H(M,, ),
acA

H(Tot(M),d) = @ H(Tot(M,),d).
acA

Hence, we will compare H(M, 02) and H(Tot(M),d) for all types of indecomposable summands
of M, case by case.

Case 1. S% contributes a copy of k to H*/ (M, d;) and a copy of k to H(Tot(M), d).

Case 2. H(P",0y) = 0 and H(Tot(P*),d) = 0. Thus, the “square” indecomposable
bicomplex P/ contributes nothing to both H(M, d) and H(Tot(M), d).

For the module Z;’j, there are two sub-cases.

Case 3.a. Firstly, let [, the number of nonzero arrows in the zigzag, be odd in Z;’Jl.,

~——

Hf

Z'7j .
Z

>

Cohomology of Z%]l with respect to the vertical differential 0 is zero. The total complex of this
zigzag has the form

0—k" —L k"0,

where d is an isomorphism and 2r = [ + 1. Hence, cohomology of the total complex is zero as
well.
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Case 3.b. Suppose now that [ in Z%l' is even, [ = 2r,

k
k——

k
g |

. — sk
k —— k.

Cohomology with respect to d, produce a single k in bidegree (i + 7,7 — r). The total complex
has the form

0—k" —4 k0

with d injective. Cohomology of the total complex is k in degree i + j and zero elsewhere.

Case 4.a. For the module Z:’Jl, there are two sub-cases as well. We start with even [ = 2r,

k——=k

|

k——k
sz,l (l=2r): T
. — >k
k.
Cohomology with respect to J2 give a single k in bidegree (7, j). The total complex is

0—k™ ! -5 k"0

with a surjective d, and it has cohomology k in degree i + j and zero elsewhere.

Before we treat the last case, observe that in each of the above cases cohomology of the total
complex is given by simply collapsing the bigrading of H(, d2) into a single grading by adding i
and j. Thus, if M does not contain any direct summands isomorphic to Zi{l with odd [,

H¥(Tot(M),d) = @ HY (M, dy).
itj=k

Case 4.b. Lastly, consider Z:jl with odd I = 2r 4+ 1,

k——k

|

k——k

Z¥, (l=2r+1): T
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Taking cohomology with respect to 02 produces two copies of k, in bigradings that differ by

(r,1—r):
0
|
0

0
H(ZY |, 0,) = T

f.—

k ——
0
0
Collapsing the bigrading in cohomology gives us two copies of k in adjacent degrees ¢ + j and

t+J+ 1.
The total complex has the form

—k.

0—k 1 —% k™0

with d an isomorphism, and the cohomology of the total complex is zero. Thus, for a general
bounded bicomplex M, the cohomology H(M, ds), after the bigrading collapsed into a single
grading, is isomorphic to the cohomology of the total complex of M, plus pairs of copies of the
ground field in adjacent degrees (i + j,7 + j + 1), for each direct summand of M isomorphic
to Z%/, with odd .

Since we want to know the cohomology of the total complex, the extraneous terms need to be
eliminated. Ideally, we would locate all direct summands Zﬁfgr 1 and kill off pairs of k, one for
each summand, in the relative bigrading position (r,1—r). For a general 7, we need to eliminate
pairs in the relative positions (i,7) and (i +7,j —r + 1) by a map d,”:

on the square lattice. This is exactly what the spectral sequence does. The FEj-term of the
spectral sequence of the bicomplex (M, 0, ds) is the cohomology of M with respect to Oa:

EY = HY (M, dy).

To pass to the Eo-term, we remove contributions to H(M, d2) from the direct summands Zﬁf;l,
which are k - k. Notice that the Es-term is simply the cohomology of H(M, d2) with respect to
the differential 0 (more accurately, differential 9; on M descends to a differential on H(M, 02),

which we also call 0;):

Ey =H(H(M,02),01).
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Going from Es to the E3-term, we remove pairs of one-dimensional vector spaces k which come
from summands ZZ_’f73 and differ by (2, —1)-bigrading. In general, in the F,-term there are no

contributions from summands Zi_’fl for all odd [ < 2r — 1.

The reader can find an accurate definition of spaces Ef«j and differentials di’j in almost
any textbook on homological algebra, often done in a slightly different framework of a filtered
complex rather than a bicomplex. However, we find the above approach via indecomposable
bicomplexes more clarifying and intuitive than the standard textbook definition of the pages E;
and differentials d;’ of a spectral sequence.

2.3 Bicomplexes and Hodge theory

The Hodge bicomplex [4, 8, 27]. Let X be a closed almost complex manifold. This means X is
a smooth closed manifold equipped with an endomorphism J of its real tangent bundle T (X)
such that J? = —1. The complexified tangent bundle T(X) = Tr(X) ®r C of X decomposes
into the direct sum of 7 and —i eigenspaces of J,

T(X)=T"X) e T (X).

This induces a direct sum decomposition of all exterior powers A*T™* of the complexified cotan-
gent bundle 7%(X).:

ATt = @) AT
i+j=k
Let Q% (X) be the space of smooth sections of AKT* and (Q¢(X),d) the complex with d the
complexified de Rham differential:

L ok () ggéﬂ()() 4, ...

Let Q%7 (X) be the vector space of smooth sections of A“/T*. In general, d shows no respect for
the direct sum decomposition

(X)) = @ QY(X).
i+j=k

However, Newlander and Nirenberg proved [19] that d takes Q%7(X) to Q14 (X) @ QW T(X)
for all 4,7 if and only if the almost complex structure J of X comes from a complex structure
on X. In this case d = 0 + 0, where

d: QY (X)—Q I (X)
is the composition of d with the projection onto the (i + 1, j)-component, and
d: QY (X)—QWtH(X)

is the composition of d with the projection onto the (i, j + 1)-component. The relation d? = 0
splits into the relations

9% =0, 9% =0, 90 + 00 = 0.

Thus, to a complex manifold X there is assigned the Hodge bicomplex (Q@(X ), 0, 5). Its
cohomology groups with respect to d is known as the Dolbeault cohomology, while the cohomology
with respect to d = 9 4 0 is the de Rham cohomology of X with coefficients in C. The spectral
sequence of this bicomplex, called the Hodge to de Rham spectral sequence, has the Dolbeault
cohomology as the F1i-term and converges to the de Rham cohomology of X.

