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1 Introduction and Main Results
1.1 The Model and Parisi’s Solution

The study of mean field spin glass models is a very rich and important part
of theoretical physics [20, 21, 32]. For mathematicians, it is a challenging pro-
gram [26, 37, 41]. Roughly speaking, the main goal is to study the global maxima
or, more generally, the “largest individuals” of a stochastic process with “high-
dimensional” correlation structure.

The classic example of such a process is the mixed p-spin model. Its Hamil-
tonian (or energy) HN is defined on the spin configuration space †N D f�1; 1gN

by

HN .�/ D XN .�/C h

NX
iD1

�i

for
XN .�/ WD

X
p�2

cpXN;p.�/:

Here, the processes XN;p are pure p-spin Hamiltonians defined as

XN;p.�/ D
1

N .p�1/=2

X
1�i1;:::;ip�N

gi1;:::;ip�i1 � � � �ip ;

where gi1;:::;ip are i.i.d. standard normal variables for all 1 � i1; : : : ; ip � N and
p � 2: The real sequence .cp/p�2 satisfies

P
p�2 2

pc2p < 1: The parameter
h 2 R denotes the strength of the external field. By definition, the covariance of
XN can be computed as

EXN .�
1/XN .�

2/ D N�.R1;2/;

Communications on Pure and Applied Mathematics, Vol. LXXIII, 0921–0943 (2020)
© 2020 Wiley Periodicals, Inc.



922 A. AUFFINGER, W-K CHEN, AND Q. ZENG

where
�.s/ WD

X
p�2

c2ps
p

and

R1;2 D R.�
1; �2/ WD

1

N

NX
iD1

�1i �
2
i

is the normalized inner product between �1 and �2, known as the overlap. The
covariance structure of XN is as rich as the structure of the metric space .†N ; d /,
where d is the normalized Hamming distance on †N ,

d.�1; �2/ D
1 �R.�1; �2/

2
:

The problem of computing the maximum energy (or the ground state energy) of
HN as N diverges is a rather nontrivial task. Standard statistical mechanics deals
with this problem by considering the Gibbs measure

GN;ˇ .�/ D
1

ZN;ˇ
eˇHN .�/

and the free energy

FN;ˇ D
1

ˇN
logZN;ˇ ;

where ZN;ˇ is the partition function of HN defined as

ZN;ˇ D
X
�2†N

eˇHN .�/:

The parameter ˇ D 1=.kT / > 0 is called the inverse temperature, where k is
the Boltzmann constant and T is the absolute temperature. The main goal in this
approach is to try to describe the largeN limit of the sequences of the free energies
FN;ˇ and the Gibbs measures GN;ˇ . When the temperature T decreases, large
values of HN become more important (to both the partition function ZN;ˇ and to
the Gibbs measureGN;ˇ ), and they prevail over the more numerous smaller values.
SinceHN is a high-dimensional correlated field with a large number of points near
its global maximum, this question becomes very challenging, especially for small
values of T .

When �.s/ D s2=2 and h D 0, the model above is the famous Sherrington-
Kirkpatrick (SK) model introduced in [34] as a mean field modification of the
Edwards-Anderson model [14]. Using a nonrigorous replica trick and a replica
symmetric hypothesis, Sherrington and Kirkpatrick [34] proposed a solution to the
limiting free energy of the SK model. Their solution, however, was incomplete; an
alternative solution was proposed in 1979 in a series of groundbreaking articles by
Giorgio Parisi [28–31], where it was foreseen that:
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(i) The limiting free energy is given by a variational principle, known as the
Parisi formula.

(ii) The Gibbs measures are asymptotically ultrametric.
(iii) At low enough temperature, the symmetry of replicas is broken infinitely

many times.
The first two predictions were confirmed in the past decade. Following the beau-

tiful discovery of Guerra’s broken replica symmetry scheme [16], the Parisi for-
mula was proved in the seminal work of Talagrand [40] in 2006 under the convex-
ity assumption of �. Later, in 2012, the ultrametricity conjecture was established
by Panchenko [25] assuming the validity of the extended Ghirlanda-Guerra identi-
ties [15]. These identities are known to be valid for the SK model with an asymp-
totically vanishing perturbation and for generic models without any perturbation.
Here, the model is said to be generic if the span of f1g [ fsp W cp ¤ 0g is dense
in the space of continuous functions C Œ�1; 1� under the maximum norm. As a
consequence of ultrametricity, the Parisi formula was further extended to all mixed
p-spin models by Panchenko [27] utilizing the Aizenman-Sims-Starr scheme [2].

More precisely, the Parisi formula for general mixtures is stated as follows. De-
note by M the collection of all cumulative distribution functions ˛ on Œ0; 1� and by
˛.ds/ the probability induced by ˛. For ˛ 2M , define

Pˇ .˛/ D
log 2
ˇ
C‰˛;ˇ .0; h/ �

1

2

Z 1

0

ˇ˛.s/s� 00.s/ds;(1.1)

where ‰˛;ˇ .t; x/ is the weak solution to the nonlinear parabolic PDE

@t‰˛;ˇ .t; x/ D �
� 00.t/

2

�
@xx‰˛;ˇ .t; x/C ˇ˛.t/.@x‰˛;ˇ .t; x//

2
�

for .t; x/ 2 Œ0; 1/ �R with boundary condition

‰˛;ˇ .1; x/ D
log coshˇx

ˇ
:

For the existence and regularity of ‰˛;ˇ , we refer the readers to [6, 17]. The Parisi
formula [40] states that

Fˇ WD lim
N!1

FN;ˇ D inf
˛2M

Pˇ .˛/ a.s.(1.2)

