Advances in Mathematics 330 (2018) 553-588

Contents lists available at ScienceDirect

MATHEMATICS

Advances in Mathematics

www.elsevier.com /locate/aim

On the energy landscape of spherical spin glasses ™ @)

Antonio Auffinger *, Wei-Kuo Chen "*

2 Department of Mathematics, Northwestern University, United States of America
b School of Mathematics, University of Minnesota, United States of America

ARTICLE INFO ABSTRACT
Article history: We investigate the energy landscape of the spherical mixed
Received 9 March 2017 even p-spin model near its maximum energy. We relate the

Received in revised form 5 February
2018

Accepted 21 March 2018

Available online 3 April 2018
Communicated by the Managing

distance between pairs of near maxima to the support of
the Parisi measure at zero temperature. We then provide
an algebraic relation that characterizes one-step replica
symmetric breaking Parisi measures. For these measures, we

Editors of AIM show that any two nonparallel spin configurations around the
maximum energy are asymptotically orthogonal to each other.

Keywords: In sharp contrast, we study models with full replica symmetry

Energy landscapes breaking and show that all possible values of the asymptotic

Parisi formula distance are attained near the maximum energy.

Replica symmetry breaking © 2018 Elsevier Inc. All rights reserved.

Spherical spin glasses

1. Introduction and main results

This work deals with geometric properties of general Gaussian smooth functions on
the N dimensional sphere as N goes to infinity. The questions addressed in this paper
can be phrased as: Where are the peaks of a random Morse function in a high dimen-
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sional sphere? How can we travel between two peaks and what is their typical spherical
distance?

A rich description of the landscape of these functions is predicted by the theory of
mean-field spin glasses. The functions that we consider here are known as the Hamilto-
nians of mixed spherical p-spin models. Our main result relates the above questions to
the structure of the Parisi measure of these models at zero temperature. We confirm and
make precise a common prediction by physicists, that the landscape of these functions
near the maxima heavily depends on the number of levels of replica symmetry breaking
(RSB). For references in the physics literature the reader is invited to see [12]. For ap-
plications of spin glass theory in computer science, neural networks and more see [11]
and the references therein.

We now describe the functions that we analyze in the terminology of spin glass theory.
Let Sy be the sphere

N
{O’GRNZZJ?:N}.
i=1

Consider the Hamiltonian of the spherical mixed even p-spin model indexed by Sy,

N
Hy (o) :XN(U)HLZ@ (1)

for

1/2
— Cp
Xn(o) = Z Ne-1/2 Z Gy, sipTiy =" Ty

pe2N 1<iy, .. ip<N

where g;, .. ;,’s are i.i.d. standard Gaussian, h > 0 denotes the strength of an external
field, and the sequence (c,)pean satisfies ¢, >0, 37 oy ¢y =1, and

Z 2P¢, < oo. (2)

pe2N

It is easy to check that
EXn(0")Xn(0%) = NE(Ry 2),

where

1 N
R12;:— 0102
s NE 171
1=1

is the normalized inner-product between ¢! and o2, known as the overlap, and
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)= Z cpst.

p€E2N

Condition (2) is more than enough to guarantee that the sum (1) is almost surely finite,
and the energy Hpy is a.s. smooth and Morse; see Theorem 11.3.1 of [1]. The simplest
case is the spherical Sherrington-Kirkpatrick (SK) model, £(s) = s2.

We are interested in the collection of points o € Sy such that Hy (o) is close to the
maximum value of Hy. For this, denote the maximum energy (ME) of Hy by

Hy (o)
MEy = .
NZRETN

Recently, Chen—Sen [7] and Jagannath—Tobasco [10] showed that the limiting maximum
energy can be computed through a variational principle, similar to the Crisanti—-Sommers
formula [8]. More precisely, let K be the collection of all measures v on [0, 1], which takes
the form,

v(ds) = 1p0,1)(s)v(s)ds + Ady1y(ds),

where (s) is a nonnegative and nondecreasing function on [0, 1) with right-continuity,
A >0, and d(1y is a Dirac measure at 1. Define the Crisanti-Sommers functional by

1 1
/ s) 4+ h?)v(ds) +/
V
0 0

for v € K. The Crisanti-Sommers formula for the maximum energy derived in Chen—Sen
[7]' and Jagannath-Tobasco [10] states that

ME := lim MEy = mf Qv). (3)

N—o00

Note that Q is a strictly convex functional on I and it was proved in [7,10] that the
right-hand side has a unique minimizer, denoted by

vp(ds) = vp(s)ljo,1)(s)ds + Apdgy(ds).

We denote by pp the measure on [0,1) induced by vp, i.e.,

vp(s) = pp([0,5]), Vs € [0, 1). (4)

We call pp the Parisi measure at zero temperature.

L Although the form in Chen—Sen [7] is not exactly the same as (3), it can be easily expressed in terms of
the current form (3) by performing a change of variable, A = L — _fol v(s)ds.
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1.1. Two general principles

For fixed 7 > 0, our main theorems relate the geometry of the set of spin configurations
near the maximum energy

L(n):={o€Sy:Hy(c)>N(ME—n)}, (5)
to the structure of the Parisi measure pp. Clearly £(n;) C L(n2) C Sy for 0 < n; < 1.

1.1.1. Relevance of the Parisi measure
For fixed n > 0 and Borel measurable set A C [—1,1], set

Py(n,A) :=P(3c',0? € L(n) with Ry, € A).

In other words, Py (n, A) is the probability that there exist two spin configurations near
the maximum energy and their overlap lies in A. Denote by

I' = (supppp) U {1},

sp =minlI.

(6)

The following proposition summarizes some properties of sp:
Proposition 1. The quantity sp obeys the following statements:

(i) If h =0, then sp = 1 when &(s) = s and sp = 0 when ¢, # 0 for at least one even
p=>4.
(#3) If h # 0, then sp > 0.

Note that since X involves only even spin interactions, when the external field van-
ishes, Hy is symmetric, i.e., Hy(—0o) = Hy(o). Our first main result states that in
the absence of external field, for any given u € [—1,1] with |u| € T', with overwhelming
probability there exist two spin configurations around the maximum energy such that
their overlap is around wu.

Theorem 1. Assume h = 0. Let u € [—1,1] with |u] € T. For any e, > 0, there exists
K > 0 such that for all N > 1,

N

Py(n,(u—c,u+e)) >1—Ke ¥. (7)

In the case that the external field is present, i.e., h # 0, the Hamiltonian is no longer
symmetric and Proposition 1(i7) asserts sp > 0. An analogous result of Theorem 1
remains valid. Furthermore, the overlap between any two spin configurations near the
maximum energy does not lie in [—1, sp).
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Theorem 2. Assume h # 0.

(i) Letu € T. For anye,n > 0, there exists K independent of N such that for all N > 1,

N

Py(n,(u—egute)) >1—Ke ¥. (8)

(i1) For any e > 0, there exist n, K > 0 such that for all N > 1,

N

Py (n,[-1,sp —€]) < Ke . (9)

In view of Theorems 1 and 2, one might wonder what the corresponding result could
be when the overlap is restricted to [sp,1] \ T'. In Section 1.2, we explore three cases
of the mixed even p-spin model, where we show that the probability of having two spin
configurations near the maximum energy with overlap inside [sp, 1] \ T' is exponentially
small.

