
2680 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

SAADI-EC: A Quality-Configurable Approximate
Divider for Energy Efficiency

Jackson Melchert, Setareh Behroozi , Student Member, IEEE, Jingjie Li , Student Member, IEEE,

and Younghyun Kim , Member, IEEE

Abstract— Energy efficiency is one of the most crucial
constraints that dictate performance, lifetime, form factor, and
cost in modern computing system design. However, the energy
efficiency improvement driven by semiconductor technology
scaling is coming to an end with the prediction of the end
of Moore’s law in the near future. Approximate computing is
a new paradigm to accomplish energy-efficient computing in
this twilight of Moore’s law by relaxing exactness requirement
of computation results for intrinsically error-resilient applica-
tions, such as some machine learning and signal processing.
In this paper, we propose an approximate binary divider design
that features dynamic configurability of accuracy and energy
consumption. Conventional approximate binary dividers lack
runtime energy-quality scalability, which is the key to maxi-
mizing energy efficiency while meeting the dynamically varying
accuracy requirements of the application. Our divider, named
Scalable Accuracy Approximate Divider with Error Compensa-
tion (SAADI-EC), supports dynamic energy-quality scalability by
the incremental approximation of the reciprocal of the divisor
using Taylor series expansion. As a result, the speed and energy
efficiency of division can be dynamically traded for accuracy
by controlling the number of iterations for the approximation.
In addition, SAADI-EC corrects the approximation error using
simple, yet effective error compensation hardware to greatly
improve the accuracy compared to the base implementation,
SAADI. For the 8-bit approximation of 32-bit/16-bit division,
the average accuracy of SAADI-EC can be adjusted from 94.2%
to 99.6% by varying latency and energy 7×. In terms of
energy × delay cost, our design costs up to 87% less than
other approximate binary dividers for the same accuracy level.
We evaluate the accuracy and energy consumption of SAADI-EC
for various design parameters and demonstrate its efficacy for
low-power signal processing applications including k-means color
quantization, JPEG image compression, and image division for
video sequences.

Index Terms— Approximate computing, arithmetic logic unit,
energy-quality scaling, low-power system.

Manuscript received February 18, 2019; revised May 21, 2019; accepted
June 8, 2019. Date of publication July 19, 2019; date of current version
October 23, 2019. This work was supported in part by NSF under Award CNS-
1845469, in part by the Wisconsin Alumni Research Foundation (WARF),
and in part by the Office of the Vice Chancellor for Research and Graduate
Education (OVCRGE). The preliminary version of this paper was presented
at the Asia and South Pacific Design Automation Conference (ASP-DAC),
January 2019. (Corresponding author: Younghyun Kim.)

The authors are with the Department of Electrical and Computer
Engineering, University of Wisconsin–Madison, Madison, WI 53706 USA
(e-mail: jmelchert@wisc.edu; jingjie.li@wisc.edu; sbehroozi@wisc.edu;
younghyun.kim@wisc.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2926083

I. INTRODUCTION

ENERGY efficiency is a daunting challenge in comput-
ing system design, and energy-efficient arithmetic units

are key building blocks toward this goal. Researchers have

sought to develop fast and low-power arithmetic algorithms
and circuit implementations, and, as a result, various designs

have been proposed to improve performance and reduce the
power consumption of arithmetic operations. In the traditional

computing paradigm, arithmetic operations are expected to be

always accurate, thus arithmetic units are designed to produce
exact results at all times. Although some applications require

the arithmetic operation results to be perfectly accurate, some

applications are more forgiving and do not need that level
of accuracy, depending on the context. For such applications,

using always-accurate arithmetic units is waste of energy
without any quality gain.

Approximate computing is an emerging computing para-

digm to accomplish energy-efficient computing by relaxing
accuracy requirements for the applications that do not always

demand exact computation results [2]–[4]. Applications, such

as machine learning and image processing, are resilient to
small computation errors due to the absence of a unique golden

outcome, intrinsic noise and redundancy of the input, or the
self-healing nature of the algorithm [3]. Approximate comput-

ing aggressively exploits the error resiliency by producing just

good enough results rather than exact results at much lower
power consumption, latency, logic area, or a combination of

them. Adopting this broad approach, approximate arithmetic
units have been proposed to produce approximate arithmetic
results that are not exact but good enough for the target

application. Many approximate adders [5] and approximate
multipliers [6], [7] have been proven to save power and

improve performance at the cost of minor accuracy loss.

Division is an arithmetic operation crucial in signal process-
ing. A hardware divider is a costly module in terms of latency

and energy consumption due to the high complexity of division

algorithms. For example, the integer divider instruction (IDIV)
of the AMD 12-h family has a latency of 9–17 cycles for a

16-bit division and 9–25 cycles for a 32-bit division, while
the integer multiplier instruction (IMUL) for the same widths

takes only three cycles [8]. As another example, on FPGAs,

a single-precision floating point divider requires 1.35×–3×
more hardware resources and is 27% slower than the same

precision multiplier [9]. Despite the lack of energy-efficient

and fast hardware dividers, the design of dividers with these

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

MELCHERT et al.: SAADI-EC 2681

characteristics has received less attention, mainly due to rela-

tively low utilization compared to other arithmetic operations.
However, as distributed signal processing becomes more and

more pervasive, the division is playing an increasingly impor-

tant role in low-power systems, and the need for an energy-
efficient divider is increasing. As a result, several approximate

divider designs have been recently proposed based on round-

ing [10], truncation [11], [12], and lookup tables (LUTs) [13].
Unfortunately, these prior approximate dividers support only

a single level of accuracy and lack dynamic quality configura-
bility. The accuracy level in these designs is determined by a

hardware design parameter fixed at design time, such as the

size of LUT or the number of truncated bits. Once the design
parameter has been fixed, there is no control knob for adjusting

the accuracy at runtime, and there is no power/performance

benefit from sacrificing accuracy further. However, the accu-
racy requirement for arithmetic operations is not constant

because the impact of approximation to the final quality at
the application level is highly input-dependent [14]. Moreover,

the application-level quality requirement may change over

time. Therefore, approximate computing hardware needs to
provide a control knob to the application for the feedback

control of the application-level quality requirement [15].

Having no dynamic quality-control knob, the existing approx-
imate dividers need to be designed to meet the most strict

accuracy requirement predicted at design time, and as a result,
the potential of energy savings and performance improvement

is not fully exploited when the actual accuracy requirement is

less strict.
In this paper, we propose a novel approximate divider design

called Scalable Accuracy Approximate Divider with Error

Compensation (SAADI-EC), which is capable of dynamically
trading accuracy for latency. SAADI-EC is based on our pre-

vious approximate divider design SAADI [1], which finds the
approximate reciprocal of the divisor and multiplies it by the

dividend to obtain the division result. The iterative reciprocal

approximation process, where the accuracy gradually increases
as more iterations are performed, enables the dynamic energy-

quality tradeoff. The number of iterations can be dynamically

adjusted by the application for energy-quality scaling—the
application can either obtain high-accuracy division results at

the cost of a higher latency and energy consumption or reduce
latency and improve energy efficiency by sacrificing accuracy.