Assume now that X is a Kihler manifold. Then the 90-lemma holds.
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Lemma 2.4. If w € Q¢(X) is a d-closed form and either O-ezact or 0-exact, then
w = d0a
for some a € Q¢(X).

Since the lemma is true for Q¢(X), it also holds for each indecomposable summand of X.
A simple examination shows that the lemma fails for any zigzag Z"/; and Zy7 for I > 0 (when

I = 0, the zigzag degenerates to the simple bicomplex S%7). We obtain immediately the following.

Proposition 2.5. For a compact Kdhler manifold X, every indecomposable summand of the
bicompler Q¢ (X) is isomorphic to either S* or P“ for some i, j.

Equivalently, Q¢ (X) has no zigzags (including no zigzags of length 1, that is k L k and its
vertical conterpart).
Thus, the bicomplex Q¢ (X) decomposes into the direct sum

Qo (X) = Q(X) & (X)),

where Q4(X) is a finite-dimensional semisimple bicomplex (a direct sum of one-dimensional
simple bicomplexes S%7), while Q,(X) is an infinite-dimensional free bicomplex (a direct sum
of free bicomplexes P*/). The first summand is finite-dimensional since Q¢(X) has finite-
dimensional cohomology groups, and

Qs(X) = H(QC(X)aa) = H(Q@(X)75) = H(QC(X)?d) = H(Xa (D)

The first three terms are bigraded vector spaces, and the second isomorphism says that, after
collapsing the bigrading to a single grading, the groups become the usual de Rham cohomology
groups of X.

We see that the cohomology groups of a compact Kihler manifold X with respect to 9, 0,
and d are isomorphic; they are also isomorphic to the largest semisimple summand of Q¢ (X).
The Hodge to de Rham spectral sequence for X degenerates at E) (Fy = E« ). Likewise, the 0
counterpart of the Hodge to de Rham spectral sequence degenerates at £y = H(Q¢(X), D).

2.4 Proof of Theorem 2.3

Let M be a graded module over Ay. Suppose m € M is a homogeneous vector of bidegree (i, )
such that 0102(m) # 0. Then, it is clear that the submodule generated by m and spanned by
vectors in the diagram below

Bo(m) —2 > 8201(m) = — 8195 (m)

y

02
m—— > 01(m)

is isomorphic to As, up to a grading shift, and thus is a projective submodule inside M.

Recall that over a Frobenius algebra, any projective module is injective and vice versa [17,
Theorem 15.9]. The same proof shows that over a graded Frobenius algebra, in the category of
graded modules, projective objects coincide with injective objects. Since Ao is graded Frobenius,
the submodule above is also graded injective, and therefore must be a direct summand of M.
We can decompose M =2 P @ N, where P is a graded direct sum of projective-injectives of the
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form P%J (case (2) of Example 2.2), and N is annihilated by the element 0105 = —029; € As.
Further, we may regard N as a module over the bigraded quotient algebra

Ry e Ay k[0, 0]
- (0102)  (0F,05,010)
Now assume N is a bounded bigraded As-module which does not contain any projective-
injective summands. By the above discussion, N is a bigraded module over A},. Write for each
term

where
D% = Ker(d;) N Ker(dy) N NI

is the subspace annihilated by both d; and dy, and C*/ is an arbitrary complementary vector
subspace to D%/ inside N%/. Necessarily,

&y (CP9) € DY, gy(CH) ¢ DIt

since 0102|y = 0. Thus, there are two direct summands of N containing the subspaces o
and D7

i

Ci—1i+1 9 pij+

In particular, if we further assume that N as above is indecomposable, then there must
be (i,7) € Z? such that N is isomorphic to one of the above “zig-zag” modules, and either
C» = N% or D" = N¥%I. Flattening out the zig-zag, say, the first one, we may identify N
with an indecomposable finite-dimensional representation of the A quiver with the alternating
orientation

0o o o1

Ditli %2 i1 %

L i 9 pig Civi

By the classical result of Gabriel (see, for instance, [24]), such an indecomposable module must
be of the form

—k——k<~—k—>k<~——k—

Such an indecomposable module translates back into either the simple module or a zig-zag
module listed in Example 2.2 (cases (1), (3) and (4)). The theorem follows.
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Remark 2.6 (unbounded complexes). As the proof reveals above, one may extend Theorem 2.3
to the case of unbounded bicomplexes as well.

Case 5. Initially vertical and bounded from “below” or “above”; the bounded corner sitting
in bidegree (i, 7):

|

. ——

. k .
7 . (ZV
ZT»J’» ’ T ZT’i ’
k
k k ]
]1 k

Cohomology spaces of Zb 44 with respect to the vertical differential 02 are both zero. But the
collapsed total complexes which both have the form

~N >~

HW

. —

e

—_—

0—k> % k*®—0,

have different total cohomologies. It is readily seen that, for Z¢’j+7 the total differential is both

injective and surjective. However, for Z , the total differential is injective, but not surjective.
The cokernel of d is given by k sitting m the bidegree (i, 7).

Case 6. The module Z"/ ,, which starts horizontally and is bounded from below or above,
whose bounded corner lies in bidegree (i, j):

~

ZZ7.7

—,—

HW

Zlv.j

=t

i k
k

|

k—>k —
Cohomology spaces with respect to dy give a single k in bidegree (i,j). However, the total
cohomology of the collapsed complexes

0—sk>® —45 k>0

behaves differently. For Z_’f +, the total differential is clearly injective, but not surjective. The
cohomology classes represented by the vectors 1 sitting in bidegrees (i — r,j + r), r € N, are
all cohomologous, and their images in the total complex represent the same cohomology class
in degree i 4+ j. On the other hand, the total differential of Z “ s an isomorphism, and thus
there is no total cohomology.

Case 7. The module Z}’, which is unbounded in both directions. The underlined copy of k
sits in bidegree (i, 7). The modules are taken to be the same up to shifting (4, j) to (i +7r,j —r),
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where r € Z, and identifying Zi’j with Z“F17.

|

. —

Zzaj .

o

7:7‘7..
75

_

“f

~ —— =

Again, the vertical cohomology with respect to 0y of Zij are both zero. The total cohomology
for the collapsed complexes both have one-dimensional cohomology sitting in the cokernel of d.
In this case, the spectral sequences will not converge.