1.1.2. An equidistant structure

For any fixed g € T, Theorems 1 and 2 assert the existence of a pair of spin configura-
tions near the maximum energy with overlap around u. The second principle here shows
that if we take ¢ = 0 when h = 0 and ¢ = sp when h # 0, then there exist exponentially
many equidistant spin configurations near the maximum energy. For any €,7, K > 0 and
q € [0,1], denote by

IP)]\f <E7 4, K)
the probability that there exists a subset On C Sn such that

(i) On C L(n).
(#1) On contains at least Ke many elements.
(13i) |R(c,0") — q| < ¢ for all distinct 0,0’ € Oy.

N/K

Denote by go = 0 if h =0 and ¢y = sp if h # 0. Our main result is stated as follows.
Proposition 2. For any €,m > 0, there exists K > 0 such that for any N > 1,
Py(e,m,q0, K) > 1— Ke N/K.
A major feature of Proposition 2 is that when the external field vanishes h = 0, we
can always find exponentially many orthogonal spin configurations around the maximum

energy for any mixture £. In the setting of the mixed even p-spin model with Ising spin
configuration space, an analogous statement of Proposition 2 also appears in [5].
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1.1.3. Ideas of the proof

Before moving to our examples, we briefly sketch the main approach and perspective
of this paper and compare to the existing results. Our approach to Theorems 1 and 2 is
via the maximum of the coupled energy (MCE) with overlap constraint,

1
MCEN(A) := N]ERIP%A(HN(&) + Hy(c?)).

Here, A is a Borel measurable subset of [—1,1]. In particular, we care for which sets A,
MCEN(A) and 2ME N are asymptotically the same. When this occurs, we will show
that one can always find two spin configurations, whose energies are around the global
maximum and the overlap is in A. If MCEn(A) and 2MFE  are asymptotically different,
then the overlap between any two spin configurations around the maximum energy does
not lie in A. While it is in general very difficult to compare the values of two extrema
Gaussian fields, it turns out that the current case is achievable and the set A depends
closely on the Parisi measure pp.

The above strategy is different from the approaches used in the recent studies of the
landscape of spherical p-spin models, especially those connected to the complexity of
such functions [3,2,15-17]. Here, we neither rely on the use of the Kac—Rice formula, nor
restrict ourselves to the study of local maxima or critical points. Of course, inside each
connected component of £(n) there exists at least one local maxima of Hy. As we will
see in the next section, this fact combined with Theorem 6 below provides a different
proof and extends the results of Subag [16] about the orthogonality of critical points in
the pure p-spin model (see Remark 2). Another advantage of our approach is that it also
allows to establish Theorems 1 and 2 in the setting of the mixed even p-spin models with
Ising-spin configuration space following an identical argument.

1.2. Levels of replica symmetry breaking at zero temperature

In this section, we explore the consequences of Theorems 1 and 2 depending on the
structure of the support of the Parisi measure pp. We say that pp is replica symmetric
(RS) if pp = 0o0n [0, 1), is k-step replica symmetry breaking (kRSB) if pp = Zle Aidigy
for some Aj,...,Ar > 0 and distinct ¢q,...,qx € [0,1), and is full replica symmetry
breaking (FRSB) otherwise. Under different conditions on ¢ and h, examples of RS,
1RSB, and FRSB were discussed in Chen—Sen [7], while Jagannath—Tobasco [10] pre-
sented a description on the structure of the Parisi measure in general situations.

1.2.1. RS solution
In the first example, we consider the mixed even p-spin model, whose £ and h satisfy

¢"(1) <€) +n*. (10)
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In [7, Proposition 1], it was shown that this is a sufficient and necessary condition
to guarantee that the Parisi measure of the Crisanti-Sommers formula (3) is replica
symmetric. In this case, it was readily computed in [7, Proposition 1] that

vp(ds) = (€/(1) + h%) %60, (ds),
1/2.

(11)
ME = (¢'(1) + 1?)

Therefore, I' = {1}.

Theorem 3 (RS). Assume h # 0 and (10) holds. For any e € (0,1), there exist n, K > 0
such that

Py(n,[~1,1—¢]) < Ke &.

This theorem says that if the strength of the external field h dominates the mixed
p-spin interactions Xy, i.e., (10) holds, then any two near maximizers must be very close
to each other. The picture of Theorem 3 will change drastically if one considers different
mixtures.

1.2.2. FRSB solution

The second example is the mixed even p-spin model with FRSB Parisi measure. As-
sume that the external field h no longer dominates Xy, i.e., £&”(1) > &(1) + h?. Suppose
that 1/4/€” is concave on (0, 1]. Recall " from (6). From [7, Proposition 2], it was com-
puted that

vp(ds) = vp(s)1jo1) (s)ds + €' (1) 72611y (ds),
1

ME':5p§”(5p)1/2+/§//(5)1/2d5,

sp

where sp € [0,1] is the unique solution to

spl(sp) = €' (sp) + h°

and

(s) 0, if s €[0,sp), (12)
S) = (s .
P W, lfq S [SP, ].)

From (12), the Parisi measure pp is supported on [sp, 1) and thus it is FRSB. Our results
below present a completely different behavior compared to Theorem 3 if one considers
the opposite region of (10).
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Theorem 4 (FRSB). Assume £"(1) > €' (1) + h? and 1//€" is concave on (0,1].

(i) Assume h =0. Let u € [-1,1]. For any &,n > 0, there exist K > 0 such that

N

~

Pyv(n,(u—eg,u+e)) >1—Ke~
(1) Assume h # 0. We have that
(i¢") Let u € [sp,1]. For any e,n > 0, there exists K > 0 such that

N

Pn(n,(u—c,u+e))>1-Ke™

|

(#") For any e > 0, there exists n, K > 0 such that
Pn(n,[-1,sp —¢€]) < Ke &.

This theorem shows that for any 7 > 0, the overlap attains any possible value of [sp, 1]
in the set £(n). As far as we know, this is the first rigorous result in spherical models
that matches the physicists’ expectation that, in models with FRSB, local maxima of
the Hamiltonian Hpy slightly below the maximum energy should be separated by only
O(1) barriers. More precisely, the barrier between two local maxima o and ¢’ is defined
as

Bi(0.0") = inf max (| (0) — Hy (r(1)]. | Hy(0') ~ Hx((®)]).
where the infimum is taken over all continuous paths 7 : [0,1] — Sy with 7(0) = o
and 7(1) = ¢’. For FRSB models, it is expected that By/N¢ — 0 for any ¢ > 0, see [9,
Section 9] for detail. This is in deep contrast with 1RSB models where local maxima near

the maximum energy are orthogonal to each other with By = O(N) barrier separating
them, see Theorem 6 below.

1.2.3. 1RSB solution
Let z > 0 be the unique solution to

5/21) = 12;2 log(1 + z) — % (13)

Note that the right hand-side is a strictly decreasing function and decreases from 1/2 to

0 as z tends from 0 to infinity. Since

2:2Zcp§ chpzfl(l),

pe2N peE2N

the solution z to (13) is ensured. Also note that z = 0 if and only if £(s) = s?, the
spherical SK model. If ¢, # 0 for at least one p > 4, then z > 0 and we define
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SR ORNEE O

P og<1+ z{’(s)).

¢'(1)

Here ((0) = ¢(1) = 0. For h = 0, our main result below gives a full characterization of

((s) = &(s) + €' (s)(1 =5 (14)

the mixture parameter ¢ for the 1RSB Parisi measure with supppp = {0}.

