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ABSTRACT

Smartphones are the most commonly used computing platform
for accessing sensitive and important information placed on the
Internet. Authenticating the smartphone’s identity in addition to the
user’s identity is a widely adopted security augmentation method
since conventional user authentication methods, such as password
entry, often fail to provide strong protection by itself.

In this paper, we propose a sensor-based device fingerprinting
technique for identifying and authenticating individual mobile de-
vices. Our technique, called MICPRINT, exploits the unique charac-
teristics of embedded microphones in mobile devices due to man-
ufacturing variations in order to uniquely identify each device.
Unlike conventional sensor-based device fingerprinting that are
prone to spoofing attack via malware, MICPRINT is fundamentally
spoof-resistant since it uses acoustic features that are prominent
only when the user blocks the microphone hole. This simple user in-
tervention acts as implicit permission to fingerprint the sensor and
can effectively prevent unauthorized fingerprinting using malware.
We implement MIcPRINT on Google Pixel 1 and Samsung Nexus to
evaluate the accuracy of device identification. We also evaluate its
security against simple raw data attacks and sophisticated imper-
sonation attacks. The results show that after several incremental
training cycles under various environmental noises, MICPRINT can
achieve high accuracy and reliability for both smartphone models.
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1 INTRODUCTION

The past decade has seen an unprecedentedly rapid growth of
applications and services based on network-connected mobile com-
puting platforms. The network connectivity has facilitated the de-
velopment of various novel mobile applications and services but at
the cost of acute security and privacy concerns due to sensitive and
confidential data placed on the Internet. Researchers and security
practitioners have sought strong security mechanisms to protect
such data from malicious attacks, but current security methods
have often failed to provide proper protection. It is not difficult to
find incidents where security and privacy vulnerabilities in mobile
systems have resulted in tangible damages—in a recent example,
simple identity fraud led to hackers stealing 24 million dollars in
cryptocurrencies from a crypto investor [12].

The key to protecting security- and privacy-sensitive informa-
tion is controlling who accesses what information [33]. This is
accomplished by proper authentication to verify the identity of the
requesting user and/or device and its level of clearance to access.
Traditional authentication methods that rely solely on password
protection have failed to provide proper authentication. It is known
that users often choose weak passwords or re-use passwords for dif-
ferent purposes [15]. A successful attack on Mozilla’s Bugzilla bug
tracker in 2014 that exposed the browser’s 185 non-public vulnera-
bilities was due to that a privileged user had set the same password
on another website that was breached [21]. Another study shows
that about 98% of users have only three different passwords that
they use frequently, and more than 50% of them never change the
passwords unless required by the system [30], making the impact
of password leaks broader.

As a countermeasure to this limitation, multi-factor authenti-
cation that requires authentication information in more than one
modality has become popular in many applications where elevated
security is demanded. For example, in addition to a password, an
authenticator can verify another knowledge factor (i.e., “something
the user knows”) by asking additional security questions, such as
mother’s maiden name. However, this approach is still vulnerable
to attacks by simple guessing or social engineering [5]. In addition,
it often requires the user to enter a long answer to the additional
security question, which tends to deteriorate the user experience.
A promising alternative method is to verify a possession factor (i.e.,
“something the user has”), where the user must prove that he/she
has something that is pre-registered with the authenticator, such
as a one-time password (OTP) token and a smart card. However,
carrying an additional device only for authentication purpose is not
a convenient solution. Instead, using the unique identification of
the device itself, i.e., the device’s fingerprint vector, as a possession
factor is gaining popularity for its convenience.
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Figure 1: System model.

To accomplish reliable mobile device-based multi-factor authen-
tication, it is crucial to generate a secure and reliable fingerprint
vector to de-anonymize and identify each device. A fingerprint vec-
tor of a device can be generated from its software settings, network
status, or hardware components. Sensor-based fingerprinting is a
promising approach that falls into the category of hardware-based
approaches, which exploits the fact that each sensor device has
a unique characteristic that is unpredictable and unreproducible
due to variations in hardware manufacturing process. A variety
of device fingerprinting methods have been proposed for mobile
devices using their rich sensors, such as accelerometers [4, 13],
gyroscopes [10], and microphones [9].