Let us call a bicomplex M = @i,jezMi’j bounded from Southeast when M* = 0 if i > 0 and
j < 0. A bicomplex M is called bounded from Northwest when M* = 0 if i < 0 and j > 0.
Combining with the observations in Section 2.2, we see that if a bicomplex M is bounded
from Southeast, then, together with finite-dimensional summands, M may contain additional
summands of the form Z;ﬂr and ZZ_’f’ . However, taking 0s-cohomology first does not create
additional classes that need to be killed off in the total cohomology. Similarly, bicomplexes that
are bounded from Northwest may contain infinite-dimensional summands of type Z;J_ and Z"] _.
Taking 97 cohomology contributes nothing towards total cohomology.

Corollary 2.7. If M is a bicomplex bounded from Southeast, then there is a spectral sequence
whose Ey page equals (H(M, ds), 1), converging to the total cohomology of M. Likewise, if M is
a bicomplex bounded from Northwest, then there is a spectral sequence starting at (H(M, 0y), 02)
converging to the total cohomology of M.

Let us call a complex semibounded if it bounded from either Northwest or Southeast. A semi-
bounded complex cannot contain summands Zij or Z"’ that prevent either spectral sequence
from converging.

2.5 Connection to zig-zag algebras

Let us point out the connection between the category Mo of bicomplexes with the module
category over (an infinite version of) the zig-zag algebra considered in [16].
Let Q« be the following quiver whose vertices are labelled by r € Z:

=2 =]l T\ 4l ™ 2
o o o o o
~— ~— ~— X ~— ~

(2.2)
Set k@~ to be the path algebra associated to Qs over the ground field. We use, for instance,
notation (i|j|k), where i, j, k are vertices of the quiver ), to denote the path which starts at
vertex i, then goes through j (necessarily j =i+ 1) and ends at k. The composition of paths is
given by

jili j L ; iiliz] - - lip|g2l - -+ 17s), if i = 1,
Gilial -+ lir) - Gilgal -+ 1) = § L2l o Brldal ool e =
0, otherwise,

where i1,...,%. and j1,...,Js are sequences of neighboring vertices in ).
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Definition 2.8. The zig-zag algebra A = A is the quotient of the path algebra kQ, by the
relations, for any r € Z,

(rlr +1|r +2) =0, (rlr —1|jr — 2) =0, (rlr = 1r) = (r|r + 1jr).
We make the zig-zag algebra graded by setting!
deg(r) = deg(rjr +1) =0, deg(r|r —1) =1,

for all » € Z. It is a non-unital algebra with a system of mutually orthogonal idempotents
{(r)|r € Z}. There is an obvious automorphism 7" on A, defined by

T(r):=(r+1), T(rlr+1):=(r+1r+2), T(rlr—1):=(r+1|r).

For a fixed pair of integers (r,i) € Z2, there is a graded projective module P, (i) which is
generated by the idempotent (1), whose degree is shifted up by i. More explicitly, P,(i) is the
four-dimensional vector space with the basis

{(r)ai, (r+ 1r)oi, (r — 1|r)oy, (r|r + 1|r)ai},

where o; stands for the module generator sitting in degree 1.

We will consider the category of graded modules over A, which we denote by M(A), in
what follows. The automorphism 7" of A induces an autoequivalence 7 of M(A), defined
by T := (T~!)". Clearly T(P,(i)) = P,11(i) holds for all r,i € Z.

Given a module M = @; jezM*’ in My, we place the homogeneous bigraded component
of M%J at (i,7) in the corresponding node of the two-dimensional lattice Z2. For each r € Z, we
collect together M%Js on the line of slope one (depicted as the dashed line in the picture below):

M, = § M.
1—j=r
Note that M, is singly graded, with its homogeneous degree j part M} set to be M7+,
Since 0; and d have bidegrees (1,0) and (0, 1), respectively, they induce maps

Dy :=0r: Mﬂ—>MZ+1, Dy = (=1)"0y: Mj—M!*]

r—1»
These maps satisfy D% = 0, D% = 0 and D1Ds = DsDy. We put the vector space M, at
the rth vertex of A and declare the rightward (resp. leftward) going arrows to be the induced
map D (resp. D). We have thus obtained a graded A-module by summing over the r-degrees
My == BrezM,.
Schematically, we depict the correspondence as follows:

D1¢D1

Dy Do

!The grading is chosen to match with the convention of [16].
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Furthermore, a morphism f: M— N in Ms componentwise given by

F= @ @M @ N

1,jEZ 1,§EZ ,§EZ
satisfies
nfl = o, Guf = [T,
One has the associated morphism of bigraded A-modules, which is defined as

fri=E 7 Mi—N,, [ =1

1—j=r reZ

Clearly Dy f, = fr11D1 and Dsf, = fr—1D2 holds for all r € Z, so that f. is a morphism of
bigraded A-modules. This defines a functor Fo: Ma—r M(A).

As the above functorial assignment is clearly reversible, the functor F is invertible.

Proposition 2.9. The functor Foo: Ma—>M(A) is an equivalence of abelian categories. Fur-
thermore, the functor satisfies

Foo(M{1,0}) = T (Foo(M)),
Foo(MA0,1}) = T~ H(Foo(M))(1).

3 'Tricomplexes and braid group actions

3.1 The monoidal category of tricomplexes

We denote by i = (i1,142,13) an ordered triple of integers, and write i = i1e1 + izes + iges where
€1 = (1>O>O)a €2 = (07170)7 €3 = (070> 1)

In particular, we write 0 := (0,0,0) as the additive unit element.
Let A3 be the exterior algebra over k with three generators 0y, 0o, Js:

8]2 =0, j=123, 00k + 0r0; = 0, J#k.

