SECO: A Scalable Accuracy Approximate
Exponential Function Via Cross-Layer Optimization

Di Wu, Tianen Chen, Chienfu Chen, Oghenefego Ahia, Joshua San Miguel, Mikko Lipasti, and Younghyun Kim
Department of Electrical and Computer Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706
{dwu94, tianen.chen, cchen452, ahia, jsanmiguel, younghyun.kim} @wisc.edu, mikko @engr.wisc.edu

Abstract—From signal processing to emerging deep neural
networks, a range of applications exhibit intrinsic error resilience.
For such applications, approximate computing opens up new
possibilities for energy-efficient computing by producing slightly
inaccurate results using greatly simplified hardware. Adopting
this approach, a variety of basic arithmetic units, such as adders
and multipliers, have been effectively redesigned to generate
approximate results for many error-resilient applications.

In this work, we propose SECO, an approximate exponential
function unit (EFU). Exponentiation is a key operation in many
signal processing applications and more importantly in spiking
neuron models, but its energy-efficient implementation has been
inadequately explored. We also introduce a cross-layer design
method for SECO to optimize the energy-accuracy trade-off. At
the algorithm level, SECO offers runtime scaling between energy
efficiency and accuracy based on approximate Taylor expansion,
where the error is minimized by optimizing parameters using
discrete gradient descent at design time. At the circuit level,
our error analysis method efficiently explores the design space
to select the energy-accuracy-optimal approximate multiplier at
design time. In tandem, the cross-layer design and runtime
optimization method are able to generate energy-efficient and
accurate approximate EFU designs that are up to 99.7% accurate
at a power consumption of 3.73 pJ per exponential operation.
SECO is also evaluated on the adaptive exponential integrate-
and-fire neuron model, yielding only 0.002% timing error and
0.067% value error compared to the precise neuron model.

Index Terms—Dynamic Accuracy Scaling, Cross-Layer Ap-
proximation, Error Modeling, Exponential Function

I. INTRODUCTION

Energy efficiency is one of the most crucial design con-
straints of modern computing systems, which dictates perfor-
mance, lifetime, form factor, and cost. Approximate computing
is an emerging computing paradigm to improve energy effi-
ciency by expanding the scope of the design space to where
the accuracy constraints of computations can be relaxed. For
emerging application domains that are intrinsically resilient to
errors, approximate computing opens up new possibilities for
more energy-efficient designs at the cost of minor or negligible
accuracy loss.

The key to the optimal design of approximate computing
systems is to maximally exploit the trade-off between en-
ergy efficiency and output quality to meet application-specific
requirements. Researchers have sought to develop various
energy-efficient approximate hardware blocks with different
energy-accuracy trade-offs, such as approximate adders [1],
multipliers [2], and dividers [3]. They have proven more
accurate and/or more energy-efficient than simply truncating

978-1-7281-2954-9/19/$31.00 ©2019 IEEE

precise arithmetic units. Recently, with an emergence of more
complex hardware accelerators, high-level approximate hard-
ware to perform sophisticated non-linear arithmetic operations,
such as exponentiation, is garnering more interest. Typically,
exponentiation is not supported by a hardware arithmetic
unit in microprocessors but implemented in a math software
library using multiplication. However, the recent emergence
of distributed signal processing systems and embedded neural
networks has led to the demand for a fast yet energy-efficient
exponential function unit (EFU).

Existing approaches to implementing hardware EFUs are
typically based on the Taylor series, the definition of limit,
Newton’s method, base conversion, etc. [4], and the hard-
ware is designed to produce the most precise results allowed
by the numerical representation. However, for error-resilient
applications, performing exponentiation with a precise EFU
wastes time and energy in producing overexact results; thus
an approximate EFU would be a more efficient solution to
such applications. Adopting an approximate EFU involves
two major design challenges: i) An application’s accuracy
requirement and energy efficiency requirement are input-
dependent and time-varying [5]; in order to maximally exploit
the energy-accuracy trade-offs, an approximate EFU should
support dynamic energy-accuracy scaling. ii) The approximate
EFU itself should be significantly more energy-efficient and
accurate than simply truncating precise EFUs.

In this paper, we introduce an approximate EFU named
SECO (Scalable Accuracy Approximate Exponential Function
via Cross-Layer Optimization) to address the aforementioned
challenges. The contributions are as follows:

o We propose SECO, an approximate EFU design based on
the incremental approximation of exponentiation using the
Taylor series. By adjusting the number of added Taylor
terms, the energy efficiency and accuracy can be traded off
against each other at runtime.

