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1 Introduction and Main Results

1.1 The Model and Parisi’s Solution

The study of mean field spin glass models is a very rich and important part
of theoretical physics [20, 21, 32]. For mathematicians, it is a challenging pro-
gram [26,37,41]. Roughly speaking, the main goal is to study the global maxima
or, more generally, the “largest individuals” of a stochastic process with “high-
dimensional” correlation structure.

The classic example of such a process is the mixed p-spin model. Its Hamil-
tonian (or energy) Hy is defined on the spin configuration space =y = {—1, I}V
by

N
Hy(o) = Xn(0) +h ZGi
i=1
for
Xn(o) = Z cpXN,p(0).
p=2
Here, the processes Xy, , are pure p-spin Hamiltonians defined as

1
XN, p(o) = No-D/2 Z 8il,esipOiy """ Oips
1<it,...,ip<N
where g;, ,...i, are i.i.d. standard normal variables for all 1 < iy,...,i, < N and
p = 2. The real sequence (cp)p>2 satisfies ) -, 2Pc§ < oo. The parameter
h € R denotes the strength of the external field. By definition, the covariance of

X n can be computed as
EXN(0)XN(0%) = NE(R12),
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where
E(s) := Z clz,sp
p>2
and

N
1
1 2. 1 2
Rip2=R(0",07):= NZ% o;
i=1
is the normalized inner product between ol and 02, known as the overlap. The
covariance structure of X is as rich as the structure of the metric space (X n,d),
where d is the normalized Hamming distance on Xy,
1— R(ol, 02
d(o'.0%) = LT RO
2
The problem of computing the maximum energy (or the ground state energy) of

Hpy as N diverges is a rather nontrivial task. Standard statistical mechanics deals
with this problem by considering the Gibbs measure

Gnp(0) = v ePHN ()

and the free energy

1
FN’ﬂ = ﬁ_NlogZN"B’

where Z y g is the partition function of Hy defined as

Znp = Z eBHN (@)

oEX N

The parameter 8 = 1/(kT) > 0 is called the inverse temperature, where k is
the Boltzmann constant and 7 is the absolute temperature. The main goal in this
approach is to try to describe the large N limit of the sequences of the free energies
Fy g and the Gibbs measures Gy g. When the temperature 7" decreases, large
values of Hxy become more important (to both the partition function Zy g and to
the Gibbs measure Gy g), and they prevail over the more numerous smaller values.
Since H p is a high-dimensional correlated field with a large number of points near
its global maximum, this question becomes very challenging, especially for small
values of T'.

When £(s) = s2/2 and & = 0, the model above is the famous Sherrington-
Kirkpatrick (SK) model introduced in [34] as a mean field modification of the
Edwards-Anderson model [14]. Using a nonrigorous replica trick and a replica
symmetric hypothesis, Sherrington and Kirkpatrick [34] proposed a solution to the
limiting free energy of the SK model. Their solution, however, was incomplete; an
alternative solution was proposed in 1979 in a series of groundbreaking articles by
Giorgio Parisi [28-31], where it was foreseen that:
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(i) The limiting free energy is given by a variational principle, known as the
Parisi formula.
(i) The Gibbs measures are asymptotically ultrametric.
(iii) At low enough temperature, the symmetry of replicas is broken infinitely
many times.

The first two predictions were confirmed in the past decade. Following the beau-
tiful discovery of Guerra’s broken replica symmetry scheme [16], the Parisi for-
mula was proved in the seminal work of Talagrand [40] in 2006 under the convex-
ity assumption of £. Later, in 2012, the ultrametricity conjecture was established
by Panchenko [25] assuming the validity of the extended Ghirlanda-Guerra identi-
ties [15]. These identities are known to be valid for the SK model with an asymp-
totically vanishing perturbation and for generic models without any perturbation.
Here, the model is said to be generic if the span of {1} U {s? : ¢, # 0} is dense
in the space of continuous functions C[—1, 1] under the maximum norm. As a
consequence of ultrametricity, the Parisi formula was further extended to all mixed
p-spin models by Panchenko [27] utilizing the Aizenman-Sims-Starr scheme [2].

More precisely, the Parisi formula for general mixtures is stated as follows. De-
note by .# the collection of all cumulative distribution functions « on [0, 1] and by
a(ds) the probability induced by «. For « € ., define

log 2

1 ! "
(1.1 Pga) = T + Wy g(0,7) — 5/0 Ba(s)sE" (s)ds,

where W, g (7, x) is the weak solution to the nonlinear parabolic PDE

E"(1)

0 Wo,p (1, x) = — (Bxx War,p (1, %) + Ba(1)(9x Yo 5 (7, X))%)

for (¢, x) € [0,1) x R with boundary condition
log cosh Bx
5 .