The key challenge in realizing strong authentication based on
mobile device fingerprinting is to prevent spoofing attacks, where
the attacker obtains and alters the fingerprint vector to impersonate
the victim. Unfortunately, conventional sensor-based fingerprint
vector generation processes are prone to this type of attacks. Mobile
applications can access sensors any time as long as they obtain nec-
essary permissions when installed. An adversary can easily make
malware that obtains legit-looking permission to access the sensor
used for fingerprinting. Once such malware is installed, it is difficult
(if not impossible) to distinguish the legitimate, functional use of the
sensor from the malicious use. For example, a game app that uses
an accelerometer will be given permission to access the accelerom-
eter and can stealthily generate the fingerprint of it. To make it
worse, most users tend to grant unnecessary permissions without
understanding the implications and never revisit them later on [19].
As aresult, sensor-based device fingerprinting has been proposed
mainly for device tracking, rather than authentication, and only in
limited scenarios has it been proposed to use for authentication,
e.g., under the assumption of limited attacker capabilities or close
physical proximity between the device and the authenticator.

In this paper, we introduce a spoof-resistant sensor-based device
fingerprinting method that addresses this challenge for realizing
strong mobile device authentication. More specifically, we exploit
the unique fingerprint of a built-in acoustic sensor (i.e., micro-
phone) that can be generated only when the user explicitly consents
by blocking the microphone hole with his/her finger. We show
that, when blocked with a finger, microphones exhibit different
acoustic characteristics that cannot be reconstructed from acoustic
characteristics captured without blocking it. With an action that is
as simple as using a (biometric) fingerprint sensor, the proposed
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Figure 2: Acoustic fingerprints of D and C, with the micro-
phone hole blocked or not blocked.

method prevents unauthorized sensor fingerprinting even if an
app has permission to access the sensor. The proposed method can
be applied to commodity smartphones without any hardware or
kernel modification.

2 SYSTEM AND THREAT MODELS

In this section, we specify the system model of MicPRINT for device
authentication and describe three threat models that we consider
within the system model.

2.1 System Model

The system model we assume in this paper consists of three entities,
as shown in Figure 1: a legitimate mobile device (D) possessed by
a legitimate user, a counterfeit mobile device (C) possessed by an
adversary, and an authenticator (A). Both D and C are of the same
model and have an embedded microphone. From the perspective of
security, we assume the following: (i) D and A are connected via
secure wired and wireless networks; (ii) A is protected by proper se-
curity mechanisms; (iii) D is vulnerable to malware through which
the adversary can access the microphone anytime; and (iv) the mi-
crophone on D can be accessed anytime by any of its apps with
proper permission, but only one app at a time can access the micro-
phone.

As shown in Figure 2, we let Sg and Fg be an audio sample
recorded with the microphone hole blocked and its acoustic feature
vector, respectively. Similarly, Siyp and Frp denote an audio sample
recorded with the microphone hole open and its acoustic feature
vector, respectively. As discussed above, the adversary can obtain
Fp(C) and Fnpg(C) directly from its own device C, and Fnp(D)
from the victim’s device D via the malware. Ideally, A should accept
an authentication request only when Fg(D) is presented by D and
reject all other requests.

2.2 Threat Model

The goal of the adversary is to impersonate the legitimate user
to gain access to A. We assume that malware is already installed
on D and has microphone access permission. We consider three
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hypothetical yet realistic threat models: passive raw audio attack,
active raw audio attack, and synthesis attack.

Passive raw audio attack. The simplest attack method we con-
sider is passive raw audio attack where the adversary uses Fg(C)
as a counterfeit fingerprint of D. This attack assumes that two de-
vices of the same model will exhibit the same acoustic fingerprint,
i.e., Fg(D) = Fg(C). This simple attack does not even require the
adversary to install malware on D. If the attack is successful, it is
the most effective attack that any device of the same model as C
can be a victim, even without installing malware.

Active raw audio attack. Active raw audio attack is another
simple attack where the adversary captures raw audio samples of
D through malware to stealthily obtain Fypg(D). The adversary
uses Fnp(D) instead of Fg(D) to be authenticated by A as D. The
malware can use the microphone virtually anytime to capture audio
samples in various environments, but not when the microphone
hole is blocked because collecting acoustic samples with a blocked
hole is done by the user only when he/she intends to generate
the fingerprint using a legitimate app. Note that this attack model
assumes the same attack capability as in the spoofing attack against
conventional sensor-based device fingerprinting. This attack relies
on the assumption that acoustic fingerprint will not be changed
by blocking microphone hole, i.e., Fg(D) = Fn (D). If successful,
the adversary can attack any device by just infecting victims with
malware without having to physically acquire a counterfeit device
of the same model.