Theorem 5 (1RSB). Assume h = 0. The Parisi measure pp is 1RSB with supppp = {0}
if and only if ¢, > 0 for at least one p > 4 and

¢(s) <0, Vs €][0,1]. (15)
In this case,
21[0’1)(8)(18 (5{1} (dS)
vp(ds) = )
N (e VRV (= ) 1o
£+ n

~ /20

If the inequality (15) is strict, we obtain a description of the energy landscape of the
model around the maximum energy.

Theorem 6 (Orthogonal structure). Let h = 0. If
C(s) <0, ¥s€(0,1), (18)
then for any € > 0, there exist n, K > 0 such that for all N > 1,
Py(n,[-1+e,—€e]U[e, 1 —¢)) <Ke *. (19)

Theorem 6 reads that with overwhelming probability, any two nonparallel spin con-
figurations around the maximum energy are nearly orthogonal to each other. In other
words, if one wishes to travel between any two such spin configurations along a path
on the energy landscape, then one unavoidably needs to climb down to a lower energy
level at some point. Furthermore, recall the set £(n) from (5). Theorem 6 combined with
Proposition 2 (sp = 0) implies that the number of nearly orthogonal components of £()
is at least of exponential order.

The assumption (18) is numerically easy to check. Nonetheless, the following theorem
provides a simple sufficient criterion for (18).

Theorem 7. Let h = 0. If

(1) > £"(0)(1+ 2) (20)

and
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J—S) is convez on (0,1), (21)

then the strict inequality (18) holds.

Note that £”(0) = co. If ¢ = 0, then (20) is redundant and one only needs to verify
(21). An important example of Theorem 7 is the pure p-spin model, i.e., £(s) = sP
for p > 4. In this case, the maximum energy and the Parisi measure were previously
computed in [3] and [7, Proposition 3], which agree with (16).

Remark 1. The condition (21) should be compared with the well-known criterion of
testing 1RSB Parisi measure at both positive and zero temperatures in [8,10,18], where
it was shown that the Parisi measure is either RS or 1RSB if 1/4/¢” is convex in (0,1).
Reportedly, there exists some &, which satisfies (21), but 1/4/€” is not convex on (0, 1).
However, it is not clear to us whether the convexity of 1/1/” always implies that of

s/&'(s)-

It is easy to construct models satisfying Theorem 7. The corollary below deals with
mixture of two spin interactions.

Corollary 1. Consider the spherical (p + q)-spin model with h =0 and p,q > 4, i.e.,
E(s) =cs? + (1 —c)s?
for some c € [0,1]. If

2pq +423(p+q) + (p - )%, (22)
then both conditions (20) and (21) are valid.

Remark 2. Several authors studied the energy landscape of the p-spin model in recent
years. The averaged complexity of critical points of Hy was found in Auffinger—Ben
Arous-Cerny [3] and in Auffinger-Ben Arous [2]. Later, for the pure p-spin model, con-
centration of the complexity of the local maxima was established by Subag [15]. The
energy landscape of the pure p-spin model around the maximum energy coincides with
the picture described above. Theorem 6 works not only for the pure p-spin model, but
also for any mixture such that {(s) > 0. For an example of £ that involves infinitely

many interactions in X, one could take

2
e —1—s2

(s) =

Thus, we recover and extend the orthogonality structure of local maxima discovered in
[15] (see also [16, Corollary 13]) to other models.
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Remark 3. It would be interesting to decide if condition ¢((s) < 0 coincides with the
definition of pure-like models introduced in [3] and also investigated in [10].

2. Parisi’s formula and RSB bound for the free energies

In this section we review some well-known results from Talagrand [18] on the Parisi
formula for the free energy and the Guerra—Talagrand RSB bound for the coupled free
energy with overlap constraint. These will be of great use in the next section, where we
develop their analogues at zero temperature. For any inverse temperature 5 > 0, define
the free energy by

1

FN7ﬁ == N—ﬂ

Elog / exp fHy (o) AN (do),
SN

where Ay is the uniform probability measure on Spy. For any measurable subset A of
[—1,1], we set the coupled free energy as

CFy 5(A) = Niﬂxmog / exp B(Hy (o)) + Hx(0%)) Aw (do?) x An(do?).
Ry 2€A

Let M be the space of all (b,z) for b € R and z a c.d.f. on [0, 1] such that

1

max(l,/ﬂ%”(s)x(s)ds) <b.

0
Define the Parisi functional by
L PR [ R 1
q 2411
Pattn) = 55 (g + | oy a 1wt [ 0P @tain) (29
0 0

for any (b, xz) € M, where

1
d5(q) == /ﬂ%”(s)x(s)ds.

The Parisi formula for the free energy states that
Theorem 8 (Parisi’s formula for the free energy).

Jim Fip= bt Po(6.2) @)
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The Parisi formula was rigorously established by Talagrand [18] and extended to
general mixture of the model by Chen [4]. In [18], it was known that the optimization
problem on the right-hand side has a unique minimizer, denoted by (bg,p,zs p). The
probability measure p1g p induced by xg p is called the Parisi measure.

The coupled free energy can be controlled by a two-dimensional extension of the Parisi
functional. Let M’ be the collection of all (b, A,z) for b, € R and z a c.d.f. on [0, 1]
such that

1

max(1,|>\| +/525"(s)x(5)d5) <b.

0

Let u € [—1,1] be fixed. Set t =1 ifu > 0and ¢ = —1 if u < 0. For (b, \,z) € M’, define

8212 .
Ts (b, A 1| oy ifue(0,1],
Psu(b, A, x) = A M b (b, 4, z) + = ’ Aﬁ2d}fz(0) .
B ﬁ Wdﬁ(\ub’ ifue [—170),
where
L2
Ts (b, N, x) =1 d
paulb A @) i=log /555 + b— A —ds(q)"
0
1 L 2 ¢ 1 1 2 ¢
+_/b 6A£(§w) dH_/{)ﬂf(gﬁ da
2‘u| —A—dg(q) 2|u| + A —dg(q)

1

~Au+b—1—logh— ﬂz/qf”(q)x(Q)dq.
0

The following theorem gives the Guerra—Talagrand RSB bound for the coupled free
energy.

Theorem 9 (RSB bound for the coupled free energy). Let u € [—1,1]. For any (b,\,z) €
M, we have

limlimsup CFy g((u —e,u+¢€)) < Pgu(b, A, x). (25)
el Nooo

This bound was previously introduced in [18] in order to establish the Parisi formula
(23). One may find its higher dimensional extension addressing temperature chaos and
ultrametricity in [14]. In addition, a version of (25) devoted to chaos in disorder was
developed in [6].
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3. Bounds for the maximum energies

We present analogous results of Theorems 8 and 9 for the maximum energy MEy as
well as the maximum coupled energy MCFEy.

3.1. Parisi’s formula and RSB bound for the maximum energies

Recall £ from the paragraph before (3). For v € K, define

1
P(s) = / & (Mw(dr), s € [0,1]. (26)

Let U be the collection of all (B,v) € R x K satisfying

v(0) < B.
Define the Parisi functional on U/ by
1 h? §"(s) /
P = 3 (=55 + | Foggle+ B [s€'tnta). @)
0 0

Our first main result in this subsection states another expression of the maximum energy
via the Parisi formula at zero temperature.

Theorem 10 (Parisi’s formula for the maximum energy).

ME= inf P(B,v). 28
st (B,v) (28)

Here the minimum of the right-hand side is uniquely achieved by (Bp,vp) € U, where
vp is the minimizer in the Crisanti-Sommers formula (3) and Bp satisfies

1

Be=oe O+ 7 0,1y

(29)

The following proposition provides a characterization for the optimizer (Bp,vp).