For the existence and regularity of W, g, we refer the readers to [6, 17]. The Parisi
formula [40] states that

\Ila,ﬁ(l,x) =

1.2 Fg:= lim Fypg = inf & S.
(-2 pi= N g = ol Pple) as

The infinite-dimensional variational problem on the right-hand side of (1.2) has a
unique minimizer [6], denoted by ap g. The measure ap g(dt) induced by ap g
is known as the Parisi measure [21].1 In Parisi’s solution, it is predicted that the
Parisi measure is the limiting distribution of the overlap R(c!, 52) under the mea-
sure ]EGI%2 . More importantly, this together with the asymptotic ultrametricity
implies that the spin configurations under the Gibbs measure form a hierarchical
clustering structure and the number of levels therein is determined by the number

I The Parisi measure is the inverse of the functional order parameter g(x) in [29], sometimes
written as x(q).
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of points in the support of the Parisi measure ap g(dt). The importance of (iii)
lies in the fact that it indicates the phase transition of the model between high-
and low-temperature regimes. While at high temperature the clusters contain no
layers, at low temperature they begin to possess clustering structures with multiple
layers. The statement (iii) advocates the existence of infinitely many layers within
the clusters at low enough temperature. In a nutshell, the Parisi measure is the key
ingredient of the matter that describes the structure of the Gibbs measure as well
as the free energy of the system. See [21,26] for a detailed discussion.

The importance of the Parisi measure leads to the following classification. If
a Parisi measure ap g(dt) is a Dirac measure, we say that the model is replica
symmetric (RS). For k& > 1, we say that the model has k levels of replica symmetry
breaking (k-RSB) if the Parisi measure is atomic and has exactly k + 1 jumps. If
the Parisi measure is neither RS nor k-RSB for some k > 1, then the model has
infinite levels of replica symmetry breaking (co-RSB). We will also say that the
model is at least k-RSB if the Parisi measure contains at least k 4 1 distinct values
in its support.

It is expected that when co-RSB happens, the functional order parameter has a
nonempty interval in its support. This prediction in the physics literature is named
as full-step replica symmetry breaking (FRSB). This prediction plays an inevitable
role in Parisi’s original solution of the SK model. It can be written as follows:

PREDICTION (Parisi). For any £ and h, there exists a critical inverse temperature
Be > 0 such that for any B > P, the mixed p-spin model is FRSB.

1.2 Main Results

In this paper, we establish this prediction at zero temperature. To prepare for
the statement of our main result, we recall the Parisi formula for the ground state
energy of Hy as follows. First of all, the Parisi formula allows us to compute the
ground state energy of the model by sending the temperature 7 to 0,

H
(13)  GSE:= lim max N

= lim Fg = li inf
am | max g ﬂimoo B im inf Pg(a),

B—oo el

where the validity of the first equality can be found, for instance, in Panchenko’s
book [26, chap. 1]. In the physics literature, it is a convention that the ground state
energy is defined as the minimum of the Hamiltonian. This is indeed equivalent
to our formulation here since the disorder coefficients gj, ... ;, are symmetric with
respect to the origin. Recently the analysis of the B-limit of the second equality
was carried out in Auffinger-Chen [8], and it was discovered that the ground state
energy can be written as a Parisi-type formula. Let % denote the collection of
all cumulative distribution functions y on [0, 1) induced by any measures on [0, 1)
and satisfying fol y(t)dt < oo. Denote by y(dt) the measure that induces y and
endow % with the L!(dt)-distance. For each y € %, consider the weak solution
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to the Parisi PDE,

%(axx\py (t,x)+ )/(t)(ax\lly (, x))z)

for (¢, x) € [0,1) x R with boundary condition
v, (1,x) = |x].

One may find the existence and regularity properties of this PDE solution in [12].
The Parisi functional at zero temperature is given by

1 1
P(r) = Uy (0.) — 3 /0 (£ () y ().
Auffinger and Chen [8] proved that the maximum energy can be computed through
(1.4) GSE = inf Z(y) as.
yEU

at\Ily(t,x) = —

We call this variational representation the Parisi formula at zero temperature. It
was proved in [12] that this formula has a unique minimizer denoted by yp. We
call yp(dt) the Parisi measure at zero temperature. We say that the model is co-
RSB at zero temperature if yp (dt) contains infinitely many points in its support.
Our first main result is a proof of Parisi’s co-RSB prediction at zero temperature.

THEOREM 1.1. For any & and h, the mixed p-spin model at zero temperature is
0o-RSB.

Remark 1.2. The above theorem is a first step towards the validation of Parisi’s
FRSB prediction. At zero temperature (and at sufficiently low temperatures), it is
expected that the support of the Parisi measure contains an interval. This remains
as an important open question.

Similar to the role of the Parisi measure at positive temperature played in de-
scribing the behavior of the model, the Parisi measure at zero temperature also has
its own relevance in understanding the energy landscape of the Hamiltonian around
the maximum energy.

PROPOSITION 1.3. For any & and h, if u lies in the support of yp(dt), then for
any €,n > 0, there exists some constant K > 0 independent of N such that

IP’(EI(II,G2 suchthat R1p € (u —e,u + ¢)

Hy(o') Hy(o?)
N ’ N

(1.5)
and

zGSE—n) >1—Ke K
forall N > 1.