Synthesis attack. The most sophisticated attack we consider
is synthesis attack where the adversary synthesize Fg(D) using
FnB(D), Fp(C), and Fypg(C). This attack requires both malware
installed on D and the possession of a physical device of the same
model C. The adversary uses Fxg(D) acquired from D via malware
when ambient noise is minimal (e.g., during nighttime) to minimize
the potential impact of the ambient noise. Next, the adversary
acquires Fg(C) and Fypg(C) from C in the same environmental
noise and obtains a linear transfer function f that converts Fxg(C)
to Fg(C). Finally, the synthesized Fg(D) is obtained by applying
f to FNg(D). The assumption that this attack relies on is that f
obtained from C is also applicable to D if the ambient noise is the

same, i.e., F(C) = f(FNB(C)) = Fp(D) = f(Fnp(D)).
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Figure 4: Spectrum of recorded audio samples with the mi-
crophone hole blocked (Sg) and with it open (Sy g)-

3 ACOUSTIC FINGERPRINTING

In this section, we discuss the source of unique randomness utilized
in acoustic fingerprinting.

3.1 Manufacturing Variability of Microphones

Micro-electro-mechanical systems (MEMS) microphones are fab-
ricated on silicon wafers through the semiconductor production
process and offer low cost, low power consumption, and very small
packages, making them attractive for smartphones with stringent
power and form-factor constraints. MEMS microphones measure
the displacement of a diaphragm in response to sound pressure and
subsequently converts it to a voltage signal measured by an analog-
digital converter (ADC). Figures 3(a) and 3(b) show an example of
a commodity MEMS microphone and the typical internal structure
of a MEMS microphone, respectively.

Each microphone exhibits subtle but consistent differences in
how the diaphragm response to the same sound pressure [9]. The
variability is induced by semiconductor fabrication imperfections
that result in the mechanical deformation of the diaphragm and gap
between rigid back-plate and the diaphragm, and so on. The me-
chanical variability manifests as variability in the sound recorded by
the microphone, and, in turn, the acoustic features of the recorded
sound.

3.2 Acoustic Fingerprint in MicPRINT

In this section, we first discuss the background of the proposed
acoustic fingerprinting method. The source of uniqueness we ex-
ploit in MICPRINT is the embedded microphone’s acoustic finger-
print that is prominent only when the microphone hole is blocked
by a finger, but not when it is open. As discussed above, each micro-
phone has a unique fingerprint that is distinguishable from others
when the hole is not blocked, but relying on Fn g makes the finger-
print vulnerable to spoofing via malware. To implement a secure
fingerprinting and authentication method, a new fingerprint Fg,
captured with the hole blocked, should meet the following require-
ments: (i) Fp of each device should be unique, and (ii) one should
not be able to easily produce Fp of a device from Fxp of the same
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Figure 5: Distributions of 15 acoustic features of Fy; g and Fp
of the same device. Discriminating features are highlighted.

device. Since the uniqueness of microphones originates from fun-
damental hardware imperfection, we can assume the uniqueness
of Fp regardless of the blockage of the hole.

The second requirement is explored by a simple preliminary
study. We record an audio sample in an environmental noise (noise
source “Lounge” from SoundJay [3]) for 1 s with the microphone
hole blocked (Sg) and with it open (Sn ), using the same smart-
phone. Figure 4 shows their sound spectrums and the attenuation
by the blockage. We can see that attenuation from Sypg to Sg is
not linear across the frequency range. Moreover, we can observe
additional sound added by the finger in the low-frequency range. In
Figure 5, the distribution of 15 acoustic features of 20 samples of Fp
and Fyp is presented!. Each sample is 1-s long, and each feature
vector is normalized by its 1-norm. We can see some features, such
as the highlighted ones, show clear discrimination between Fp and
Fn B. Therefore, an adversary cannot correctly produce Fg by sim-
ple manipulation of Fyp obtained via malware. Later in this paper,
we also show that even a sophisticated synthesis attack that uses a
linear transfer function cannot successfully produce correct Fp.

4 MICPRINT DESIGN

In this section, we describe the design of MIcPRINT for secure
device fingerprinting and authentication.

4.1 Overall Design

Device authentication by MICPRINT consists of two phases, as
shown in Figure 6: an enrollment phase and an authentication
phase. The enrollment phase is a process in which a legitimate
user registers a legitimate device D to the authenticator A. First,
the authentication app on D captures two short audio samples,
Sp(D) and Sy (D), and sends them to A. Then, A extracts acoustic
features Fg(D) and Fng(D) from the audio samples and trains a set
of authentication classifiers that will accept only Fg(D) and reject
everything else. The authentication phase is a process in which A
verifies the authenticity of D using the authentication classifier set.
In this phase, D records only Sg(D) and sends it to A, and A extracts

IDescription of the acoustic features is presented later in Table 1.
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Figure 6: MIcPRINT design.

its feature vector Fg(D). Finally, A authenticates D if it is recognized
by the classifier set, based on that Fg(D) can be generated only
when the legitimate user explicitly indents authentication. In case
that MicPrINT fails to authenticate due to environmental noise, A
requests a more reliable but less convenient authentication factor,
such as a security question. Once authenticated, the classifier set is
retrained with additional Sg(D) and Sy g(D) to improve recognition
rate. The rest of this section describes each process in more detail.