Proposition 3. Let (B,v) € U. Define

ﬂ@=/ﬂﬂ€mW,

S

where
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o [ &(ds
””’%Bﬁ@ﬁ*ZkBm@V '

Then (B,v) is the minimizer of P if and only if f(1) = 0, min,¢joq) f(r) > 0, and
p(S) = p([0,1)), where S := {r € [0,1) : f(r) = 0}, and p is the measure on [0,1)
induced by v, i.e., p([0,s]) = (s) for s € [0,1).

Next, we proceed to state the RSB bound for the maximum coupled energy. Recall ©
from (26). Denote by U’ the collection of all (B, A, v) with B, € R and v € K such that

Al +2(0) < B.
For u € [—1, 1], define the functional P, on U’ by

|l

_ [ 1/5”(5) 1/5”(3)
PU(B’A’V)/B—L)\—ﬁ(q)dqu? B_)\_ﬁ(s)d5+2 B+)\—I9(S)ds
0 Jul [u|
1 h2 if 6[0 1}
5 77 % 1T u
_M+B—/%%wmm+ PO L
B o) if u e [-1,0).

0

Our RSB bound for the maximum coupled energy is stated as follows.

Theorem 11 (RSB bound for the maximum coupled energy). Let v € [—1,1]. For any
(B,\,v) €U, we have

limlimsup MCEN ((u — e, u +¢€)) < Pu(B, A\, v). (30)
el0 Nooo
One may find a similar inequality in Chen—Sen [7, Theorem 6], where (30) was shown
to be valid along a special choice of the parameter (B, v). In next sections, Theorem 11
plays an essential role in controlling the maximum coupled energy by choosing proper
parameter (B, \,v).

3.2. Proof of Theorems 10, 11 and Proposition 3

Proof of Theorem 10. Let (B,v) € U. Let v be the density of v on [0,1) and A be the
mass at 1. First, we assume that y(17) < co. For 8 > 0, let bg = B/ and define

zp(s) = %Hm—wm(s) +1-a/8,1)(s)-

The assumption y(17) < co guarantees that (bg,zg) € M for § sufficiently large. A di-
rect computation gives
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lim Pgs(bs,z5) = P(B,v).
B—o0

On the other hand, it is well-known (see e.g. [2, Theorem 4,1] or [7, Lemma 6]) that

ME = hm MEpyN = lim lim Fly.

B—00 N—o0

Using (24), the last two limits yield

lim MEy < P(B,v).

N—o0

One can easily release the assumption v(17) < oo by an approximation argument and
consequently,

ME < inf P(B,v).
(B,v)eUu

To see that the equality holds, we recall the optimizer (bg p,xs,p) from (24). If we can
show that Pg(bg p, x5 p) converges to P(B,v) for certain (B,v) € U, then the Parisi
formula (8) together with the above inequality completes our proof. This part of the
derivation has appeared in the work [7]. From Theorem 1, Lemma 7, and Equation (78)
in [7], it is known that there exists a sequence (8)r>1 with limy_, o Br = 0o such that

Bp = li 1
P kggoﬁk B, P>
vp = lim Bxp, p(s)ds vaguely,

1

/ s)vp(ds),

0

and more importantly,
ME = lim MEN = P(BP,VP).
N—oc0

This means that (Bp,vp) € U and the announced formula holds. To see (29), we note
that it was already established in the proof of [7, Lemma 10]. O

Proof of Proposition 3. Assume that (B, v) is the minimizer. Let (B’, 1) be an arbitrary
element in Y. Write

v(ds) = v(s)1p,1)(s)ds + Adg1y(ds),
V' (ds) = 7/(5)1[071)(5)d5 + A/§{1}(ds).

Let p and p’ be the measures induced by v and +’. For 0 € [0, 1], define
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(Bg,vg) = (1 —0)(B,v)+0(B',V).

Then
P(Be Vg)‘: —/(€ /—B)
0
L h zog / ) ~s)) / 5€"()(V' — v)(ds) = 0
(31)

From the first line of (31), f(1) = 0. On the other hand, noting that

B (7' (0) = 9(0)) _ / B2 () (V' — v)(dr)
(B—00))? (B—7(0)

and by Fubini’s theorem,

[ () (0 (s) — 0(s)) B / [ (s)ds N
0/ (B —0(s))? ds_o/b/ (Bilj(s))Qf (r)( )(dr)

the second line leads to

1
O/f (v~ v)(dr) > 0

From this, Fubini’s theorem yields

o
IN

~ O\H o\»—-
—_

fr)E" (@ = v)(dr)

fF@)E () (r) = ~(r))dr + fF(1)E"(1)(A" = A)

= //f(r)é”(r)dr(p’ — p)(ds) + f(1)E"(1)(A" — A).

0 s

The validity of this inequality is equivalent to that f(1) = 0, min,¢[o 1 f(r) >0, and
p(S) =p([0,1)). O
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The proof of Theorem 11 follows a similar argument as Theorem 10.

Proof of Theorem 11. First we assume that v € (—1,1). Let ¢ € (0,1—]u|). An argument
similar to [7, Lemma 8] implies that

A}im MCEN((u—¢/2,u+¢/2)) <limsuplimsup CFyg((u—¢e,u+¢)). (32)
—o0

B—o0 N—oo

To bound the limit on the right-hand side, we use the RSB bound for the coupled free
energy in Theorem 9 combined with a covering argument (see for instance [7, Theorem 6])
to obtain that for any (b, \,z) € M/,

limsup CFyg((u—¢e,u+¢)) < sup  Pgu(b A x). (33)

N—oco vE(u—e,ute)
Consider an arbitrary (B, \,v) € U’. Write
v(ds) = 1p0,1)(5)v(s)ds + Ady1y(ds).
Assume that y(17) < co. Set
bs = BB, As = B
and

1‘5(8) = 1[071A/5)<8)% + 1[1,A/ﬁ71](8).

Then (bg, A\g, z5) € M’ for 8 sufficiently large. A direct computation leads to
lim ’P,Bﬂ,(bﬁ, A8, xﬂ) = Pu(B,\, V).
B—o0

A key fact here is that this convergence is uniform over all v € [u—¢, u+¢]. This together
with (32) and (33) implies

lim MCEN((u—¢€/2,u+¢/2)) < sup  Py(B,\v).

N—oo vE[u—e,ute]

Letting € | 0 yields that

lim lim MCEn((u—¢e,u+¢)) < Pu(B,\v). (34)
el0 N—oo

By an approximation argument, we can remove the assumption v(17) < oo and this
inequality remains valid. To see how this inequality is also true for u = £1, we note that
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On the other hand, using Dudley’s entropy integral, we can show that

lim limlimsup MCEN(u —e,u+ ¢) = limlimsup MCEN((1 —¢,1 +¢)),

u—1" €l0 N0 el0 Noo
lim limlimsup MCEn(u—¢e,u+¢) =limlimsup MCEN((—1 —¢,—1 4 ¢)).
u——1% el0 N_00 el0 Nooo

For a detailed argument of these, we refer the readers to [7, Lemma 13]. Finally, our
proof is completed by these inequalities and (34). O

4. Control of maximum coupled energy

In this section, we present the proof of Theorems 1, 2 and Proposition 2, which is
based on a subtle control of the RSB bound in the foregoing section.