This means that for any ¥ € supp yp, one can always find two spin configu-
rations around the maximum energy such that their overlap is near u with over-
whelming probability. Recently it was proved in [12] that when 27 = 0 and the
model is even, i.e., ¢, = 0 for all odd p, the system exhibits the so-called multiple
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peaks feature in the sense that there exist exponentially many near maximizers, and
they are nearly orthogonal to each other. Theorem 1.1 and Proposition 1.3 together
add a more fruitful structure to the landscape of the Hamiltonian. In view of Propo-
sition 1.3, it would be of great interest to understand the size of the number of the
pairs (0!, 02) with R1 5 € (u —&,u + &) and Hy (o!), Hy(0?) > N(GSE — 1)
for a typical realization.

Remark 1.4. The relationship between the Parisi solution and combinatorial opti-
mization problems has been investigated since the 1980s; see [21] for references.
The problem of computing the maximum energy is also generally known as the
Dean’s problem and is frequently used to motivate the theory of mean field spin
glasses; see [21,26]. More recently the formula (1.3) at zero temperature has ap-
peared in other optimization problems related to theoretical computer science such
as extremal cuts on sparse random graphs; see [13,33] and the references therein.
In the physics literature, the FRSB prediction is also discussed in [22-24].

Remark 1.5. For the mixed p-spin model defined on the sphere, {o € RV :
ZzN=1 01-2 = N}, the corresponding Parisi-type formula at both positive and zero
temperatures is much simpler than (1.1) and (1.3) as there is no PDE involved. In
this setting, it is known in [5,9, 10, 18, 38] that the Parisi variational formulas can
be explicitly solved for some choices of the mixture parameters (cp)p>2, and al-
gebraic conditions on £ were presented so that the model has Parisi measures of
RS, 1RS, 2RSB, and FRSB. The study of the energy landscapes has also appeared
in [3,4,9,11,18,35,36].

Theorem 1.1 and Proposition 1.3 indicate that the spin configurations around
the maximum energy are not simply clustered into equidistant groups. This is in
sharp contrast to the energy landscape of the spherical version of the mixed p-
spin model, where in the pure p-spin model, i.e., £(t) = t? for p > 3, it was
shown by Subag [35] that around the maximum energy, the spin configurations
are essentially orthogonally structured. This structure was also presented in more
general mixtures of the spherical model in the recent work of Auffinger and Chen

[9].

We now return to the positive temperature case. Recall the Parisi measure ap g
introduced in (1.2). Our second main result, as a consequence of Theorem 1.1,
shows that for any mixture parameter £ and external field 4, the number of levels
of replica symmetry breaking must diverge as f goes to infinity.

THEOREM 1.6. Let k > 1. For any & and h, there exists B such that the mixed
p-spin model is at least k-RSB for all B > By..

For the SK model without external field, £(s) = s2/2 and h = 0, Aizenman,
Lebowitz, and Ruelle [1] showed that the model is RS, i.e., the limiting distribution
of Ry is a Dirac mass if f is in the high-temperature regime 8 < 1. Later, it was
also understood by Toninelli [42] that the model is not RS in the low-temperature
region § > 1. Tt is conjectured that the whole region B > 1 is expected to be of
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FRSB. One may find recent progress on the phase transition from RS to RSB for
more general mixtures in [5,19,42]. However, the existence of FRSB in the mixed
p-spin models remains unknown.

1.3 Our Approach

The main novelty of our approach to Theorem 1.1 is to explore the Parisi for-
mula for the ground state energy (1.4) by considering a perturbation of the Parisi
functional around the point 1. In short, we show that it is always possible to lower
the value of the Parisi functional of any atomic measure with finite atoms by adding
a large enough jump near 1. The argument is quite delicate and depends on some
observations that may look counterintuitive at first glance; see Remark 2.9 below.
At finite temperature, since the Parisi measure is a probability measure, the idea of
adding a large jump is not feasible. Theorem 1.6 follows from Theorem 1.1 after
some weak convergence considerations. Recently there have been many papers in-
vestigating the properties of the Parisi functional via the stochastic optimal control
theory for the Parisi PDE, e.g., [6, 18, 19]. As our analysis here is quite subtle and
relies on many identities related to the Gaussian expectations as well as some tech-
nical calculations, we prefer adapting the setting and framework as in Talagrand’s
book [39] in order to keep track of our control with clarity.

2 Lowering the Value of the Parisi Functional

In this section, we show that for any atomic y(ds) with finitely many jumps, one
can always lower the value of the Parisi functional by a perturbation of y around 1.
Let y € % be fixed. Suppose that y(dt) is atomic and consists of finitely many
jumps, that is,

n—1
7(0) = 2 miligi g (® +malig, (),
i=0
where (¢i)o<i<n and (m;)o<i<n satisfy
O=qgo<q1 <--- < < 1,
@1 q q qn
O0<mog<myg<--+<my<o0.
Here and in what follows, 1g(7) = 1;¢ ) is the indicator function of the set B C
R. Let my41 be any number greater than m,. For any g € (¢n, 1), consider the
following perturbation of y,
n—1
(22) Yq (1) = Z Ml q; ) (@) +mnlig, ) (@) + mni1lig,1) (@),
i=0
where ¢; and m; are from (2.1). In other words, we add a jump to the top of y. Our
main result is the following theorem. It says that if m,, 1 is large enough, then the
Parisi functional evaluated at perturbed measure y,(dt) has a smaller value than
Z(y) locally for ¢ near 1.
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THEOREM 2.1. There exist my 1 > my and n € (g, 1) such that
P(vg) < 2¥)
foralln <g < 1.