4.2 Audio Sampling and Feature Extraction

Both the enrollment and authentication phases begin with gener-
ating an acoustic fingerprint vector from recorded audio samples.
Since it is a compute-intensive process, the required computation
is done by A that has more computing performance than D. We use
15 acoustic features that are widely used for acoustic fingerprint-
ing [9], which capture both temporal and spectral characteristics
of a signal as shown in Table 1.

For enrollment, s samples of Sg and s samples of Sy g of duration
T are captured on D and sent to A (Step (D), where s is the number
of audio samples. A high-frequency filter (HPF) is applied to Sg to
remove low-frequency acoustic artifacts added by finger’s blocking
(Step (2), as discussed in Section 3. Next, we extract 15 features

each from Sp, high-pass-filtered Sg, and Sy B, to generate Fg, F Iglf ,
and Fn B, respectively (Step ®).

For authentication, s samples of Sg of duration T each are cap-
tured on D and sent to A (Step (®). SnB is not required. Similar
to enrollment, A applies an HPF (Step (9)) and feature extraction

(Step (D) to generate Fgf and Fp.

4.3 Feature and Cut-off Frequency Selection

To improve the accuracy of classification, we select a subset of acous-
tic features that best discriminates D from other devices, rather
than using all the features [34, 36] (Step @). Since there are 15
features, selecting the optimal subset of n features in a brute force
manner requires evaluations of 15C, combinations. We find that

= 2 provides an acceptable accuracy at a reasonable training
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Table 1: ID, dimension, and description of acoustic features
used [9].

ID Dim. Feature name: Description

1 1 Root mean square (RMS): RMS of amplitude
Zero crossing rate (ZCR): Rate at which the sign of the

2 ! signal changes

3 1 Low energy rate: Frame rate less than average energy
(RMS)

4 1 Spectral centroid: Center of mass of the spectrum

5 ) Spectral entropy: Predominant peaks of the spectrum
and their location

p . Spectral irregularity: Degree of variation of the succes-
sive peaks of the spectrum

7 1 Spectral spread: Standard deviation of the spectrum

3 1 Spectral skewness: Ratio of skewness to standard devia-
tion

9 1 Spectral kurtosis: Spikiness or flatness of distribution
compared to normal distribution

10 1 Spectral rolloff: Frequency corresponding to 85% of total
energy

1 1 Spectral brightness: Amount of energy above cut-off
frequency

12 1 S'pectral flatness: Smoothness or spikiness of distribu-
tion

13 13 MFCCs: Mel-frequency cepstral coefficients
Chromagram: Distribution of energy along the pitches
or pitch classes

Tonal centroid: 6-dimensional tonal centroid vector

15 6
from chromagram

14 12

time. For each classifier, we evaluate the accuracy with all 15 fea-
tures and 15C2 = 105 combinations of two features and select the
best-performing feature set. We also evaluate two different HPF
cut-off frequencies, 5 kHz and 10 kHz, and select one that exhibits
higher accuracy. The selected feature IDs and cut-off frequency is
stored in A (Step (7)) and used later during authentication to per-
form high-pass filtering (Step (9)) and feature extraction (Step (0)
on Sg(D).

4.4 Cascaded Classification

The authenticity of the feature vectors is verified by a set of three
cascaded binary classifiers, K1 and K2 trained for all legitimate de-
vices, and K3, trained for each individual device (Step (). The three
classifiers collectively verify that the audio sample submitted by the
device is genuinely recorded by D with its microphone hole blocked.
If the audio sample is recorded by D but with the microphone hole
open, if it is a synthesized one, or if it is a recorded using a different
device, the classifier set rejects the authentication request. All three
classifiers are implemented using a binary multilayer perceptron
(MLP) network.