The infinite-dimensional variational problem on the right-hand side of (1.2) has a
unique minimizer [6], denoted by ˛P;ˇ . The measure ˛P;ˇ .dt/ induced by ˛P;ˇ
is known as the Parisi measure [21].1 In Parisi’s solution, it is predicted that the
Parisi measure is the limiting distribution of the overlap R.�1; �2/ under the mea-
sure EG˝2N . More importantly, this together with the asymptotic ultrametricity
implies that the spin configurations under the Gibbs measure form a hierarchical
clustering structure and the number of levels therein is determined by the number

1 The Parisi measure is the inverse of the functional order parameter q.x/ in [29], sometimes
written as x.q/.
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of points in the support of the Parisi measure ˛P;ˇ .dt/. The importance of (iii)
lies in the fact that it indicates the phase transition of the model between high-
and low-temperature regimes. While at high temperature the clusters contain no
layers, at low temperature they begin to possess clustering structures with multiple
layers. The statement (iii) advocates the existence of infinitely many layers within
the clusters at low enough temperature. In a nutshell, the Parisi measure is the key
ingredient of the matter that describes the structure of the Gibbs measure as well
as the free energy of the system. See [21, 26] for a detailed discussion.

The importance of the Parisi measure leads to the following classification. If
a Parisi measure ˛P;ˇ .dt/ is a Dirac measure, we say that the model is replica
symmetric (RS). For k � 1, we say that the model has k levels of replica symmetry
breaking (k-RSB) if the Parisi measure is atomic and has exactly k C 1 jumps. If
the Parisi measure is neither RS nor k-RSB for some k � 1; then the model has
infinite levels of replica symmetry breaking (1-RSB). We will also say that the
model is at least k-RSB if the Parisi measure contains at least kC 1 distinct values
in its support.

It is expected that when1-RSB happens, the functional order parameter has a
nonempty interval in its support. This prediction in the physics literature is named
as full-step replica symmetry breaking (FRSB). This prediction plays an inevitable
role in Parisi’s original solution of the SK model. It can be written as follows:

PREDICTION (Parisi). For any � and h, there exists a critical inverse temperature
ˇc > 0 such that for any ˇ > ˇc , the mixed p-spin model is FRSB.

1.2 Main Results
In this paper, we establish this prediction at zero temperature. To prepare for

the statement of our main result, we recall the Parisi formula for the ground state
energy of HN as follows. First of all, the Parisi formula allows us to compute the
ground state energy of the model by sending the temperature T to 0,

GSE WD lim
N!1

max
�2†N

HN .�/

N
D lim
ˇ!1

Fˇ D lim
ˇ!1

inf
˛2M

Pˇ .˛/;(1.3)

where the validity of the first equality can be found, for instance, in Panchenko’s
book [26, chap. 1]. In the physics literature, it is a convention that the ground state
energy is defined as the minimum of the Hamiltonian. This is indeed equivalent
to our formulation here since the disorder coefficients gi1;:::;ip are symmetric with
respect to the origin. Recently the analysis of the ˇ-limit of the second equality
was carried out in Auffinger-Chen [8], and it was discovered that the ground state
energy can be written as a Parisi-type formula. Let U denote the collection of
all cumulative distribution functions 
 on Œ0; 1/ induced by any measures on Œ0; 1/
and satisfying

R 1
0 
.t/dt < 1. Denote by 
.dt/ the measure that induces 
 and

endow U with the L1.dt/-distance. For each 
 2 U , consider the weak solution
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to the Parisi PDE,

@t‰
 .t; x/ D �
� 00.t/

2

�
@xx‰
 .t; x/C 
.t/.@x‰
 .t; x//

2
�

for .t; x/ 2 Œ0; 1/ �R with boundary condition

‰
 .1; x/ D jxj:

One may find the existence and regularity properties of this PDE solution in [12].
The Parisi functional at zero temperature is given by

P.
/ D ‰
 .0; h/ �
1

2

Z 1

0

t� 00.t/
.t/dt:

Auffinger and Chen [8] proved that the maximum energy can be computed through

(1.4) GSE D inf

2U

P.
/ a.s.

We call this variational representation the Parisi formula at zero temperature. It
was proved in [12] that this formula has a unique minimizer denoted by 
P : We
call 
P .dt/ the Parisi measure at zero temperature. We say that the model is1-
RSB at zero temperature if 
P .dt/ contains infinitely many points in its support.
Our first main result is a proof of Parisi’s1-RSB prediction at zero temperature.

THEOREM 1.1. For any � and h; the mixed p-spin model at zero temperature is
1-RSB.

Remark 1.2. The above theorem is a first step towards the validation of Parisi’s
FRSB prediction. At zero temperature (and at sufficiently low temperatures), it is
expected that the support of the Parisi measure contains an interval. This remains
as an important open question.

Similar to the role of the Parisi measure at positive temperature played in de-
scribing the behavior of the model, the Parisi measure at zero temperature also has
its own relevance in understanding the energy landscape of the Hamiltonian around
the maximum energy.

PROPOSITION 1.3. For any � and h; if u lies in the support of 
P .dt/, then for
any "; � > 0, there exists some constant K > 0 independent of N such that

(1.5)
P

�
9 �1; �2 such that R1;2 2 .u � "; uC "/

and
HN .�

1/

N
;
HN .�

2/

N
� GSE � �

�
� 1 �Ke�

N
K

for all N � 1:

This means that for any u 2 supp 
P , one can always find two spin configu-
rations around the maximum energy such that their overlap is near u with over-
whelming probability. Recently it was proved in [12] that when h D 0 and the
model is even, i.e., cp D 0 for all odd p, the system exhibits the so-called multiple
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peaks feature in the sense that there exist exponentially many near maximizers, and
they are nearly orthogonal to each other. Theorem 1.1 and Proposition 1.3 together
add a more fruitful structure to the landscape of the Hamiltonian. In view of Propo-
sition 1.3, it would be of great interest to understand the size of the number of the
pairs .�1; �2/ with R1;2 2 .u � "; uC "/ and HN .�1/;HN .�2/ � N.GSE � �/
for a typical realization.