The following three subsections are devoted to the proof of Theorem 2.1.

2.1 Probabilistic Representation of &2

We start by observing that the Parisi functional at y admits a probabilistic ex-
pression by an application of the Cole-Hopf transformation to the Parisi PDE. In-
deed, let zg,...,zn be ii.d. standard Gaussian random variables. For ¢;, i =
0,...,n, given in (2.1), we denote

n—1
J=h+ ZZ;‘ \/é’(qiﬂ) —&(qi) + znVE (1) — & (gn).
i=0

Set

Define iteratively, for m;,i = 0,...,n, given in (2.1),

1
Xi = —logEz, expm; Xjy1,
m;j

4

where [E;; stands for the expectation for z;. Here X is defined as E;, X1 if mo =
0. Then by applying the Cole-Hopf transformation, ¥, (0, 7) = X, and thus

1n—l
e@(V)ZXo—Ezmi[J
i=0

Recall the perturbation y, from (2.2). Clearly y, = y on [0, ¢) forallg, < g < 1.
For notational convenience, we denote

di+1

VA mn ! 1
tE (t)dt—T/ tE(t)dt.

i n

(2.3) dn+1=¢, qn+2 = 1.

In a similar manner, we can express Wy, (0, 1) as follows. Let z,41 be a standard
Gaussian random variables independent of z1, ..., Z,. Define

n+1

Fosa = i+ 2 2 50 - £
j=0

and iteratively, for 0 <i <n + 1,

1
2.4) Y; = — logE, expm;Yi41.
—

1
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Here again we let Yo = E;,Y; whenever mg = 0. Thus, ¥y, (0,) = Yy for any
q € (gn,1). As aresult,

1”_1 ditr my (1,
P(yg) = YO—EiZZOm,- /q; 1€ (t)dz—T/ t&"(t)dt

1
_ Mnt1 [ t£"(1)dt.
2 q

2.9)

In particular, we have limg—1— Wy, (0,7) = ¥, (0,4) and limg—1- P(y,) =
2()-

2.2 Some Auxiliary Lemmas

We state two propositions that will be heavily used in our main proof in the next
subsection. Let 0 < a <t < b and 0 < m < m’. Denote by z a standard normal
random variable. Define

’

1
A(t,x) = %logEexpm"x +zvb—t

1
(2.6) B(t,x) = —logEexpmA(t,x + z+/t —a),
m

C(t,x) = E(dcA(t, x + 23T —a))*V(t, x, x + 2v/i —a),
where

V(t,x,y) = MA@ Y)—B(t.x))

For any (¢, x) € [a,b) x R, define random variables:

Vit,x) =V(t,x,x + 21 —a),
As(t,x) = 3, A(t, x + 2T —a),
A (t,x) = x A(t, x + 23T — a),
Ax(t,x) = 0 A(t, x + 24/ — a),
Axx(t,x) = 0xx A(t, x + 21 —a),
Axxx(t,x) = dxxx A, x + 21 — a).

We stress that A, (¢, x) # 9;A(t, x), Ax(t,x) # dxA(t, x), etc., in our notation.
Note that EV (¢, x) = 1. The main results of this subsection are the following two
propositions.

PROPOSITION 2.2. For any (t,x) € [a,b) X R, we have that

(m —m')

27) 0Bt x) = ——

C(t,x)
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and
9:C(1,x) = E(Axx(t, %)% +20m — m') Axx(t, ) Ax (1, X)?) V (1, X)

(2.8) (m —m")m (

i EAx (1, x)*T (1, x) — (EAx (1, x)*T (1, x))?).

Remark 2.3. Functions (2.6) and the formula (2.7) also appeared in [41, sec. 14.7]
in a similar manner, where in the exponent of A, the author used the random vari-

able B~ logcosh(B(x + z+/b —t)) instead of |x + z+/b — /.

PROPOSITION 2.4. For (t,x) € [a,b) X R, we have that

lim C(t,x) =1
2.9) Jim €. x)
and
2 /
liminf3,C(t. x) > 2™ A ),
t—>b— 3
where
2
2 e Z—a
2.10 A(x) = .
(10) *) /27 (b — a) Eemlx+zvb—al

Before we turn to the proofs of Propositions 2.2 and 2.4, we first gather some
fundamental properties of the function A.

