2680

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

SAADI-EC: A Quality-Configurable Approximate
Divider for Energy Efficiency

Jackson Melchert, Setareh Behroozi™, Student Member, IEEE, Jingjie Li

, Student Member, IEEE,

and Younghyun Kim™, Member, IEEE

Abstract—Energy efficiency is one of the most crucial
constraints that dictate performance, lifetime, form factor, and
cost in modern computing system design. However, the energy
efficiency improvement driven by semiconductor technology
scaling is coming to an end with the prediction of the end
of Moore’s law in the near future. Approximate computing is
a new paradigm to accomplish energy-efficient computing in
this twilight of Moore’s law by relaxing exactness requirement
of computation results for intrinsically error-resilient applica-
tions, such as some machine learning and signal processing.
In this paper, we propose an approximate binary divider design
that features dynamic configurability of accuracy and energy
consumption. Conventional approximate binary dividers lack
runtime energy-quality scalability, which is the key to maxi-
mizing energy efficiency while meeting the dynamically varying
accuracy requirements of the application. Our divider, named
Scalable Accuracy Approximate Divider with Error Compensa-
tion (SAADI-EC), supports dynamic energy-quality scalability by
the incremental approximation of the reciprocal of the divisor
using Taylor series expansion. As a result, the speed and energy
efficiency of division can be dynamically traded for accuracy
by controlling the number of iterations for the approximation.
In addition, SAADI-EC corrects the approximation error using
simple, yet effective error compensation hardware to greatly
improve the accuracy compared to the base implementation,
SAADI. For the 8-bit approximation of 32-bit/16-bit division,
the average accuracy of SAADI-EC can be adjusted from 94.2%
to 99.6% by varying latency and energy 7x. In terms of
energy x delay cost, our design costs up to 87% less than
other approximate binary dividers for the same accuracy level.
We evaluate the accuracy and energy consumption of SAADI-EC
for various design parameters and demonstrate its efficacy for
low-power signal processing applications including k-means color
quantization, JPEG image compression, and image division for
video sequences.

Index Terms— Approximate computing, arithmetic logic unit,
energy-quality scaling, low-power system.

Manuscript received February 18, 2019; revised May 21, 2019; accepted
June 8, 2019. Date of publication July 19, 2019; date of current version
October 23, 2019. This work was supported in part by NSF under Award CNS-
1845469, in part by the Wisconsin Alumni Research Foundation (WARF),
and in part by the Office of the Vice Chancellor for Research and Graduate
Education (OVCRGE). The preliminary version of this paper was presented
at the Asia and South Pacific Design Automation Conference (ASP-DAC),
January 2019. (Corresponding author: Younghyun Kim.)

The authors are with the Department of Electrical and Computer
Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
(e-mail: jmelchert@wisc.edu; jingjie.li@wisc.edu; sbehroozi@wisc.edu;
younghyun.kim@wisc.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2019.2926083

I. INTRODUCTION

NERGY efficiency is a daunting challenge in comput-

ing system design, and energy-efficient arithmetic units
are key building blocks toward this goal. Researchers have
sought to develop fast and low-power arithmetic algorithms
and circuit implementations, and, as a result, various designs
have been proposed to improve performance and reduce the
power consumption of arithmetic operations. In the traditional
computing paradigm, arithmetic operations are expected to be
always accurate, thus arithmetic units are designed to produce
exact results at all times. Although some applications require
the arithmetic operation results to be perfectly accurate, some
applications are more forgiving and do not need that level
of accuracy, depending on the context. For such applications,
using always-accurate arithmetic units is waste of energy
without any quality gain.

Approximate computing is an emerging computing para-
digm to accomplish energy-efficient computing by relaxing
accuracy requirements for the applications that do not always
demand exact computation results [2]-[4]. Applications, such
as machine learning and image processing, are resilient to
small computation errors due to the absence of a unique golden
outcome, intrinsic noise and redundancy of the input, or the
self-healing nature of the algorithm [3]. Approximate comput-
ing aggressively exploits the error resiliency by producing just
good enough results rather than exact results at much lower
power consumption, latency, logic area, or a combination of
them. Adopting this broad approach, approximate arithmetic
units have been proposed to produce approximate arithmetic
results that are not exact but good enough for the target
application. Many approximate adders [5] and approximate
multipliers [6], [7] have been proven to save power and
improve performance at the cost of minor accuracy loss.

Division is an arithmetic operation crucial in signal process-
ing. A hardware divider is a costly module in terms of latency
and energy consumption due to the high complexity of division
algorithms. For example, the integer divider instruction (IDIV)
of the AMD 12-h family has a latency of 9-17 cycles for a
16-bit division and 9-25 cycles for a 32-bit division, while
the integer multiplier instruction (IMUL) for the same widths
takes only three cycles [8]. As another example, on FPGAs,
a single-precision floating point divider requires 1.35x-3x
more hardware resources and is 27% slower than the same
precision multiplier [9]. Despite the lack of energy-efficient
and fast hardware dividers, the design of dividers with these

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MELCHERT et al.: SAADI-EC

characteristics has received less attention, mainly due to rela-
tively low utilization compared to other arithmetic operations.
However, as distributed signal processing becomes more and
more pervasive, the division is playing an increasingly impor-
tant role in low-power systems, and the need for an energy-
efficient divider is increasing. As a result, several approximate
divider designs have been recently proposed based on round-
ing [10], truncation [11], [12], and lookup tables (LUTs) [13].

Unfortunately, these prior approximate dividers support only
a single level of accuracy and lack dynamic quality configura-
bility. The accuracy level in these designs is determined by a
hardware design parameter fixed at design time, such as the
size of LUT or the number of truncated bits. Once the design
parameter has been fixed, there is no control knob for adjusting
the accuracy at runtime, and there is no power/performance
benefit from sacrificing accuracy further. However, the accu-
racy requirement for arithmetic operations is not constant
because the impact of approximation to the final quality at
the application level is highly input-dependent [14]. Moreover,
the application-level quality requirement may change over
time. Therefore, approximate computing hardware needs to
provide a control knob to the application for the feedback
control of the application-level quality requirement [15].
Having no dynamic quality-control knob, the existing approx-
imate dividers need to be designed to meet the most strict
accuracy requirement predicted at design time, and as a result,
the potential of energy savings and performance improvement
is not fully exploited when the actual accuracy requirement is
less strict.

In this paper, we propose a novel approximate divider design
called Scalable Accuracy Approximate Divider with Error
Compensation (SAADI-EC), which is capable of dynamically
trading accuracy for latency. SAADI-EC is based on our pre-
vious approximate divider design SAADI [1], which finds the
approximate reciprocal of the divisor and multiplies it by the
dividend to obtain the division result. The iterative reciprocal
approximation process, where the accuracy gradually increases
as more iterations are performed, enables the dynamic energy-
quality tradeoff. The number of iterations can be dynamically
adjusted by the application for energy-quality scaling—the
application can either obtain high-accuracy division results at
the cost of a higher latency and energy consumption or reduce
latency and improve energy efficiency by sacrificing accuracy.
As compared to its base implementation (SAADI), SAADI-EC
has novel error compensation logic to greatly improve the
accuracy of the approximate division. To compensate for
approximation error of finite-order truncation of Taylor series,
the approximate quotient is multiplied by a constant in a LUT
indexed by the number of iterations.

In summary, the contributions of this paper are as
follows.

1) We introduce an approximate divider, named
SAADI-EC, which features dynamic energy-quality
scalability. SAADI-EC performs division by multiplying
the dividend by the approximate reciprocal of the
divisor. The accuracy of division can be dynamically
controlled by adjusting the number of iterations for
reciprocal approximation.

2681

2) We introduce an efficient method, which is new in
SAADI-EC, that compensates for the negatively biased
errors introduced in the reciprocal approximation by
finite-order truncations of Taylor series.

3) We present a low-power hardware architecture of
SAADI-EC and analyze the tradeoff between accuracy
and energy efficiency. We evaluate the accuracy and
energy consumption of SAADI-EC for different design-
time parameters as well as runtime parameters.

4) We demonstrate the application of SAADI-EC to:
a) k-means clustering, b) JPEG image compression, and
c) an image division algorithm for video sequences
with dynamic accuracy requirements. We illustrate the
superiority of runtime accuracy scaling by comparing
the area, energy, and delay of the resulting system with
SAADI-EC compared to its base implementation and
other approximate dividers.

II. RELATED WORK

In the past, researchers have developed various approxi-
mate computing techniques, ranging from approximate logic
circuits [16], [17] to approximate algorithms and applica-
tions [18], [19]. The notion of approximate computing has
been adopted to noncompute components, such as memory
[20]-[24], sensors [14], [25], bus interfaces [26]-[29], and
wireless communication [30], [31].