As compared to its base implementation (SAADI), SAADI-EC

has novel error compensation logic to greatly improve the
accuracy of the approximate division. To compensate for

approximation error of finite-order truncation of Taylor series,

the approximate quotient is multiplied by a constant in a LUT
indexed by the number of iterations.

In summary, the contributions of this paper are as

follows.
1) We introduce an approximate divider, named

SAADI-EC, which features dynamic energy-quality
scalability. SAADI-EC performs division by multiplying

the dividend by the approximate reciprocal of the

divisor. The accuracy of division can be dynamically
controlled by adjusting the number of iterations for

reciprocal approximation.

2) We introduce an efficient method, which is new in

SAADI-EC, that compensates for the negatively biased
errors introduced in the reciprocal approximation by

finite-order truncations of Taylor series.

3) We present a low-power hardware architecture of
SAADI-EC and analyze the tradeoff between accuracy

and energy efficiency. We evaluate the accuracy and

energy consumption of SAADI-EC for different design-
time parameters as well as runtime parameters.

4) We demonstrate the application of SAADI-EC to:
a) k-means clustering, b) JPEG image compression, and

c) an image division algorithm for video sequences

with dynamic accuracy requirements. We illustrate the
superiority of runtime accuracy scaling by comparing

the area, energy, and delay of the resulting system with

SAADI-EC compared to its base implementation and
other approximate dividers.

II. RELATED WORK

In the past, researchers have developed various approxi-
mate computing techniques, ranging from approximate logic

circuits [16], [17] to approximate algorithms and applica-

tions [18], [19]. The notion of approximate computing has
been adopted to noncompute components, such as memory

[20]–[24], sensors [14], [25], bus interfaces [26]–[29], and
wireless communication [30], [31].

To improve the energy efficiency of arithmetic operations,

various approximate arithmetic units have been proposed.
Approximate arithmetic operations can be realized by scaling

down the supply voltage below the level that guarantees

the Boolean correctness of the circuit or by implementing
only partially correct Boolean logic using a fewer number of

transistors [5]. Truncating operands and using a narrow-width
arithmetic unit is a widely adopted approach [7], [11], [12].

More recently, approximate multipliers with runtime

adjustable accuracy through dynamically adjusting the partial
product perforation and rounding have been proposed [32].

These types of designs allow for application dependent energy

savings and energy-error tradeoff optimization. Some works
deeply explore the energy-accuracy tradeoff curve, high-

lighting the necessity of multiple configurations of approx-
imate arithmetic blocks for the largest energy savings [33].

In stochastic computing, numbers are represented as a

stream of bits which can be processed using a simple AND

gate or a multiplexer instead of a binary multiplier or an

adder [34], [35].

Approximate dividers have been studied relatively recently
compared to other arithmetic units such as adders [5] and

multipliers [6], [7]. An approximate divider design presented

in [13] calculates the quotient using a 2-D LUT indexed by
the operands. The accuracy is determined by the granularity

of the LUT and hence is fixed at design time. Another design
presented in [11] normalizes the operands to remove leading

zeros and takes only a small number of the most relevant bits.

The truncated dividend is then divided by the truncated divisor
using a narrow-width precise divider. A more recent design,

called AAXD [36], compares the magnitudes of the dividend

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

2682 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

and the divisor to address the overflow problems of [11].

In both [11] and [36], the accuracy is preset by the divider
width, which is not dynamically adjustable. SEERAD [10],

TruncApp [12], and PLApp [37] are multiplicative dividers,

where the reciprocal of the divisor is obtained first and
then subsequently multiplied by the dividend. In SEERAD,

the reciprocal is approximated using a table indexed by the

upper bits of the divisor, wherein TruncApp, the reciprocal
is obtained by simple bit manipulations such as inversion,

truncation, and concatenation. In PLApp, the reciprocal is
approximated using a piecewise linear function and rounding

rather than truncation. In all three designs, the accuracy is

determined at design time and not configurable at runtime.
In INZeD [38], the error introduced by the approximate divider

is corrected in order to minimize the overall error bias. This

helps to improve the average accuracy and allows for error
cancellation in applications prone to error accumulation. Our

proposed design, SAADI-EC, uses error correction to achieve
low error bias as well. In summary, to the best of our

knowledge, SAADI-EC (and SAADI) is the first approximate

divider that supports dynamic accuracy configuration.

III. PROPOSED APPROXIMATE DIVIDER

In this section, we introduce our divider design, SAADI-EC

and present detailed hardware implementation. We also intro-

duce our error compensation hardware and analyze the
accuracy of the proposed design.

A. Proposed Approximate Division

The proposed design, SAADI-EC, falls into a category of

multiplicative division algorithms, where the reciprocal of the
divisor is obtained first and then multiplied by the dividend.

We first describe the basics of multiplicative division [39]
before we describe our approach.

Let A and B be the dividend and the divisor, respectively.

They can be represented in a normalized form as

A = 2ea × a and B = 2eb × b (1)

where 0.5 ≤ a < 1 and 0.5 ≤ b < 1, and ea , and eb represent
the position of the leading 1 bit if A and B were represented as

binary numbers, respectively. During normalization, a and b
are truncated to n bits, where n is the width of multiplier,
which is determined at design time. Then, the quotient, Q,

of division A/B is

Q = A

B
= 2ea−eb × a

b
= 2ea−eb × a × R(b) (2)

where R(b) is the reciprocal of b, i.e., R(b) = 1/b. Instead

of computing a/b directly, the multiplicative division first

finds R(b) and then multiplies it by a, followed by a shift
operation for denormalization. The key to fast division is

finding the reciprocal as quickly as possible. However, finding
an accurate reciprocal is almost as complex as the division

itself. Therefore, it is typical that an approximate reciprocal

is obtained initially, and then a functional iteration algorithm,
such as the Newton–Raphson method, is used to converge to

the accurate reciprocal.

When a moderate-accuracy quotient is good enough, using

such a time-consuming functional iteration algorithm may
be a waste of time and energy. Approximate multiplicative

dividers discussed in Section II obtain an approximation of

the reciprocal instead of the exact reciprocal to save energy.
However, their fixed-accuracy approximation may not always

produce results with just good enough accuracy at minimal

power consumption. We address this challenge by accuracy-
adaptive reciprocal approximation based on incremental Taylor

series expansion. Taylor series expansion is a widely used
approach to find an approximate reciprocal. More specifically,

the Taylor series expansion of R(b) = 1/b is

R(b) = 1

1 + x
=

∞∑

i=0

(−x)i = 1 − x + x2 − x3 + x4 − · · ·

(3)

where x = b − 1. This series always converges since
−0.5 ≤ x < 0 for normalized b such that 0.5 ≤ b < 1.