The first classifier K1, used for all legitimate devices, identifies
whether an input audio sample is recorded with the microphone
hole blocked or open. If the input audio sample is recorded with the
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microphone hole open, A determines that it is an active raw audio
attack and rejects the authentication request without running K2
and K3. Since the difference between Sg and Sy g is most promi-
nent in the low-frequency range, Fg without high-pass filtering is
used as input. To train K1, s Fg(D) samples are used as true sam-
ples and s Fyg(D) samples are used as false samples. Also, other
devices’ audio samples in the databases of Sg and Sn g (Step (®) are
used to train K'1. The databases are incrementally updated when
a new environmental noise source is introduced, especially when
MIcPrINT fails to authenticate a legitimate device because of it.
The second classifier K2, used for all legitimate devices, identifies
whether or not Fp is a synthesized acoustic feature vector. This
classifier is trained by potential synthesized acoustic feature vectors
generated using Fp and Fy g of other devices of the same model.
More specifically, a transfer function f : Fyg — Fp is generated
for each pair of Fg and Fp of the other devices, and then f is used
to generate false (synthesized) samples of Fg(D) by applying it to
FNB(D). The databases of Sg and Sy p are used for training K2.

Finally, the last classifier K3 distinguishes whether or not F Iglf
of D is as claimed by the requester. Unlike K1 and K2 that are
system-wide classifiers, K3 is a device-specific classifier. K3 trained
for D thwarts passive raw audio attack against D by rejecting other
devices’ Sp and accepting only Sg(D). This classifier is trained

using F ;lf of D as true samples and Fgf of other devices of the
same model] as false samples. The database of Sg is also used for
training K3.

Since the classifiers in MIcCPRINT are used for authentication
purpose, false negatives (i.e., inconvenience) are more tolerable
than false positives (i.e., insecurity). As mentioned in 4.1, if the
authenticity of the device cannot be verified by MICPRINT, i.e., neg-
ative classification is made by either K1, K2, or K3, the user is
requested to use a different authentication method that is more reli-
able (but potentially less convenient), such as entering a password.
Once the authenticity has been verified by the secondary method,
the databases of Sg and Sy p are updated with new audio samples
and the classifiers are retrained to reduce false negative rate. In
Section 5.2, we demonstrate the improvement of classification accu-
racy as the classifiers get retrained with more environmental noise
sources.

5 EVALUATION

In this section, we verify MICPRINT on commercial off-the-shelf
(COTS) smartphones and evaluate its fingerprinting accuracy as
well as security implications.

5.1 Experiment Setup

We implement and install the MICPRINT app on twelve Android
smartphones of two models: eight Google Pixel 1 and four Samsung
Nexus. We assume identifying the device model is straightforward,
so we focus on identifying individual devices within the same model.
Audio recording function is implemented using standard Android
application programming interface (API) without kernel modifica-
tion. We capture 20 samples of Sg and 20 samples of Sy g per device
and per ambient noise, where each sample is 1-s long (T = 1 s).
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In order to simulate favorable attack environment where the mi-
crophone hole is accidentally blocked by an object other than a
finger, we covered the hole with a soft cloth while recording Sy B.
All audio samples are captured at 44.1 kHz as 16-bit pulse code
modulation (PCM) in WAV format. MIRtoolbox [26] and Weka [25]
are used to extract and classify audio features in Matlab.

Ambient noises. To evaluate the impact of ambient noises, nine
ambient noise sources in Table 2 are considered. The noise samples
are played using an external speaker at a distance of 5 cm from the
microphone. The maximum and minimum sound pressure levels
(SPL) measured at the location of the microphone vary among noise
samples; in a quiet environment (“Quiet room”), it is approximately
44 dB, and with an environmental noise (“Kids playing”), it can be
up to 88 dB.

Evaluation metrics. As a device authentication method, the
usability and security of MICPRINT can be quantified using true
positive rate (TPR) and false positive rate (FPR). TPR is defined as

TP
TPR= ——, (1)
TP+ FN
where TP is the number of true positive classifications, and FN is
the number of false negative classifications. It indicates the proba-
bility that a legitimate device is successfully authenticated and thus
is a measure of usability. On the other hand, FPR is defined as
FP

FPR= ————,
FP+TN

@
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Table 2: SPL of ambient noises. Noise samples 1 through 8
are from [3], and noise source 9 is an in-house noise sample.

Noise ID  Environments Min. SPL (dB) Max. SPL (dB)

1 Airport gate 57.0 73.9
2 Bus interior 1 64.1 67.7
3 Crowd talking 1 69.3 81.1
4 Food court 55.5 72.3
5 Kids playing 64.3 88.5
6 Lounge 54.3 66.7
7 Metro interior 1 64.4 81.5
8 Restaurant 51.0 77.7
9 Quiet room 43.2 44.1

where FP is the number of false positive classifications, and TN is
the number of true negative classifications. It indicates the prob-
ability that the authenticator fails to reject a counterfeit device
and thus is a measure of security. Throughout this section, we use
per-model average TPR and FPR.