Remark 1.4. The relationship between the Parisi solution and combinatorial opti-
mization problems has been investigated since the 1980s; see [21] for references.
The problem of computing the maximum energy is also generally known as the
Dean’s problem and is frequently used to motivate the theory of mean field spin
glasses; see [21, 26]. More recently the formula (1.3) at zero temperature has ap-
peared in other optimization problems related to theoretical computer science such
as extremal cuts on sparse random graphs; see [13, 33] and the references therein.
In the physics literature, the FRSB prediction is also discussed in [22–24].

Remark 1.5. For the mixed p-spin model defined on the sphere, f� 2 RN WPN
iD1 �

2
i D N g, the corresponding Parisi-type formula at both positive and zero

temperatures is much simpler than (1.1) and (1.3) as there is no PDE involved. In
this setting, it is known in [5, 9, 10, 18, 38] that the Parisi variational formulas can
be explicitly solved for some choices of the mixture parameters .cp/p�2, and al-
gebraic conditions on � were presented so that the model has Parisi measures of
RS, 1RS, 2RSB, and FRSB. The study of the energy landscapes has also appeared
in [3, 4, 9, 11, 18, 35, 36].

Theorem 1.1 and Proposition 1.3 indicate that the spin configurations around
the maximum energy are not simply clustered into equidistant groups. This is in
sharp contrast to the energy landscape of the spherical version of the mixed p-
spin model, where in the pure p-spin model, i.e., �.t/ D tp for p � 3, it was
shown by Subag [35] that around the maximum energy, the spin configurations
are essentially orthogonally structured. This structure was also presented in more
general mixtures of the spherical model in the recent work of Auffinger and Chen
[9].

We now return to the positive temperature case. Recall the Parisi measure ˛P;ˇ
introduced in (1.2). Our second main result, as a consequence of Theorem 1.1,
shows that for any mixture parameter � and external field h, the number of levels
of replica symmetry breaking must diverge as ˇ goes to infinity.

THEOREM 1.6. Let k � 1: For any � and h, there exists ˇk such that the mixed
p-spin model is at least k-RSB for all ˇ > ˇk :

For the SK model without external field, �.s/ D s2=2 and h D 0; Aizenman,
Lebowitz, and Ruelle [1] showed that the model is RS, i.e., the limiting distribution
of R1;2 is a Dirac mass if ˇ is in the high-temperature regime ˇ < 1. Later, it was
also understood by Toninelli [42] that the model is not RS in the low-temperature
region ˇ > 1. It is conjectured that the whole region ˇ > 1 is expected to be of
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FRSB. One may find recent progress on the phase transition from RS to RSB for
more general mixtures in [5,19,42]. However, the existence of FRSB in the mixed
p-spin models remains unknown.

1.3 Our Approach
The main novelty of our approach to Theorem 1.1 is to explore the Parisi for-

mula for the ground state energy (1.4) by considering a perturbation of the Parisi
functional around the point 1. In short, we show that it is always possible to lower
the value of the Parisi functional of any atomic measure with finite atoms by adding
a large enough jump near 1. The argument is quite delicate and depends on some
observations that may look counterintuitive at first glance; see Remark 2.9 below.
At finite temperature, since the Parisi measure is a probability measure, the idea of
adding a large jump is not feasible. Theorem 1.6 follows from Theorem 1.1 after
some weak convergence considerations. Recently there have been many papers in-
vestigating the properties of the Parisi functional via the stochastic optimal control
theory for the Parisi PDE, e.g., [6, 18, 19]. As our analysis here is quite subtle and
relies on many identities related to the Gaussian expectations as well as some tech-
nical calculations, we prefer adapting the setting and framework as in Talagrand’s
book [39] in order to keep track of our control with clarity.

2 Lowering the Value of the Parisi Functional
In this section, we show that for any atomic 
.ds/with finitely many jumps, one

can always lower the value of the Parisi functional by a perturbation of 
 around 1.
Let 
 2 U be fixed. Suppose that 
.dt/ is atomic and consists of finitely many
jumps, that is,


.t/ D

n�1X
iD0

mi1Œqi ;qiC1/.t/Cmn1Œqn;1/.t/;

where .qi /0�i�n and .mi /0�i�n satisfy

0 D q0 < q1 < � � � < qn < 1;

0 � m0 < m1 < � � � < mn <1:
(2.1)

Here and in what follows, 1B.t/ D 1Œt2B� is the indicator function of the set B �
R. Let mnC1 be any number greater than mn: For any q 2 .qn; 1/; consider the
following perturbation of 
 ,


q.t/ D

n�1X
iD0

mi1Œqi ;qiC1/.t/Cmn1Œqn;q/.t/CmnC11Œq;1/.t/;(2.2)

where qi andmi are from (2.1). In other words, we add a jump to the top of 
: Our
main result is the following theorem. It says that if mnC1 is large enough, then the
Parisi functional evaluated at perturbed measure 
q.dt/ has a smaller value than
P.
/ locally for q near 1.
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THEOREM 2.1. There exist mnC1 > mn and � 2 .qn; 1/ such that

P.
q/ < P.
/

for all � � q < 1.