Note that the contribution of each term to accuracy improve-

ment exponentially decreases as the order increases. Typically,
a good reciprocal approximation can be obtained by adding

up the first few low-order terms, and if higher accuracy is
required, more high-order terms can be added to incrementally

improve the accuracy. Let R̃t (b) denote the tth-order approx-

imation of R(b), such that

R̃t (b) =
t∑

i=0

|x |i = 1 + |x | + |x |2 + |x |3 + |x |4 + · · · + |x |t

(4)

which takes t − 1 multiplications. The result is a tradeoff

between higher accuracy and longer latency. This tradeoff can
be exploited by the application depending on its accuracy

requirements and latency constraints. Finally, the tth-order

approximate quotient Q̃t is then obtained as

Q̃t = 2ea−eb × a × R̃t (b). (5)

B. Error Compensation

To improve the approximation accuracy of the base imple-

mentation we introduce novel logic for error compensation
in SAADI-EC. As shown in (4), all terms in the reciprocal

approximation are positive, meaning the resulting approxima-

tion error is always negative for a finite t . Therefore, this error
can be mitigated by scaling the quotient of SAADI-EC by a

positive compensation factor, c. The new scaled quotient Q̃C
t

is given by

Q̃C
t = Q̃t × c. (6)

Because 0 < |x | ≤ 0.5, and t is always positive, the minimum
possible error for R̃t (b) is 0% when |x | is very small and

t is very large. Therefore, the minimum value of c is 1,
equivalent to no error compensation. The maximum possible

error for R̃t (b) is 25%, when |x | = 0.5 and t = 1. Therefore,

the maximum value of c is 1.333.
Fig. 1 shows how the approximation error of Q̃t decreases

as t increases. In addition, as t increases, the error distribution

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

MELCHERT et al.: SAADI-EC 2683

Fig. 1. Error distribution of the approximated quotient with t = [1, 2, 3, 4].

Fig. 2. Hardware architecture and control FSM of SAADI-EC.

gets more closely centered around 0%. For each value of t ,
the error distribution is different, so a unique scaling factor

should be determined at each t to minimize the error. We dis-
cuss how this error compensation is implemented without

using a costly floating point multiplier in Section III-C.

C. Hardware Architecture

Fig. 2 shows the hardware architecture and a simplified
diagram of a finite-state machine (FSM) to control the hard-

ware. Fig. 3 shows the computation flow of SAADI-EC. First,

the dividend A and the divisor B are normalized to a and b
by the normalizer blocks, respectively, and truncated to n bits.

Normalization is done by finding the position of the leading 1

TABLE I

SCALING FACTOR c AND THE RESULTING ERROR COMPENSATION VALUE

s FOR ALL VALUES OF t AT n = [4, 8, 12, 16]. NOTE THAT n = 4 AND

t = 3 HAS NO ENTRY SINCE THE ACCURACY SATURATES AT t = 2

and left-shifting to make the most significant bit (MSB) 1. If B
is a power of 2, the division is done by a simple shift operation.

We do not show this in the diagram for simplicity. The 2’s
complement block converts b to |x |. A single-cycle multiplier

first computes |x | · |x | = |x |2, and the output is fed back to

the multiplier again to subsequently obtain |x |3, |x |4, . . . |x |t
over t − 1 cycles. Note that the output of the n-bit multiplier

is truncated from 2n bits to n bits because it is going to be
fed back to itself. The results are added up by the accumulator

block in the same cycle to calculate |x | + |x |2 + · · · + |x |t .
The output of the accumulator is R̃t (b)−1, thus it is added

to 1 before being multiplied by a.

In the tth cycle, R̃t (b) is multiplied by a, and the output is

denormalized using a barrel shifter to obtain the approximate
quotient Q̃.

Finally, the error compensation discussed in Section III-B
is performed. We simplify the error compensation logic by

replacing the costly multiplication in (6) by a simple table

look-up and an addition. For a given n, which is a design
parameter, the appropriate scaling factor c is calculated for

1 ≤ t ≤ n − 1 by finding the scaling factor that minimized

the mean absolute error (MAE) of Q̃t over a large sample of
inputs. Error compensation is then done by adding a bit-shifted

value of Q̃t to itself, i.e.,

Q̃C
t = Q̃t × c ≈ Q̃t + Q̃t/2s (7)

where the integer bit-shift amount s is given by

s = −Round(log2(c − 1)). (8)

This simple error compensation hardware is composed of only

a shifter, an adder, and an LUT holding the n − 1 values of
s corresponding to all possible values of t at a given n. The

values of c and s for all values of t at n = [4, 8, 12, 16] are

given in Table I.
The width of the all the normalized numbers, such as a, b,

|x |, |x |i , etc., is n bits. The accumulator needs to be wider

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

2684 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Fig. 3. Hardware block usage and data flow (t ≥ 2).

than |x |i since the accumulation can generate a carryout. The

maximum value in the accumulator is 1, since the maximum
value of R̃t (b) is 2 when |x | = 0.5. Therefore, the width of the

accumulator needs to be only 1 bit wider than the multiplier,
thus n+1 bits. After adding 1 to the accumulator output, R̃t (b)
becomes n + 2 bits, thus it is right-shifted by two bits to fit

into the n-bit multiplier.
The reciprocal approximation requires up to t − 1 mul-

tiplications, and a × R̃t (b) requires another multiplication.

Therefore, the maximum latency of one division operation is
t multiplications. Iterations for reciprocal approximation can

be terminated earlier to reduce latency at the cost of accuracy
loss, and we discuss this tradeoff in Section III-D.

To save area, the normalization of A and B can be done by

a shared normalizer since the normalization of A is required
only after R̃t (b) is obtained. Similarly, the multiplications for

reciprocal approximation and the multiplication of a × R̃t (b)
can be done by a single shared multiplier. Therefore, the major
hardware components of SAADI-EC include one n-bit nor-

malizer, one n-bit multiplier, one (n + 1)-bit accumulator, one
log2 n-bit adder, two n-bit barrel shifters, one LUT with n−1

entries, one 2n-bit adder, and a few multiplexers and registers.

The usage of the shared hardware blocks is shown in Fig. 3.
The area and power consumption of SAADI-EC are evaluated

in Section IV-B.

The proposed divider can be extended to compute signed
division with the addition of minimal extra hardware. In the

normalization blocks, the sign bit of the dividend and divisor
need to be stripped off. If the sign bit was a 1 (i.e., negative),

then the sign of the operand needs to be inverted using a 2’s

complement block. At the end of the division, the sign bit
is added back to the quotient and the quotient is inverted if

necessary.

D. Accuracy and Latency Tradeoff

Unlike prior approximate dividers whose division accu-
racy is fixed at design time, SAADI-EC provides a flexible

energy-quality tradeoff that can be selected by the application

at runtime. When high-accuracy division is required, the appli-

cation can increase t , and when low-accuracy division is suf-
ficient, it can decrease t to save energy. Although SAADI-EC

enables division operations to be performed at the opti-
mal accuracy level, finding the optimal accuracy is highly

application-dependent, which is out of the scope of this paper.

In this section, we analyze how t affects the error rate and
energy consumption.

The loss of accuracy in SAADI-EC is caused by the

following factors.
1) ε1: The input operands A and B are truncated to n bits

during normalization.