5.2 Classification Accuracy Evaluation

We first evaluate the classification accuracy of the individual classi-
fiers. Two factors that affect the TPR and FPR are considered: (i)
the number of authentication attempts made, ¢, and (ii) the number
of audio samples, s. As c increases, i.e., the increasing number of
authentication attempts made, more acoustic fingerprints under
various ambient noises are added to the databases of Sg and Sy g,
making MICPRINT more robust and reliable. For the same reason,
as s increases, i.e., as more number of audio samples are captured
each time, the accuracy of MICPRINT increases, but at the cost of
slightly reduced usability due to a longer authentication time. In
our experiments, we vary s among 1, 3, or 5, and c ranges from1to9.
We also assume that, when a new device D enrolls, the databases of
Sp and Sy g do not have samples from D, but they have a sufficient
number of samples captured from other devices and that they are
stored securely.

First, we validate how accurately classifier K1 thwarts active raw
audio attack by accepting Fp and rejecting Fng. In each enrollment
of D, s samples of Sg(D) and the same number of samples of S g(D)
are added to the databases. Then, K1 is retrained. The first row of
Figure 8 shows TPR and FPR of Google Pixel 1 and Samsung Nexus.
The results show that K1 achieves high TPR above 90% and low
FRP below 5% across all ¢ and s, except for Google Pixel 1 when
s = 1. More specifically, K1 for Google Pixel 1 achieves 98% TPR and
3% FPR after ¢ = 1 (i.e., from the first use of MICPRINT) when s = 3
(i.e., the user needs to block the microphone hole only for three
seconds). Similarly, K1 for Samsung Nexus achieves 94% TPR and
1% FPR after ¢ = 3 when s = 3. The high accuracy in distinguishing
Sp versus Sy g is mainly due to the fact that the distinct difference
between their acoustic features.

Next, we evaluate classifier K2. This classifier rejects synthesized
acoustic fingerprints but accepts unmodified acoustic fingerprints.
In each enrollment of D, s samples of Sg(D) are added to the data-
base to retrain K2. The second row in Figure 8 shows TPR and
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Figure 8: TPR and FPR of individual classifiers for (a) Google Pixel 1 and (b) Samsung Nexus.

FPR of K2. We can see that as K2 is retained with more samples
(i.e., as c increases) its FPR rapidly decreases while TPR slightly
decreases. Initially, when there are no sufficient samples of Sg(D)
under various environmental noises, K2 is too permissive that FPR
is over 50%. However, after a few more rounds of enrollment, FPR
dramatically decreases, eventually down to around 10% when ¢ = 9
and s = 3 or 5. In the meantime, TPR of K2 is maintained around
90%.

Finally, we evaluate the accuracy of device-specific classifier K3,

which accepts only D’s acoustic fingerprints F ;lf and rejects other

devices’ Fgf . In each enrollment of D, new Sg(D) is added to the
database, and K3 is retrained. As discussed in Section 4.3, during
the retraining of K3, the optimal subset of acoustic features and
the cut-off frequency for each device are selected. Figure 9 is an
example of selected features and the cut-off frequency of Google
Pixel 1 and Samsung Nexus after the 9th enrollment (¢ = 9) and
when s = 5. We can see that the optimal feature subset is different
from device to device. Figure 10 shows the selection frequency
of each acoustic feature as a result of the retraining. We can see
that different models show different most effective features: mel-
frequency cepstral coefficients (feature ID 13) and spectral spread
(feature ID 7) are most frequently used for Google Pixel 1, while
spectral brightness (feature ID 11) and zero crossing rate (feature
ID 2) are most frequently used for Samsung Nexus. Therefore, we

find the optimal set of acoustic features for each device during the
enrollment phase and use it for reliable authentication. The plots in
the last row of Figure 8 show TPR and FPR of K3. As K3 is retained
with more samples (i.e., as ¢ increases) its TPR rapidly increases
while FPR slightly increases. For Google Pixel 1, K3 is initially too
restrictive that TPR is less than 50%. However, after a few more
rounds of enrollment, TPR increases dramatically, eventually up
to around 80% when ¢ = 9 for s = 3 or 5. In the meantime, TPR of
K3 is maintained below 10%. The results for Samsung Nexus show
even better accuracy. When s = 3, TPR of K3 for Samsung Nexus
exceeds 95% after three enrollments (¢ = 3), and TPR is maintained
below 5%.