To improve the energy efficiency of arithmetic operations,
various approximate arithmetic units have been proposed.
Approximate arithmetic operations can be realized by scaling
down the supply voltage below the level that guarantees
the Boolean correctness of the circuit or by implementing
only partially correct Boolean logic using a fewer number of
transistors [5]. Truncating operands and using a narrow-width
arithmetic unit is a widely adopted approach [7], [11], [12].

More recently, approximate multipliers with runtime
adjustable accuracy through dynamically adjusting the partial
product perforation and rounding have been proposed [32].
These types of designs allow for application dependent energy
savings and energy-error tradeoff optimization. Some works
deeply explore the energy-accuracy tradeoff curve, high-
lighting the necessity of multiple configurations of approx-
imate arithmetic blocks for the largest energy savings [33].
In stochastic computing, numbers are represented as a
stream of bits which can be processed using a simple AND
gate or a multiplexer instead of a binary multiplier or an
adder [34], [35].

Approximate dividers have been studied relatively recently
compared to other arithmetic units such as adders [5] and
multipliers [6], [7]. An approximate divider design presented
in [13] calculates the quotient using a 2-D LUT indexed by
the operands. The accuracy is determined by the granularity
of the LUT and hence is fixed at design time. Another design
presented in [11] normalizes the operands to remove leading
zeros and takes only a small number of the most relevant bits.
The truncated dividend is then divided by the truncated divisor
using a narrow-width precise divider. A more recent design,
called AAXD [36], compares the magnitudes of the dividend

2682

and the divisor to address the overflow problems of [11].
In both [11] and [36], the accuracy is preset by the divider
width, which is not dynamically adjustable. SEERAD [10],
TruncApp [12], and PLApp [37] are multiplicative dividers,
where the reciprocal of the divisor is obtained first and
then subsequently multiplied by the dividend. In SEERAD,
the reciprocal is approximated using a table indexed by the
upper bits of the divisor, wherein TruncApp, the reciprocal
is obtained by simple bit manipulations such as inversion,
truncation, and concatenation. In PLApp, the reciprocal is
approximated using a piecewise linear function and rounding
rather than truncation. In all three designs, the accuracy is
determined at design time and not configurable at runtime.
In INZeD [38], the error introduced by the approximate divider
is corrected in order to minimize the overall error bias. This
helps to improve the average accuracy and allows for error
cancellation in applications prone to error accumulation. Our
proposed design, SAADI-EC, uses error correction to achieve
low error bias as well. In summary, to the best of our
knowledge, SAADI-EC (and SAADI) is the first approximate
divider that supports dynamic accuracy configuration.

III. PROPOSED APPROXIMATE DIVIDER

In this section, we introduce our divider design, SAADI-EC
and present detailed hardware implementation. We also intro-
duce our error compensation hardware and analyze the
accuracy of the proposed design.

A. Proposed Approximate Division

The proposed design, SAADI-EC, falls into a category of
multiplicative division algorithms, where the reciprocal of the
divisor is obtained first and then multiplied by the dividend.
We first describe the basics of multiplicative division [39]
before we describe our approach.

Let A and B be the dividend and the divisor, respectively.
They can be represented in a normalized form as

A=2%xag and B=2xb (1)

where 0.5 <a <1 and 0.5 <b < 1, and ¢,, and ep, represent
the position of the leading 1 bit if A and B were represented as
binary numbers, respectively. During normalization, a and b
are truncated to n bits, where n is the width of multiplier,
which is determined at design time. Then, the quotient, Q,
of division A/B is

A
0= =297 x g = 2% x g x R(b) 2)

where R(b) is the reciprocal of b, i.e., R(b) = 1/b. Instead
of computing a/b directly, the multiplicative division first
finds R(b) and then multiplies it by a, followed by a shift
operation for denormalization. The key to fast division is
finding the reciprocal as quickly as possible. However, finding
an accurate reciprocal is almost as complex as the division
itself. Therefore, it is typical that an approximate reciprocal
is obtained initially, and then a functional iteration algorithm,
such as the Newton—Raphson method, is used to converge to
the accurate reciprocal.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

When a moderate-accuracy quotient is good enough, using
such a time-consuming functional iteration algorithm may
be a waste of time and energy. Approximate multiplicative
dividers discussed in Section II obtain an approximation of
the reciprocal instead of the exact reciprocal to save energy.
However, their fixed-accuracy approximation may not always
produce results with just good enough accuracy at minimal
power consumption. We address this challenge by accuracy-
adaptive reciprocal approximation based on incremental Taylor
series expansion. Taylor series expansion is a widely used
approach to find an approximate reciprocal. More specifically,
the Taylor series expansion of R(b) = 1/b is

1 — .
R(b)y=— =) =1l—x+x2 -3 4xt -
= 15 = 2

3)

where x = b — 1. This series always converges since
—0.5 < x < 0 for normalized b such that 0.5 < b < 1.

Note that the contribution of each term to accuracy improve-
ment exponentially decreases as the order increases. Typically,
a good reciprocal approximation can be obtained by adding
up the first few low-order terms, and if higher accuracy is
required, more high-order terms can be added to incrementally
improve the accuracy. Let R, (b) denote the tth-order approx-
imation of R(b), such that

t
Ri(b) =D Ixl =1+ x|+ x4 xPP + x[* 4+ |«
i=0

“)

which takes r — 1 multiplications. The result is a tradeoff
between higher accuracy and longer latency. This tradeoff can
be exploited by the application depending on its accuracy
requirements and latency constraints. Finally, the rth-order
approximate quotient Q; is then obtained as

Q; = 2% x a x R,(b). 3)

B. Error Compensation

To improve the approximation accuracy of the base imple-
mentation we introduce novel logic for error compensation
in SAADI-EC. As shown in (4), all terms in the reciprocal
approximation are positive, meaning the resulting approxima-
tion error is always negative for a finite ¢. Therefore, this error
can be mitigated by scaling the quotient of SAADI-EC by a
positive compensation factor, c. The new scaled quotient Q,C
is given by

0 =0, xc. (6)

Because 0 < |x| < 0.5, and ¢ is always positive, the minimum
possible error for Iét(b) is 0% when |x| is very small and
t is very large. Therefore, the minimum value of ¢ is 1,
equivalent to no error compensation. The maximum possible
error for R; (b) is 25%, when |x| = 0.5 and t = 1. Therefore,
the maximum value of ¢ is 1.333.

Fig. 1 shows how the approximation error of Q, decreases
as t increases. In addition, as ¢ increases, the error distribution

MELCHERT et al.: SAADI-EC

80 80
70 t=1 70 t=2
60 60
E 50 ‘O; 50
g 40 5 40
230 230
20 =20
=~ =21
10
0
25 20 -15 -10 -5 0 25 20 -15 <10 -5 0
Error (%) Error (%)
80 80
70 t=3 70 t=4
60 60
‘g, 50 ‘o; 50
g 40 5 40
230 230
(9] [0
&= 20 =20
10 10
0 0
25 20 -15 -10 -5 0 25 20 -15 <10 -5 0
Error (%) Error (%)
Fig. 1. Error distribution of the approximated quotient with ¢t = [1, 2, 3, 4].
b[& +11R(b) -
s Bl E] R0
S (€h| 3 I a-R(b)
“I] L (e = 5]
o ! = |8l |85
o Se-(8| fE-EEL B aC
0 — ~ — FO
O (| A
] f FL s
[} _
>l =
> & —
A~ g d %‘-8 =)
Z. |€a +V < —
L— L
iter < t/
start Mux: Reg done
start/ iter == 1/
Mux: |x]| Mux: Reg

Compute
quotient
and correct
error

Multiply
and
accumulate

Normalize
inputs

Fig. 2. Hardware architecture and control FSM of SAADI-EC.

gets more closely centered around 0%. For each value of 7,
the error distribution is different, so a unique scaling factor
should be determined at each ¢ to minimize the error. We dis-
cuss how this error compensation is implemented without
using a costly floating point multiplier in Section III-C.