2) ε2: The approximate reciprocal R̃t (b) is the sum of a
limited number of |x |i terms.

3) ε3: Each |x |i term is computed using a statically trun-

cated multiplier that truncates 2n-bit results to n bits.
4) ε4: The approximate reciprocal R̃t (b) is truncated from

n +2 bits to n bits before multiplied by a, and the result
is truncated to n bits.

The sign of ε1 is input-dependent. Truncating A contributes

to negative factors of ε1 since the truncation results in a smaller

dividend, while truncating B has the reverse effect, as a smaller
divisor produces a larger quotient. The error due to a finite-

order approximation (ε2) is the runtime-adjustable error factor

that we exploit for accuracy–latency tradeoff such that

ε2 = R̃t (b)− R(b)=−
∞∑

i=t+1

|x |i =−|x |t+1−|x |t+2−· · · . (9)

Note that ε2 is always negative, and the magnitude decreases

as t increases. Due to the accuracy loss in the multiplier (ε3),

|x |i eventually becomes zero even if x is nonzero. Note that
multiplying |x | ≤ 0.5 retires at least one bit per multiplication

cycle, thus |x |i becomes zero within n cycles. Therefore, only
up to |x |n−1, which is obtained at (n − 2)th cycle, contributes

to R̃t (b), hence the effective range of t for accuracy–latency

tradeoff is 1 ≤ t ≤ n − 1, considering one additional cycle at
the end for a× R̃t (b). Increasing t beyond n−1 only increases

latency but does not improve accuracy (n = 4 is an exception,

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

MELCHERT et al.: SAADI-EC 2685

Fig. 4. Error distribution of approximate quotient for varying t with
and without error compensation. The dotted line represents the mean error.
(a) Before error compensation. (b) After full precision (floating point) error
compensation. (c) After proposed error compensation.

where the accuracy saturates at t = 2 due to narrow multiplier

width). On the other hand, decreasing t below n − 1 may
terminate the reciprocal approximation for slow-converging

|x |i and increases the average error rate. The error induced by
the truncation in the multiplier and the accumulator (ε3 and ε4)

is always negative since it results in an under-approximated

reciprocal and thus an underapproximated quotient.
The error compensation discussed in Section III-B mitigates

the error introduced by ε2, ε3, and ε4. For a given n, a unique

scaling factor c is determined for each t and is chosen to
minimize the MAE over all inputs. Fig. 4 shows an example

of the effect of error compensation on the error distribution
of SAADI-EC. In this example, n = 6 and t = [2, 3, 4].
Without error compensation, Fig. 4(a) shows that resulting

error measurements are negatively biased. The mean error
becomes closer to 0 as t increases, but the majority of

error measurements are negative. Fig. 4(b) shows the error

distribution after full precision error compensation according
to (6). The error distributions have been shifted so that their

mean is much closer to 0. Finally, Fig. 4(c) shows the result of

our simplified error compensation according to (7). The error
distributions do not vary significantly from the full precision

error compensation.
Fig. 5 shows an example of a division operation for

A/B = 190/11 and n = 8. The initial normalization and

2’s complement conversion produces |x | = 0.31250. After the
first iteration, the approximate reciprocal is R̃1(b) = 1.31250,

and the resultant approximate quotient is Q̃1 = 15.5000.

Fig. 5. Example of division operation 190/11 for n = 8.

Since the exact quotient (Q) is 17.2727, the approximation
error is −10.26%. As more iterations take place, the accuracy

of R̃t (b) and Q̃t gradually increases. The convergence of |x |i
to zero takes five multiplications, and the error of the quotient
after convergence is −0.86%. Note that R̃t (b) converges to

1.44531 after three iterations and does not improve further

since the |x |5 is already too small and truncated by the
accumulator. Therefore, it takes four multiplications (three

for |x |2, |x |3, and |x |4, and one for R̃4(b) × a) to reach
this result. The value of the scaling factor c that minimizes

the MAE over all inputs at n = 8 and t = 4 is 1.0116,

and the resulting full-precision error-compensated quotient is
17.1250 × 1.0115 = 17.3225. According to (8), this error

compensation scaling factor can be approximated as the shift

value, s, of 6. Therefore, the error corrected quotient Q̃C is
17.1250+17.1250/26 = 17.3926, and the final approximation

error is 0.68%.

IV. EVALUATION AND DISCUSSION

We evaluate the accuracy and latency of SAADI-EC imple-
mented in Verilog HDL and present the accuracy–latency

tradeoff for various design-time and runtime parameters.
SAADI-EC is compared with other approximate dividers:

SEERAD [10], TruncApp [12], AAXD [36], and PLApp [37].

We also implemented an equivalent MATLAB model of
SAADI-EC for application-level quality evaluation: 1) color

quantization using k-means clustering; 2) JPEG compression

is used as image processing applications, and the results
are compared with those of an exact divider; and 3) image

division for change detection is then used as an application that
has a dynamic accuracy requirement, and the results of this

experiment are compared against other proposed approximate

dividers.

A. Accuracy and Latency

We first evaluate the arithmetic accuracy of SAADI-EC

for various parameters by feeding it one million random
combinations of dividends and divisors uniformly distributed

within the entire range. As discussed in Section III-D,

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

2686 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Fig. 6. Error distribution of approximate quotient for varying n with and
without error compensation. (a) Before error compensation. (b) After error
compensation.

the accuracy of SAADI-EC is determined by a design parame-
ter n, i.e., the width of the truncated operands, and a runtime

parameter t , i.e., the order of reciprocal approximation. For

a consistent and fair comparison with the previous designs,
we assume 2K/K division, where the width of the dividend is

twice the width of the divisor, and K MSBs of the dividend is

smaller than the divisor to prevent overflow [40]. In this paper,
we assume 32-bit dividends and 16-bit divisors. Note that this

is for a fair comparison, and SAADI-EC is not restricted to
any specific dividend-divisor bit ratio.

Fig. 6(a) shows the distribution of approximate division

errors before error compensation for n = [4, 6, 8, . . . , 16],
while t is set to n − 1 to guarantee the convergence of

|x |i to zero. In the figure, each curve shows the maximum,

75th percentile, median, 25th percentile, and minimum error.
We can observe that the error rate rapidly decreases as n
increases. Overall, as previously discussed in Section III-D,
the errors are negatively biased since the combination of the

negative error factors ε2, ε3, and ε4 is more significant than ε1,

which is the only factor that can be positive. Fig. 6(c) shows
the result of error compensation on the error distribution. The

error distribution is centered much more closely around 0,

and the rate of positive errors and negative errors are very
similar. Consequently, the maximum and minimum errors are

also shifted to a higher value than before error compensation,

and the average error and maximum error magnitude decrease
across all inputs. The results show that n ≥ 6 produces very

good approximate results with only a few percents maximum
error.

Fig. 7(a) illustrates the average number of iterations required

to reach the maximum accuracy, up to a maximum of t .
As described in Section III-D, the maximum number of

effective iterations (that improves accuracy) is n − 1, and

Fig. 7. Average number of iterations and MAE for varying n and t .
(a) Average number of iterations for varying n and t . (b) MAE for varying n
and t .