The following three subsections are devoted to the proof of Theorem 2.1.

2.1 Probabilistic Representation of PPP

We start by observing that the Parisi functional at 
 admits a probabilistic ex-
pression by an application of the Cole-Hopf transformation to the Parisi PDE. In-
deed, let ´0; : : : ; ´n be i.i.d. standard Gaussian random variables. For qi , i D
0; : : : ; n; given in (2.1), we denote

J D hC

n�1X
iD0

´i
p
� 0.qiC1/ � � 0.qi /C ´n

p
� 0.1/ � � 0.qn/:

Set

XnC1 D jJ j:

Define iteratively, for mi ; i D 0; : : : ; n; given in (2.1),

Xi D
1

mi
log E´i

expmiXiC1;

where E´i
stands for the expectation for ´i : Here X0 is defined as E´0

X1 if m0 D
0: Then by applying the Cole-Hopf transformation, ‰
 .0; h/ D X0, and thus

P.
/ D X0 �
1

2

n�1X
iD0

mi

Z qiC1

qi

t� 00.t/dt �
mn

2

Z 1

qn

t� 00.t/dt:

Recall the perturbation 
q from (2.2). Clearly 
q D 
 on Œ0; q/ for all qn < q < 1:
For notational convenience, we denote

qnC1 D q; qnC2 D 1:(2.3)

In a similar manner, we can express ‰
q
.0; h/ as follows. Let ´nC1 be a standard

Gaussian random variables independent of ´1; : : : ; ´n: Define

YnC2 D

ˇ̌̌̌
hC

nC1X
jD0

j́

q
� 0.qjC1/ � � 0.qj /

ˇ̌̌̌
and iteratively, for 0 � i � nC 1;

Yi D
1

mi
log E´i

expmiYiC1:(2.4)
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Here again we let Y0 D E´0
Y1 whenever m0 D 0: Thus, ‰
q

.0; h/ D Y0 for any
q 2 .qn; 1/: As a result,

(2.5)
P.
q/ D Y0 �

1

2

n�1X
iD0

mi

Z qiC1

qi

t� 00.t/dt �
mn

2

Z q

qn

t� 00.t/dt

�
mnC1

2

Z 1

q

t� 00.t/dt:

In particular, we have limq!1�‰
q
.0; h/ D ‰
 .0; h/ and limq!1�P.
q/ D

P.
/:

2.2 Some Auxiliary Lemmas
We state two propositions that will be heavily used in our main proof in the next

subsection. Let 0 � a < t < b and 0 < m < m0: Denote by ´ a standard normal
random variable. Define

A.t; x/ D
1

m0
log E expm0

ˇ̌
x C ´

p
b � t

ˇ̌
;

B.t; x/ D
1

m
log E expmA.t; x C ´

p
t � a/;

C.t; x/ D E
�
@xA.t; x C ´

p
t � a/

�2
V.t; x; x C ´

p
t � a/;

(2.6)

where

V.t; x; y/ D em.A.t;y/�B.t;x//:

For any .t; x/ 2 Œa; b/ �R, define random variables:

zV .t; x/ D V.t; x; x C ´
p
t � a/;

At .t; x/ D @tA.t; x C ´
p
t � a/;

Atx.t; x/ D @txA.t; x C ´
p
t � a/;

Ax.t; x/ D @xA.t; x C ´
p
t � a/;

Axx.t; x/ D @xxA.t; x C ´
p
t � a/;

Axxx.t; x/ D @xxxA.t; x C ´
p
t � a/:

We stress that At .t; x/ ¤ @tA.t; x/, Ax.t; x/ ¤ @xA.t; x/, etc., in our notation.
Note that E zV .t; x/ D 1. The main results of this subsection are the following two
propositions.

PROPOSITION 2.2. For any .t; x/ 2 Œa; b/ �R, we have that

@tB.t; x/ D
.m �m0/

2
C.t; x/(2.7)
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and

@tC.t; x/ D E
�
Axx.t; x/

2
C 2.m �m0/Axx.t; x/Ax.t; x/

2
�
zV .t; x/

C
.m �m0/m

2

�
EAx.t; x/

4 zV .t; x/ �
�
EAx.t; x/

2 zV .t; x/
�2�
:

(2.8)

Remark 2.3. Functions (2.6) and the formula (2.7) also appeared in [41, sec. 14.7]
in a similar manner, where in the exponent of A, the author used the random vari-
able ˇ�1 log cosh.ˇ.x C ´

p
b � t // instead of jx C ´

p
b � t j:

PROPOSITION 2.4. For .t; x/ 2 Œa; b/ �R; we have that

lim
t!b�

C.t; x/ D 1(2.9)

and

lim inf
t!b�

@tC.t; x/ �
2.mCm0/

3
�.x/;

where

�.x/ D
2p

2�.b � a/

e�
x2

2.b�a/

EemjxC´
p
b�aj

:(2.10)

Before we turn to the proofs of Propositions 2.2 and 2.4, we first gather some
fundamental properties of the function A:

LEMMA 2.5. A is the classical solution to the following PDE with boundary con-
dition A.b; x/ D jxj:

@tA.t; x/ D �
1

2

�
@xxA.t; x/Cm

0
�
@xA.t; x/

�2�(2.11)

for .t; x/ 2 Œa; b/ �R: In addition,

j@xA.t; x/j � 1; .t; x/ 2 Œa; b/ �R;(2.12)

lim
t!b�

@xA.t; x/ D sign.x/ 8x 2 R n f0g;(2.13)

lim
t!b�

EAx.t; x/
2k zV .t; x/ D 1

8.t; x/ 2 Œa; b/ �R; 8k 2 N; 8 0 < m < m0;
(2.14)

where sign.x/ D 1 if x > 0 andD �1 if x < 0:

PROOF. Define

g.t; x/ D e
.b�t/m0

2

2
Cm0xˆ

�
m0
p
b � t C

x
p
b � t

�
;

where ˆ is the cumulative distribution function of a standard normal random vari-
able. Note that a direct computation gives

Eem
0jxC´

p
b�t j
D g.t; x/C g.t;�x/:



INFINITE RSB AT ZERO TEMPERATURE 931

Thus,

A.t; x/ D
1

m0
log
�
g.t; x/C g.t;�x/

�
:

From this expression, we can compute that

@xA.t; x/ D
g.t; x/ � g.t;�x/

g.t; x/C g.t;�x/
;

@xxA.t; x/ D m
0

�
1 �

�
g.t; x/ � g.t;�x/

g.t; x/C g.t;�x/

�2�
C 2�.t; x/;

@tA.t; x/ D �
m0

2
� �.t; x/;

(2.15)

where

�.t; x/ WD
1p

2�.b � t /

e�
x2

2.b�t/

g.t; x/C g.t;�x/
:

Therefore, these equations together validate (2.11). From the first equation, we can
also conclude (2.12) and (2.13). Note that

lim
t!b�

V.t; x; y/ D V.b; x; y/ D
emjyj

EemjxC´
p
b�aj

and lnV.t; � ; � / is at most of linear growth. From (2.12) and (2.13), the dominated
convergence theorem implies (2.14). �

PROOF OF PROPOSITION 2.2. To lighten our notation, we will drop the depen-
dence on .t; x/ in this proof. Recall that the Gaussian integration by parts states
that for a standard normal random variable ´, E´f .´/ D Ef 0.´/ for all absolutely
continuous functions f satisfying that ln jf j is at most of linear growth at infinity;
see, e.g., [41, sec. A.4]. From this formula and the PDE (2.11),

@tB D E

�
At C

´

2
p
t � a

Ax

�
zV

D E

�
�
1

2

�
Axx Cm

0A2x
�
C
1

2

�
Axx CmA

2
x

��
zV

D
m �m0

2
EA2x zV ;

which gives (2.7). To compute the partial derivative of C in t , write @tC D IC II
for

I WD 2E
�
Atx C

´

2
p
t � a

Axx

�
Ax zV ;

II WD mEA2x

�
At C

´

2
p
t � a

Ax � @tB

�
zV :
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Here, from (2.11), since

@txA D �
1

2

�
@xxxAC 2m

0@xxA � @xA
�

for any .t; x/ 2 Œa; b/ �R; using the Gaussian integration by parts again gives

I D 2E
�
AtxAx C

1

2

�
AxxxAx C A

2
xx CmAxxA

2
x

��
zV

D E
�
�Ax

�
Axxx C 2m

0AxxAx
�
C
�
AxxxAx C A

2
xx CmAxxA

2
x

��
zV

D E
�
A2xx C .m � 2m

0/AxxA
2
x

�
zV :

In addition, from (2.11) and the Gaussian integration by parts,

II D mE

�
�
1

2

�
AxxA

2
x Cm

0A4x
�
C
1

2

�
3AxxA

2
x CmA

4
x

�
� A2x@tB

�
zV

D mEAxxA
2
x
zV C

.m �m0/m

2

�
EA4x zV �

�
EA2x zV

�2�
:

From the above, (2.8) follows. �

To handle the limits in Proposition 2.4, we need two lemmas.

LEMMA 2.6. For any odd k � 1; there exists a constant K independent of t such
that

EAx.t; x/
k�1Axx.t; x/ zV .t; x/ �

Kemjxj
p
t � a

(2.16)

for all t 2 Œa; b/ and x 2 R. Moreover,

lim
t!b�

EAx.t; x/
k�1Axx.t; x/ zV .t; x/ D

1

k
�.x/;(2.17)

where �.x/ is defined in Proposition 2.4.

PROOF. Define

D.t; x/ D E´Akx.t; x/ zV .t; x/:

Note that j@xA.t; x/j � 1 and B.t; x/ � 0. We have

V.t; x; y/ D em.A.t;y/�B.t;x// � emA.t;0/Cmjyj:

Using the Gaussian integration by parts, we can write

D.t; x/ D
p
t � aE

�
kAx.t; x/

k�1Axx.t; x/CmAx.t; x/
kC1

�
zV .t; x/:(2.18)

This and the previous inequality together imply (2.16) since

k
p
t � aEAx.t; x/

k�1Axx.t; x/ zV .t; x/ � D.t; x/

� emA.a;0/CmjxjEj´jemj´j
p
b�a;

where the first inequality used the fact that k C 1 is even.
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Next, we verify (2.17). Note that from (2.12) and (2.13), the dominated conver-
gence theorem implies

lim
t!b�

D.t; x/ D
E´sign.x C ´

p
b � a/emjxC´

p
b�aj

EemjxC´
p
b�aj

D
p
b � a

�
�.x/Cm

�
;

where the second equation used the fact that

(2.19)
E´ sign.x C ´

p
b � a/emjxC´

p
b�aj

D
2
p
2�
e�

x2

2.b�a/ Cm
p
b � aEemjxC´

p
b�aj:

See the verification of this equation in Lemma A.1 in the appendix. In addition,
since k C 1 is even, (2.14) yields

lim
t!b�

EAx.t; x/
kC1 zV .t; x/ D 1:

Thus, from (2.18) and the last two limits,

�.x/
p
b � aCm

p
b � a

D lim
t!b�

D.t; x/ D
p
b � a

�
k lim
t!b�

EAx.t; x/
k�1Axx.t; x/ zV .t; x/Cm

�
;

from which (2.17) follows. �

LEMMA 2.7. We have that

lim inf
t!b�

EAxx.t; x/
2 zV .t; x/ �

4m0

3
�.x/:

PROOF. Recall the middle equation of (2.15). We see that

Axx.t; x/ D m
0.1 � Ax.t; x/

2/C 2z�.t; x/(2.20)

on Œa; b/ � R; where z�.t; x/ WD �.t; x C ´
p
b � a/. Using (2.14), (2.20), and

Lemma 2.6 with k D 1 gives

lim
t!b�

Ez�.t; x/ zV .t; x/ D
1

2
�.x/:

Also, multiplying both sides of (2.20) byAx.t; x/2 and applying (2.14) and Lemma
2.6 with k D 3 yields

lim
t!b�

EAx.t; x/
2z�.t; x/ zV .t; x/ D

1

6
�.x/:

From (2.20), since

Axx.t; x/
2
D
�
m0.1 � Ax.t; x/

2/C 2z�.t; x/
�2

� Œm0.1 � Ax.t; x/
2/�2 C 4m0.1 � Ax.t; x/

2/z�.t; x/;

the announced result follows by the last two limits. �
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PROOF OF PROPOSITION 2.4. Statement (2.9) follows from (2.6) and (2.14).
From (2.8), (2.14), Lemma 2.7, and (2.17), we find

lim inf
t!b�

@tC.t; x/

� lim inf
t!b�

E
�
Axx.t; x/

2
C 2.m �m0/Axx.t; x/Ax.t; x/

2
�
zV .t; x/

� lim inf
t!b�

EAxx.t; x/
2 zV .t; x/C 2.m �m0/ lim

t!b�
EAxx.t; x/Ax.t; x/

2 zV .t; x/

D
4m0

3
�.x/C

2.m �m0/

3
�.x/

D
2.mCm0/

3
�.x/;

which completes the proof. �

2.3 Proof of Theorem 2.1
Recall the sequences .qi /0�i�nC2 and .mi /0�i�nC1 from (2.1) and (2.3). Re-

call the quantities m;m0; a; b and the functions A;B;C; V from (2.6). From now
on, we take

m D mn; m0 D mnC1;

a D � 0.qn/; b D � 0.1/;

and let

yA.q; x/ D A.� 0.q/; x/; yB.q; x/ D B.� 0.q/; x/;

yC.q; x/ D C.� 0.q/; x/; yV .q; x; y/ D V.� 0.q/; x; y/:

For 0 � i � n, set

Wi D expmi .YiC1 � Yi /;

where Yi are given in (2.4). Denote

Z D hC

n�1X
jD0

j́

q
� 0.qjC1/ � � 0.qj /;

and

�.q/ D EW0 � � �Wn�1 yC.q;Z/:

LEMMA 2.8. We have that

@qP.
q/ D
� 00.q/

2
.mnC1 �mn/

�
q � �.q/

�
(2.21)



INFINITE RSB AT ZERO TEMPERATURE 935

and

�0.q/ D
� 00.q/.mn �mnC1/

2

�

n�1X
iD0

miE
h
W0 � � �Wi

�
EiC1

�
WiC1 � � �Wn�1 yC.q;Z/

��2i
�
� 00.q/.mn �mnC1/

2

�

n�1X
iD0

miE
h
W0 � � �WiE´i

�
Wi
�
EiC1

�
WiC1 � � �Wn�1 yC.q;Z/

��2�i
C EW0 � � �Wn�1 yCq.q;Z/;

(2.22)

where Ei is the expectation with respect to ´i ; : : : ; ´n�1 and yCq is the partial
derivative with respect to q:

PROOF. Observe that for 0 � i � n � 1,

@qYi D E´i
Wi@qYiC1:

An induction argument yields

@qYi D EiWi � � �Wn�1@qYn

for 0 � i � n � 1. Since Yn D yB.q;Z/; the equation (2.7) leads to

@qYi D
� 00.q/.mn �mnC1/

2
EiWi � � �Wn�1 yC.q;Z/:(2.23)

From (2.5), since

@qP.
q/ D @qY0 C
q� 00.q/

2
.mnC1 �mn/;

this and (2.23) with i D 0 yield (2.21). On the other hand, for 0 � i � n� 1; from
(2.23),

@qWi D mi
�
@qYiC1 � @qYi

�
Wi

D
� 00.q/

2
.mn �mnC1/miWi

�
EiC1WiC1 � � �Wn�1 yC.q;Z/

� EiWi � � �Wn�1 yC.q;Z/
�

where EiC1WiC1 � � �Wn�1 yC.q;Z/ D yC.q;Z/ if i D n � 1: Finally, since

�0.q/ D

n�1X
iD0

EW0 � � �Wi�1.@qWi /WiC1 � � �Wn�1 yC.q;Z/

C EW0 � � �Wn�1 yCq.q;Z/;

plugging the last equation into this derivative yields (2.22). �
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PROOF OF THEOREM 2.1. Recall �0.q/ from (2.22). Let �W0; : : : ; �Wn�1 be
W0; : : : ; Wn�1 evaluated at q D 1: Note that E´i

Wi D 1 for all 0 � i � n � 1,
limq!1� yC.q;Z/ D 1 by (2.9), and j yC.q;Z/j � 1 by (2.12). Applying Fatou’s
lemma and conditional expectation yields that the first two lines of (2.22) cancel
each other and as a result of Proposition 2.4,

lim inf
q!1�

�0.q/ D lim inf
q!1�

EW0 � � �Wn�1 yCq.q;Z/

� E�W0 � � � �Wn�1 lim inf
q!1�

yCq.q;Z/

�
2� 00.1/.mn CmnC1/

3
E�W0 � � � �Wn�1�.Z/;

(2.24)

where �.Z/ is defined through (2.10) with a D � 0.qn/; b D � 0.1/, and m D mn:

We emphasize that although we do not know whether yCq is nonnegative (see (2.8)),
the use of Fatou’s lemma remains justifiable. Indeed, note that j yAxj � 1, E´n

yV D

1, and by (2.16),

0 � E´n
yAxx.q;Z/ yA

2
x.q;Z/

yV .q;Z;Z C ´n
p
� 0.q/ � � 0.qn//

�
KemnjZjp
� 0.q/ � � 0.qn/

;

where K is a constant independent of q: From (2.8),

yCq.q;Z/ � �.mnC1 �mn/�
00.q/

�
2KemnjZjp
� 0.q/ � � 0.qn/

C
mn

2

�
:

In addition, it can be shown that each ln
�
W0W1 � � �Wn�1

�
is at most of linear

growth in ´0; : : : ; ´n�1 following from the fact that each Yi is uniformly Lips-
chitz in the variable ´i for all q 2 Œqn; 1�: This and the last inequality together
validate (2.24).

Next, from (2.24), we can choosemnC1 large enough in the beginning such that

lim inf
q!1�

�0.q/ > 1:

Note that limq!1� �.q/ D 1. From (2.21), the above inequality implies that
@qP.
q/ < 0 for our choice of mnC1 as long as q is sufficiently close to 1: This
completes our proof.

�

Remark 2.9. The validity of (2.24) and Theorem 2.1 relies on the positive lower
bound of @tC coming from Proposition 2.4. When one looks at (2.8) together with
the fact limt!b�.@xA/

2 D 1, it is tempting to think that @tC is actually negative
since m0 D mnC1 is taken to be large. As a result, Proposition 2.4 may look
counterintuitive. The remedy for this puzzle is the fact that @xxA.t; x/ is singular
in the limit t ! b� and the dominated convergence theorem does not apply. These
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“singular expectations” are one of the major difficulties in proving Theorem 2.1.
They are handled by the exact computations coming from Lemmas 2.6 and 2.7.

Remark 2.10. In the work [42], Toninelli proved that in the SK model, the Parisi
formula for the free energy possesses RSB Parisi measure when the tempera-
ture stays below the de Almeida–Thouless transition line. In view of the argu-
ment therein, he considered the first derivative of the Parisi functional Pˇ .
q/

in the variable mnC1 and then sent mnC1 ! 1 for n D 0 to obtain a quan-
tity K.ˇ; h; q/. He then concluded the proof by calculating the first and sec-
ond derivatives of K.ˇ; h; q/ w.r.t. q near xq, where xq is the unique solution of
xq D

R
d�.´/ tanh2.´ˇ

p
xq C ˇh/ for ´ Ï N.0; 1/. In our situation, the maximum

value of mnC1 is unclear since 
 is not a probability measure. Our argument con-
siders the first and second derivatives of the perturbed Parisi functional P.
q/ in
q and evaluated at q D 1, which will not work for the positive temperature case
because ˛P;ˇ .Œ0; x�/ is less than or equal to 1 for x being close to 1.

3 Proofs of Main Results
PROOF OF THEOREM 1.1. We prove Theorem 1.1 by contradiction. First, note

that it is known by [12, theorem 6] that the Parisi measure 
P is not constantly 0.
Suppose that the support of 
P consists of only n � 1 points. Then from Theorem
2.1, we can lower the value of the Parisi functional by a perturbation of 
P at 1
defined in (2.2). This leads to a contradiction of the minimality of P.
P /: Hence,
the support of 
P must contain infinitely many points. �

Remark 3.1. The statement of Theorem 1.1 can be strengthened to the fact that the
Parisi measure 
P cannot be “flat” near 1, i.e., 
P .t/ < 
P .1�/ for any 0 < t < 1.
In fact, if this is not true, then 
P is a constant function on Œa; 1/ for some a: One
can then apply essentially the same argument as Proposition 2.1 to lower the Parisi
functional. The only difference is that since 
P is not necessarily a step function
on Œ0; a/; the termsW1 � � �Wn�1 in Lemma 2.8 have to be replaced by a continuous
modification using the optimal stochastic control representation for‰
 in [12]. We
omit the details of the argument.

Remark 3.2. Our argument of Theorem 1.1 does not rely on the uniqueness of the
Parisi measure. All we need is the existence of a Parisi measure, which was proved
in [8].

PROOF OF PROPOSITION 1.3. For any u 2 Œ�1; 1� and " > 0; consider the
coupled free energy and the maximum energy

CFN;ˇ .u; "/ WD
1

ˇN
log

X
jR1;2�uj<"

eˇHN .�
1/CˇHN .�

2/

and

CMN .u; "/ WD
1

N
max

jR1;2�uj<"

�
HN .�

1/CHN .�
2/
�
:
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First we claim that if u is in the support of the Parisi measure ˛P;ˇ .dt/, then for
any " > 0;

lim
N!1

ECFN;ˇ .u; "/ D 2Fˇ :(3.1)