C. Hardware Architecture

Fig. 2 shows the hardware architecture and a simplified
diagram of a finite-state machine (FSM) to control the hard-
ware. Fig. 3 shows the computation flow of SAADI-EC. First,
the dividend A and the divisor B are normalized to a and b
by the normalizer blocks, respectively, and truncated to n bits.
Normalization is done by finding the position of the leading 1

2683

TABLE I

SCALING FACTOR ¢ AND THE RESULTING ERROR COMPENSATION VALUE
s FOR ALL VALUES OF t AT n = [4, 8, 12, 16]. NOTE THAT n = 4 AND
t =3 HAS NO ENTRY SINCE THE ACCURACY SATURATES AT t = 2

Bit width n (bits)
4 \ 8 \ 12 \ 16
t C S C S C R C S
1| 11591 | 3 | 1.0634 | 4 [1.0577 4 | 1.05746 4
2 | 1.1147 | 3 | 1.0219 | 6 | 1.0151 6 | 1.01466 6
3 1.0139 | 6 | 1.0042 8 | 1.00373 8
4 1.0116 | 6 | 1.0015 9 | 1.00097 | 10
5 1.0106 | 7 | 1.0010 | 10 | 1.00028 | 12
6 1.0099 | 7 | 1.0009 | 10 | 1.00011 | 13
7 1.0097 | 7 | 1.0008 | 10 | 1.00007 | 14
8 1.0008 | 10 | 1.00007 | 14
9 1.0008 | 10 | 1.00006 | 14
10 1.0008 | 10 | 1.00006 | 14
11 1.0007 | 10 | 1.00006 | 14
12 1.00006 | 14
13 1.00006 | 14
14 1.00005 | 14
15 1.00005 | 14

and left-shifting to make the most significant bit (MSB) 1. If B
is a power of 2, the division is done by a simple shift operation.
We do not show this in the diagram for simplicity. The 2’s
complement block converts b to |x|. A single-cycle multiplier
first computes |x| - [x| = |x|?, and the output is fed back to
the multiplier again to subsequently obtain IxP3, x4, |x)f
over t — 1 cycles. Note that the output of the n-bit multiplier
is truncated from 2n bits to n bits because it is going to be
fed back to itself. The results are added up by the accumulator
block in the same cycle to calculate |x| + |x|? + - - + |x|".

The output of the accumulator is Iét (b) — 1, thus it is added
to 1 before being multiplied by a.

In the rth cycle, R, (b) is multiplied by a, and the output is
denormalized using a barrel shifter to obtain the approximate
quotient Q.

Finally, the error compensation discussed in Section III-B
is performed. We simplify the error compensation logic by
replacing the costly multiplication in (6) by a simple table
look-up and an addition. For a given n, which is a design
parameter, the appropriate scaling factor ¢ is calculated for
1 <t <n —1 by finding the scaling factor that minimized
the mean absolute error (MAE) of O, over a large sample of
inputs. Error compensation is then done by adding a bit-shifted
value of Q, to itself, i.e.,

NtC:QIXC%Q,+Q,/2S @)
where the integer bit-shift amount s is given by
s = —Round(log, (¢ — 1)).)

This simple error compensation hardware is composed of only
a shifter, an adder, and an LUT holding the n — 1 values of
s corresponding to all possible values of ¢ at a given n. The
values of ¢ and s for all values of ¢t at n = [4, 8, 12, 16] are
given in Table I.

The width of the all the normalized numbers, such as a, b,
lx], |x|’, etc., is n bits. The accumulator needs to be wider

2684

1 2

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27,

NO. 11, NOVEMBER 2019

Normalize 4-4

Normalize B%v

2’s comp % b x|

|x |x|2

|
i

i

i

i

i

i

i

. |€a
i

i

|

i

i 3
! x|

-

b el P Pl Ll

- W

E

D

Look up s by ¢

N

L<< (ea—ep)
0

Fig. 3. Hardware block usage and data flow (t > 2).

than |x| since the accumulation can generate a carryout. The
maximum value in the accumulator is 1, since the maximum
value of R, (b) is 2 when |x| = 0.5. Therefore, the width of the
accumulator needs to be only 1 bit wider than the multiplier,
thus n+1 bits. After adding 1 to the accumulator output, R; (b)
becomes n + 2 bits, thus it is right-shifted by two bits to fit
into the n-bit multiplier.

The reciprocal approximation requires up to ¢ — 1 mul-
tiplications, and a x R;(b) requires another multiplication.
Therefore, the maximum latency of one division operation is
¢t multiplications. Iterations for reciprocal approximation can
be terminated earlier to reduce latency at the cost of accuracy
loss, and we discuss this tradeoff in Section III-D.

To save area, the normalization of A and B can be done by
a shared normalizer since the normalization of A is required
only after R;(b) is obtained. Similarly, the multiplications for
reciprocal approximation and the multiplication of a x R;(b)
can be done by a single shared multiplier. Therefore, the major
hardware components of SAADI-EC include one n-bit nor-
malizer, one n-bit multiplier, one (n 4 1)-bit accumulator, one
log, n-bit adder, two n-bit barrel shifters, one LUT with n—1
entries, one 2n-bit adder, and a few multiplexers and registers.
The usage of the shared hardware blocks is shown in Fig. 3.
The area and power consumption of SAADI-EC are evaluated
in Section I'V-B.

The proposed divider can be extended to compute signed
division with the addition of minimal extra hardware. In the
normalization blocks, the sign bit of the dividend and divisor
need to be stripped off. If the sign bit was a 1 (i.e., negative),
then the sign of the operand needs to be inverted using a 2’s
complement block. At the end of the division, the sign bit
is added back to the quotient and the quotient is inverted if
necessary.

D. Accuracy and Latency Tradeoff

Unlike prior approximate dividers whose division accu-
racy is fixed at design time, SAADI-EC provides a flexible
energy-quality tradeoff that can be selected by the application

|
'
'
|
T
'
I
T
'
'
'
'
'
'
'
'
'
1
'
'
'
|
T
'
'
'
1
'
'
'

> >> 9 _l
0i+0,/2° +0F

;
;
;
;
!
;
;
;
;
|
|
!
i
‘
i
3‘ e, —ep
‘
;
;
;
|
|
!
;
;
!
!
i
i

|
'
'
|
T
'
I
T
'
'
'
'
'
'
'
'
'
1
'
'
'
|
T
'
'
'
1
'
'
'

at runtime. When high-accuracy division is required, the appli-
cation can increase ¢, and when low-accuracy division is suf-
ficient, it can decrease ¢ to save energy. Although SAADI-EC
enables division operations to be performed at the opti-
mal accuracy level, finding the optimal accuracy is highly
application-dependent, which is out of the scope of this paper.
In this section, we analyze how ¢ affects the error rate and
energy consumption.

The loss of accuracy in SAADI-EC is caused by the
following factors.

1) €1: The input operands A and B are truncated to n bits
during normalization.
€2: The approximate reciprocal R;(b) is the sum of a
limited number of |x|’ terms.
€3: Each |x|’ term is computed using a statically trun-
cated multiplier that truncates 2n-bit results to n bits.
€4: The approximate reciprocal R;(b) is truncated from
n+2 bits to n bits before multiplied by a, and the result
is truncated to n bits.

The sign of ¢ is input-dependent. Truncating A contributes
to negative factors of €; since the truncation results in a smaller
dividend, while truncating B has the reverse effect, as a smaller
divisor produces a larger quotient. The error due to a finite-
order approximation (¢€2) is the runtime-adjustable error factor
that we exploit for accuracy—latency tradeoff such that

2)
3)

4)

oo
@=Ri(b)~RB)=— D |xl'=—la " =[x 2.
i=t+1

©)

Note that €, is always negative, and the magnitude decreases
as t increases. Due to the accuracy loss in the multiplier (e3),
|x|! eventually becomes zero even if x is nonzero. Note that
multiplying |x| < 0.5 retires at least one bit per multiplication
cycle, thus |x|’ becomes zero within n cycles. Therefore, only
up to |x|"~!, which is obtained at (n — 2)th cycle, contributes
to R;(b), hence the effective range of ¢ for accuracy—latency
tradeoff is 1 <t <n — 1, considering one additional cycle at
the end for a x R; (b). Increasing ¢ beyond n— 1 only increases
latency but does not improve accuracy (n = 4 is an exception,

MELCHERT et al.: SAADI-EC

S S S
= = =
Q Q Q
= = =]
Q Q Q
= =1 =
<3 <3 IS
& & =1
&2 = =
-10 0 10 -10 0 10
Error (%) Error (%)
(a)
s -0.0071 s -M%3 2 Q@L
® ¥ 20 — ¥ 20 -
oy Z 15 & 15 '
5] 5] 8
) S 10 S 10
ISy ISy | Sy
g g 8 5
[s2 [s2 = o
.10 0 10 .10 0 10 -10 0 10
Error (%) Error (%) Error (%)
()
_ _ 25 —0.0091_ 3 _ 25 —0.004(_)4
) R 20 = R 20 =
z 215 215
g g 10) 10
= = =
z g5 b g s i
S S 0 53 L
-10 0 10 -10 0 10 -10 0 10
Error (%) Error (%) Error (%)
()
Fig. 4. Error distribution of approximate quotient for varying ¢ with

and without error compensation. The dotted line represents the mean error.
(a) Before error compensation. (b) After full precision (floating point) error
compensation. (c¢) After proposed error compensation.

where the accuracy saturates at t = 2 due to narrow multiplier
width). On the other hand, decreasing ¢ below n — 1 may
terminate the reciprocal approximation for slow-converging
|x|" and increases the average error rate. The error induced by
the truncation in the multiplier and the accumulator (¢3 and €4)
is always negative since it results in an under-approximated
reciprocal and thus an underapproximated quotient.