We make A3 a triply-graded k-algebra, by assigning degree e; to 0;. Let M3 be the category of
triply-graded left As-modules with respect to tri-degree preserving maps. A module M consists
of a collection of k-vector spaces M;j,

M = M,
icZ3

together with linear maps 0;: M;— My, subject to the exterior algebra relations. It is useful
to visualize M as a 3-dimensional object: the vector space M;j sits in the i node of a 3-dimen-
sional lattice and the maps 0; go along oriented edges of the lattice. Below is a portion of M
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depicted:
M j k+1) M j41,k+1) M ji2,k11)
% M(i+1,j,k+1) - M(i+1,j+1,k+1) - M(i+1,j+2,k+1)
o
M(Z"]’k) : - M(l,]—‘,—l,k) - M(747]+27k)
Mit1,5m) Mi1,41,k) Miy1,j42.8)
M(z‘,j,k—l) - M(i,j+1,k—1) — | M(i,j+2,k—1)

M1 jp—1) — Mit1j0160-1) — > M1 42.5-1)

The grading shift by i, denoted {i}, is an automorphism of Mj3. Any simple object of M3

is isomorphic to S; := k{i} for a unique i. Here k is a one-dimensional k-vector space, in
tridegree 0, viewed as a Ag-module with the trivial action of 9y, ds, Os.
Any indecomposable projective in Mg is isomorphic to P; := As{i}, for a unique i. Any

projective in M3 is isomorphic to the direct sum of F’s, possibly with infinite multiplicities.
Since Ag is a trigraded Frobenius algebra, the P; are also injective objects of M3. A module M
contains P; as a direct summand (and not just as a submodule) if and only if 910203m # 0 for
some m € M;.

Let @ = Asw/A305w be the cyclic module with one generator w in tri-degree 0 and relation
Osw = 0. We depict ) as a square

k82w g kag 810.)

o] lo

kew i> k@lw.

There is a graded isomorphism of modules @ = Ag/03As3.

The algebra As is a Hopf algebra in the category of trigraded (super) vector spaces, where
the (super) Z/2Z-grading is given by reducing i + iz +i3 modulo 2, and A(9,) = 0, ®1+ 1R 0,.
Consequently, the tensor product M ® N of trigraded As-modules is a trigraded As-module,
with 0, acting by

d(men)=0,(m)@n+ (-1)"m® d,(n), r=1,2,3,

where m is in degree (i1, i2,13).
Similarly, there is a trigraded inner-hom on Ms, defined by

HOMy. (M, N) := @5 Homy (M, N{i}),
iez3
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where the right hand side is the direct sum of homogeneous linear maps from M to N{i}. The
inner hom space carries a natural A3 action defined by, for any f € Homy (M, N{i1,i2,i3})

ar(f)(m) = 0,(f(m)) — (=)™ f(O,(m)),  r=1,2,3. (3.1)
The spaces of As-invariants under this action consist of morphisms in M3 of all degrees:
HOM, (M, N)** = @5 Homq, (M, N{i}).
iez3

It is useful to regard Ao and A; as certain graded Hopf subalgebras in As. To do this, we
break the apparent symmetry and define Ao to be the subalgebra generated by 97 and ds, while
setting A} to be the subalgebra generated by d3. The natural algebra inclusions

t: Ao — As, 9: A} C A3
admit retractions
pr Az—As, vi Ag—Al, (3.2)

which are respectively given by setting d3 or 01, 02 to be zero.
Using these subquotient algebras, we define a functor by taking “partial graded-hom” with
respect to Af, as follows. Fix i and j degrees. Given any M € Mg, set

Mi,j = V* (@ Mi,j,k) N

kEZ

where in the last term, we only keep the Aj-module structure on ®rM; j . The functor extends
naturally to morphisms in M3, and has the effect, on objects, of taking the direct sum of M; ;
over k € Z. It remembers the J3-complex structure inherited from that of M, while making 0y, 0o
act by 0.

3.2 A braid group action

In this section, we exhibit a braid group action on the stable category of trigraded As-modules.
The tensor product @ ® M; ; is an object of M3, with 0;, 02 acting only along @ (since their
actions on M; ; are trivial) and 03 acting along M; ;.
Consider the functor

U.(M) = @ Q& M.

i—j=r

Geometrically, we take the plane P, = {(i,j,k)|i —j = r} in Z3, with vector spaces M;
sitting in the nodes, and form four copies of the plane (the tensor product with @) related by
the differentials 0; and d5. The differential 03 acts along edges (i, i+e3) contained in the plane P,.
We depict the summand Q®M; ; in the next diagram. For a fixed e3-degree k, Q® M; ; ;. has four
copies of M; ;j, sitting in degrees (4, j, k), (i+1,7,k), (¢,7+1,k) and (i+1,j+1, k) respectively.
They correspond to

kw ® Mi,j,ka kojw ® Mi,j,k> koow ® Mi,j,k> kOyO1w ® Mi,j,k:-
All maps except for
O M1 = kOow @ M; . —k0201 @ M; 1 = M, 1.

act as identity maps, which is the negative identity map.
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Now, summing over k and keeping track of the differential 03, we obtain the diagram

Here the differential 03 points perpendicularly out of the plane.

Proposition 3.1. The following isomorphisms between endofunctors of Ms hold:

U =u.{1,1,0} o U,,
urur:tlur = Z/{T{17 17 O},
UUs =0 it |r—s|>1.

Proof. We start with the first equation. We compute the left hand side as

WM = P uQe M, =P (EB Q®(Q®Mi,j)k,l>

i—j=r i—j=r \k—Il=r

= @ Q® (kw &® Mi,j D k01w ® Mi,j)

i—j=r

~ | PoeskweM,;|o| P Qokhdwe M,

i—j=r i—j=r

=~ U (M) & U, (M){1,1,0}.

Here, in the third equality, we have used that @) ® M; ; has only two terms concentrated on the
line k — [ = r (see the above picture (3.3)).
For the second isomorphism, we have (taking the r + 1 case)

Unlhy 11U (M) = €D Ulhe11(Q @ Mij) = D U (Q® (k1w @ M ;)

i—j=r i—j=r
= @ Q @ kdow @ kOw @ M; j = @ Q®M,;{1,1,0}
i—j=r i—j=r
The last isomorphism is easy, and we leave it as an exercise to the reader. |

Remark 3.2. Perhaps the cartoon below, in the scheme of equation (3.3), helps visualizing the
equalities in the above proof. We show this for equation (3.4) as an example. Depict a copy
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of M; ; by a box in the lattices below. A black dot in a box indicates the term contributing to
the functor on the outward arrow:

There exists a unique morphism in M3y
Q® M; ;— M, (3.5)

which takes w ® m to m. This morphism takes diw ® m to dym, etc.
Summing over i, j such that i—j = r, morphisms (3.5) combine into a module homomorphism

in.: Up(M)—M

natural in M. Thus, in,: U, = Id is a natural transformation of functors on Ms.
Next, we construct a module homomorphism

M 22y (M){—1,—1,0}.