LEMMA 2.5. A is the classical solution to the following PDE with boundary con-
dition A(b, x) = |x|:

@2.11) 9 A(t, x) = —%(8xxA(t,x) +m (35 A, %))

for (t,x) € [a,b) x R. In addition,

(2.12) |0xA(t,x)| <1, (t,x) € [a,b) xR,

(2.13) hrl? dxA(t,x) = sign(x) Vx e R\ {0},
t—b—

lim EAx(t, x)>*V (1, x) = 1
(2.14) t—>b—
Y(t,x)€la,b) xR, Yk e N, VO <m <m/,

where sign(x) = 1 ifx > 0and = —1 if x < 0.

PROOF. Define

b—tym’? X
gt x)=e 2 +m,xd>(m'vb -1+ \/b_)’
—1
where ® is the cumulative distribution function of a standard normal random vari-
able. Note that a direct computation gives

REe™ X +zvb—tl _ g(t,x) + g, —x).
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Thus,

1
A(t,x) = o log(g(t,x) + g(t, —x)).
From this expression, we can compute that

_ 8(tx) —g(t,—x)
gt,x) +g(t.—x)’

5 15 _ g(r,x>—g(r,—x))2)
(2.15) OxxA(t, x) m(l (g(l,x)—i—g(l,—x) + 2T°(z, x),

9, A1, x) = —’”7 ~T(t. %),

0 A(t, x)

where

__x2
e 2D

1
V2r (b —1) gt x) + g(t.—x)
Therefore, these equations together validate (2.11). From the first equation, we can
also conclude (2.12) and (2.13). Note that

'@, x):=

, eIyl

lim V(,x,y)=V(b,x,y) = —————

t—1>rl§1— ( . y) ( x y) Eem|x+ZVb—a|

and In V' (¢, -, -) is at most of linear growth. From (2.12) and (2.13), the dominated
convergence theorem implies (2.14). U

PROOF OF PROPOSITION 2.2. To lighten our notation, we will drop the depen-
dence on (¢, x) in this proof. Recall that the Gaussian integration by parts states
that for a standard normal random variable z, Ez f(z) = E f”(z) for all absolutely
continuous functions f satisfying that In | | is at most of linear growth at infinity;
see, e.g., [41, sec. A.4]. From this formula and the PDE (2.11),

Z ~
0/B=E|lA; + ———A, |V
=0,

1 1 ~
/

=T gA2yp,
2

which gives (2.7). To compute the partial derivative of C in ¢, write 0,C =1+ 1I
for

Z
2/t —a

II:= I’I’IEA% (At + Z\/%Ax — 81‘3)?

I:=2E (A,x + Axx)AxV,
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Here, from (2.11), since
1
8txA = _5(8xxxA + Zm/axxA . axA)

for any (¢, x) € [a, b) x R, using the Gaussian integration by parts again gives
1 2 2\ \ {7
[=2E( A Ax + E(AxxxAx + A, + mAxxAT) |V
= E(—Ax (Axxx +2m Axx Ax) + (Axxx Ax + A2, + mAcA2))V

=E(A2, + (m —2m) Axx A2)V.
In addition, from (2.11) and the Gaussian integration by parts,

1 -
= m]E( (Axx A2 +m'AY) + 5(3AxxA§ +mA}) - Aia,B)V

1
2
(m— m/)m(

= mEAxx A2V + EALV — (EA27)?).

From the above, (2.8) follows. O
To handle the limits in Proposition 2.4, we need two lemmas.

LEMMA 2.6. For any odd k > 1, there exists a constant K independent of t such
that

5 mlx|
(2.16) EAx(t, X)¥  Axx (1, )V (1, x) <
forallt € [a,b) and x € R. Moreover,
~ 1
(2.17) lim EA(r, x)* T Axr (2. )V (2, x) = —A(x),
t—b— k

where A(x) is defined in Proposition 2 4.
PROOF. Define
D(t,x) = EzAX (1. x)V (1, x).
Note that |05 A(¢, x)| < 1 and B(¢, x) > 0. We have
V(t,x,y) = eMAY)=B(t.x)) < mA,0)+mly|
Using the Gaussian integration by parts, we can write
(2.18) D(t,x) = V1 — aE(kAx(t, ) T Axx(t, x) + mAc(t, x)F TV (1, x).
This and the previous inequality together imply (2.16) since
ki —aEAx(t, x)* T Agx (2. x)V (1, x) < D(t,x)
< emA(a,0)+m|x|E|Z|emlz|«/m’

where the first inequality used the fact that k + 1 is even.
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Next, we verify (2.17). Note that from (2.12) and (2.13), the dominated conver-
gence theorem implies

- _ Ezsign(x + zvb — a)em|x+zm| B
tEE}?_ D(t,x) = Eomlvtevba] = Vb —a(A(x) + m),

where the second equation used the fact that

Ez sign(x + z+vb — a)e™*+2vb—al
_ 2 e~ + m~b — aEemxTzvbal
V2
See the verification of this equation in Lemma A.1 in the appendix. In addition,
since k + 1 is even, (2.14) yields

lim EAx(t, x)¥T'V (i, x) = 1.

t—b—

Thus, from (2.18) and the last two limits,
AX)Vb —a+mvb—a
= lim D(t,x) = vb —a(k lim IEAx(t,x)k_lex(t,x)V(t,x) +m),
t—>b— t—b—