« We present a cross-layer optimization framework that takes
both algorithm-level (approximate parameters for the Taylor
series) and circuit-level (approximate multiplier selection)
design factors into account in order to maximize both energy
efficiency and accuracy for a given input distribution.

o We evaluate the energy efficiency and accuracy of SECO for
various input distributions. We also present an application of
SECO to the adaptive exponential (AdEx) integrate-and-fire
neuron model.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 28,2020 at 18:41:20 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND
A. Approximate Arithmetic

Various approximate arithmetic units have been introduced
to improve the energy efficiency of arithmetic operations in
error-resilient domains. Approximate addition [1], [6] and mul-
tiplication [2], [7] have received the most attention since they
are heavily used in many applications. Approximate dividers
have been introduced more recently for energy-efficient signal
processing [8], [9]. These approximate arithmetic units can
be categorized as circuit-level approximation techniques [10],
[11] that use simplified hardware to generate similar logic
outputs. A more recently proposed approximate divider is
based on the Taylor series approximation for runtime energy-
accuracy scaling [3], but it does not optimize its selection of
the underlying multiplier and approximate algorithm.

B. Hardware EFUs

Natural exponentiation is computationally expensive. Re-
searchers have proposed various hardware EFUs to accelerate
exponentiation-heavy applications. Hardware-efficient floating
point EFUs have been proposed for applications that demand
high-precision computing [12], but they are far from energy-
accuracy-optimal for error-resilient applications. Another de-
sign proposes to replace the multiplications of integer part
and upper fractional part with two lookup tables (LUTs)
to perform low-width multiplications for lower fractional
part [13]. It is designed to produce accurate results with
less than one LSB (least significant bit) absolute error for
all input operands and thus requires large area for multiple
multipliers, registers, and LUTs. For more error-forgiving and
hardware-constrained systems, approximate EFUs have been
proposed. Taylor series-based approximation of exponentiation
is a widely used method, which is adopted in [14]. However,
this EFU is designed to accumulate a fixed number of Taylor
terms determined at design time, and the energy-accuracy
trade-offs cannot be adjusted at runtime. To the best of our
knowledge, there has been no prior work on approximate
hardware EFUs with runtime energy-accuracy reconfiguration.

III. DesioN or SECO

The insight behind SECO is that dynamic energy-accuracy
scaling of the exponential function can be achieved efficiently
using incremental Taylor series approximation. The proposed
approximate EFU is based on the Taylor series centered at
x = 0 for the exponential function exp(x), written as

o X" X2 X3
eXp(x)=Zﬁ=1+x+E+§+“" (1)
n=0

where the operand x € [0, 1). Since it is not practical nor
feasible to sum an infinite number of Taylor terms, a good
approximation is to sum the first N + 1 terms, where N
is the maximum number of non-constant Taylor terms. For
typical applications, N does not need to be a large number.
For example, N = 6 yields less than 1 LSB error for 15-bit
exponentiation [14].

Application ‘ ‘ Application ‘
xl T exp(x) xl Accuracy T exp(x)
EFU EFU
Exponentiation algorithm gg;ﬁ:l Agg gﬁ&iﬁp'
‘ Precise multiplier ‘ ‘ Optimal approx. multiplier ‘

(a) Conventional EFU (b) Proposed EFU

Fig. 1: Proposed approximate EFU in comparison to the
conventional EFU.

Unlike prior approximate exponentiation schemes [13], [14]
where N is fixed at design time, we propose a flexible hardware
architecture that can adjust N at runtime. This enables dynamic
energy-accuracy scaling, which is the key to energy-accuracy
optimality. We achieve this via incremental approximation
where the Taylor terms in (1) are added incrementally at each
cycle, from low order to high order. When high accuracy is
demanded at the cost of high energy consumption and longer
latency, more terms are added over more cycles; when low
accuracy can be tolerated for reducing energy consumption and
latency, the accumulation is terminated sooner. The number
of cycles can be dynamically reconfigured by the application
to optimize energy efficiency and accuracy based on its
requirements. Fig. 1 shows a comparison between conventional
and the proposed EFU design. Note that the optimal runtime
reconfiguration (i.e., finding the optimal N) is out of the scope
of this paper, and we focus on how we efficiently facilitate the
reconfigurability. We overcome two key challenges.
Challenge 1: Expensive arithmetic. The most power-hungry
and area-demanding operations in the finite Taylor series
are the numerous multiplication and division operations. We
propose a power- and area-efficient approximation of (1) via
Joint optimization of multiplication skipping and approximate
division. Specifically, each Taylor term is approximated by