Note that the expectation of the free energy FN;ˇ and the coupled free energy
CFN;ˇ are Lipschitz functions in the mixture parameters .cp/p�2 with respect to
the `2.R/-norm. In addition, the Parisi measure is continuous in ˇ as well as the
mixture parameters .cp/p�2 (see, e.g., [7]). From these, we may assume without
loss of generality that cp > 0 for all p � 2: This condition guarantees that the
Parisi measure ˛P;ˇ is the limiting distribution of the overlap R1;2 between two
i.i.d. samplings �1 and �2 from GN ; see [26, 39]. Namely, we have

lim
N!C1

EG˝2N .R1;2 2 B/ D ˛P;ˇ .B/

for any Borel set B � Œ0; 1�. To see why the claim (3.1) holds, observe that if there
exists a positive ı such that

lim sup
N!1

ECFN;ˇ .u; "/ � 2Fˇ � ı;

it follows by the Gaussian concentration of measure that there exists a constant
K > 0 such that for any N � 1; with probability at least 1 �Ke�N=K ,

CFN;ˇ .u; "/ � 2FN;ˇ �
ı

2
:

Multiplying N and taking the exponential leads to

EG˝2N
�
R1;2 2 .u � "; uC "/

�
� Ke�N=K C e�Nˇı=2;

which implies, by the weak convergence of R1;2,Z
.u�";uC"/

˛P;ˇ .dt/ D 0:

This contradicts the fact that u is in the support of the Parisi measure and completes
the proof of our claim.

Next, note that evidently

ECMN .u; "/ � ECFN;ˇ .u; "/ �
log 4
ˇ
C ECMN .u; "/:

This together with our claim implies that

lim
N!1

ECMN .u; "/ D 2 lim
ˇ!1

Fˇ D 2GSE:

From the Gaussian concentration of measure inequality, for any � > 0; there exists
a constantK 0 > 0 such that for any N � 1 with probability at least 1�K 0e�N=K

0

,

CMN .u; "/ � 2GSE �
�

2
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and

max
�2†N

HN .�/

N
� GSEC

�

4
:

From the first inequality, there exist �1 and �2 with jR1;2 � uj < " and

1

N

�
HN .�

1/CHN .�
2/
�
� 2GSE �

�

2
:

If either HN .�1/ < GSE � � or HN .�2/ < GSE � �, then we arrive at a contra-
diction,

2GSE �
�

2
�
1

N

�
HN .�

1/CHN .�
2/
�
� GSE � �C GSEC

�

4
D 2GSE �

3�

4
:

Therefore, the inequality (1.5) must hold and this finishes our proof. �

PROOF OF THEOREM 1.6. Recall the Parisi measure ˛P;ˇ for the free energy
from (1.2). We first claim that .ˇ˛P;ˇ /ˇ>0 converges to 
P vaguely on Œ0; 1/:
Suppose there exists an infinite sequence .ˇl/l�1 such that .ˇl˛P;ˇl

/l�1 does not
converge to 
P vaguely on Œ0; 1/: By an identical argument to [8, eq. (16)], we
can further pass to a subsequence of .ˇl˛P;ˇl

/l�1 such that it vaguely converges
to some 
 on Œ0; 1/: To ease our notation, we use .ˇl˛P;ˇl

/l�1 to stand for this
subsequence. It was established in [8, lemma 3] that

lim
l!1

Fˇl
�P.
/:

From this,

P.
P / D lim
ˇ!1

Fˇ �P.
/:

From the uniqueness of 
P shown in [12, theorem 4], it follows that 
P D 
; a con-
tradiction. Thus, .ˇ˛P;ˇ /ˇ>0 converges to 
P vaguely on Œ0; 1/: This completes
the proof of our claim.

Next, if Theorem 1.6 does not hold, then from the above claim, there exists
some k � 1 such that the support of ˛P;ˇ contains at most k points for all suffi-
ciently large ˇ. This implies that the support of 
P contains at most k points. This
contradicts Theorem 1.1. �

Appendix
Denote by ˆ.x/ the c.d.f. of the standard normal distribution. The following

lemma follows a standard Gaussian computation and is used in (2.19).

LEMMA A.1. Suppose that ´ is a standard normal random variable. For any
x;m 2 R and a > 0;

E´emjxCa´jsign.x C a´/ D

r
2

�
e
� x2

2a2 CmaEemjxCa´j:
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PROOF. Define

f .y/ D emyˆ

�
y

a
Cma

�
;

for y 2 R; where ˆ.x/ is the c.d.f. of the standard Gaussian random variable.
Note that

am´ �
´2

2
D �

1

2
.´ �ma/2 C

m2a2

2
:

Computing directly gives

E´em.xCa´/1fxCa´>0g D
emx
p
2�

Z 1
�x=a

´eam´�
´2

2 d´

D
emxC

m2a2

2

p
2�

Z 1
�x=a

.´ �ma/e�
.´�ma/2

2 d´

C
maemxC

m2a2

2

p
2�

Z 1
�x=a

e�
.´�ma/2

2 d´

D
e
� x2

2a2

p
2�
Cmae

m2a2

2 f .x/:

On the other hand, since ´0 WD �´ is a standard Gaussian random variable, we may
apply the above formula to obtain

E´e�m.xCa´/1fxCa´<0g D �E.�´/em..�x/Ca.�´//1f�xCa.�´/>0g

D �E´0em..�x/Ca´
0/1f�xCa´0>0g

D �
e
� x2

2a2

p
2�
�mae

m2a2

2 f .�x/:

Combining these two equations leads to

E´em.xCa´/1fxCa´>0g � E´e�m.xCa´/1fxCa´<0g

D

r
2

�
e
� x2

2a2 Cmae
m2a2

2

�
f .x/C f .�x/

�
:

Here, note that

EemjxCa´j D e
m2a2

2
Cxmˆ

�
x

a
C am

�
C e

m2a2

2
�xmˆ

�
�
x

a
C am

�
D e

m2a2

2

�
f .x/C f .�x/

�
:

This and the last equation together imply the announced result. �
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