4.1. Proof of Theorem 1

Recall the measure pp from (4). The proof of Theorem 1 is a consequence of the
following theorem.

Theorem 12. If u € supppp, then for any e > 0,

lim MCEN((u—¢,u+¢)) =2ME.
N —o0

Proof of Theorem 1. The assumption h = 0 implies that Hy(0) = Hy(—o) for all
o € Sy, from which

MCEN((u—¢e,u+¢€)) = MCEN((—u—¢,—u+¢))

for any |u| € supppp. Thus, it suffices to prove (7) only for u € supppp. From Theo-
rem 12,

lim MCEn((u—e,u+¢)) =2 lim MEy.
N —o00

N—oc0

For any n > 0, there exists Ny such that
MCEN((u—¢e,u+¢€)) >2ME —n

for all N > Ny. Consequently, using concentration of measure for the Gaussian extrema
processes, there exists a positive constant K independent of IV such that with probability
at most 1 — Ke N/K,
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1

_ H 1 H 2 > 9OME — 9 .
N g, c00x L (HN(@) + Hy (%)) 2 ; )
and
Hy (o) 7
< Ui
TN =M (36)

for all N > Njy. Therefore, from (35), there exist o', 0% with Ry 2 € (u —¢&,u + ¢) such
that

1 2
Hy (o) + Hn(0%) > omE - .
N 2

If either Hy(0') < N(ME —n) or Hy(0?) < N(ME —n), then from this inequality and
(36),

which forms a contradiction. Therefore, Py (1, (u — ,u + €)) > 1 — Ke N/K for all
N > Ny and this clearly implies Theorem 1 with an adjusted constant K. O

For the remainder of this section, we prove Theorem 12. Recall the Parisi formula
in Theorem 8 and the optimizer (bg p,xs,p). Recall that ug p is the measure induced
by xp p. We say that the mixed even p-spin model is generic if the linear span of {s” :
¢p # 0 for some p € 2N} U{1} is dense in C|0, 1]. We need two crucial lemmas. Lemma 1
below shows that the coupled free energy is twice of the original free energy if the overlap
constraint lies in the support of pg p.

Lemma 1. Consider the generic mized even p-spin model. Let u be in the support of ug p.
For any € > 0, we have

lim CF — =2 lim Fyg. 37
Jim CFyg((u—cute)) =2 lim Fyg (37)
Proof. The assumption that the model is generic guarantees (see [13] or [18]) that
the limiting law of the overlap |Ri 2| is given by the Parisi measure pug p under the
measure E(-)g, where (-)g is the Gibbs average with respect to the exponential weight
exp SHn(0)An(do). Let u € supppg,p and € > 0 be fixed. Note that the trivial bound
holds,
CFnpg((u—e,u+e)) <2Fyp.

If (37) is not valid, then there exists some 79 > 0 such that
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CFNyg((u —e,u+ 5)) < 2Fn.3 — 1o,

for infinitely many IN. Consequently, using the Gaussian concentration of measure for
both CFn5((u—&,u+¢)) and Fy g, there exists some constant K independent of N
such that with probability at least 1 — Ke N/K,

1

ﬁ—Nlo / expﬂ(HN(al)—|—HN(02)))\N(d01) x An(do?)

|R1 27U‘<€

< —1og/expBHN( )An (do) — 7720

for N sufficiently large. This inequality yields

BngN
2

1}\1}13§E<I(|RLZ —u| < s)>ﬂ < A}iinoo(e* + Ke*%) =0.

In other words, v is not in the support of ug, a contradiction. Thus, (37) must hold. O

Next, we prove that the result of Lemma 1 remains valid for the maximum coupled
energy.

Lemma 2. Assume that the model is generic. If u € supppp, then for any e > 0,
Nlim MCEy ((u—e,u+¢)) = 2ME. (38)
—00

Proof. Let u be in the support of pp and & > 0 be fixed. Recall that (Bzs p(s)ds)s=o
converges to vp vaguely from [7, Theorem 1]. There exists ug € suppug p such that
limg 00 ug = u. Using Dudley’s entropy integral, we can approximate the maximum
coupled energy via the coupled free energy,

CFns((ug —€/2,us +¢/2)) + 01(N,8) < MCEN ((u — g,u+¢)
< CFN’g((uﬁ — 2e,ug + 28)) + 02(N, B),
(39)

where 0;(V, B) satisfies limg_, o impy_,o0 0;(N, 8) = 0 for ¢ = 1, 2. Since a similar argu-
ment for this type of the inequality has already appeared in the appendix of [7] with
great detail, we omit the proof here. From (37),

lim lim CFyg((ug — 2e,us + 2¢)) = 2limsup lim Fy g = 2ME,
—00

B—o00 N—o0 B—r00
lim hm CFns((us —€/2,ug +¢/2)) = 2limsup hm FNB =2ME.
B—o00 N— B—r00

These equations combined with (39) lead to (38). O
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Proof of Theorem 12. Let £ and h be fixed. Recall the optimizer (Bp, vp) associated to
¢ and h in Theorem 10. For each n > 1, let (¢, p)pean be a sequence satisfying 0 < ¢,
and ¢, — ¢y p| < 2777F for all p € 2N. Define &,(s) = >_ coy Cn,ps?- Let Xy n be the
mixed even p-spin Hamiltonian corresponding to &, and set

N
Hy (o) = Xnn(o)+ hZUi.

Note that the assumption ¢, , > 0 for all n € N and p € 2N guarantees that Hy , is
generic. Denote by (B, v,) the optimizer associated to &, and h in Theorem 10.
We claim that there exists a subsequence (B, , Vn, )k>1 such that

lim Bnk = Bp,
k—o0

lim v,, = vp vaguely on [0, 1].
k—o0

Recall Theorem 8. Denote by (bg n,xg.,) the optimizer the Parisi formula for the free
energy associated to &, and h. Recall two key inequalities from [7, Lemma 2],

A

Pronls) < e e *

€[0,1)

and

1

0/ Baan(s)ds < 2/ (7 sn<1/2> a(i/m)'

From [7, Theorem 1], sending § in these two inequalities to infinity yields

O
Tn(s) < ) - En(s)’ Vs €[0,1)
and
va((0,1]) < 2v/&, (1) ( ! b )
TG - 6(1/2)  €.(1/2))

where 7, is the density of v, on [0,1). Since |¢,p, — ¢p| < 27777, the first inequality
implies that -, is uniformly bounded on any interval [0, s] for s € (0,1) and the second
inequality means that v, is a sequence of bounded measures on [0, 1]. From these, we
can pass to subsequences such that (v, )r>1 converges to some 7o vaguely on [0, 1) and
(Vn, )e>1 converges to some vy vaguely on [0, 1], where

vo(ds) = v0(s)1[0,1)(8)ds + 1113 (s)vo({1})
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For n > 0, define

1
Pn(B,v) = / _"1(9 ds+ B — /sf” Ywn(ds),
0

— Vn

where 7, (s) := f &l (r)v(dr) for ¢ € [0,1]. Recall that ME is the limiting maximum
energy of H N assomated to £ and h. Denote by ME,, the maximum energy of Hy ,
associated to &, and h. From the weak convergence of (v, )r>1 and Fatou’s lemma,

ME = lim ME,,

k—o0

= lim Pp,(Bn,,Vn,)
—00

1 1
W2 ¢"(a) y
~ + = dg+ By — [ s&"(s)vo(ds)
/ 0/

Y]

By — 1(0) ) By — 0(q)

== P(Bo, Vo),

where By := limsupy,_,., Bn,. Note that (By,v,) € U. This means 7,(0) < B, for all
n > 1. It follows that 9(0) < By. Now from the first and third terms of the third line
of (40), we can further conclude that 25(0) < By < co. In other words, (Bo,vy) € U.
Consequently, from the Parisi formula for ME in Theorem 10, (40) implies that (By, 1)
is a minimizer and thus, (Bg, ) = (Bp,vp). This finishes the proof of our claim.