TABLE II

AREA, DELAY, POWER, ENERGY PER CYCLE, MINIMUM AND MAXIMUM

ACCURACY, AND ENERGY PER OPERATION FOR VARYING n
AND ACCURACY REQUIREMENT

iteration counts at t = n − 1 are highlighted for each n. When

t = n − 1, it takes about n/2 cycles on average to reach

the maximum accuracy. This means that the actual average
number of iterations to reach the maximum accuracy is smaller

than n − 1.
Fig. 7(b) shows how MAE varies with t and n for n = [4, 8,

12, 16] and 1 ≤ t ≤ n−1. We observe that, as n increases, not

only does the maximum accuracy increase, but the speed of
accuracy improvement also increases. As shown in Fig. 7(b),

the n = 8 curve has a steeper slope than the n = 4 curve.

B. Area and Power Consumption

We synthesized the Verilog description of SAADI-EC using

Synopsis Design Compiler, targeting the NanGate 45-nm
CMOS Technology [41]. We adopt a single-cycle multiplier as

the base arithmetic unit. Table II reports the area, delay, power,

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

MELCHERT et al.: SAADI-EC 2687

TABLE III

COMPARISON WITH PREVIOUSLY PROPOSED APPROXIMATE

DIVIDERS AND AN EXACT DIVIDER

energy per cycle, minimum and maximum accuracy, and

energy per operation for different n and accuracy requirements.

Some accuracies that cannot be achieved due to the narrow
multipliers are indicated with an “×” mark. Note that the

same accuracy requirement can be met by multiple designs,
but a narrow (low n) design is more energy-efficient than a

wide (high n) design. For example, a 99% accuracy can be

achieved by 8-, 12-, and 16-bit SAADI-ECs. While the 8-bit
SAADI-EC takes the same number of cycles as the 16-bit

SAADI-EC (three cycles), the total energy consumption per

division is 75% lower.
Table III compares the MAEs of SAADI-EC, SAADI-

EC-P (pipelined version of SAADI-EC), SAADI, TruncApp,

SEERAD, AAXD, and PLApp with different accuracy levels.
The best MAE of TruncApp is 4.26% when the accuracy

level is 4, and increasing it beyond 4 does not improve
the accuracy due to its linear reciprocal approximation. The

MAE of SEERAD(3) and SEERAD(4) is 4.41% and 2.12%,

respectively. The MAE of AAXD ranges between 6.13% and
0.18% for accuracy levels 6–16. Although its accuracy is better

than TruncApp and SEERAD, its delay is significantly longer

Fig. 8. EDP-MAE tradeoff comparison. TruncApp, SEERAD, AAXD, and
PLApp have a single EDP-MAE point per accuracy level. SAADI-EC and
SAADI have a flexible EDP-MAE curve per accuracy level.

than the other multiplicative dividers because it uses a divider
as the base arithmetic unit. PLApp has two configuration

parameters: the first is specifying the number of subintervals

used for the reciprocal approximation, while the second is for
the rounding width. The MAE of this divider ranges from

2.82% to 0.18%. This design achieves a comparable MAE to
AAXD at a much lower delay. The MAE, delay, and energy

of SAADI-EC and SAADI are presented by upper bound and

lower bound since they are a function of t . Although the
previous dividers exhibit lower MAEs for some low accuracy

levels, SAADI-EC outperforms others for higher accuracy

levels, and, moreover, it is scalable.
We also analyze the performance of SAADI-EC with a

pipelined architecture (SAADI-EC-P in Table III). Our basic
design can be divided into three stages, one with the nor-

malizing blocks, one with the multiplier and accumulator

blocks, and one with the shifting and error compensation
blocks. Without pipelining, for a single division operation, all

stages need be fully complete before a new operation can be

introduced into the first stage, resulting in the under-utilization
of hardware as well as a low throughput. To address these

problems, multiple copies of the multiply-and-accumulate
stage can be introduced to realize pipelined operation as well

as hardware to schedule the division operations. This will also

improve energy efficiency by keeping the other two stages
(normalizing stage and shifting and error compensation stage)

fully utilized. In SAADI-EC-P, t is fixed to the maximum

value of n − 1, and there are n − 1 copies of the multiply-
and-accumulate pipeline stage. Predictably, the area overhead

of this approach is quite large, but the energy per operation

decreases for n = [8, 12, 16] compared to SAADI-EC. For
example, at n = 8 SAADI-EC-P can achieve 0.37% MAE

while still producing 1 result per cycle and a delay of 1.16 ns.
The energy per result is 3.54 nJ, which is lower than the

5.72 nJ that SAADI-EC consumes.

Fig. 8 better illustrates the comparison between the approxi-
mate dividers. It shows the tradeoffs between the energy-delay

product (EDP) and accuracy.

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

2688 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Fig. 9. Energy dissipation breakdown of the main hardware blocks of the
proposed divider.

Each curve represents the EDP-accuracy tradeoffs of

SAADI-EC for each n, and each dot on the curves represents
the EDP-accuracy pair for different t . One can select n based

on the range of accuracy requirement and the energy budget

at design time, and at runtime, t can be adjusted to exploit the
tradeoffs. TruncApp, SEERAD, and PLApp are denoted by

“�,” “�,” and “�” marks, respectively. TruncApp(4), but it is

outperformed by SAADI-EC with n = 6 and t = 2. Similarly,
SEERAD(4) is outperformed by SAADI-EC with n = 8 and

t = 2. PLApp is outperformed by SAADI-EC when n = 6 and
n = 8. AAXD is denoted by “�” marks, and it exhibits high

EDP due to the precise divider used as the base arithmetic

unit. SAADI-EC shows lower EDP since it uses a multiplier.
SAADI-EC outperforms AAXD both in MAE and EDP after

a few iterations, which is affordable due to its shorter cycle

period.
Fig. 9 reports the sources of energy dissipation within our

proposed design as n and t increase. We separated SAADI-EC
into three different main blocks: the normalization block,

the multiply-and-accumulate block, and the shifting and error

compensation block. These represent the logical boundaries
between the main sources of energy dissipation. At low

values of n, the energy dissipated by the normalization and

shift and error compensation blocks is more significant than
the multiply-and-accumulate block. As n grows, however,

it becomes a significantly larger portion of the energy dissipa-
tion in the overall divider, reaching 73.5% of the total energy

dissipation when n = 16 and t = 1. Similarly, as t grows,

so does the percentage of energy dissipated by the multiply-
and-accumulate blocks, reaching 93.9% of the total energy

dissipation when n = 16 and t = 15.