(2.19)

from which (2.17) follows. U

LEMMA 2.7. We have that

4dm
3

PROOF. Recall the middle equation of (2.15). We see that
(2.20) Axx(t,x) = m'(1 — Ax(t,x)?) + 2T (1, x)

/A(x).

liminf E Ay (¢, x)2V (1, x) >
t—b—

on [a,b) x R, where f‘(t,x) = I'(¢t,x + zvb —a). Using (2.14), (2.20), and
Lemma 2.6 with k = 1 gives

~ ~ 1
Iim ET(¢, x)V(t,x) = =A(x).
t—b— 2

Also, multiplying both sides of (2.20) by A (¢, x)? and applying (2.14) and Lemma
2.6 with k = 3 yields

lim EAx (s, x)?T (@, x)V (¢, x) = lA(x).
t—>b— 6
From (2.20), since
Axx(t,x)% = (m'(1 = Ax(1,0)?) + 2T, x))?
> [m'(1 = Ax(t,x)®)]? + 4m’ (1 — Ax(t, x)*)T (1, x),

the announced result follows by the last two limits. U
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PROOF OF PROPOSITION 2.4. Statement (2.9) follows from (2.6) and (2.14).
From (2.8), (2.14), Lemma 2.7, and (2.17), we find

liminfd;C(z, x)
t—>b—
> limli)nf]E(Axx(t,x)2 4+ 2(m — m’)Axx(t,x)Ax(t,x)z)V(t,x)
t—>b—
> liminf EAxx (7, )2V (¢, x) 4+ 2(m —m’) lim EAx. (¢, x)Ax(t, X)?V (2, X)
t—>b— t—>b—

4m’ 2(m —m')
= A -
3 A%+ 3

_2(m+m)
B 3

which completes the proof. U

A(x)
A(x),

2.3 Proof of Theorem 2.1

Recall the sequences (¢;)o<i<n+2 and (m;)o<i<n+1 from (2.1) and (2.3). Re-
call the quantities m,m’, a, b and the functions A, B, C, V from (2.6). From now
on, we take

m = mpy, m/=mn+1,
a=¢(@n). b=¢qQ),
and let
A(g.x)=AE(@).x).  B(g.x) = BE(q).x).
C(g.x) =CE (@).x). V(g.x.y) =V(E(q).x.y).
For 0 <i <n, set
Wi = expm;i(Yi+1 — Yi),

where Y; are given in (2.4). Denote

n—1
Z=h+Y 2 /&) -E).

Jj=0
and
$(q) = EWo - Wa1C(q. 2).
LEMMA 2.8. We have that

£"(q)
2

(2.21) 8q=@()/q) = (Mp+1 —mn)(q - ¢(51))
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and
£"(q)(mn —mp41)
¢'(q) = T
n—1 )
' ZmiE[WO'“VVi(Ei+1[W/i+1 - Wno1Cl(q, 2))) ]
i=0
(2.22) _E(@)(mp —mpt1)
2
n—1 )
. ZmiE[WO"'VViEzi[VVi (Eis1[Wig1-- Wa—1C(q. 2)]) ]]
i=0
+EWo - Wa1Cy(q. 2).
where E; is the expectation with respect to z;,...,Zn—1 and éq is the partial

derivative with respect to q.
PROOF. Observe that for0 <i <n —1,
8qYi = B, WidgYis1.
An induction argument yields
8gY; = EiWi - W19 Yo
for0 <i <n-—1.Since Y, = §(q, Z), the equation (2.7) leads to

/i _ A
(2.23) g1y = SO T Dy, 1 Ci. )

From (2.5), since

84‘@()/61) = anO + (Mpy1 —mp),

this and (2.23) with i = 0 yield (2.21). On the other hand, for 0 <i <n —1, from
(2.23),

q¢"(q)
2

ani = mi(ani-i—l - ani)Wi

_ @

> (M — Mug 1) Wi (Eip1 Wig1 -+ Wae1 C(q. Z)

—EivVi"‘Wn—lé(q’Z))

where E; 1 W; 1 ~--Wn_16(q, Z) = é(q, Z)ifi = n — 1. Finally, since
n—1
¢'(@) =D EWo--- Wit (g Wi)Wis1 -+ War C(q. 2)
i=0

+EWo - Wa-1C4(q. 2).
plugging the last equation into this derivative yields (2.22). U
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PROOF OF THEOREM 2.1. Recall ¢'(¢) from (2.22). Let Wo. ..., W,_1 be
Wo,...,Wn—1 evaluated at ¢ = 1. Note that E;, W; = 1forall0 <i <n —1,
limy—1— C(q.Z) = 1by (2.9), and |C(q. Z)| < 1 by (2.12). Applying Fatou’s
lemma and conditional expectation yields that the first two lines of (2.22) cancel
each other and as a result of Proposition 2.4,

liminf ¢’ (¢) = liminf EWp --- W,_1C,(q. Z)
q—1— q—>1—
2.24) = EWo - Wa—t liminf Cy(q. 2)