Denote by MY the underlying trigraded vector space of M, while only remembering the
A’-module structure. Consider the map

out: M—Q ® M"{-1,-1,0},
m = (—1)7 (w @ 9102(m) 4+ 1w ® Do(m) — Dow @ Dy (M) + H1Daw @ m),
where m € M; ; ;. is a homogeneous element.
Lemma 3.3. The map out: M—Q ® M"{—1,—1,0} is a morphism of trigraded As-modules.

Proof. The map clearly commutes with ds-actions on both sides, as 03 kills w and anti-
commutes with 07 and Js. To verify that out also commutes with d; and 0, requires a small
computation. We check, for instance, that it commutes with 9y, and leave the Js-computation
to the reader.

On the one hand, if m € M; ; 1, and using that 0, acts trivially on M", we have

81(out(m)) = (—1)i+j(81w X 8182('m) — 010w ® 01 (m))
On the other hand,

out(61 (m)) = (—1)i+j+1 (81(,0 X 32(81 (m)) + 0109w ® Oy (m))
= (=)™ (—91w ® 0102(m) + D1 0sw @ 1 (m)) .

Comparing these expressions, the commutativity with the 0;-actions follows. |

Since Q ® MY naturally decomposes into a direct sum of As-modules

Qe MY @Q®Mm,

i,jEZ
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for each r € Z, we have a natural projection map of Az-modules

T Q@M—) @ Q®Mz,j

i—j=r
We can thus define the composition map
out, := m oout: M—U,(M){-1,—1,0}.

Componentwise, out, has the effect, for a homogeneous m € M, ; 1,

(=1 (w ® 10am + O10ow @ m), ifi—j=r,
-1 i+J o ifi— i — 1
Outr(m) = < ) '81(»0 ®© 2(m>7 1 Z .7 r—+ 1, (36)
(11806 24 (m), oo
0, otherwise.

We have thus obtained out, as a tri-grading preserving homomorphism of As-modules, functorial
in M. In other words, similarly as for in,, the map out,: Id = U,{—1,—1,0} is a natural
transformation of functors.

Let SM3 be the stable category of trigraded left Ag-modules. It has the same objects as M3
and the morphisms are those in Mg modulo morphisms that factor through a projective object
of M3. In particular, a projective trigraded Az-module is isomorphic to the zero object in SM3.
The stable category is triangulated, with the shift functor [1]sa taking M to the cokernel of
an inclusion M C P, where P is a projective module. For concreteness, we can choose P to be
A3 ® M{-1,—1,—1}, with the inclusion taking m to 910205 ® m. The shift by {-1,—-1,—1}
makes the inclusion grading-preserving. Then M[l]sa = A ® M where

A = A3/(910205){~1,~1, -1}
The cone of a morphism f: M—— N is defined as the cokernel of the inclusion
MCN® A3 M{-1,-1,-1}),

which takes m to (f(m), 010205(m)). For more details, we refer the reader to Happel [9]. We will
need the following result computing morphism spaces in SM3, bearing in mind the A3 action
defined in equation (3.1).

Lemma 3.4. Given two objects M, N € SMs, there is an isomorphism

_ HOHIM3(M1N)
Homgspy (M, N) = 10503 Homy (M, N{—1,—1,—1})"

Proof. See [21, Corollary 5.5]. [ |

We introduce another cone construction defined for morphisms in the abelian category Ms.
Given a morphism f: M— N in Ms, the 03-cone C3(f), as a trigraded vector space, is the
object M{0,0,—1} @ N, on which the As-generators act by

d3(m,n) = (—0sm, f(m) + d3(n)), (3.7)
and 0;(m,n) = (0;m, d;jn) for j =1,2.

Alternatively, regard A} = k[03]/(03) as a trigraded As-module via the homomorphism v (see
equation (3.2)), the d3-cone is defined as the push-out of f: M— N and d3®1Idy: M—A| @M.
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This is the top square of the following diagram, whose columns are short exact in the abelian
category because of the push-out property:

M / N

- |
(

Ay @ M{0,0, -1} —— Cs(f

W

)
M{0,0,~1} ,0,—1}.

Define R, := C3(in,), i.e., it is the functor in M3 that takes a module M to the d3-cone of the
homomorphism in,: U.(M)—M. Let R, := Cs(out,){0,0,1}, which takes M to the 95-cone
of out, : M—U,(M){—1,—1,0}, with the grading shifted by {0, 0,1}, so that the vector spaces
in the nodes of M stay in their original tridegrees, and 05 changes sign in its action on U, (M),
not M.

Lemma 3.5. The functors R, R.. descend to well-defined functors on the stable category SMs.

Proof. It suffices to show that, if M is a projective Ag-module, then R, (M) and R.(M) are
both projective. Let us do this for R,, and the R/ case is similar.
By (3.8), R-(M) fits into a short exact sequence of Ag-modules

0—M—R,(M)—U,(M){0,0,—1}—0.

Since Ag is Frobenius, M is also injective and the above sequence splits. We are thus reduced to
showing that U, (M){0,0,—1} is graded projective. Without loss of generality, we may assume
that M = As{i, j, k} is indecomposable. As Aj-modules, there is a direct sum decompostion

As = A} & A1{1,0,0} & A1{0,1,0} & A7{1,1,0}.
Using this decomposition and the fact that Q ® v*(A}) = Az, we have

A3{17]7k}@A3{Z+17]+15k}a i*j:T‘,

s . A 7’-—’_]—7.7]{;7 7;—':7“"‘17
UT(A3{Z7]7k}) = 3{. . J } . j
A3{17]+17k}7 7'_.7:7'_17
0, i—j—r|> 1.
The result follows. |

Theorem 3.6.

(i) The functors R,,R.. are invertible mutually-inverse endofunctors on the stable catego-

ry SMs.
(13) The following functor isomorphisms hold:
R’!’R’I‘“"IRT = Rr+1RrRr+la (393>
R:Rs 2 RsRy if |r—s|/>1. (3.9b)

Consequently, the collection of functors {R, |r € Z} gives rise to an action of the infinite braid
group of infinitely many strands Bro, on the triangulated category SMs.
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The proof of the theorem will occupy the next subsection.