x" xPn
Sn'mzsn'zq"7 (2)
where, forn =0,1,..., N,
Pn-1 + 1 if multiplication is not skipped,
Pn = . C 3)
DPn-1 if multiplication is skipped,

and g, denotes the offset of right shifting, with s, € {-1, 1}
denoting the sign of Taylor terms. Multiplying x is performed
selectively, rather than at every cycle, to reduce dynamic
energy consumption, followed by the approximate division via
right shifting. The sign s, of each term is determined based on
the sign of the accumulated error up to (n — 1) Taylor term.
As presented in Section VI-A, the proposed approximation can
skip up to 3 multiplications out of 7, saving dynamic energy
significantly. The joint optimization of the three sequences
{pn}, {gn} and {s,} will be discussed in Section IV.

Challenge 2: Non-uniform error. The approximation error
of (1) is not uniform over the input range [0, 1), since the
approximation is centered at x = 0. The approximation is
more accurate close to x = 0, but less accurate close to

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 28,2020 at 18:41:20 UTC from IEEE Xplore. Restrictions apply.

Input Bit width Accuracy
distribution (M) constraint Apﬁ%‘o;flm?tg Optimal
multiplier lib. .
S SECO design
. . ! Optimal |
Algorithm-level | {Pn} Circuit-level | . ;
L S ——r> approximate |
optimization optimization i .o '
¢ multiplier |
‘ s {pa}
nys ,T | i
{n}:) anh (sn} T

Fig. 2: Cross-layer optimization flow.

x = 1. Therefore, to minimize the overall error, double-sided
expansion is adopted. Given a threshold 7, at runtime, if
0 < x < T, the Taylor series is expanded at x = 0; otherwise
at x = 1. The optimal threshold 7 that minimizes error is
determined at design time according to the input distribution
and is one of the four target variables for the optimization
algorithm, discussed in Section IV.

IV. Cross-LAYER OptiMmizaTIiON OF SECO

In this section, we describe our optimization of the energy-

accuracy trade-off at design-time via a cross-layer optimization
flow. The optimization flow consists of two sequential opti-
mization phases as shown in Fig. 2, namely the algorithm-level
optimization and the circuit-level optimization. The algorithm-
level optimization reduces the area and power at a high level
while maintaining accuracy by deriving the best schemes
for multiplication skipping, approximate division and double-
sided expansion described in Section III for given application-
specific design parameters, i.e., the input distribution and bit
width. The circuit-level optimization targets further power
reduction by selecting the most energy-efficient approximate
multiplier from a given library,! under relaxed accuracy con-
straints specified by the designer.
Phase 1: Algorithm-level optimization. The algorithm-level
optimization phase takes two factors into account, i.e., the
input distribution and bit width. Prior approximate arithmetic
hardware designs assume uniformly distributed input data,
which often contrasts to practical scenarios. To design optimal
hardware, application-specific (potentially non-uniform) input
distribution should be considered. Furthermore, the bit width
contributes significantly to final accuracy due to the truncation,
and must be considered when designing approximate functions
for varying accuracy demand.

For an input x, the approximate exponentiation result exp(x)
and the relative error e(x) are defined as follows:

. N xPn
exp(x) = Z N 2
=0 4)
_ exp(x)
= e

To capture the actual cumulative approximation error for a
specific input distribution, we consider both the frequency and
significance of errors and use weighted mean relative error
(WMRE) as the metric. For a given input distribution and

'We use the EvoApproxLib approximate multiplier library [15].