- 28" (1)(mp + mpy1)
- 3
where A(Z) is defined through (2.10) with a = §'(g,), b = £€'(1), and m = my,,.
We emphasize that although we do not know whether @q is nonnegative (see (2.8)),

the use of Fatou’s lemma remains justifiable. Indeed, note that |ff x| <L Eg, V=
1, and by (2.16),

0 <E;, Axx(q. 2)A3(4. 2)V (4. Z. Z + 20§ (@) = §'(4n)
= ;
VE'(q) —§(qn)
where K is a constant independent of ¢. From (2.8),
2K e™MnlZl my
T -tan 2/
§'(q) — §'(qn)
In addition, it can be shown that each ln(Wo Wi ---Wn_l) is at most of linear
growth in zg, ..., z,—1 following from the fact that each Y; is uniformly Lips-
chitz in the variable z; for all ¢ € [gy, 1]. This and the last inequality together

validate (2.24).
Next, from (2.24), we can choose 41 large enough in the beginning such that

EWp -+ Wa_1A(Z),

Cy(q. Z) = —(mp+41 —mn)SN(CI)(

liminf¢'(g) > 1.
qg—>1—

Note that limg—1— ¢(q) = 1. From (2.21), the above inequality implies that
042 (yq) < 0 for our choice of m, 41 as long as ¢ is sufficiently close to 1. This
completes our proof.

O

Remark 2.9. The validity of (2.24) and Theorem 2.1 relies on the positive lower
bound of d;C coming from Proposition 2.4. When one looks at (2.8) together with
the fact lim,_,,_(dxA)? = 1, it is tempting to think that d,C is actually negative
since m" = my4 is taken to be large. As a result, Proposition 2.4 may look
counterintuitive. The remedy for this puzzle is the fact that 0, A(Z, x) is singular
in the limit # — b— and the dominated convergence theorem does not apply. These
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“singular expectations” are one of the major difficulties in proving Theorem 2.1.
They are handled by the exact computations coming from Lemmas 2.6 and 2.7.

Remark 2.10. In the work [42], Toninelli proved that in the SK model, the Parisi
formula for the free energy possesses RSB Parisi measure when the tempera-
ture stays below the de Almeida—Thouless transition line. In view of the argu-
ment therein, he considered the first derivative of the Parisi functional g (y,)
in the variable m,4+; and then sent m,4+; — 1 for n = 0 to obtain a quan-
tity K(B8,h,q). He then concluded the proof by calculating the first and sec-
ond derivatives of K(B,h,q) w.r.t. ¢ near g, where g is the unique solution of
q=[duz) tanh?(z8/q + Bh) for z ~ N(0, 1). In our situation, the maximum
value of m, 11 is unclear since y is not a probability measure. Our argument con-
siders the first and second derivatives of the perturbed Parisi functional Z?(y,) in
g and evaluated at ¢ = 1, which will not work for the positive temperature case
because ap ([0, x]) is less than or equal to 1 for x being close to 1.

3 Proofs of Main Results

PROOF OF THEOREM 1.1. We prove Theorem 1.1 by contradiction. First, note
that it is known by [12, theorem 6] that the Parisi measure yp is not constantly 0.
Suppose that the support of yp consists of only n > 1 points. Then from Theorem
2.1, we can lower the value of the Parisi functional by a perturbation of yp at 1
defined in (2.2). This leads to a contradiction of the minimality of &?(yp). Hence,
the support of yp must contain infinitely many points. U

Remark 3.1. The statement of Theorem 1.1 can be strengthened to the fact that the
Parisi measure yp cannot be “flat” near 1, i.e., yp(¢) < yp(1—) forany 0 <t < 1.
In fact, if this is not true, then yp is a constant function on [a, 1) for some a. One
can then apply essentially the same argument as Proposition 2.1 to lower the Parisi
functional. The only difference is that since yp is not necessarily a step function
on [0, a), the terms W --- W,,_; in Lemma 2.8 have to be replaced by a continuous
modification using the optimal stochastic control representation for W,, in [12]. We
omit the details of the argument.

Remark 3.2. Our argument of Theorem 1.1 does not rely on the uniqueness of the
Parisi measure. All we need is the existence of a Parisi measure, which was proved
in [8].

PROOF OF PROPOSITION 1.3. For any u € [—1,1] and ¢ > 0, consider the
coupled free energy and the maximum energy

1
Crnpl.e) = ,B_Nlog|R Zu<6eﬁHN(Ul)+ﬂHN(UZ)
12—

and

1
CMp(u,s) ;== — max (HN(UI) + HN(UZ)).
N \Rl.z—u|<8
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First we claim that if u is in the support of the Parisi measure ap g(dt), then for
any € > 0,