C. K -Means Color Quantization

For application-level evaluation, we perform color quan-

tization, which reduces the number of unique colors in an
image while preserving the appearance of the colors as much

as possible. Color quantization saves energy for the storage

Fig. 10. Color quantization using k-means clustering (k = 8) for varying n
and t . The output quality is shown in PSNR (dB)/MSE/SSIM (%) in
comparison to the output of an 32-bit exact divider. (a) Original image and
reference color quantization using an exact divider. (b) Color quantization
using SAADI-EC with various n (t = n − 1). (c) Color quantization using
SAADI-EC with various t (n = 8).

or transmission of the image, and k-means clustering is a

commonly used algorithm. The mean update operation in
k-means requires iterative division by non-constant values,

thus an energy-efficient divider needs to be used. To examine

the quality of SAADI-EC compared with an exact divider
and evaluate the accuracy with varying t and n, five images

are clustered into eight colors (i.e., k = 8). We calculate

three quality metrics: peak signal-to-noise ratio (PSNR), mean
square error (MSE), and structural similarity (SSIM), with

respect to the baseline results using an exact divider. To eval-

uate SAADI-EC without the impact of the initial random
centers, we feed the same initial centers into the baseline and

SAADI-EC each time and repeat the experiment ten times to
take the average quality measurements.

Fig. 10(a) shows the original image and the color-reduced

image using an exact divider as a reference. Fig. 10(b) shows
the results by SAADI-EC with different n. We tie t to

n − 1, providing sufficient time for SAADI-EC to converge.

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

MELCHERT et al.: SAADI-EC 2689

Fig. 11. Color quantization using k-means clustering (k = 8) on various
images. The output quality is shown in PSNR (dB)/MSE/SSIM (%) in
comparison to the output of a 32-bit accurate divider.

As n increases from 4 to 12, all three quality measures

improve. Although SAADI-EC is capable of producing an out-
put of a reasonable quality for n = 4, the quality dramatically

increases for n = 8, approaching 100% SSIM for n = 12. The

results with different t are shown in Fig. 10(c). In this case,
n is fixed to 8, and t is set to 2, 4, or 6. We observe a clear

trend of quality improvement with a larger t . Even with only

two cycles, SAADI-EC produces a high-quality result with
SSIM higher than 90%, and further accuracy improvement is

achieved by increasing t .
We show the results of color quantization with SAADI-EC

for four additional benchmark images in Fig. 11. For all the

input images, n is fixed to 8 and t is fixed to 7, and the quality
is compared to the output of an exact divider. We can note

that the quality measures are dependent on the input image.

PSNR ranges from 27.7 to 33.2 dB, and SSIM varies between
84.6% and 98.7%. This confirms the need for a quality-

configurable divider, which is the motivation of our work.

Exploiting the quality configurability of SAADI-EC, the appli-
cation can save energy by decreasing t or improve quality by

increasing t based on the observed high-level quality.

D. JPEG Compression

To further explore how varying approximation accuracy

affects application-level performance, we perform JPEG

Fig. 12. Image quality (PSNR) using SAADI-EC on JPEG compression.

Fig. 13. Example of the image division of two consecutive frames of a
benchmark.

compression while varying n and t . The quality of compres-
sion for JPEG is set to 90% for this experiment. Our proposed

divider replaces the accurate divider used in the quantization

step of the JPEG compression algorithm. To evaluate how
this substitution affects the quality of the compressed image,

we compute the PSNR between the original images and the

compressed images with an accurate divider, as well as the
PSNR between the original images and the compressed images

after substituting our divider. In Fig. 12, we show the results
of this application for n = [4, 8, 12, 16] and for t ranging from

1 to n − 1. We report the average PSNR over 1000 random

images from the Caltech 101 data set [42]. As the quality of
quotient approximation increases, the PSNR of the compressed

images using SAADI-EC becomes closer to the PSNR of the

compressed images using an exact divider. The points along
each curve shown in Fig. 12 represent accuracy levels that can

be adjusted at runtime. In this particular example, we can see
that using 8-bit SAADI-EC suffices.

E. Image Division With Varying Accuracy Requirement

To further illustrate the benefits of dynamic accuracy con-

figuration, we perform image division on video sequences.
Image division is a common algorithm used for detecting

changes in different frames of a sequence of images, which is

useful in applications ranging from surveillance to medical
imaging. Fig. 13 shows an example of image division for

one of the three benchmarks that we used. In this example,

frame i is divided by the previous frame (i − 1) and then
multiplied by 128. Each pixel in the image is represented by

8-bit integers, so multiplying by 128 allows us to represent
the result of the division better within the visible range of

the image. Most consecutive frames are very similar, so most

pixels in the resulting divided image have a value close to 128.
If a pixel in frame i is brighter than in frame i − 1, it will

appear as a bright spot in the divided image, and if a pixel in

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

2690 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Fig. 14. Resulting PSNR of image division on 1500 frames of change detection benchmarks. For each divider, line “A” denotes the changing accuracy
requirement (target PSNR), lines “B” denote accuracy levels supported by the divider, line “C” denote the accuracy level selected by the divider to meet the
requirement, and lines “D” denotes violated accuracy requirement (if any).

frame i is darker than in frame i − 1, it will appear as a dark

spot.

In this work, we simulate the case where the required
accuracy of image division varies over time by dividing

consecutive frames of a video sequence comprised of three
change detection benchmark scenes from [40]. During each

of these three scenes, we alter the accuracy requirement of

the output image and dynamically adjust the divider to meet
the requirement. We evaluate the accuracy of the division

periodically throughout the video sequence using a high-

accuracy division as a comparison to our approximate division.
For SAADI-EC and SAADI, this is done by setting t to the

maximum value of 5, which yields almost 100% accurate
results. Then, the optimal value of the configuration parame-

ter without violating the accuracy requirement is chosen by

gradually decreasing the accuracy and comparing the PSNR
between the accurate and approximate divided frames until it

drops below the required level.

For evaluation, we measure the accuracy of our divider by
comparing it to an accurate divider and calculating the PSNR.

Then, we repeat the process with dividers proposed in previous
works and compare the results by calculating the number of

frames in the sequence that violated the required accuracy

level. For the previous dividers, we generously assume that
accurate reference division results are obtained without any

overhead. Finally, we compare SAADI-EC against previous

works by calculating the area, power, and energy required to
meet the changing accuracy requirements.

Fig. 14 shows the resulting PSNR and changing accuracy
requirements for the three benchmarks. The PSNR is measured

and displayed for each of the 500 frames in each benchmark.

The different levels of accuracy are calculated by varying
the design parameters of each divider. For SAADI-EC and

SAADI with n = 6, the lowest level of accuracy corresponds

TABLE IV

ACCURACY LEVELS OF SEERAD, TRUNCAPP, AAXD,
AND PLAPP USED FOR COMPARISON

to t = 1, and the highest level of accuracy corresponds to

t = 5. Note that these accuracy levels are all achievable with a

single divider and can be configured at runtime. For SEERAD,
TruncApp, AAXD, and PLApp, the accuracy levels correspond

to different dividers (B). The accuracy level of these dividers

means the bit-width of the base multiplier or divider unit used
in each design, and the accuracy levels used in the experiment

are listed in Table IV. We assume that, when multiple dividers
are used to support dynamic accuracy adjustment, unused

dividers are power-gated. The stairstep line (A) represents the

dynamic target accuracy, and “C” presents the actual accu-
racy achieved by each divider. Finally, the red segments (D)

represent accuracy violations.