The error compensation discussed in Section III-B mitigates
the error introduced by €3, €3, and €4. For a given n, a unique
scaling factor ¢ is determined for each 7 and is chosen to
minimize the MAE over all inputs. Fig. 4 shows an example
of the effect of error compensation on the error distribution
of SAADI-EC. In this example, n = 6 and t = [2,3,4].
Without error compensation, Fig. 4(a) shows that resulting
error measurements are negatively biased. The mean error
becomes closer to O as ¢ increases, but the majority of
error measurements are negative. Fig. 4(b) shows the error
distribution after full precision error compensation according
to (6). The error distributions have been shifted so that their
mean is much closer to 0. Finally, Fig. 4(c) shows the result of
our simplified error compensation according to (7). The error
distributions do not vary significantly from the full precision
error compensation.

Fig. 5 shows an example of a division operation for
A/B = 190/11 and n = 8. The initial normalization and
2’s complement conversion produces |x| = 0.31250. After the
first iteration, the approximate reciprocal is R;(b) = 1.31250,
and the resultant approximate quotient is Q7 = 15.5000.

2685
Divisor B = 11 Dividend A = 190
\

b=0.68750 e»=—4 a=0.74219 e, =0

| Taylor term |Appr0x. reciprocal | Approx. quotient | Error |
|x] =0.31250 Ri(b) = 131250 01 = 15.5000 | -10.26%
|x|> = 0.09766 | R>(b) = 1.40625 0> =16.6250 | -3.75%
|x]> =0.02930 | Rs(b) = 1.43750 03 =17.0000 | -1.58%
Ix|* = 0.00781 | Ra(b) = 1.44531 04 =17.1250 | -0.86%
[x]> = 0.00195 | Rs(b) = 1.44531 Qs =17.1250 | -0.86%
|x[® = 0.00000 | Re(b) = 1.44531 O¢ = 17.1250 | -0.86%

v
Error compensation
with s =6
v

Exact R(b) = 1.45455

Final 0€ = 17.3926 Final error:
ExactQ = 17.2727 10.68%

Fig. 5. Example of division operation 190/11 for n = 8.

Since the exact quotient (Q) is 17.2727, the approximation
error is —10.26%. As more iterations take place, the accuracy
of R,(b) and Q, gradually increases. The convergence of |x|
to zero takes five multiplications, and the error of the quotient
after convergence is —0.86%. Note that R;(b) converges to
1.44531 after three iterations and does not improve further
since the |x|° is already too small and truncated by the
accumulator. Therefore, it takes four multiplications (three
for |x|2, |x|?, and |x|* and one for §4(b) X a) to reach
this result. The value of the scaling factor ¢ that minimizes
the MAE over all inputs at » = 8 and + = 4 is 1.0116,
and the resulting full-precision error-compensated quotient is
17.1250 x 1.0115 = 17.3225. According to (8), this error
compensation scaling factor can be approximated as the shift
value, s, of 6. Therefore, the error corrected quotient QC is
17.1250+17.1250/2° = 17.3926, and the final approximation
error is 0.68%.

IV. EVALUATION AND DISCUSSION

We evaluate the accuracy and latency of SAADI-EC imple-
mented in Verilog HDL and present the accuracy-latency
tradeoff for various design-time and runtime parameters.
SAADI-EC is compared with other approximate dividers:
SEERAD [10], TruncApp [12], AAXD [36], and PLApp [37].
We also implemented an equivalent MATLAB model of
SAADI-EC for application-level quality evaluation: 1) color
quantization using k-means clustering; 2) JPEG compression
is used as image processing applications, and the results
are compared with those of an exact divider; and 3) image
division for change detection is then used as an application that
has a dynamic accuracy requirement, and the results of this
experiment are compared against other proposed approximate
dividers.

A. Accuracy and Latency

We first evaluate the arithmetic accuracy of SAADI-EC
for various parameters by feeding it one million random
combinations of dividends and divisors uniformly distributed
within the entire range. As discussed in Section III-D,

2686

Median

-10 25th percentile]
4 6 8 10 12 14 16
n (bit)
(@)

T T T T T

Maximum
75th percentile

Median
25th percentile 1
Minimum
1 1 1 1 1
4 6 8 10 12 14 16
n (bit)

(b)
Fig. 6. Error distribution of approximate quotient for varying n with and

without error compensation. (a) Before error compensation. (b) After error
compensation.

the accuracy of SAADI-EC is determined by a design parame-
ter n, i.e., the width of the truncated operands, and a runtime
parameter 7, i.e., the order of reciprocal approximation. For
a consistent and fair comparison with the previous designs,
we assume 2K /K division, where the width of the dividend is
twice the width of the divisor, and K MSBs of the dividend is
smaller than the divisor to prevent overflow [40]. In this paper,
we assume 32-bit dividends and 16-bit divisors. Note that this
is for a fair comparison, and SAADI-EC is not restricted to
any specific dividend-divisor bit ratio.

Fig. 6(a) shows the distribution of approximate division
errors before error compensation for n = [4,6,8,...,16],
while ¢ is set to n — 1 to guarantee the convergence of
|x|" to zero. In the figure, each curve shows the maximum,
75th percentile, median, 25th percentile, and minimum error.
We can observe that the error rate rapidly decreases as n
increases. Overall, as previously discussed in Section III-D,
the errors are negatively biased since the combination of the
negative error factors €, €3, and €4 is more significant than €,
which is the only factor that can be positive. Fig. 6(c) shows
the result of error compensation on the error distribution. The
error distribution is centered much more closely around 0,
and the rate of positive errors and negative errors are very
similar. Consequently, the maximum and minimum errors are
also shifted to a higher value than before error compensation,
and the average error and maximum error magnitude decrease
across all inputs. The results show that n > 6 produces very
good approximate results with only a few percents maximum
error.

Fig. 7(a) illustrates the average number of iterations required
to reach the maximum accuracy, up to a maximum of ¢.
As described in Section III-D, the maximum number of
effective iterations (that improves accuracy) is n — 1, and

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

10 T T T T T

= Iteration count for maximum ¢ ‘ 847T@n= EW
2 A
5 6.53@n=12
g
S
=]
0
<
5} J
>
<
13 15
t
(2)
10 T T T T T T
4.785% @n=4
1k
S —® 0.376% @n=38
= 01k
< 0.029% @ n=12
=
0.01 ¢
e oo
l MAE for maximum ¢ ‘ 0.006% @ n=16 j
0.001 T T L I . .
1 3 5 7 9 11 13 15

t
(b)

Fig. 7. Average number of iterations and MAE for varying n and t.
(a) Average number of iterations for varying n and z. (b) MAE for varying n
and 7.

TABLE II

AREA, DELAY, POWER, ENERGY PER CYCLE, MINIMUM AND MAXIMUM
ACCURACY, AND ENERGY PER OPERATION FOR VARYING n
AND ACCURACY REQUIREMENT

[Bit width n (bit) 4 8 12 16
Area (um?) 1,973 3,035 | 4,485 | 6,105
Delay (ns) 1.06 1.22 1.37 1.57
Power (mW) 0.36 0.67 1.28 2.11
Energy per cycle (pJ) 0.39 0.82 1.75 3.31
Min accuracy (%) 92.65 94.23 93.99 93.97
Max accuracy (%) 95.14 99.63 99.97 99.99

t 1 1 1 1
Accuracy: 88% Energy (p)) | 039 | 082 | 175 | 331
t X 3 3 3
Accuracy: 99% Energy (pJ) x | 246 | 525 | 993
t X X 6 6
Aceuracy: 99.9% | gperey (o)) x x | 1050 | 19.86

iteration counts at t = n — 1 are highlighted for each n. When
t = n — 1, it takes about n/2 cycles on average to reach
the maximum accuracy. This means that the actual average
number of iterations to reach the maximum accuracy is smaller
than n — 1.