Remark 3.7. In this section, we have interpreted the three differentials of A3 in two different
ways: the Ay C As plays the role of the algebra A (cf. Section 2.5), while J5 behaves more
like a “homological differential”. This apparent symmetry breaking allows one to construct
three equivalent braid group actions on SMjs as in Theorem 3.6, by the automorphism of Aj
permuting the indices {1, 2, 3}.

3.3 Proof of Theorem 3.6
Invertibility of R,. First we show R/ R, = Id. We check the effect of the left hand side on a
trigraded As-module M.

Ry (Ry(M)) = R, (U (M){0,0,~1} 225 1)

—in,

U, (M){0,0, -1} M
outrl loutr . (310)
UR(M){~1, 1,0} —2 04 (M){~1,~1,1}

12

Here, in the diagram, the horizontal arrows are interpreted as the ds-differential arising from the
0Os-cone of in,, while the vertical arrows indicate that of out,. The differential action by 91, 0o
preserves the position of the node, while the 03 acts both internally at the nodes and transfer
elements long the arrows (see equation (3.7)).

By Proposition 3.1, we may decompose

UA(M){-1,-1,0} =2 U.(M) ® U.(M){-1,—-1,0}. (3.11a)

As in the proof of the proposition, we further identify

UT(M) = < @ Q®81620)®Mi,j>{—1,—1,0}, (3.11b)
i—j=r
UT(M){—l,—l,O} = ( @ Q@w@Mi,]){—l,—l,O}. (3.11C)
i—j=r

By the definition of the d3-cone, the sum of terms on the lower horizontal line of (3.10) con-
situtes a Asz-submodule of R} (R,(M)). The morphism in, on the lower horizontal line of (3.10)
maps the summand (3.11c) isomorphically onto U,{—1,—1,1}. Hence we have in R, (R,(M))
a Asz-submodule

(U (M){=1,-1,0} 25 Uy (M){~1,-1,1})
= U (M) @ v*(A) = @D (Q® v (A)) @ M. (3.12)

i—j=r

As Q ® A} = As is a tri-graded free Ag-module, it is a not only a submodule in R,.(R,(M))
but also a direct summand, which is annihilated when passing to the stable category SMs. We
thus may safely identify R, (R,(M)) with the quotient of it by this submodule, which we denote
by Ml.

Now M is clearly a Ag-submodule in M;. We claim that M; /M is also a free Az-module, and
hence is a direct summand in M; whose complement is isomorphic to M. It then follows that
the natural inclusion map M < M; is an isomorphism in SMs3.
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To prove the claim, note that
My /M = (U (M){0,0, -1} 225 14, (M),

where the right hand side denotes a 03-cone. If m € M; ; is a homogeneous element, the map
out, has, by equation (3.6), the effect

out, (w®@m) = (=1)™ (w @ 10w @ M + 0100w @ w @ M),
out, (1w ®@m) = (=190 ® 90w @ m,
out,(Oew @ m) = (— 1)i+j+282w ® 0100w @ m,

(0

out, (010ow ® m) = (—1)i+j+28182w ® 0109w @ m.

The right hand side of the first equation contains elements in U,.(M){—1,—1,0} (see equa-
tion (3.11c)), which has already been mod out in M;. The rest of the terms on the right hand
side of the equations have their middle term 0;0ow. It follows that out, maps U, (M){0,0,—1}
isomorphically onto U, (M). The claim follows.

It is not hard to find a summand in R} (R,(M)) isomorphic to M. Denote by

out’>: M—Q® Q" ® MY, mHZhi@Jw@mi,
i
where h;, m; are the components of out,.(m) = >, h; @ m; € Q ® M? as in equation (3.6). The
submodule

{(—outi?’(m),m) |m € M} C Z/{,?(M){—l, -1,0}e M

constitutes, by the above discussion, a As-summand isomorphic to M. The inclusion of this
summand realizes the functor isomorphism Id = R/ R,.

The isomorphism R, R! = Id follows by a similar argument. Essentially, one just needs to
flip the last term of (3.10) along its northwest-southeast diagonal. We leave the details to the
reader as an exercise.

Braid relations. We next check the functor relations (3.9a) and (3.9b).

The commutation relation (3.9b) is easy to check, as one can readily see that both sides
are functorially isomorphic, when applied to a trigraded As-module M, to the 0s3-cone of the
morphism in, @ ing:

U-(M){0,0, -1}

Us(M){0,0,—1}

Here we have applied Proposition 3.1 so that U,Us(M) = 0 = UU,.(M).
To check the functor relation (3.9a), we first compute R, R,11R, applied to a Ag-module M,
which is equal to the total 03-complex

—ing41

U Uy iy (M ){oo —2} 2 (M){0,0, —

71nr
1n7‘+1 1nr+1

U Uy 1 U (M){0,0, -3} —2 142(M){0, 0, 2} U1 (M){0,0, —

\ — ln,,

M){
Uy alhy (M){0,0, =2} —=UUr(M){0,0, -1}

in,
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We will gradually strip off the projective-injective summands of this module, which, for brevity,
we will call My in what follows.
By Proposition 3.1, we identify

Uty 11U (M){0,0, -3} = U (M){1,1,-3} = P Q® 0w ® diw @ M;;{0,0, -3}

1—j=r

By the definition (3.5) of in,41, the external ds-differential —in,; maps this term isomorphically
onto the summand U, (M){1,1, -2} of

urQ(M){Oa Oa _2} = UT'(M){L 17 _2} ® Z/{r{07 0> _2}' (313)
Indeed, componentwise, the morphism has the effect

Q ® Oow ® O1w ® M; j{0,0, =3} —Q ® 0102w ® M; ;{0,0, =3},
h® OwR@OwRm— —h® 00w m.