Table V illustrates the area, delay, energy, and number of
violated frames for each of the three benchmarks as well as

the combined total of the benchmarks. SEERAD, TruncApp,

AAXD, and PLApp all require multiple dividers to meet
the dynamic accuracy requirement. The area is the sum of

the area of the dividers used to achieve the target accuracy.
[e.g., AAXD(12) is not included in the area since it is not

used.] In the case of SEERAD, TruncApp, and the nonerror

corrected SAADI, the maximum required accuracy is greater
than the maximum accuracy that can be achieved by the

divider, therefore there are some violated frames. We observe

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

MELCHERT et al.: SAADI-EC 2691

TABLE V

AREA, POWER, DELAY, ENERGY, AND NUMBER OF VIOLATED FRAMES

FOR THREE CHANGE DETECTION BENCHMARKS

that SAADI-EC outperforms SEERAD, AAXD, and PLApp in

terms of area and energy. While TruncApp achieves lower

delay and energy than SAADI-EC, its accuracy does not meet
the quality requirement.

V. CONCLUSION

An energy-efficient divider is a crucial arithmetic unit for
low-power signal processing. In this paper, we presented a

quality-configurable approximate divider, named SAADI-EC.
It is based on an incremental approximation of the reciprocal

of the divisor, where the accuracy gradually increases over

multiple iterations. The application can set the number of
iterations to exploit the trade-off between accuracy the latency

to meet its requirement. We demonstrated that SAADI-EC

produces the division results with adjustable accuracy. The
accuracy–latency tradeoff of the different implementations of

SAADI-EC is evaluated, and the results for 32-bit division

with 8-bit approximation show the average accuracy between
94.2% and 99.6% with latency between one and seven cycles.

We also performed color quantization using k-means cluster-
ing, and JPEG compression and demonstrated that SAADI-EC

can produce high-quality results comparable to those generated

by an exact divider. Finally, we showed that SAADI-EC
outperforms other approximate dividers in applications that

have dynamic accuracy requirements using image division.

REFERENCES

[1] S. Behroozi, J. Li, J. Melchert, and Y. Kim, “SAADI: A scalable
accuracy approximate divider for dynamic energy-quality scaling,” in
Proc. Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2019,
pp. 481–486.

[2] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test
Symp. (ETS), May 2013, pp. 1–6.

[3] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proc. 52nd Annu. Des. Automat. Conf., San Francisco, CA, USA,
Jun. 2015, pp. 120-1–120-6.

[4] M. Alioto, “Energy-quality scalable adaptive VLSI circuits and sys-
tems beyond approximate computing,” in Proc. IEEE DATE, Lausanne,
Switzerland, Mar. 2017, pp. 127–132.

[5] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and
K. Roy, “IMPACT: IMPrecise adders for low-power approximate
computing,” in Proc. 17th IEEE/ACM Int. Symp. Low-Power Electron.
Design (ISLPED), Aug. 2011, pp. 409–414.

[6] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in Proc.
Conf. Design, Autom. Test Eur. (DATE), Mar. 2014, p. 95:1–95:4.

[7] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range
unbiased multiplier for approximate applications,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, Nov. 2015, pp. 418–425.

[8] Software Optimization Guide for AMD Family 10h and 12h Processors,
Adv. Micro Devices, Santa Clara, CA, USA, 2011.

[9] Floating-Point IP Cores User Guide, Altera, San Jose, CA, USA, 2016.
[10] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari, and

M. Pedram, “SEERAD: A high speed yet energy-efficient rounding-
based approximate divider,” in Proc. Conf. Design, Autom. Test Eur.
(DATE), Mar. 2016, pp. 1481–1484.

[11] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider
for approximate applications,” in Proc. Design Autom. Conf. (DAC),
Jun. 2016, pp. 105:1–105:6.

[12] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“TruncApp: A truncation-based approximate divider for energy efficient
DSP applications,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Lausanne, Switzerland, Mar. 2017, pp. 1635–1638.

[13] L. Wu and C. C. Jong, “A curve fitting approach for non-iterative divider
design with accuracy and performance trade-off,” in Proc. IEEE Int. New
Circuits Syst. Conf. (NEWCAS), Jun. 2015, pp. 1–4.

[14] A. Raha and V. Raghunathan, “Towards full-system energy-accuracy
tradeoffs: A case study of an approximate smart camera system,” in
Proc. Design Autom. Conf. (DAC), Jun. 2017, pp. 74:1–74:6.

[15] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Approximate computing: An integrated hardware
approach,” in Proc. Asilomar Conf. Signals, Syst. Comput., Nov. 2013,
pp. 111–117.

[16] J. Park, H. Choo, K. Muhammad, S. Choi, Y. Im, and K. Roy,
“Non-adaptive and adaptive filter implementation based on sharing
multiplication,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), vol. 1, Jun. 2000, pp. 460–463.

[17] Y. Kim, S. Venkataramani, K. Roy, and A. Raghunathan, “Designing
approximate circuits using clock overgating,” in Proc. Design Autom.
Conf. (DAC), Jun. 2016, pp. 15:1–15:6.

[18] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
https://arxiv.org/abs/1510.00149

[19] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.,
Jun. 2016, pp. 243–254.

[20] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM refresh-power through critical data partitioning,” in Proc.
Int. Conf. Architectural Support Program. Lang. Oper. Syst. (ASPLOS),
Mar. 2011, pp. 213–224.

[21] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” ACM Trans. Comput. Syst., vol. 32, no. 3,
pp. 9:1–9:23, Sep. 2014.

[22] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan,
“Approximate storage for energy efficient spintronic memories,” in Proc.
Design Autom. Conf. (DAC), Jun. 2015, pp. 1–6.

[23] A. Raha, H. Jayakumar, S. Sutar, and V. Raghunathan, “Quality-aware
data allocation in approximate DRAM,” in Proc. Int. Conf. Compil.,
Archit., Synth. Embedded Syst. (CASES), Oct. 2015, pp. 89–98.

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

2692 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

[24] L. Yang and B. Murmann, “Approximate SRAM for energy-efficient,
privacy-preserving convolutional neural networks,” in Proc. IEEE Com-
put. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2017, pp. 689–694.

[25] P. Stanley-Marbell and M. Rinard, “Lax: Driver interfaces for approx-
imate sensor device access,” in Proc. Workshop Hot Topics Oper. Syst.
(HotOS), May 2015, pp. 1–6.

[26] P. Stanley-Marbell and M. Rinard, “Reducing serial I/O power in error-
tolerant applications by efficient lossy encoding,” in Proc. Design Autom.
Conf. (DAC), Jun. 2016, pp. 62:1–62:6.

[27] D. J. Pagliari, E. Macii, and M. Poncino, “Serial T0: Approximate bus
encoding for energy-efficient transmission of sensor signals,” in Proc.
Design Autom. Conf. (DAC), Jun. 2016, pp. 14:1–14:6.

[28] Y. Kim, S. Behroozi, V. Raghunathan, and A. Raghunathan, “AxSer-
Bus: A quality-configurable approximate serial bus for energy-efficient
sensing,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED),
Jul. 2017, pp. 1–6.