Overall, we can conclude that the incremental training of the
classifiers effectively improves TPR and FPR to a usable level within
less than ten enrollments under different environmental noises.
The selection of s = 5 seems reasonable considering the short
authentication time required to capture audio samples and reach
a satisfactory accuracy regarding different classifiers and models,
while s = 3 also shows comparable accuracy.

5.3 Authentication Accuracy Evaluation

Finally, to validate MICPRINT as a device authentication method,
the accuracy of classification of all three classifiers combined is
evaluated. We use the classifiers that are trained with nine different
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Figure 10: Selection frequency of acoustic features for (a)
Google Pixel 1 and (b) Samsung Nexus in all cases.

environmental noises and five audio samples, and in each authenti-
cation attempt, we record the same number of audio samples (s = 5).
We evaluate average TPR and FPR of all devices for legitimate audio
samples Sp as well as counterfeit audio samples under three attack
scenarios discussed in Section 2.2. We also evaluate FNR and TNR,
where FNR is false negative rate (ie., FNR = 1 — TPR) and TNR is
true negative rate (i.e., TNR = 1 — FPR). For each device and each
authentication scenario, 36 authentication and attack attempts are
made. As discussed in Section 4.4, each audio sample is sequentially
classified by K1, K2, and K3. Only when at least three out of five
samples per authentication request are classified to be legitimate
by all three classifiers, A will authenticate the requester, otherwise,
A will reject the requester.

The first column of Figures 11(a) and 11(b) shows the average
TPR of authentication of legitimate devices. The overall of TPR of
MicPrINT is 81% for Google Pixel 1 and 98% for Samsung Nexus. The

results show a good agreement with TPR of individual classifiers
discussed in Section 5.2. The second, third, and fourth column in
Figures 11(a) and 11(b) show the overall FPR of passive raw audio
attack, active raw audio attack, and synthesis attack, respectively.
Against passive raw audio attack, MICPRINT achieves 2% FPR for
Google Pixel 1 and 0% FPR for Samsung Nexus, as shown in the
second column of Figures 11(a) and 11(b). This attack bypasses K1
and K2, but K3 successfully thwarts it. Next, against active raw
audio attack, MICPRINT achieves 0% FPR for both Google Pixel 1
and Samsung Nexus. This attack is mostly thwarted by K1 which
rejects SN B, but K2 also contributes to the zero FPR by rejecting
any counterfeit attempts that K1 missed. This result shows that
MICPRINT is almost immune to passive raw audio attack, which is
the main difference between MICPRINT and existing sensor-based
device authentication techniques. Finally, MICPRINT achieves 5%
FPR for Google Pixel 1 and 7% FPR for Samsung Nexus against
synthesis attack, as shown in the fourth column of Figures 11(a)
to 11(b). As shown in the figure, all classifiers, K1, K2 and K3
contribute to rejecting this attack. Although K3 is designed to
distinguish individual devices’ acoustic fingerprint from each other,
it can also discriminate synthesized ones from legitimate ones.
Overall, for any of the three attack scenarios that we consider in
this paper, MICPRINT exhibits high TPR and low FPR.
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6 DISCUSSION AND FUTURE WORK

User experience. Major factors that affect the user experience
include the time required to complete authentication and the num-
ber of classifier retraining required to achieve acceptable TPR and
FPR. The time required to complete authentication is T X s sec-
onds. Both longer T and more s positively contribute to the faster
improvement authentication accuracy, but they negatively impact
user experience because the user is required to block the micro-
phone hole for a longer time. As demonstrated in Section 5.2, when
T =1 and s = 3, each authentication attempt takes 3 seconds, and
MicPrINT achieves acceptable authentication accuracy after several
authentication attempts.

Environmental noise. Strong environmental noise can nega-
tively affect the accuracy of MIcPRINT. Also, environmental noise
that is significantly different from previously observed ones can
increase FPR. Therefore, it is important to retrain the classifiers
with different environmental noises, especially K2 and K3. As
demonstrated in Section 5.2, less than ten different environmental
noises are sufficient to improve the robustness of the classifiers
against noise. This means that the user may fail to be authenticated
by MICPRINT and may have to use an alternative authentication
method up to ten times. Although this can pose some inconvenience,
we argue that additional enrollment and retraining are required
only when a new environmental noise is detected, and the only
additional overhead of this is the use of the alternative authenti-
cation method. To further minimize this inconvenience, we could
generate artificial environmental noises when we train the classifier
for the first time. For example, all smartphones have a loud-speaker
that can be used to play recorded environmental noises. By using
different environmental noises for the initial training, the initial
accuracy of classification can be greatly improved and a fewer num-
ber of additional enrollments will be required. The overhead of this
approach will be longer initial training, but we can let the user
make the decision.