Algorithm 1 Algorithm-level optimization

1: procedure miNniMizE WM RE

2 for each triplet of {N,, Ny, T} do

3 Initialize {p,}, {qn}, {Sn}

4 while n < N do

5: for pni1, guit, Spi1 do

6: Calculate WMRE, .,

7 if WMRE, ;| is minimized then
8 Store Pn+1s 9n+1s Sn+l

9

: end if
10: end for
11 {pni1} < {{pn}, Pni1}
12: {gn+1} — Han} gni1}
13: {Sn+1} — {{Sn}a Sn+l}
14: n—n+1
15: end while
16: if WMRE is minimized then
17: Store {pn}, {qn}, {sn}, T
18: end if
19: end for

20: return {p,}, {qn}, {sn}, T
21: end procedure

input bit width of M, WMRE for total 2™ discrete inputs is
defined as
2M
WMRE = 3" Py - |e(xn)], 5)

m=0

where x,,, = m/2M, and P,, denotes the probability of x = x,,.
Based on this, accuracy is defined as (1 - WRME) x 100 (%).

The algorithm-level optimization is to optimize the four
design parameters defined in Section III that minimize WMRE.
A simplified discrete gradient descent algorithm is devised to
solve the problem, as described in Algorithm 1. More specif-
ically, the algorithm finds the order in Taylor term to trigger
multiplication skipping and approximate division, defined as
N, and N, respectively, the approximation direction indicator
of error compensation {s,}, and the double-sided expansion
threshold 7. We initialize the algorithm with multiple starting
points to increase the possibility of convergence at a better
local minimum (Line 3). Starting from each initial point, we
find the adjacent point with minimum WMRE, and select its
Pn+l> qn+1 and s,y as the best parameter in multiplication
and right shifting for the (n + 1) Taylor term (Line 8). Each
surrounding point has its p,y+; and g,4+; to be equal to or
greater by 1 than p, and g,, according to the updating rule.
Also, we assume that each surrounding candidate point always
has a unit distance from the n’" point due to the discreteness
of the design space, as such the point with minimum WMRE
is the direction with the largest gradient, and merged to
current {p,}, {g,} and {s,} for updating the subsequent points
(Lines 11-13). This process lasts until we has chosen all p,,
gn and s, for each updating rule. Finally, we choose the best
Pn»> qn, Sn and T as the selected parameters among all updating
rules (Line 16).

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 28,2020 at 18:41:20 UTC from IEEE Xplore. Restrictions apply.

.
Add/Sub /~+({sn}

]]
[\
NS
e

Fig. 3: SECO hardware architecture

Py
<
=
—
—
V'
- =

> exp(x)

Phase 2: Circuit-level optimization. The objective of the
circuit-level optimization phase that follows the algorithm-
level optimization is to find the optimal approximate multiplier
to ensure the best power performance under a given WMRE
constraint. We first build an analytic error model that can
predict the output WMRE for a given approximate multiplier
in the library, which is defined as

2M 1 —_
TURE eXp(xim)
WMRE = » Py |——= - 1],

2 e (e)

m=0

(6)

where exp(x,,) is the predicted output with the approximate
multiplier, given by

— y XmP"
exp(xm) = Z (Tr (Sn . ZT

,M) (1 + MRE)P"‘I), (7
n=0

where Tr(x, M) is M-bit truncation, and MRE is the mean
relative error of the approximate multiplier. Two sources of
error are considered in the model: the quantization error due
to fixed point representation, and the multiplication error due
to the approximate multiplier. Note that one of the output of
the algorithm-level optimization p, is taken into account in
this model.

Using the error model that can predict the average ex-
ponentiation error from average multiplication error, we can
eliminate efforts for massive simulation and simply select the
energy-accuracy-optimal multiplier from the library. Specif-
ically, the most energy-efficient approximate multiplier that
meets the given accuracy requirement is selected. However,
the error model can be also used for finding most accurate
multiplier that meets a power budget or one that minimizes
power-error product as a single objective function.

V. HARDWARE ARCHITECTURE

Fig. 3 shows the simplified hardware architecture of SECO.
The implementation is composed of three parts: i) double-
sided expansion, ii) Taylor term approximation, and iii) accu-
mulation. The double-sided expansion part takes an input and
decide whether to Taylor-expand it around O or 1. To reduce
area, a simplified comparator is used to compare the input
against the threshold T by evaluating only the upper few bits of
the input. The Taylor term approximation part is composed of
two components: an approximate multiplier with a bypass path

5 = Q)
6 —%—U(, 1)
_ 4 . —O— N(0.75,0.1)
:Q :Q 4 —8—N(0.5,0.1)
> 3 = —V— N(0.25,0.1)
20 20 I
2 2 &
oD, Q2
*
1 0
70 80 90 100 80 90 100
Accuracy (%) Accuracy (%)
(@ (b)

Fig. 4: Design-time optimization of energy-accuracy trade-off
(a) for varying M and (b) for varying input distribution.

and a shifter. The approximate multiplier is the outcome of
the circuit-level optimization discussed in Section IV. At each
cycle, multiplication is bypassed if p, = p,—; and dynamic
energy consumption is reduced. Similarly, the output of the
multiplier is right-shifted by ¢, — g,—1 at each cycle. Finally,
the accumulation part accumulates the output of the multiplier
to generate the exponentiation result.