[29] S. Behroozi, V. Raghunathan, A. Raghunathan, and Y. Kim, “A quality-
configurable approximate serial bus for energy-efficient sensory data
transfer,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3,
pp. 379–390, Sep. 2018.

[30] S. Sen, S. Schmitt, M. Donahue, and S. Banerjee, “Exploiting
‘approximate communication’ for mobile media applications,” in Proc.
Int. Workshop Mobile Comput. Syst. Appl. (HotMobile), Feb. 2009,
pp. 11:1–11:6.

[31] D. Fujiki et al., “High-bandwidth low-latency approximate intercon-
nection networks,” in Proc. Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2017, pp. 469–480.

[32] V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, “Walking
through the energy-error Pareto frontier of approximate multipliers,”
IEEE Micro, vol. 38, no. 4, pp. 40–49, Jul. 2018.

[33] V. Leon, K. Asimakopoulos, S. Xydis, D. Soudris, and K. Pekmestzi,
“Cooperative arithmetic-aware approximation techniques for energy-
efficient multipliers,” in Proc. Design Autom. Conf. (DAC), Jun. 2019,
pp. 160:1–160:6.

[34] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19, May 2013.

[35] S. R. Faraji and K. Bazargan, “Hybrid binary-unary hardware accel-
erator,” in Proc. Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2019, pp. 210–215.

[36] H. Jiang, L. Liu, F. Lombardi, and J. Han, “Adaptive approximation
in arithmetic circuits: A low-power unsigned divider design,” in Proc.
Conf. Design, Autom. Test Eur. (DATE), Mar. 2018, pp. 1411–1416.

[37] M. Vaeztourshizi, M. Kamal, A. Afzali-Kusha, and M. Pedram, “An
energy-efficient, yet highly-accurate, approximate non-iterative divider,”
in Proc. ACM/IEEE Int. Symp. Low Power Electron. Design (ISLPED),
Jul. 2018, pp. 14:1–14:6.

[38] H. Saadat, H. Javaid, and S. Parameswaran, “Approximate integer and
floating-point dividers with near-zero error bias,” in Proc. Design Autom.
Conf. (DAC), Jun. 2019, pp. 161:1–161:6.

[39] S. F. Oberman and M. J. Flynn, “Division algorithms and implementa-
tions,” IEEE Trans. Comput., vol. 46, no. 8, pp. 833–854, Aug. 1997.

[40] B. Parhami, Computer Arithmetic. London, U.K.: Oxford Univ. Press,
1999.

[41] Nangate 45 nm Open Cell Library, NanGate, Santa Clara, CA, USA,
2008.

[42] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental Bayesian approach tested
on 101 object categories,” in Proc. CVPR Workshop Generative-Model
Based Vis. (WGMBV), Apr. 2004, p. 178.

Jackson Melchert received the B.S. degree in
computer engineering and computer science from
the University of Wisconsin–Madison, Madison, WI,
USA, in 2019.

He has authored and contributed to papers pub-
lished in ACM Great Lakes Symposium for Very
Large Scale Integration (GLSVLSI), the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTE-
GRATION (VLSI), and Asia and South Pacific Design
Automation Conference (ASP-DAC). His current
research interests include approximate computing,

low-power embedded systems, very large-scale integrated circuit design, and
computer architecture.

Setareh Behroozi (S’18) received the B.S. degree
in computer engineering from the Iran University of
Science and Technology, Tehran, Iran, in 2013, and
the M.S. degree in computer engineering, computer
architecture from the Sharif University of Tech-
nology, Tehran, in 2015. She is currently working
toward the Ph.D. degree in electrical and com-
puter engineering at the University of Wisconsin–
Madison, Madison, WI, USA.

Her current research interests include approx-
imate computing, low-power hardware-software

for embedded systems, emerging memory technologies, and computer
architecture.

Ms. Behroozi was a recipient of the Electrical and Computer Engineering
Chancellor’s Opportunity Fellowship, the CRA-W Grad Cohort for Women
Workshop, the Grace Hopper Celebration (GHC), the A. Richard Newton
Young Student Fellowships, and the Design Contest Award at the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED)
in 2018.

Jingjie Li (S’16) received the B.S. degree in elec-
tronic information engineering from the Beijing
Institute of Technology, Beijing, China, in 2017 and
the B.Eng. (Research and Development) degree
(Hons.) in electronic and communication systems
from The Australian National University, Canberra,
ACT, Australia, in 2017. He is currently work-
ing toward the Ph.D. degree at the Department
of Electrical and Computer Engineering, University
of Wisconsin–Madison (UW–Madison), Madison,
WI, USA.

From 2016 to 2017, he was a Student Scholar at Data61, Commonwealth
Scientific and Industrial Research Organization, Sydney. He currently serves
as a Chancellor’s Opportunity Fellow at UW–Madison. His current research
interests include pervasive computing, Internet of Things, and low-power
design for embedded systems.

Mr. Li was a recipient of the A. Richard Newton Young Student Fellowship,
the Design Contest Award at the ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED) in 2018, and the Best Paper Award
of the ACM Conference on Human Factors in Computing Systems (CHI)
in 2019.

Younghyun Kim (M’13) received the B.S. degree
(Hons.) in computer science and engineering and
the Ph.D. degree in electrical engineering and com-
puter science from Seoul National University, Seoul,
South Korea, in 2007 and 2013, respectively.

From 2013 to 2016, he was a Post-Doctoral
Research Assistant at the School of Electrical and
Computer Engineering, Purdue University, West
Lafayette, IN, USA. From 2009 to 2011, he was a
Visiting Scholar at the University of Southern Cal-
ifornia, Los Angeles, CA, USA. He is currently an

Assistant Professor at the Department of Electrical and Computer Engineering,
University of Wisconsin–Madison, Madison, WI, USA. He has coauthored
1 book, 2 book chapters, and more than 70 journal and conference papers. His
current research interests include energy-efficient computing, cyber-physical
systems security, and the Internet-of-Things.

Dr. Kim was a recipient of the NSF Faculty Early Career Development
Program (CAREER) Award in 2019, the EDAA Outstanding Dissertation
Award in 2013, the Design Contest Award at the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED) in 2007, 2012,
2017, and 2018, the IEEE SSCS Seoul Chapter Award at the International
SoC Design Conference in 2009, and the Best Paper Award Nomination at the
ACM/IEEE ISLPED in 2016. He has served on the Technical Program Com-
mittees of the ACM/EDAC/IEEE Design Automation Conference (DAC),
the ACM/IEEE ISLPED, the Asia and South Pacific Design Automation Con-
ference (ASP-DAC), the International Conference on VLSI Design (VLSID),
the Symposium on Applied Computing, and the Ph.D. Forums at DAC and
Design Automation and Test in Europe (DATE). He served as a Guest Editor
for a Special Issue of VLSI Integration Journal (Elsevier).

A h i d li d li i d U i i f Wi i D l d d M UTC f IEEE X l R i i l