Fig. 7(b) shows how MAE varies with ¢ and n forn = [4, 8,
12,16] and 1 <t < n—1. We observe that, as n increases, not
only does the maximum accuracy increase, but the speed of
accuracy improvement also increases. As shown in Fig. 7(b),
the n = 8 curve has a steeper slope than the n = 4 curve.

B. Area and Power Consumption

We synthesized the Verilog description of SAADI-EC using
Synopsis Design Compiler, targeting the NanGate 45-nm
CMOS Technology [41]. We adopt a single-cycle multiplier as
the base arithmetic unit. Table II reports the area, delay, power,

MELCHERT et al.: SAADI-EC

TABLE III

COMPARISON WITH PREVIOUSLY PROPOSED APPROXIMATE
DIVIDERS AND AN EXACT DIVIDER

Total

.. MAE Area Power | Energy

Divider Cyc. dela
Yl @ |) | TR @w) | @)

(ns)
Max 2| 486 2.12 0.77
SAADI-EC(4) Min 1735 1,973 106 0.36 0.39
Max 71 037 8.54 5.72
SAADI-EC(8) Min o577 3,035 122 0.67 0.82
Max 11| 0.03 15.07 19.27
SAADI-EC(12) Min 1 601 4,485 137 1.28 175
Max 15 | 0.006 23.55 49.71
SAADI-EC(16) Min 1| 603 6,105 157 2.11 331
SAADI-EC-P(4) 1| 486 | 2,004 | 1.80 0.66 1.18
SAADI-EC-P(8) 1 037 9574 | 1.16 3.05 3.54
SAADI-EC-P(12) 1] 0.03 28797 | 145 6.89 9.99
SAADI-EC-P(16) 110.006 | 64,584 | 1.76 | 13.55 | 23.58
Max 2| 11.32 2.14 0.66
SAADI4) Min 1] 14.63 1,199 1.07 0.31 0.33
Max 71 0.99 791 4.67
SAADI®) Min 1| 7.50 1,963 1.13 0-59 0.66
Max 11| 0.07 15.73 17.22
SAADI(12) Min 1| 698 3,068 143 1.09 1.56
Max 15 | 0.006 24.00 46.76
SAADI(16) Min 1| 604 4,872 160 1.94 311
SEERAD(3) 1| 441 | 2,006 | 1.85 1.49 2.76
SEERAD(4) 1| 212 | 3481 | 245 2.99 7.33
TruncApp(3) 1] 637 | 1400 | 135 0.52 0.70
TruncApp(4) 1| 426 | 1,628 | 1.60 0.59 0.94
AAXD(6) 1| 6.13 985 | 2.30 0.50 1.15
AAXD(8) 1] 299 | 1,386 | 295 0.85 2.50
AAXD(10) 1 1.48 | 1,526 | 4.21 1.02 4.29
AAXD(12) 1| 074 | 2,010 | 5.40 1.67 9.02
AAXD(16) 1| 0.18| 2432| 9.10 2.31 21.02
PLApp(4.4) 1] 282 | 1,829 | 1.25 0.86 1.08
PLApp(4,5) 1| 140| 2,073 | 1l.64 1.15 1.89
PLApp(4,6) 1] 072| 2,383 | 1.81 1.51 2.73
PLApp(8,8) 1| 018 | 3822 | 252 2.86 7.21
Exact divider

(DesignWare) 1 0| 3,206 | 50.53 1.89 | 95.50

energy per cycle, minimum and maximum accuracy, and
energy per operation for different n and accuracy requirements.
Some accuracies that cannot be achieved due to the narrow
multipliers are indicated with an “x” mark. Note that the
same accuracy requirement can be met by multiple designs,
but a narrow (low n) design is more energy-efficient than a
wide (high n) design. For example, a 99% accuracy can be
achieved by 8-, 12-, and 16-bit SAADI-ECs. While the 8-bit
SAADI-EC takes the same number of cycles as the 16-bit
SAADI-EC (three cycles), the total energy consumption per
division is 75% lower.

Table III compares the MAEs of SAADI-EC, SAADI-
EC-P (pipelined version of SAADI-EC), SAADI, TruncApp,
SEERAD, AAXD, and PLApp with different accuracy levels.
The best MAE of TruncApp is 4.26% when the accuracy
level is 4, and increasing it beyond 4 does not improve
the accuracy due to its linear reciprocal approximation. The
MAE of SEERAD(3) and SEERAD(4) is 4.41% and 2.12%,
respectively. The MAE of AAXD ranges between 6.13% and
0.18% for accuracy levels 6-16. Although its accuracy is better
than TruncApp and SEERAD, its delay is significantly longer

2687

S
2 (16)
= ¢
0.1f SAADI-EC E
SAADI
o SEERAD
A TruncApp
¢ AAXD
001 ¢ ® PLApp 3
10 25 50 100 200
EDP (pJ.ns)
Fig. 8. EDP-MAE tradeoff comparison. TruncApp, SEERAD, AAXD, and

PLApp have a single EDP-MAE point per accuracy level. SAADI-EC and
SAADI have a flexible EDP-MAE curve per accuracy level.

than the other multiplicative dividers because it uses a divider
as the base arithmetic unit. PLApp has two configuration
parameters: the first is specifying the number of subintervals
used for the reciprocal approximation, while the second is for
the rounding width. The MAE of this divider ranges from
2.82% to 0.18%. This design achieves a comparable MAE to
AAXD at a much lower delay. The MAE, delay, and energy
of SAADI-EC and SAADI are presented by upper bound and
lower bound since they are a function of 7. Although the
previous dividers exhibit lower MAEs for some low accuracy
levels, SAADI-EC outperforms others for higher accuracy
levels, and, moreover, it is scalable.

We also analyze the performance of SAADI-EC with a
pipelined architecture (SAADI-EC-P in Table III). Our basic
design can be divided into three stages, one with the nor-
malizing blocks, one with the multiplier and accumulator
blocks, and one with the shifting and error compensation
blocks. Without pipelining, for a single division operation, all
stages need be fully complete before a new operation can be
introduced into the first stage, resulting in the under-utilization
of hardware as well as a low throughput. To address these
problems, multiple copies of the multiply-and-accumulate
stage can be introduced to realize pipelined operation as well
as hardware to schedule the division operations. This will also
improve energy efficiency by keeping the other two stages
(normalizing stage and shifting and error compensation stage)
fully utilized. In SAADI-EC-P, ¢ is fixed to the maximum
value of n — 1, and there are n — 1 copies of the multiply-
and-accumulate pipeline stage. Predictably, the area overhead
of this approach is quite large, but the energy per operation
decreases for n = [8, 12, 16] compared to SAADI-EC. For
example, at n = 8 SAADI-EC-P can achieve 0.37% MAE
while still producing 1 result per cycle and a delay of 1.16 ns.
The energy per result is 3.54 nJ, which is lower than the
5.72 nJ that SAADI-EC consumes.

Fig. 8 better illustrates the comparison between the approxi-
mate dividers. It shows the tradeoffs between the energy-delay
product (EDP) and accuracy.

2688
n=4 n=8
100 100
1SS IS
> >
& 50 & 50
5] [5)
= =
oo oo
1 2 1 2 3 45 67
t t
n=12 n=16
__ 100 __ 100
1S3 IS
> >
& 50 & 50
5] [5)
s 5
0 0
1 3 5 7 9 11 1 3 5 7 9 111315
t t

I:l Shift and error correct (2x Shifter, 2x Adder, LUT)

-Multiply and accumulate (Reg, Mux, 2x Mult, Accum, +1)

- Normalize (2x Norm, 2’s comp)

Fig. 9. Energy dissipation breakdown of the main hardware blocks of the

proposed divider.

Each curve represents the EDP-accuracy tradeoffs of
SAADI-EC for each n, and each dot on the curves represents
the EDP-accuracy pair for different . One can select n based
on the range of accuracy requirement and the energy budget
at design time, and at runtime, ¢ can be adjusted to exploit the
tradeoffs. TruncApp, SEERAD, and PLApp are denoted by
“A) “[])” and “@” marks, respectively. TruncApp(4), but it is
outperformed by SAADI-EC with n = 6 and ¢t = 2. Similarly,
SEERAD(4) is outperformed by SAADI-EC with n = 8 and
t = 2. PLApp is outperformed by SAADI-EC when n = 6 and
n = 8. AAXD is denoted by “4” marks, and it exhibits high
EDP due to the precise divider used as the base arithmetic
unit. SAADI-EC shows lower EDP since it uses a multiplier.
SAADI-EC outperforms AAXD both in MAE and EDP after
a few iterations, which is affordable due to its shorter cycle
period.