Note that multi-cycle operation that facilitates energy-
accuracy scalability also enables a low hardware cost imple-
mentation. Unlike prior hardware EFUs composed of multiple
multipliers and adders, SECO consists of one multiplier,
one adder, and several peripheral control logic blocks. The
resultant low hardware cost makes it suitable for extremely
resource-constrained systems.

VI. EvALUATION

In this section, we present the evaluation results for SECO.
We first show the design-time optimization and runtime scaling
of energy efficiency and accuracy. Next, SECO is applied to
the AdEx neuron as a case study. Finally, we depict the detailed
implementation results for the proposed EFU.

A. Energy-Accuracy Optimal Design

We first demonstrate the design-time energy-accuracy trade-
off of SECO acheived by the proposed cross-layer optimiza-
tion. We validate that the optimization algorithm derives
energy-accuracy-optimal designs for varying input distribution,
bit width, and accuracy constraint. The EvoApproxLib [15] is
used as the approximate multiplier library.

Fig. 4(a) shows the energy consumption per operation and
accuracy for three different bit widths: M = 8, 12 and 16.
The accuracy loss is constrained to 0.5%, 1%, 2%, 4%, 8%
and 16%, and uniform input distribution U(0,1) is assumed
for all cases. For each case, as described in Section 1V,
an optimal approximate multiplier and optimal {p,}, {¢n},
{s,} and T are selected by the cross-layer optimization. Note
that each mark corresponds to the optimal design for each
combination of input distribution and bit width, and the marks
on the same curve may be different since they are optimized
for different accuracy constraint. Note that the outlier with
accuracy drop for M = 8 attributes to the discreteness of

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 28,2020 at 18:41:20 UTC from IEEE Xplore. Restrictions apply.

)]

—%— U0, 1)
—O— N(0.75, 0.1)
—8— N(0.5,0.1)

—— N(0.25,0.1)

I

w
~

[N}
Energy (pJ)

Energy (pJ)
(3]

94 96 98 100 90 95 100
Accuracy (%) Accuracy (%)
(@ (b)

Fig. 5: Dynamic energy-accuracy scaling (a) for varying M
and (b) for varying input distribution.

TABLE I: Design optimization result for M = 12.

[Input dist. || Optimal parameters]
D] 10, L 2 3, 4 5,5
U, 1) Gn-gny 10,0, 1, 2,3, 45
0.875 | Multiplier | mull2u_2QN
n} |0, L, 2, 3, 4, 4, 4, 4
N(0.75, 0.1) |[Tspn-gny [0, 0, 1, 3,4, 5,6, 7
T 0.375 | Multiplier [mull2u_2PM
Dnl 10, 1, 2, 3, 4 5
N©.5,0.1) |[Tsp-gny [0, 0, 1, 2,3, &
0.75 | Multiplier [mull2u_2DH
e} 10, L, 2, 3, 4
N(0.25, 0.1) |[T5p-gny [0, 0, 1, 2,3
0.75 | Multiplier [mull2u_2DH

the library. Fig. 4(b) shows the energy-accuracy trade-off for
four different input distributions: uniform distribution and three
Gaussian distributions. The three Gaussian distributions have
the same standard deviation oo = 0.1, but different means,
€ {0.75,0.5,0.25}. The same accuracy constraints are used,
and the bit width M is fixed to 12. As shown in the figures,
the cross-layer optimization algorithm successfully derives
optimal designs for various input distributions and bit widths.