3.1 li ECF ,8) =2Fg.
(3.1) Am N,p(u, ) B

Note that the expectation of the free energy Fy g and the coupled free energy
CFy g are Lipschitz functions in the mixture parameters (cp)p>2 With respect to
the £2(R)-norm. In addition, the Parisi measure is continuous in B as well as the
mixture parameters (cp)p>2 (see, e.g., [7]). From these, we may assume without
loss of generality that ¢, > O for all p > 2. This condition guarantees that the
Parisi measure ap g is the limiting distribution of the overlap R; > between two
i.i.d. samplings 0! and 02 from Gy ; see [26,39]. Namely, we have
lim EGY*(Ri € B) = apg(B)

N—+o00
for any Borel set B C [0, 1]. To see why the claim (3.1) holds, observe that if there
exists a positive § such that

limsup ECFy g(u,e) < 2Fg —§,

N—o0

it follows by the Gaussian concentration of measure that there exists a constant
K > 0 such that for any N > 1, with probability at least 1 — Ke™V /K,
)

CFN,B(L!,S) < 2FN,ﬁ - E

Multiplying N and taking the exponential leads to
EG%Z(RLz ceu—eu+ 8)) < Ke N/K + e‘Nﬂ5/2,

which implies, by the weak convergence of R 2,

/ apg(dt) =0.
(u—e,u+e)

This contradicts the fact that u is in the support of the Parisi measure and completes
the proof of our claim.
Next, note that evidently

Jog 4
ECMy (u.¢) < ECF y g(u. ) < % +ECMy (u, ).

This together with our claim implies that

lim ECM ,e) =2 lim Fg = 2GSE.
N0 N €) pooo P

From the Gaussian concentration of measure inequality, for any n > 0, there exists
. oo 7
a constant K’ > 0 such that for any N > 1 with probability at least 1 — K’e™V /K’

CMy (u,¢) > 2GSE — g
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and

H
max N () < GSE + Q
gEXN N 4

From the first inequality, there exist 0! and 02 with |Ry » — u| < & and

1

~(Hy(0") + Hy(0%) = 2GSE— 7.

If either Hy (0!) < GSE — 5 or Hy(0?) < GSE — 1, then we arrive at a contra-
diction,

3n

1
2GSE—g < - (Hy(0") + Hy(0%) < GSE—n + GSE+ g = 2GSE—- .

Therefore, the inequality (1.5) must hold and this finishes our proof. U

PROOF OF THEOREM 1.6. Recall the Parisi measure ap g for the free energy
from (1.2). We first claim that (Bap g)g>o converges to yp vaguely on [0, 1).
Suppose there exists an infinite sequence (8;);>1 such that (8;ap g,);>1 does not
converge to yp vaguely on [0, 1). By an identical argument to [8, eq. (16)], we
can further pass to a subsequence of (B;ap g,);>1 such that it vaguely converges
to some y on [0, 1). To ease our notation, we use (B;ap g,);>1 to stand for this
subsequence. It was established in [8, lemma 3] that

lim Fg, > 2(y).
[—o00

From this,
P(yp) = lim Fg > Z(y).
B—o0

From the uniqueness of yp shown in [12, theorem 4], it follows that yp = y, a con-
tradiction. Thus, (Bap g)g>o converges to yp vaguely on [0, 1). This completes
the proof of our claim.

Next, if Theorem 1.6 does not hold, then from the above claim, there exists
some k > 1 such that the support of ap g contains at most k points for all suffi-
ciently large . This implies that the support of yp contains at most k points. This
contradicts Theorem 1.1. g

Appendix

Denote by ®(x) the c.d.f. of the standard normal distribution. The following
lemma follows a standard Gaussian computation and is used in (2.19).

LEMMA A.1. Suppose that 7 is a standard normal random variable. For any
x,meRanda > 0,

2

m|x+az| 2 2 m|x+az|
Eze sign(x + az) = / —e 242 + malke .
b4
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PROOF. Define
fy) = emyq>(z + ma),
a

for y € R, where ®(x) is the c.d.f. of the standard Gaussian random variable.
Note that

2 1 m2a?
2
amz — — = ——(z —ma
-5 2(z )+
Computing directly gives
m(x+az) e > amz 22
Eze 1 = ze4" T dz
{X+aZ>O} \/ﬂ _x/a

2.2
m=<a
emx+ 2 o0 _ (z—ma)?

= (z —ma)e 2 dz

N2 —x/a

m2a2
mae™* T2 ® _g—ma)?
e e 2 dZ
V21 —x/a
_x2
e 2a? m2a2

= m+mae 2 f(x).

On the other hand, since z’ := —z is a standard Gaussian random variable, we may
apply the above formula to obtain

Eze—m(x+az)]1{x+az<0} _ —E(—Z)em((_x)+a(_Z))ﬂ{—x+a(—z)>0}
— —Ezlem((_x)—'_az/)]1{—X+112/>0}

e 242 2,2
=— —mae" 2 f(=x).

V2m

Combining these two equations leads to

EZem(x+aZ) ]l{x +az>0} — Eze_m(x-HlZ) ]l{x +az<0}

m2a42

[2 _x2
= ;e 242 + mae 2 (f(x)+f(—x)).
Here, note that

m2a? X
Eem|x+az| —e 2 +xmq)(_ —I—am)
a

m2a2

a

This and the last equation together imply the announced result. U
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