Fig. 9 reports the sources of energy dissipation within our
proposed design as n and ¢ increase. We separated SAADI-EC
into three different main blocks: the normalization block,
the multiply-and-accumulate block, and the shifting and error
compensation block. These represent the logical boundaries
between the main sources of energy dissipation. At low
values of n, the energy dissipated by the normalization and
shift and error compensation blocks is more significant than
the multiply-and-accumulate block. As n grows, however,
it becomes a significantly larger portion of the energy dissipa-
tion in the overall divider, reaching 73.5% of the total energy
dissipation when n = 16 and r = 1. Similarly, as ¢ grows,
so does the percentage of energy dissipated by the multiply-
and-accumulate blocks, reaching 93.9% of the total energy
dissipation when n = 16 and ¢ = 15.

C. K-Means Color Quantization

For application-level evaluation, we perform color quan-
tization, which reduces the number of unique colors in an
image while preserving the appearance of the colors as much
as possible. Color quantization saves energy for the storage

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Color-quantized image using
exact 32-bit divider

Original image

Color
£ quantization
(k=38)

(@)

High n

n=4 n=28 n=12
22.3dB/419/91.4% 31.9dB/46/99.1% InfdB/2.1/99.9%
(b)

Low ¢ High ¢

F Fa <

t=2 t=4 t=6
22.4dB/384/92.1% || 28.1dB/136/96.8% || 30.7dB/59/98.8%
(©

Fig. 10. Color quantization using k-means clustering (k = 8) for varying n
and ¢. The output quality is shown in PSNR (dB)/MSE/SSIM (%) in
comparison to the output of an 32-bit exact divider. (a) Original image and
reference color quantization using an exact divider. (b) Color quantization
using SAADI-EC with various n (f = n — 1). (c) Color quantization using
SAADI-EC with various # (n = 8).

or transmission of the image, and k-means clustering is a
commonly used algorithm. The mean update operation in
k-means requires iterative division by non-constant values,
thus an energy-efficient divider needs to be used. To examine
the quality of SAADI-EC compared with an exact divider
and evaluate the accuracy with varying ¢ and n, five images
are clustered into eight colors (i.e., k = 8). We calculate
three quality metrics: peak signal-to-noise ratio (PSNR), mean
square error (MSE), and structural similarity (SSIM), with
respect to the baseline results using an exact divider. To eval-
uate SAADI-EC without the impact of the initial random
centers, we feed the same initial centers into the baseline and
SAADI-EC each time and repeat the experiment ten times to
take the average quality measurements.

Fig. 10(a) shows the original image and the color-reduced
image using an exact divider as a reference. Fig. 10(b) shows
the results by SAADI-EC with different n. We tie ¢ to
n — 1, providing sufficient time for SAADI-EC to converge.

MELCHERT et al.: SAADI-EC

Color-quantized images
using exact 32-bit
divider

Color-quantized images
using SAADI-EC
(n=28,t=17)

Original images

30.8dB/61/96.1% 28.9 dB/ 86/ 84.6% 27.7dB/134/89.7%

33.2dB/39/98.7%

Fig. 11. Color quantization using k-means clustering (k = 8) on various
images. The output quality is shown in PSNR (dB)/MSE/SSIM (%) in
comparison to the output of a 32-bit accurate divider.

As n increases from 4 to 12, all three quality measures
improve. Although SAADI-EC is capable of producing an out-
put of a reasonable quality for n = 4, the quality dramatically
increases for n = 8, approaching 100% SSIM for n = 12. The
results with different ¢ are shown in Fig. 10(c). In this case,
n is fixed to 8, and ¢ is set to 2, 4, or 6. We observe a clear
trend of quality improvement with a larger . Even with only
two cycles, SAADI-EC produces a high-quality result with
SSIM higher than 90%, and further accuracy improvement is
achieved by increasing ¢.

We show the results of color quantization with SAADI-EC
for four additional benchmark images in Fig. 11. For all the
input images, n is fixed to 8 and ¢ is fixed to 7, and the quality
is compared to the output of an exact divider. We can note
that the quality measures are dependent on the input image.
PSNR ranges from 27.7 to 33.2 dB, and SSIM varies between
84.6% and 98.7%. This confirms the need for a quality-
configurable divider, which is the motivation of our work.
Exploiting the quality configurability of SAADI-EC, the appli-
cation can save energy by decreasing ¢ or improve quality by
increasing ¢ based on the observed high-level quality.

D. JPEG Compression

To further explore how varying approximation accuracy
affects application-level performance, we perform JPEG

2689

g

E 30 Exact divider

2 A n=4 —&— SADDIL-EC(4)

L 4T —A~— SADDI-EC(8) ||

—F— SADDI-EC(12)
—><— SADDI-EC(16)

26 1 1 1 T T T
1 3 5 7 9 11 13 15
t
Fig. 12. Image quality (PSNR) using SAADI-EC on JPEG compression.
. . Frame i
Framei—1 Frame i — x 128
Frame i — 1

Fig. 13.
benchmark.

Example of the image division of two consecutive frames of a

compression while varying n and r. The quality of compres-
sion for JPEG is set to 90% for this experiment. Our proposed
divider replaces the accurate divider used in the quantization
step of the JPEG compression algorithm. To evaluate how
this substitution affects the quality of the compressed image,
we compute the PSNR between the original images and the
compressed images with an accurate divider, as well as the
PSNR between the original images and the compressed images
after substituting our divider. In Fig. 12, we show the results
of this application for n = [4, 8, 12, 16] and for ¢ ranging from
1 to n — 1. We report the average PSNR over 1000 random
images from the Caltech 101 data set [42]. As the quality of
quotient approximation increases, the PSNR of the compressed
images using SAADI-EC becomes closer to the PSNR of the
compressed images using an exact divider. The points along
each curve shown in Fig. 12 represent accuracy levels that can
be adjusted at runtime. In this particular example, we can see
that using 8-bit SAADI-EC suffices.

E. Image Division With Varying Accuracy Requirement

To further illustrate the benefits of dynamic accuracy con-
figuration, we perform image division on video sequences.
Image division is a common algorithm used for detecting
changes in different frames of a sequence of images, which is
useful in applications ranging from surveillance to medical
imaging. Fig. 13 shows an example of image division for
one of the three benchmarks that we used. In this example,
frame i is divided by the previous frame (i — 1) and then
multiplied by 128. Each pixel in the image is represented by
8-bit integers, so multiplying by 128 allows us to represent
the result of the division better within the visible range of
the image. Most consecutive frames are very similar, so most
pixels in the resulting divided image have a value close to 128.
If a pixel in frame i is brighter than in frame i — 1, it will
appear as a bright spot in the divided image, and if a pixel in

2690 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019
AADI-E = AADI n= SEERAD
50 S C n=6 50 S n=6 50
‘ ‘ O s s
40 ¢ 40 + — — —
m
= 30+ 30 ¢
Z
Z 0 r © ‘ 20
A \ : :
10 ¢ ® : : 10 10 +
0 In‘ig 1 imgé ‘ Inig 3 Inig 1 imgé Inig 3 Irﬁg 1 imgé Irﬁg 3
TruncA AAXD PLA
50 ‘ PP 50, 50 | PP
40 | - - = 40} I—'—l J--'-—I 40 ¢ I"-l J‘| r
/M = il \—d [: :
= 30+ 30 1 30 ¢
c oL T
Z 20t j j 20 j j 1 20 ¢
%) ‘ ‘
A~ : :
10 t ' ' 10 10 t
o ‘ ‘
Img 1 Img 2 Img 3 Img 1 Img 2 Img 3 Img 1 Img 2 Img 3
Fig. 14. Resulting PSNR of image division on 1500 frames of change detection benchmarks. For each divider, line “A” denotes the changing accuracy

requirement (target PSNR), lines “B” denote accuracy levels supported by the divider, line “C” denote the accuracy level selected by the divider to meet the

requirement, and lines “D” denotes violated accuracy requirement (if any).

frame i is darker than in frame i — 1, it will appear as a dark
spot.

In this work, we simulate the case where the required
accuracy of image division varies over time by dividing
consecutive frames of a video sequence comprised of three
change detection benchmark scenes from [40]. During each
of these three scenes, we alter the accuracy requirement of
the output image and dynamically adjust the divider to meet
the requirement. We evaluate the accuracy of the division
periodically throughout the video sequence using a high-
accuracy division as a comparison to our approximate division.
For SAADI-EC and SAADI, this is done by setting ¢ to the
maximum value of 5, which yields almost 100% accurate
results. Then, the optimal value of the configuration parame-
ter without violating the accuracy requirement is chosen by
gradually decreasing the accuracy and comparing the PSNR
between the accurate and approximate divided frames until it
drops below the required level.