Next, let u € supprp. Recall that MCE is the maximum coupled energy correspond-
ing to £ and h. Denote by MCFEy ,, the maximum couped energy associated to &, and h.
Using the subsequence (vy, )k>1 obtained in the previous claim, we pick uy € suppuy,
such that limyg_, . ur = u. From this,

lim MCEN((u—¢,u+¢)) = lim lim MCEn,, ((ur — &, ux +¢))

N —oc0 k—oo N—o0

=2 lim ME,,

k—o0

= 2ME,

where the first and third equalities hold since (¢, p)n>1 converges to ¢, uniformly over
p and the second equality used Lemma 2. This completes our proof. O

4.2. Proof of Proposition 1 and Theorem 2
Recall the constant sp from (6). Define

c(u) = vp ([0,1])* (h2 + ¢ (u)) — u (41)
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for u € [~sp,sp]. Recall the functions f and f from Proposition 3 associated to the
minimizer (Bp,vp). We first establish a crucial lemma.

Lemma 3. We have that

c(u) = f(u) (42)

on [0, sp]. In addition,
c(sp) =0 (43)

and if sp € (0,1], then
d(sp) <0. (44)

Proof. From vp([0,sp)) = 0 and (29), (42) holds. To see (43) and (44), if supppp = 0,
then sp = 1. Since in this case the Parisi measure is replica symmetric, we obtain (43)
from (11). On the other hand, the discussion before Theorem 3 implies (10). From this,
(44) follows since
1" 1)
(1) = L —-1<0.
‘O=gmem S
Next, if supppp # 0, then sp € supppp and f(sp) = 0 from Proposition 3. In the case

when sp € (0,1), the optimality of sp implies c(sp) = f(sp) = —f'(sp) = 0 and also
d(sp) = —f"(sp) < 0. These give (43) and (44). If sp = 0, then again by optimality of

sp,

h2

0< fl(sp)=—f(sp) = " Br = ip(0))?

This inequality holds only when h = 0, from which ¢(sp) = f(sp) = 0. This completes
our proof. 0O

Proof of Proposition 1. Assume that h = 0. If £(s) = s2, then sp = 1 by (11). Suppose
that ¢, > 0 for at least one even p > 4. If sp > 0, then from (44),

¢ () = vp([0.1])°¢"(w) — 1 < vp([0.1])°¢"(sp) — 1= ¢ (sp) <0
for u € [0, sp]. Since evidently ¢(0) = 0 and ¢(sp) = 0 from (43), the above inequality
implies that ¢(u) = 0 on [0, sp]. However, since ¢ is analytic on (—1, 1), this forces that

u

&)= ——
) vp([0,1])
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on [0, 1], which contradicts the assumption. This completes the proof of Proposition 1(i).
As for Proposition 1(i7), it can be easily obtained by noting that sp must satisfy
¢(sp) =0 by (43) and that ¢(0) > 0. O

Proof of Theorem 2. From the assumption h # 0, sp > 0 by the above remark. The
statement of Theorem 2() follows immediately via an identical reasoning as the proof of
Theorem 1 gives (8). As for the proof of Theorem 2(ii), it relies on the statement that
for any 0 < g9 < sp, there exists some 7 > 0 such that for every u € [—1,sp — ¢,

limlimsup MCEy ((u — &,u+¢)) < 2ME — . (45)

el0 Nooo

If this is valid, a standard covering argument (see, e.g., [6] or [18]) yields Theorem 2(ii).
Indeed, from (45), for any u € [—1, sp — &¢], there exist £, > 0 and N, > 1 such that

MCEx ((u =2y, u+ 2,)) < 2ME - (46)

for all N > N,,. Since [—1, sp —¢] is a compact set, it can be covered by (u; —&,,, u; +4,)
fori=1,...,n for some uy,...,u, € [—1,sp — gg]. Therefore, from (46),

MCEx (|=1,5p — ol) < 2ME - 1,

for all N > Ny := maxi<j<n Ny,. Next from concentration of measure for Gaussian
extrema processes, there exists K > 0 such that with probability at least 1 — Ke N/K

1
R _ Hy(c! H %)) < 2ME — _;,
N Ry q€[-1,sp 50]( N( ) N(U )) (17)

If there exist o',0? such that Ri2 € [—1,sp — &o], Hy(o') > N(ME — n/16), and
Hy(0?) > N(ME — n/16), then

HN(O'l) + HN((T2) > OME — Q
N 8
From (47), this means that Py (1/16,[—1,sp — &0]) < Ke™N/¥ for all N > Ny and this
clearly implies (9).
In what follows, we establish (45) by four steps.
Step 1: We claim that there exists some 7; > 0 such that for any u € [—sp, sp — &¢],

limlimsup MCEy ((u — &,u+¢€)) < 2ME — ;. (48)
el0 Nooo

Note that for u € [—sp, sp], a direct differentiation yields that
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[ul
2
3,\7Du(BP’)"VP)’,\:0 - (Bp — ﬁP(O))2 +/ (

" (s)ds
Bp — ﬁp(s))2

= c(u),

where ¢ is the sign of w and ¢(u) is defined in (41). In addition, it can be easily derived
that

|OMPu(Bp, A vp)| < M
for all |\| < K := (Bp — 7p(0))/2. Using Taylor’s formula, for any |A\| < K,

/\2
Pu(Bp, A\ vp) < Pu(Bp,0,vp) + c(u)) + ’77

By varying |A\| < K in this inequality, we can find K’ > 0 small enough such that for
any u € [—sp, sp|,

limlimsup MCEN ((u —e,u+¢€)) < min P, (Bp, A\, v

el0 N—>o<>p N(< )) A<K ( P P) (49)

< 2ME — K'c(u)?,

where the first inequality used (30) and the second inequality relied on the fact that for
u € [—sp,spl,

Pu(Bp,0,vp) = P(Bp,vp) = 2ME.
Note that ¢/(u) < /(sp) <0 for u € [—sp, sp] by (44). This and (43) together imply
c(u) <c(sp—e¢)<c(sp)=0
on [—sp,sp — &o). From this and (49), (48) follows with 7, := min,¢|
> 0.

Step 2: We check that there exist some gf > 0 and 72 > 0 such that for u € [-sp —

567 _SP]y

| K'c(u)?