Via these identifications, denote the direct sum of every term in My other than U, (M){1,1, —3}

and U, (M){1,1,—2} by M;. Clearly M; is a As-submodule, whose quotient is equal to the
OJ3-cone

—1d _
(ur(M){la 1a _3} M UT(M){L 17 _2}) :
This cone is a projective-injective object in Mg (cf. equation (3.12)). Hence M is isomorphic
to MO in SMg
Next, inside M, the second summand of (3.13) maps onto the anti-diagonal in the direct
sum of two copies of U, (M){0,0, —1}. Therefore
(ur(M){Oa 0, _2} L@mr> Im(_inT D in?’)) = C3(Idur(M){0,0,—1}>

is a projective Ag-module, and thus is isomorphic to zero in SM3s. Modulo these terms, and
equating the quotient as under the sum map

U, (M){0,0, 1} & U, (M){0,0, —1} /Tm(—in, & in,) 2 U, (M){0,0, -1},

we have that M; is isomorphic to the following total d3-cone Ms:
u’/‘MT-‘rl(M){Oa 07 _2} i) MT+1(M){O7 07 _1}

. in
—inp41 K

—in,

My

M |- (3.14)

in,

inr+l

U1 Uy (M){0,0, —2} 1 14,(M){0,0, —1}

It follows by the above discussion that R, R,+1R,(M) is isomorphic to My in SM3, and this
isomorphism is clearly functorial in M.

A similar computation for R,41R,R,+1(M) shows that it is functorially isomorphic to M,
of equation (3.14). The braid relation follows.



A Faithful Braid Group Action on the Stable Category of Tricomplexes 27

3.4 Connection to homological algebra of zig-zag algebras

In view of Section 2.5, it is not surprising that trigraded As-modules are closely related to the
homological algebra of the zig-zag algebra A. The main goal of this subsection is to utilize this
relationship to establish the faithfulness of the braid group Bry, action on SM3 (Theorem 3.6),
building on the results of [16].

Let M be a complex of graded A-modules

M = ("‘_>Mk71dk__;Mkﬂ>Mk+1_>”'>a

where each My, = @ ez M, ,ﬂ is a graded A-module. Recall that a morphism f: M —— N is called
null-homotopic if there is a collection of homogeneous A-module maps hy: Mp—Ni_1, k € 7,
such that di_1hg + hi11dr = fi holds for all k. The homotopy category C(A) is the quotient of
the category of chain complexes of graded A-modules by the ideal of null-homotopic morphisms.
A complex M is called contractible if Id; is null-homotopic.

The homotopy category C(A) carries two commuting grading shifts denoted by (1) and [1]
respectively. They are defined by

(M) =M (M) = M,

In addition, the automorphism 7 of M(A) extends to an automorphism of C(A), denoted by
the same letter, defined by termwise applying 7 on complexes:

T (dg-1) 7
R

T(M) = (- —T (M) T(M) T (M) — - .

In what follows, we will also use the notation C(A-pmod) to stand for the full subcategory
of C(A) consisting of complexes of graded projective A-modules up to homotopy.

We also re-interpret chain complexes of graded A-modules as differential graded modules
over the graded dg algebra (A,d), where A sits in homological degree zero, and the natural
grading of A is orthogonal to the homological grading. A chain complex of graded A-modules
is equivalent to the data of a differential graded (A, d)-module

M= M, d)cmi,,.
J,k€EZ

Extending the (inverse) equivalence of Proposition 2.9, there is an auto-equivalence of abelian
categories

Goo: (A,d)-mod— M3,

where, on the object Goo(M) € M3 for a given M € (A, d)-mod, the generator d3 acts by the
differential (—1)*d: My — M. It follows from Proposition 2.9 that G, commutes with the
translation by the various shift functors as follows:

Goo (M (1)) = Goo (M){1,1,0},
Goo(M([1]) = Goo (M){0,0, —1},

As a result, one can deduce that

Goo(Pr(J) [K]) = Q{r + j, j, —k}. (3.16)
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Lemma 3.8. A morphism of chain complezes f: M— N of graded A-modules is null-homotopic
if and only if it factors through the canonical embedding of graded dg modules over A

s M—M @k[d]/(d?)[1], mi—m®d.
Consequently, M is contractible if and only if M is a dg summand of M ® ]k[d]/(dz)[l].

Proof. Suppose f = dh + hd: M— N is null-homotopic, with A: My— N1 the null-homo-
topy map. We define

h: M @k[d]/(d*)[1]—N

by, for any homogeneous m € Mj,

~

h(m®1) = (=1)*n(m),  h(m®d) = dh(m) + hd(m).

It is an easy exercise to check that his a map of dg A-modules. Then, we clearly have a fac-
torization f = ho Apy.
Conversely, if there is a factorization of dg A-modules

f

AM /

M @ kld]/(d?)[1],

M N

define h: M—N by h(m) := (—1)kﬁ(m® 1) for any m € Mj,. Another easy computation shows
that f = dh + hd is indeed null-homotopic. |

For the next result, for any graded dg module M over A, denote by M* the corresponding dg
module with the same underlying bigraded A-module as M, but the differential acting by zero
instead. Under the equivalence G, this corresponds to the p-pull-back (see equation (3.2)) of
a trigraded As-module.

Lemma 3.9. Let M be a graded dg module over A. There is an isomorphism of dg modules
drr: M @kld)/ (d2)—M* @ kld]/ (),

defined by
pu(m®1l)=mel,  symed) = (-1)""dm)el+med

for any m € Mj,.

Proof. It is an easy computation to verify that ¢;; commutes with the respective differentials
on both sides. The inverse of ¢ is given by

Vs MP@k[d]/(d*)—M @k[d]/(d?),
where, for m € Mjy,
Yy(me1l):=m®el1, Yvaurm@d) = (=1)*d(m) ®1+m e d.

Clearly, both ¢5; and 1, are homogeneous A-module maps. The lemma follows. |
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Corollary 3.10. The functor G : (A,d)-mod— M3 descends to an ezxact functor
G: C(A-pmod)—SMs.

Proof. By Lemma 3.8, C(A-pmod) is the categorical quotient of the category of chain complexes
of graded projective A-modules by the ideal of morphisms factoring through objects of the form
M ®k[d]/ (dQ), where M ranges over all chain-complexes of graded projective A-modules. For G
to be well-defined, it suffices to check that, under the functor G, such objects are sent to the
class of projective-injective objects in Mj3.

By Lemma 3.9, there is an isomorphism of graded dg modules

M @ kld]/(d%) = M* @ k[d]/(d*) = @@ M} @ Kkd]/(d).
k

As each M]' is a projective A-module, the result follows since, by Proposition 2.9,
G(Pr(7) @ k[d)/(d®)[—K]) = Q{r,r + j, k} © A} = Ag{r,r + j, k}

holds for any r, j, k € Z.

It remains to show that G is exact, i.e., it commutes with homological shifts and takes
distinguished triangles to distinguished triangles.