For evaluation, we measure the accuracy of our divider by
comparing it to an accurate divider and calculating the PSNR.
Then, we repeat the process with dividers proposed in previous
works and compare the results by calculating the number of
frames in the sequence that violated the required accuracy
level. For the previous dividers, we generously assume that
accurate reference division results are obtained without any
overhead. Finally, we compare SAADI-EC against previous
works by calculating the area, power, and energy required to
meet the changing accuracy requirements.

Fig. 14 shows the resulting PSNR and changing accuracy
requirements for the three benchmarks. The PSNR is measured
and displayed for each of the 500 frames in each benchmark.
The different levels of accuracy are calculated by varying
the design parameters of each divider. For SAADI-EC and
SAADI with n = 6, the lowest level of accuracy corresponds

TABLE IV

ACCURACY LEVELS OF SEERAD, TRUNCAPP, AAXD,
AND PLAPP USED FOR COMPARISON

[Divider [Less accurate <= More accurate]
SEERAD(x) (1) 2) 3) %)
TruncApp(x) (3))
AAXD(x) 6)) (10) (12)
PLApp(x,y) | 44) (25 (4.5) (2,6)

to t+ = 1, and the highest level of accuracy corresponds to
t = 5. Note that these accuracy levels are all achievable with a
single divider and can be configured at runtime. For SEERAD,
TruncApp, AAXD, and PLApp, the accuracy levels correspond
to different dividers (B). The accuracy level of these dividers
means the bit-width of the base multiplier or divider unit used
in each design, and the accuracy levels used in the experiment
are listed in Table IV. We assume that, when multiple dividers
are used to support dynamic accuracy adjustment, unused
dividers are power-gated. The stairstep line (A) represents the
dynamic target accuracy, and “C” presents the actual accu-
racy achieved by each divider. Finally, the red segments (D)
represent accuracy violations.

Table V illustrates the area, delay, energy, and number of
violated frames for each of the three benchmarks as well as
the combined total of the benchmarks. SEERAD, TruncApp,
AAXD, and PLApp all require multiple dividers to meet
the dynamic accuracy requirement. The area is the sum of
the area of the dividers used to achieve the target accuracy.
[e.g., AAXD(12) is not included in the area since it is not
used.] In the case of SEERAD, TruncApp, and the nonerror
corrected SAADI, the maximum required accuracy is greater
than the maximum accuracy that can be achieved by the
divider, therefore there are some violated frames. We observe

MELCHERT et al.: SAADI-EC

TABLE V

AREA, POWER, DELAY, ENERGY, AND NUMBER OF VIOLATED FRAMES
FOR THREE CHANGE DETECTION BENCHMARKS

Benchmark Violated
. .. Area Delay | Energy

image and Divider 5 frames

resolution (pnc) ® () (%)
Image 1

SAADI-EC 2,492 2.45 1.20 0

SAADI 1,490 3.69 1.55 33

SEERAD 20,617 0.93 3.79 17

TruncApp 2,744 1.10 0.80 33

AAXD 3,897 3.41 2.71 0

432x288 PLApp 6,248 1.55 1.55 0
Image 2

SAADI-EC 2,492 1.64 0.80 0

SAADI 1,490 2.28 0.95 33

SEERAD 20,617 0.58 2.39 17

TruncApp 2,744 0.68 0.50 33

AAXD 3,897 2.10 1.68 0

320%240 PLApp 6,248 091 0.84 0
Image 3

SAADI-EC 2,492 1.70 0.83 0

SAADI 1,490 2.56 1.07 33

SEERAD 20,617 0.64 2.63 17

TruncApp 2,744 0.73 0.51 33

AAXD 3,897 2.20 1.65 0

360x240 PLApp 6,248 1.02 0.94 0

Total

SAADI-EC 2,492 5.80 2.83 0

SAADI 1,490 8.52 3.58 33

SEERAD 20,617 2.15 8.80 17

Total TruncApp 2,744 2.51 1.81 33

AAXD 3,897 7.72 6.04 0

PLApp 6,248 3.48 3.32 0

that SAADI-EC outperforms SEERAD, AAXD, and PLApp in
terms of area and energy. While TruncApp achieves lower
delay and energy than SAADI-EC, its accuracy does not meet
the quality requirement.

V. CONCLUSION

An energy-efficient divider is a crucial arithmetic unit for
low-power signal processing. In this paper, we presented a
quality-configurable approximate divider, named SAADI-EC.
It is based on an incremental approximation of the reciprocal
of the divisor, where the accuracy gradually increases over
multiple iterations. The application can set the number of
iterations to exploit the trade-off between accuracy the latency
to meet its requirement. We demonstrated that SAADI-EC
produces the division results with adjustable accuracy. The
accuracy-latency tradeoff of the different implementations of
SAADI-EC is evaluated, and the results for 32-bit division
with 8-bit approximation show the average accuracy between
94.2% and 99.6% with latency between one and seven cycles.
We also performed color quantization using k-means cluster-
ing, and JPEG compression and demonstrated that SAADI-EC
can produce high-quality results comparable to those generated
by an exact divider. Finally, we showed that SAADI-EC
outperforms other approximate dividers in applications that
have dynamic accuracy requirements using image division.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

2691

REFERENCES

S. Behroozi, J. Li, J. Melchert, and Y. Kim, “SAADI: A scalable
accuracy approximate divider for dynamic energy-quality scaling,” in
Proc. Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2019,
pp. 481-486.

J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test
Symp. (ETS), May 2013, pp. 1-6.

S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proc. 52nd Annu. Des. Automat. Conf., San Francisco, CA, USA,
Jun. 2015, pp. 120-1-120-6.

M. Alioto, “Energy-quality scalable adaptive VLSI circuits and sys-
tems beyond approximate computing,” in Proc. IEEE DATE, Lausanne,
Switzerland, Mar. 2017, pp. 127-132.

V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and
K. Roy, “IMPACT: IMPrecise adders for low-power approximate
computing,” in Proc. 17th IEEE/ACM Int. Symp. Low-Power Electron.
Design (ISLPED), Aug. 2011, pp. 409-414.

C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in Proc.
Conf. Design, Autom. Test Eur. (DATE), Mar. 2014, p. 95:1-95:4.

S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range
unbiased multiplier for approximate applications,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, Nov. 2015, pp. 418-425.

Software Optimization Guide for AMD Family 10h and 12h Processors,
Adv. Micro Devices, Santa Clara, CA, USA, 2011.

Floating-Point IP Cores User Guide, Altera, San Jose, CA, USA, 2016.
R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari, and
M. Pedram, “SEERAD: A high speed yet energy-efficient rounding-
based approximate divider,” in Proc. Conf. Design, Autom. Test Eur.
(DATE), Mar. 2016, pp. 1481-1484.

S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider
for approximate applications,” in Proc. Design Autom. Conf. (DAC),
Jun. 2016, pp. 105:1-105:6.

S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“TruncApp: A truncation-based approximate divider for energy efficient
DSP applications,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Lausanne, Switzerland, Mar. 2017, pp. 1635-1638.

L. Wu and C. C. Jong, “A curve fitting approach for non-iterative divider
design with accuracy and performance trade-off,” in Proc. IEEE Int. New
Circuits Syst. Conf. (NEWCAS), Jun. 2015, pp. 1-4.

A. Raha and V. Raghunathan, “Towards full-system energy-accuracy
tradeoffs: A case study of an approximate smart camera system,” in
Proc. Design Autom. Conf. (DAC), Jun. 2017, pp. 74:1-74:6.

V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Approximate computing: An integrated hardware
approach,” in Proc. Asilomar Conf. Signals, Syst. Comput., Nov. 2013,
pp. 111-117.

J. Park, H. Choo, K. Muhammad, S. Choi, Y. Im, and K. Roy,
“Non-adaptive and adaptive filter implementation based on sharing
multiplication,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), vol. 1, Jun. 2000, pp. 460-463.

Y. Kim, S. Venkataramani, K. Roy, and A. Raghunathan, “Designing
approximate circuits using clock overgating,” in Proc. Design Autom.
Conf. (DAC), Jun. 2016, pp. 15:1-15:6.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
https://arxiv.org/abs/1510.00149

S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.,
Jun. 2016, pp. 243-254.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM refresh-power through critical data partitioning,” in Proc.
Int. Conf. Architectural Support Program. Lang. Oper. Syst. (ASPLOS),
Mar. 2011, pp. 213-224.