—Sp,SP—¢€o

limlimsup MCEy ((u — g, u+¢€)) < 2ME — 1. (50)

el Nooo

Note that if sp = 1, then Step 1 completes our proof since the overlap satisfies |Ry 2| < 1.
In what follows, we assume that sp < 1. Observe that (u, \) — P, (Bp, A, vp) is contin-
uous function on [—1,0] x [— K, K]. We can choose g}, > 0 small enough such that

. . m
Pu(Bp, A\, vp) < P_s.(Bp, A, -=.
el gy W Pu(Bro A ve) < iln Poor (Brs Ave) 4

From (49), our claim (50) is valid with 7y = 7 /2.
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Step 3: Assume u € [—1, —sp — (). Letting (B, \,v) = (Bp,0,vp) in (30) yields

1
£"(q) / " h?
Bp,0 = | ——2__dg+ Bp — d _.
,Pu( P, aVP) O/BP_ﬁP(Q) q+ bp / s (S)VP( 3)+B—ﬁp(|u|)
In view of Theorem 10,
lim lim sup MC’EN((u —g,u+ 6)) < 2ME — ns, (51)
el0 Nooo

where 73 := min,¢[_1,_s, ;) g(r) > 0 for

B Jy € (s)vp(ds)
(Bp — ﬁp(O)) (BP — ﬁp(?‘)) '

g(r) =

Step 4: Combining (48), (50), and (51) and letting n = min(n,n2,7n3) > 0 validate
(45). O

4.8. Proof of Proposition 2

Our proof adapts an identical argument as [5]. The key ingredient is played by the
so-called chaotic property in disorder for the maximum energy. For a fixed k € N, denote

by X%,..., X% iid. copies of Xy. Let t € [0, 1]. Define the Hamiltonians
N
HY (o) = VEXx(0") + VI= EX(0") + 1 of
i=1

for o* € Sy. For any measurable A C [~1, 1], we consider the maximum coupled energy,

1 / ’
MCEy4(A) = NER( ?%g)eA(Hg,t(af) + Hiy (o).

For t € [0, 1], define
ci(u) = vp([0, 1])2(t§/(u) +h*) —u

on [—sp,sp]. Recall ¢(u) from (41). If t = 1, then Hy = HI{M’ MCEN = MCEy,,
and ¢;(u) = ¢(u). While Theorem 12 says that the maximum coupled energy MCFE N
converges to 2MFE if the overlap is restricted to any point in the support of the Parisi
measure, chaos in disorder states that as long as t € (0, 1), MCENVt((u —&,u+ 5))
converges to 2MFE only if we take u equal to a single point u;. This result was established
in Proposition 7 and Theorem 7 from [7], for which we recall as follows.
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Proposition 4. Suppose t € (0,1) and 1 < £ < ¢ < k. For any ¢ > 0, there exists some
n > 0 such that

Jim MCEN, ([-1,1]\ (w — &, us + €)) < 2ME — 1,
—00

where ug is the unique solution to ci(u) = 0 and it satisfies uy = 0 if h = 0 and
U € (O,SP) th, 7& 0.

Lemma 4. If h # 0, then t — w; is continuous on (0,1) with limq uy = sp.

Proof. From Proposition 4, since u; > 0 and d;c;(u) = vp ([0, 1])25’(14) > 0 for u € (0,1),
the implicit function theorem implies that w; is continuous on (0,1). If there exists
(tn) C (0,1) such that lim, , ¢, = 1 and v := lim,_,o us, < Sp, then passing to the
limit yields

c(v) = vp([0, 1])2(5/(11) +h*) —v=0.
Note that sp > 0 since h # 0. From (44),
¢ (u) = vp([0,1))°¢" (w) — 1 < vp((0,1))°¢" (sp) — 1 = ¢/(sp) < 0.
Consequently, the last two displays together with ¢(sp) = 0 deduce that ¢(u) = 0 for all
u € [v, sp| or equivalently
u

¢(u) = ———— — b (52)
I/p([o, 1])

on [v,sp|. However, since & is analytic in (—1,1), this forces that (52) holds for all
u € [—1,1], a contradiction as —h? =¢’(0) =0. O

Proof of Proposition 2. We first prove the case h # 0. Let €,7 > 0. From Lemma 4,
there exists tg such that

€
lug — sp| < 3 (53)
whenever tg <t < 1. Let 1 < ¢ < ¢’ < k. Denote by of an maximizer of Hﬁ,’t over Sy.
Also denote by Ly the maximum of |Xy| over Sy and by LY the maximum of | X%

over Sy. Note that

Hy,(0f)  Hy(o})) Ln L
: — <(1-Vt)=—=>+V1-t=X.
N N ‘ - ( \/_) N + N

Using the concentration of measure for Gaussian extrema processes Ly and Lfv, it can
be show that there exists a constant C' > 0 independent of ¢ such that with probability
at least 1 — CeN/C,
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‘Hﬁf,t("f)

N —HNA(TUf)‘ <(1-Vi+vi—ic

for all t € [0, 1]. Consequently, from (3),
(HN(Uf )
N

P > ME — n) < Ce® (54)

provided that t is sufficiently close to 1 such that
(1-Vt+V1-1t)C <n.

From now on, we fix a t > ¢y for the rest of the proof.
Next, from Proposition 4, one can argue in the same way as the proof of Theorems 1(¢)
and 2(it) to show that there exists some C’ > 0 such that the probability

P(|R(of o) —ul > %) < Cle & (55)
for all N > 1. From (53),
]P’(}R(Jf,af/)—s}a‘ >5) <Cle e, (56)

Note that all the estimates above are independent of 1 < ¢ < ¢/ < k. Combining (54)
and (56), if we take k to be the largest integer such that

ks exp(zmavaizcx,(;))

and Oy = {o},...,0F}, then Proposition 2 follows for the case h # 0. The case h = 0 is
easier since now u; = 0 for all ¢t € (0,1). With this we can combine (54) and (55) directly
to obtain the announced result. O

5. Establishing energy landscapes

We provide the proofs for Theorems 3, 4 and 5. The proof of Theorems 3 and 4 are
immediate consequence of Theorems 1 and 2, while the verification of Theorem 5 is based
on the RSB bound in (30) with a careful choice of the parameters.
5.1. RS and FRSB solutions

The proofs of Theorems 3 and 4 are immediate consequences of Theorems 1 and 2.

Proof of Theorem 3. From (11), we see that pp = ) and I' = {1}. Since h # 0, Theorem 3
follows from Theorem 2. 0O
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Proof of Theorem 4. From 12, T = [—1,1]if h =0and I = [sp, 1] if h # 0. Theorem 4(7)
follows from Theorem 1, while Theorem 4(i4) is valid by Theorem 2. O

5.2. 1RSB solution

First we develop an auxiliary lemma. Recall the functional P form (27), the constant
z from (13), and the function ¢ from (14).

Lemma 5. Consider (B,v) € U defined by

v(ds) = Aljp,1)(s)ds + Adg1y(ds),
B=¢"(1)A+A7,
where

§:=2(142)71,
A= 52028 (1)7V2 = 2(1 4 2)" V2 (1) 12, (57)
A — (51/22—1/25/(1)—1/2 = (1+ z)_1/2§’(1)_1/2.

Recall the two functions f, f in Proposition 3 associated to (B,v) and h = 0. Then

f(s) = *C(s)v Vs € [Ov 1]a (58)
f1)=0 (59)
and
_ &) +2£(1)
P(B,v) = 100 (60)

Proof. Since

a direct computation gives

0

/ & (r)dr _ 1

(B—w(r)® AL -AEQ) - ()
A%/ (s)

(1-AAE 1)~ () (1 - A4 (1))

_ dw(s)
2(1=6)(1 — 6 + dw(s))
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for w(s) :=¢&'(s)/&'(1). Thus, (59) follows from

1
B §'(rdr _ ) i
O/(B—ﬁ(r))2 rioea-sre

In addition, we compute

// f”ﬁ 28 ()

1

5 15
)z 5—|—5w
1
z/ 1—5+5w )5”(3)615

- 17 J(CER

u €1

= e ) - R (1 ) )
e e - O ot ) (14 )

and

/ s€"(s)ds = /(1) — € (wyu — (£(1) — &(u)).

u

Combining these two equations together and applying (13) yield

/1 / ”C" s 8)€"(s)ds

= £(1) ~ () — €/(1) + € (whu + 2 (€11) - €'(w)

_ 0428 +2£I<1) (log(l +2)— log(l + zél((f))))
= —((u).