Next, we demonstrate the dynamic energy-accuracy scaling
of SECO at runtime. Fig. 5(a) shows the energy-accuracy
trade-off of three designs, each of which is optimized for
different bit widths. Fig. 5(b) shows the same, and each design
is optimized for different input distributions. Note that, unlike
Fig. 4, each curve corresponds to the optimal design for each
combination of input distribution and bit width, and the marks
on the same curve denote different energy-accuracy trade-offs
that can be achieved by adjusting latency. Though our algo-
rithm optimization guarantees maximum accuracy at the final
cycle, in Fig. 5, some SECO instances may have maximum
accuracy at a certain immediate cycle due to unpredictable
approximate multipliers. Post simulations can further suggest
whether to terminate computing earlier before the final cycle.
Table I shows the optimal approximate multiplier and the
values of {p,}, {qn}, {s»} and T chosen by the cross-layer
optimization for the designs in Fig. 5(b). As we configure
SECO to maximum 8 terms, SECO for N(0.75, 0.1) skips
maximum 3 multiplications out of 7. As shown in the figures,
SECO provides a wide spectrum of runtime energy-accuracy
trade-off that can exploited by applications.

5 3.5
—% 00, 1) Qﬂ'
4 || 70— N©.75,00) 3r—e—u0,1) Hq‘
I

—8-—N(0.5,0.1)
—V - N(0.25,0.1)

—O— N(0.75,0.1)
2.5 1 —g— N@©.5,0.1)

Energy (pJ)
(98]

(3]
Energy (pJ)

—
Y

85 90 95
Accuracy (%)

100 90 95
Accuracy (%)

(a) (b)
Fig. 6: Input variation affecting dynamic energy-accuracy

scaling of SECO optimized (a) for uniform distribution U(0,1)
and (b) for Gaussian distribution N(0.25,0.1).

100

Finally, Fig. 6 shows how input distribution influences
dynamic energy-accuracy scaling. Fig. 6(a) is optimized for
U(0,1), and Fig. 6(b) is optimized for N(0.25, 0.1). As shown
in the figures, the input-awareness is crucial in achieving
application-specific energy-accuracy optimally.

B. Case Study: Application to AdEx Neuron Model

We implement a key component in brain simulation, the
AdEx neuron model [16], with SECO, and evaluate its accu-
racy scaling behavior. The AJEx neuron gradually increases
the membrane potential and fires a spike after membrane
potential crosses a threshold, followed by a reset. Its membrane
potential V(¢) is modeled by following differential equations
upon an injected current I(¢):

dv

CE =—gr(V—EL) + gL - Ar - exp(

V-Vr

)+ 1—w, (8)

de—w =a(V-EL)—w,)
dt
where w is the adaptation current, C is total capacitance, gy,
is total leak conductance, Ey, is effective rest potential, Ay is
threshold slope factor, Vr is effective threshold potential, a is
conductance, T, is time constant. Both of the equations rely
on following reset equation:

VoV,
ifV>Othen{ - (10)

wW—ow,=w+b,

where V, is reset potential, and b is spike triggered adaptation.

For evaluation, we focus on the firing responses with respect
to membrane potential V(). As the baseline, four AdEx neuron
firing patterns in [16] are implemented using full-precision
floating point exponentiation. By varying the parameters in (8),
(9) and (10), we achieve four distinguishable neuron responses
with unique spiking behaviors in Fig. 7. We use two error
accuracy metrics from [17] to compare against the baseline.
The first metric depicts the timing error of our model:

'At,, - A1,

ERRt = x 100, (11)

o

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 28,2020 at 18:41:20 UTC from IEEE Xplore. Restrictions apply.

N

TS 1B RB

DA

Fig. 7: Four neuron responses used in experiment. TS: Tonic
spiking, IB: Initial burst, RB: Regular bursting, DA: Delayed
accelerating [16].

0.6 0.4
—¥— TS
—O- B ~ 03
,§ 0.4 —8—RB §
~ —V DA Q
é‘ = 0.2
=
=
N 0.2 &
< 0.1
0 0
2 3 4 5 6
Cycle Cycle
(a) (®)

Fig. 8: (a) ERRt and (b) NRMSD for four neuron responses
for varying cycle for SECO.

where At, and At,, are the time intervals between two adjacent
spikes in the proposed and original neurons, respectively. Sec-
ondly, the value error, normalized root mean square deviation
(NRMSD), is calculated as

Sop-voy
NRMSD = | = : :

n Vmax — Vmin

12)

where v4x and vy, are the maximum and minimum spike
responses of the original neuron, vp and vo are the of proposed
and original responses, respectively, synchronized at each
spike, and n is the sample count for the same spike.

The two errors of our neuron are shown in Fig. 8. The
timing error ERRt monotonically decreases as we increase the
latency of SECO, while the potential value error NRMSD
finally drop after an initial increase, proving the accuracy
scaling capability.