A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” ACM Trans. Comput. Syst., vol. 32, no. 3,
pp. 9:1-9:23, Sep. 2014.

A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan,
“Approximate storage for energy efficient spintronic memories,” in Proc.
Design Autom. Conf. (DAC), Jun. 2015, pp. 1-6.

A. Raha, H. Jayakumar, S. Sutar, and V. Raghunathan, “Quality-aware
data allocation in approximate DRAM,” in Proc. Int. Conf. Compil.,
Archit., Synth. Embedded Syst. (CASES), Oct. 2015, pp. 89-98.

2692

[24] L. Yang and B. Murmann, “Approximate SRAM for energy-efficient,
privacy-preserving convolutional neural networks,” in Proc. IEEE Com-
put. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2017, pp. 689-694.
P. Stanley-Marbell and M. Rinard, “Lax: Driver interfaces for approx-
imate sensor device access,” in Proc. Workshop Hot Topics Oper. Syst.
(HotOS), May 2015, pp. 1-6.
[26] P. Stanley-Marbell and M. Rinard, “Reducing serial I/O power in error-
tolerant applications by efficient lossy encoding,” in Proc. Design Autom.
Conf. (DAC), Jun. 2016, pp. 62:1-62:6.
D. J. Pagliari, E. Macii, and M. Poncino, “Serial TO: Approximate bus
encoding for energy-efficient transmission of sensor signals,” in Proc.
Design Autom. Conf. (DAC), Jun. 2016, pp. 14:1-14:6.
Y. Kim, S. Behroozi, V. Raghunathan, and A. Raghunathan, “AxSer-
Bus: A quality-configurable approximate serial bus for energy-efficient
sensing,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED),
Jul. 2017, pp. 1-6.
S. Behroozi, V. Raghunathan, A. Raghunathan, and Y. Kim, “A quality-
configurable approximate serial bus for energy-efficient sensory data
transfer,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3,
pp- 379-390, Sep. 2018.
S. Sen, S. Schmitt, M. Donahue, and S. Banerjee, “Exploiting
‘approximate communication’ for mobile media applications,” in Proc.
Int. Workshop Mobile Comput. Syst. Appl. (HotMobile), Feb. 2009,
pp. 11:1-11:6.
D. Fujiki et al., “High-bandwidth low-latency approximate intercon-
nection networks,” in Proc. Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2017, pp. 469-480.
V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, “Walking
through the energy-error Pareto frontier of approximate multipliers,”
IEEE Micro, vol. 38, no. 4, pp. 40-49, Jul. 2018.
V. Leon, K. Asimakopoulos, S. Xydis, D. Soudris, and K. Pekmestzi,
“Cooperative arithmetic-aware approximation techniques for energy-
efficient multipliers,” in Proc. Design Autom. Conf. (DAC), Jun. 2019,
pp. 160:1-160:6.
A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 92:1-92:19, May 2013.
S. R. Faraji and K. Bazargan, “Hybrid binary-unary hardware accel-
erator,” in Proc. Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2019, pp. 210-215.
H. Jiang, L. Liu, F. Lombardi, and J. Han, “Adaptive approximation
in arithmetic circuits: A low-power unsigned divider design,” in Proc.
Conf. Design, Autom. Test Eur. (DATE), Mar. 2018, pp. 1411-1416.
[371 M. Vaeztourshizi, M. Kamal, A. Afzali-Kusha, and M. Pedram, “An
energy-efficient, yet highly-accurate, approximate non-iterative divider,”
in Proc. ACM/IEEE Int. Symp. Low Power Electron. Design (ISLPED),
Jul. 2018, pp. 14:1-14:6.

[25]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[38] H. Saadat, H. Javaid, and S. Parameswaran, “Approximate integer and
floating-point dividers with near-zero error bias,” in Proc. Design Autom.
Conf. (DAC), Jun. 2019, pp. 161:1-161:6.

[39] S. F. Oberman and M. J. Flynn, “Division algorithms and implementa-
tions,” IEEE Trans. Comput., vol. 46, no. 8, pp. 833-854, Aug. 1997.

[40] B. Parhami, Computer Arithmetic. London, U.K.: Oxford Univ. Press,
1999.

[41] Nangate 45 nm Open Cell Library, NanGate, Santa Clara, CA, USA,
2008.

[42] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental Bayesian approach tested
on 101 object categories,” in Proc. CVPR Workshop Generative-Model
Based Vis. (WGMBYV), Apr. 2004, p. 178.

Jackson Melchert received the B.S. degree in
computer engineering and computer science from
the University of Wisconsin—-Madison, Madison, WI,
USA, in 2019.

He has authored and contributed to papers pub-
lished in ACM Great Lakes Symposium for Very
Large Scale Integration (GLSVLSI), the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTE-
GRATION (VLSI), and Asia and South Pacific Design
Automation Conference (ASP-DAC). His current
research interests include approximate computing,
low-power embedded systems, very large-scale integrated circuit design, and
computer architecture.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Setareh Behroozi (S’18) received the B.S. degree
in computer engineering from the Iran University of
Science and Technology, Tehran, Iran, in 2013, and
the M.S. degree in computer engineering, computer
architecture from the Sharif University of Tech-
nology, Tehran, in 2015. She is currently working
toward the Ph.D. degree in electrical and com-
puter engineering at the University of Wisconsin—
Madison, Madison, WI, USA.
e Her current research interests include approx-
! imate computing, low-power hardware-software
for embedded systems, emerging memory technologies, and computer
architecture.

Ms. Behroozi was a recipient of the Electrical and Computer Engineering
Chancellor’s Opportunity Fellowship, the CRA-W Grad Cohort for Women
Workshop, the Grace Hopper Celebration (GHC), the A. Richard Newton
Young Student Fellowships, and the Design Contest Award at the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED)
in 2018.

Jingjie Li (S’16) received the B.S. degree in elec-
tronic information engineering from the Beijing
Institute of Technology, Beijing, China, in 2017 and
the B.Eng. (Research and Development) degree
(Hons.) in electronic and communication systems
from The Australian National University, Canberra,
ACT, Australia, in 2017. He is currently work-
ing toward the Ph.D. degree at the Department
of Electrical and Computer Engineering, University
of Wisconsin—Madison (UW-Madison), Madison,
WI, USA.

From 2016 to 2017, he was a Student Scholar at Data61, Commonwealth
Scientific and Industrial Research Organization, Sydney. He currently serves
as a Chancellor’s Opportunity Fellow at UW-Madison. His current research
interests include pervasive computing, Internet of Things, and low-power
design for embedded systems.

Mr. Li was a recipient of the A. Richard Newton Young Student Fellowship,
the Design Contest Award at the ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED) in 2018, and the Best Paper Award
of the ACM Conference on Human Factors in Computing Systems (CHI)
in 2019.

Younghyun Kim (M’13) received the B.S. degree

(Hons.) in computer science and engineering and

the Ph.D. degree in electrical engineering and com-

puter science from Seoul National University, Seoul,
South Korea, in 2007 and 2013, respectively.

From 2013 to 2016, he was a Post-Doctoral

i Research Assistant at the School of Electrical and

\ Computer Engineering, Purdue University, West

Lafayette, IN, USA. From 2009 to 2011, he was a

‘ L Visiting Scholar at the University of Southern Cal-

ifornia, Los Angeles, CA, USA. He is currently an

Assistant Professor at the Department of Electrical and Computer Engineering,

University of Wisconsin-Madison, Madison, WI, USA. He has coauthored

1 book, 2 book chapters, and more than 70 journal and conference papers. His

current research interests include energy-efficient computing, cyber-physical

systems security, and the Internet-of-Things.

Dr. Kim was a recipient of the NSF Faculty Early Career Development
Program (CAREER) Award in 2019, the EDAA Outstanding Dissertation
Award in 2013, the Design Contest Award at the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED) in 2007, 2012,
2017, and 2018, the IEEE SSCS Seoul Chapter Award at the International
SoC Design Conference in 2009, and the Best Paper Award Nomination at the
ACM/IEEE ISLPED in 2016. He has served on the Technical Program Com-
mittees of the ACM/EDAC/IEEE Design Automation Conference (DAC),
the ACM/IEEE ISLPED, the Asia and South Pacific Design Automation Con-
ference (ASP-DAC), the International Conference on VLSI Design (VLSID),
the Symposium on Applied Computing, and the Ph.D. Forums at DAC and
Design Automation and Test in Europe (DATE). He served as a Guest Editor
for a Special Issue of VLSI Integration Journal (Elsevier).