Given a complex M of graded projective modules over A, there is a short exact sequence

0—M 2 M @ K[d]/(d%) [1]— M[1]—0.

Applying G, to the short exact sequence, we obtain a short exact sequence of Ms:

Anr)

0—Goo (M) 2=, G (M @ K[d]/ () [1]) —Goo (M [1])—0,

which, in turn, leads to a distinguished triangle in SMsj:

G(Anm) (1]

G(M) G(M @k[d]/(d?)[1])—G(M[1]) — G(M)[1]sm-

By the earlier discussion in this proof, the term Goo (M ® k[d]/(d?)[1]) vanishes in SM3, and
thus there is an isomorphism

G(M[1]) = G(M)[lsm,

which is clearly functorial in M.
Lastly, notice that distinguished triangles in C(A-pmod), up to isomorphism, arise from short
exact sequences of chain-complexes of graded projective A-modules

0—> My —> M — My—0.

Applying G, to this sequence, we obtain a short exact sequence of trigraded Asz-modules. This
sequence results in a distinguished triangle in SMs3, being the image of the original triangle
in C(A-pmod). The exactness of G now follows. [

Denote by C(A-pmod), C*(A-pmod) and C~(A-pmod) the full triangulated subcategories of
C(A-pmod) consisting of, respectively, bounded, bounded-from-below and bounded-from-above
complexes of graded projective modules over A. The localization functor from C(A-pmod)
into D(A) restricts to equivalences of categories on these full-subcategories onto their respective
images in the (dg) derived category D(A).
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Theorem 3.11. The functor G: C(A-pmod)—SMs3 is fully-faithful.

Proof. The proof is divided into three steps.

As the first step, we claim that G, when restricted to the full-subcategories C*(A-pmod), is
fully-faithful. To do this, we identify these categories with their images in D(A) under localiza-
tion, and use the fact that the (dg) derived category of (A, d)-mod is compactly generated by
the collection of objects { P, (j)[k]|r,j,k € Z}. Then, in order to prove the claim, we just need
to compare the morphism spaces between the generating objects P, (j)[k], r, j, k € Z, and their
images G(P,(j)[k]) = Q{r + j,j, —k} in SM3 [11, Lemma 4.2].

On the one hand, we have

,

~

r1), ri =12, j1 = J2, k1 = ko,
k(ry|ri +1), r1=r2+1, j1 = J2, k1 = ko,
Home 4y (P, (1) [k1], Pry (52) [R2]) = { k
k

0, otherwise.

ri|r—1), r1=re—1, j1 =Jj2 — 1, k1 = kg,

(
(
(
(

ri|ri 4+ 1r), ri=re, j1 =Jjo+1, k1 = ko,

On the other hand, we can compute the morphism spaces of G(P,(j)[k]) using Lemma 3.4

Homsmy (G(Fry (1) [K1]), G (P, (G2) [K2])
= Homp, (Q, Q{r2 + j2 — r1 — j1,J2 — j1, k1 — ka})
= Homn, (Q, Q{72 + j2 — 71 — j1, J2 — j1, k1 — ka}).

The second isomorphism follows since Jd3 acts trivially on @ and its grading shifts. Note that
the last space is non-zero only if k1 = ks, since the Ay action preserves the k-grading. When
ki1 = ko, we can compute

TL=T2, J1 = J2,
ri=r2+1, j1 = Jjo,
ri=re—1, j1=j2—1,
rn=re, 1 =J2+1

Homs at, (G(Pry (1) [k1])sMy G(Pry (J2) Rl sm)) =

Rl

Comparing these computations, the claim follows.
In the second step, we show that

Homg( ) (M, N) < Homg g, (G(M), G(N))

is a bijection if one of M or N lies in C*(A-pmod). Assume, for instance, that M € CT(A-pmod)
and N € C(A-pmod). Without loss of generality, we may assume that M = 0 for all k < 0.
Then, N fits into a distinguished triangle

Nooi—N—Ne_p 2 No 1],
where N>_ is the subcomplex of NV of the form

Noq = (--~—>0—>N_1 Ny o, Ny &)
and N<_» is the quotient complex

N< 9= ( E)N%B)Nf?)ﬂ]\rﬁ_)o_)...)‘
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It is readily seen that, in the homotopy category, we have
HOIHC(A)(M, N<,1) = 0, HOIIIC(A)(M, N<,1[—1]) =0.

Likewise, as the k-degrees of the objects G(N._1) and G(N._1[—1]) are bounded above by —1,
we have that, by Lemma 3.4,

Homsa, (G(M),G(N<—2)) =0,  Homsmy(G(M), G(N<—2)[~1]sm) = 0.
Therefore, by the previous step, we have that
Homg(4)(M, N) = Homg(4)(M, N>_1)
= Homsu,(G(M),G(N)) = Homsp, (G(M), G(N=-1)).

The other cases are similar, and we leave them as exercises to the reader.
Finally, assume both M and N are any objects of C(A-pmod). We can truncate N as

Nsg—N—Ne_1 2 Noo[t],
Then, we have the commutative diagram
-« — Homg4) (M, N>) Homg(4) (M, N) Homg(4) (M, Ne_j) ——---
lg g lg
-+ = Homg s (G(M), G(N>0)) = Homs s (G(M), G(N)) = Homsry (G(M), G(N< 1)) = -+

The middle vertical arrow is then an isomorphism by the classical five lemma and the previous
case. This finishes the proof of the theorem. |

In [16], a braid group action on the homotopy category C(A) is introduced. The braid group
generator R, acts, on a chain complex M of graded A-modules, by

R (M) = C(PT ® (1M L M),

where f is the left A-module map determined by (r) ® (r)m — (r)m.
Lemma 3.12. The functor G commutes with the braid group actions on C(A-pmod) and SMs.

Proof. It suffices to show that each R, commutes with G. This follows from equation (3.16),
Proposition 2.9 and the fact that G sends the cone construction in C(A-pmod) to that of the
O3-cone in SMs. [ |

Corollary 3.13. The action of Bry, on the category SMs is faithful.

Proof. In [16, Corollary 1.2], it is shown that the braid group Br,,+1 on m + 1 strands acts
faithfully on C°(A,,-pmod). The Corollary then follows from Theorem 3.11, Lemma 3.12 and
taking the limit m — oo. |
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