7 RELATED WORK

Device fingerprinting methods can be divided into three categories
based on the source of unique fingerprint vectors: software-based
methods, network-based methods, and hardware-based methods.
Software-based methods utilize the patterns and traits of the in-
stalled software, such as browser settings [14, 22, 27], installed font
list [28], and cookies [1]. These methods are relatively easy to deploy
since they do not require hardware modification. Network-based
methods rely on device IP address, network protocol fingerprints [6],
and DNS resolver [7]. These methods are often client-passive that
the authenticator does not require any explicit cooperation of the
device and hence is even more convenient to deploy than software-
based methods. However, both software- and network-based meth-
ods are inherently less stable than hardware-based methods because
software and network configurations change over time due to soft-
ware updates or device mobility. A significant change in software or
network configurations will require the authenticator to temporar-
ily use a less convenient but more reliable method to identify the
device [2]. In addition, these methods are less resistant to spoofing
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since these configurations can be easily guessed or intercepted by
attackers.

On the other hand, hardware-based methods rely on the ran-
dom characteristics of a hardware component, sometimes called a
physically unclonable function (PUF), that is due to inherent manu-
facturing process variations. Depending on the type of hardware
component used for fingerprinting, hardware-based methods can
be further categorized into those that rely on an extrinsic PUF
and those that rely on an intrinsic PUF. Extrinsic PUFs are hard-
ware components dedicated solely for device identification purpose,
which can be implemented by exploiting the variability of path
delay in an arbiter chain [16, 23] or frequency of a ring oscilla-
tor [24, 29, 31]. Extrinsic PUFs can generate a reliable fingerprint
vector, but the addition of a new hardware component is costly and
inapplicable to existing mobile devices.

A more cost-effective approach that can be generally applicable
to existing mobile devices is to use an intrinsic component that
already exists in the device but not for identification purposes, such
as memory and sensors. Memory-based PUFs exploit random cell-
to-cell variations, such as reset state variation or data retention
time variation [32, 37]. Sensor-based PUFs are based on embedded
sensors in mobile devices. For example, each motion sensor ex-
hibits subtle differences in the response that can be identified using
software [17, 18]. Image sensor-based methods exploit a spatially-
random but temporally-invariant noise pattern in captured images,
such as photo-response non-uniformity (PRNU) noise [35] or dark
signal non-uniformity (DSNU) noise [20], to generate a unique
fingerprinting vector. The key advantage of intrinsic PUF-based
fingerprinting techniques is that it does not require extra hardware
addition or modification. Since the source of randomness is an ex-
isting hardware component, any app can read the fingerprint from
the hardware component using standard mobile API as long as the
app has proper access permission.

Unfortunately, as discussed in Section 1, an adversary can also
easily obtain the sensor fingerprints using the API if malware with
necessary access permission can be installed. Therefore, these meth-
ods are proposed for device identification, rather than authenti-
cation, or for authentication in restricted scenarios with limited
adversary capabilities. For example, in [8], the device and the au-
thenticator should be located in close proximity so acoustic sound
generated by the device’s speaker can be captured by the authen-
ticator’s microphone. In [20, 35], it is assumed that the adversary
cannot obtain raw (uncompressed) images from the victim, but if
malware has access permission to the image sensor, raw images
can easily be exploited by the adversary.

8 CONCLUSION

We introduced MICPRINT, a secure and usable device authentication
method based on acoustic fingerprint of microphones in mobile
devices. It exploits the acoustic fingerprint of recorded audio sam-
ples obtained when a user intentionally blocks a microphone with
a finger. MICPRINT is universally applicable since microphones
are ubiquitously embedded in virtually every mobile device. We
implemented MICPRINT on real smartphones without any hard-
ware or software kernel modification, and demonstrated its per-
formance against environmental variations. We also demonstrated
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that MICPRINT is secure against various impersonation attacks us-
ing audio samples from a device of the same model as the target
device, even if the adversary can synthesize a large number of simi-
lar audio samples. In our experiments, MICPRINT was able to accept
legitimate devices’ authentication requests and reject counterfeit
devices’ requests with high accuracy. We envision that MICPRINT
will be a promising mobile device authentication technique that is

immediately applicable since it works on existing mobile devices

with only a simple software implementation.
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