C. Hardware Evaluation

SECO is synthesized with Synopsys Design Compiler, and
the implementation result is listed in Table II. Each SECO
instance corresponds to the best SECO implementation for a
given accuracy constraint. Relaxing the accuracy constraint
decreases both area and power, in which the largest drop occurs
from 99.7% to 99.1%, i.e., with negligible accuracy loss. Note
that in some cases, as the computation can be terminated
earlier with no accuracy loss, SECO may show even higher
energy efficiency.

TABLE II: Implementation results for various accuracy con-
straints (TSMC 45 nm) and comparison to [14] (STM 65 nm).

Desi Accuracy | Latency Area | Power | Energy
esign A

const. (%) (ns) (um?) | (mW) PhH

99.7 17.5 1,118 0.223 3.73

99.1 20 611 0.136 2.72

SECO 98.2 20 517 0.120 241

95.2 20 378 0.094 1.88

83.8 20 328 0.085 1.70

[14] 99.997 100 | 20,700 | 0.959 95.9

VII. CoNCLUSION

In this paper, we present SECO, an approximate expo-
nential function unit that supports dynamic energy-accuracy
reconfiguration. We propose a low-cost approximation scheme
for the Taylor expansion of exponentiation and an input-
aware hardware optimization algorithm. The energy-accuracy
reconfigurability of SECO is demonstrated for various input bit
widths and input distributions. We also evaluate an application
of SECO to the adaptive exponential integrate-and-fire neuron
model. The cross-layer optimization framework in SECO is
able to be further generalized to other non-linear designs.

ACKNOWLEDGEMENTS

This work was supported in part by the Wisconsin Alumni
Research Foundation and NSF under awards CNS-1845469,
CCF-1628384, and CCF-1813434, and AFRL award FA9550-
18-1-0166.

REFERENCES

[1]1 V. Gupta et al., “IMPACT: Imprecise adders for low-power approximate
computing,” in ISLPED, 2011.

[2] C. Liu et al., “A low-power, high-performance approximate multiplier
with configurable partial error recovery,” in DATE, 2014.

[3] S. Behroozi et al., “SAADI: A scalable accuracy approximate divider
for dynamic energy-quality scaling,” in ASP-DAC, 2019.

[4] C. Chang et al., “A division-free algorithm for fixed-point power
exponential function in embedded system,” in /COT, 2013.

[5] A. Raha et al., “Towards full-system energy-accuracy tradeoffs: A case
study of an approximate smart camera system,” in DAC, 2017.

[6] A. B. Kahng et al., “Accuracy-configurable adder for approximate
arithmetic designs,” in DAC, 2012.

[71 S. Hashemi et al., “DRUM: A dynamic range unbiased multiplier for
approximate applications,” in ICCAD, 2015.

[8] H. Jiang et al., “Adaptive approximation in arithmetic circuits: A low-
power unsigned divider design,” in DATE, March 2018.

[9]1 M. Vaeztourshizi et al., “An energy-efficient, yet highly-accurate, ap-
proximate non-iterative divider,” in ISLPED, 2018.

[10] S. Venkataramani et al., “Salsa: Systematic logic synthesis of approxi-
mate circuits,” in DAC, 2012.

[11] J. Schlachter et al., “Design and applications of approximate circuits by
gate-level pruning,” IEEE TVLSI, 2017.

[12] M. Langhammer et al., “Single precision logarithm and exponential
architectures for hard floating-point enabled FPGAs,” IEEE Transactions
on Computers, 2017.

[13] J. Partzsch et al., “A fixed point exponential function accelerator for a
neuromorphic many-core system,” in ISCAS, 2017.

[14] P. Nilsson et al., “Hardware implementation of the exponential function
using taylor series,” in NORCHIP, 2014.

[15] V. Mrazek et al., “EvoApprox8b: Library of approximate adders and
multipliers for circuit design and benchmarking of approximation meth-
ods,” in DATE, 2017.

[16] R. Naud et al., “Firing patterns in the adaptive exponential integrate-
and-fire model,” Biological Cybernetics, 2008.

[17] M. Heidarpour et al., “A CORDIC based digital hardware for adaptive
exponential integrate and fire neuron,” IEEE Trans. on Circuits and
Systems I, 2016.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 28,2020 at 18:41:20 UTC from IEEE Xplore. Restrictions apply.