This gives (58). As for (60), it can be justified by
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P(B,v) = %(A‘l — (1) -€a)nA+ %log ﬁ)

1 A€W —e) | VITEWm,
s (VIT2e® e et ))

=L (a+2¢0) - e - ey + LWy
= s (D0 =€)~ ) + = g1 +2)
_ ; / > ¢! 5(1) 1
C2/(1+2)€(1) (5 (1) +26(1) + 5(1>(§/(1)+,z))
_ )+

(1+2)¢'(1)

Proof of Theorem 5. Assume that the Parisi measure pp is 1IRSB with supppp = {0}.
If ¢, = 0 for all even p > 4, then £(s) = s2. In this case, we learn from (11) that pp must
be RS, a contradiction. Thus, ¢, > 0 for at least one even p > 4. We prove that ¢ < 0
on [0, 1]. Write

I/p(dS) = Apl[o,l)(s)ds + Apé{l}(ds) (61)
for some Ap, Ap > 0. Recall the variational representation (3). It is known from [7, The-

orem 2| that the optimality of vp in the Crisanti-Sommers formula yields the following
two equations

S

!@@‘/ﬁﬁﬁﬁﬁza

0
/ ds ,
[ e =€
0

Plugging (61) into these equations gives

1 Ap 1
(1 50) - ey~ (O (©2)
1 !
TP rET R o

A substitution of (62) by (63) yields

Ap(Ap +Ap) Ap Ap oy
= e Wlos(1+ 1) = () =€),

If we let z = Ap/Ap, then this equation coincides with (13). Furthermore, from (63),
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we obtain

Ap = =(1+2)7 2 ()72,
Ap = (1+2)7 12 (1)1,

to get (16) and (17). Now by comparing the two formulas (3) and (28) and letting
B =¢"(1)Ap + AR, since a direct verification gives

§'(1) +26(1)

P = oo

= P(B, VP)a

we see that Bp = B by Theorem 10. Next, recall the functions f, f associated to (Bp,vp)
and h = 0 from Proposition 3. Then Proposition 3 and Lemma 5 together imply that

—((s) = f(s) > 0 for all s € [0,1]. This validates (15).

Conversely, assume that ¢, > 0 for at least one even p > 4 and (15) is valid. From
Lemma 5, recall the pair (B, v) and note f(s) = —((s). From (15) and (58), it follows that
f(s) >0o0n [0,1] and £(0) = 0. In addition, f(1) =0 by (59) and p(S) = A = p([0,1))
since 0 € S, where S = {s € [0,1) : f(s) = 0} and p the measure induced by v. These
together imply that (B,v) must be the minimizer of P by Proposition 3. This means
that the Parisi measure is 1IRSB with supppp = {0}. Finally the validity of (16) and
(17) follows by Lemma 5. O

Proof of Theorem 6. Assume that h = 0 and (18) holds. We verify the following inequal-
ity: For any 0 < & < 1/2, there exists some 1 > 0 such that

limsup MCEN ([-1+¢,—€]U[e,1 —¢€]) < 2ME — .

N—o00

Recall (B,v) from (57) and d, A, A from (57). Let u € [-1,1] with e < |u|] < 1 —e.
Denote a = |u|. For 0 < m < 2, set

Z/m(ds) = A(ml[o’a)(s) + l[a’l)(s))ds + Aé{l}(ds)

Note that for s € [0,1),

1

B i(s) =B — / £ (1) (dr)

=A71 — A(m(€'(a) = €(5) +€'(1) = €'(@) Lo, (5)
— A1) = €(5) L1y (5)-

Then
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5//
B —Dp(s

a

= A— log(A™! — Am(€'(a) — €'(s)) — A(E'(1) - €'(a)))

0
1

a

+ o log(A™ — A1) - €(5))
)

N AT - A1) = €'(a)) L A~ — A(E(1) - €'(a))
Am A~ — Am¢'(a) — A(E'(1) — &' (a)) A A1
1y 1 - AAE(1) = ¢ (a)) (1 1) — e
= Am 081 AAmE (a) — AAE (L) — €(a)) 71! g(1—AA(E'(1) - €(a))
1 1-0(1—w(a))

T Am log 1 —o0mw —0(1 —w(a))

= %bg(l —6(1— w(a)))

for w(a) :=¢'(a)/¢'(1). In addition,

/185"(8)Vm(d8) = Am/GSE”(S)dS+A/IS§”(8)dS+€"(1)A
0 0

= Am(ag'(a) — &(a)) + A(E'(1) — £(1) — (ag'(a) — £(a))) + &7 (1A
= —A(ag'(a) = &(a))(1 —m) + A(E'(1) — £(1)) + £"(DA.

From these two equations,

1

1
(s "
w(B, 0, V) ds+B s€"(8)vm(ds)
O/B /

0

= A"+ A(a€'(a) — £(a))(1 —m) — A(E'(1) — £(1))

1 1-6(1 —w(a)) 1
T o B T Gonw(a) 80— w(ay) A 081001 —w(@).

In particular, if m = 1, from the first equality and (17),
Pu(B,0, 1) = 2P (B, v) = 2ME.
Next,

ampu(B,o,ym))

m=1
1 o 1-90 N dw(a)
A BT 50 —w) A1 —0)

, 1 1-0 dw(a)
= A(~(e€'(0) = &(a)) + 5 lom 1 51— w(a)  A%(1— 5))

= —A(ag'(a) = £(a)) +
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= A(~(ag' (@) ~ &(@) ~ U 1051 4 w(ay2) +

g (Mw(a)(1 + Z))

z

where ¢ is defined in (14). Since ¢ < 0 on (0, 1),
OmPu(B,0,vm) < 0.

m=1

Since (u,m) — OpPu(B,0,vy,) is continuous on {u : ¢ < |u] < 1 —¢€} x[0,2], from
the mean value theorem, there exist m around 1 and n > 0 such that for any u with
lu| € [e,1 —¢€],

Pu(B,0,vm) < Pu(B,0,11) —4n
— 9ME — 4n).

Therefore, from Theorem 11, for any u satisfying |u| € [¢,1 — €],

lim limsup MCE N ((u — €', u + &) < 2ME — 4n.

€40 Nooo
The assertion (19) then follows by an identical argument as the proof of Theo-
rem 2(i7). O

Proof of Theorem 7. Recall ¢ from (14). Our goal is to show that ¢ < 0 on (0, 1). Observe
that ¢(0) = ¢(1) = 0. Computing directly gives

g +2) &) | €(s)
z g)+28'(s) 2

() =¢"(s)(1 = 5) =

. fﬂ(s) (1 — s) (& 2€(5)) — & 2 / (s
—7@7355(0 J(E W) +2€'(5) =€ (D)1 +2) +£/(1) + 28 (5))
_ _ 55" / p 5/(5) 5
B +z§' )<§ (s s (1+ ))
_ ()(W%WU
g1)+28(s)
where
s z8 1+2 0.1
= em e eyt
Observe that from (20),
5(0) = 1 (1+2) >0,

§7(0) &)
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If ¢, = 0 for all even p > 4, then z = 0 and ¢(0) = 0, which contradicts the above
inequality. Thus, we may assume that c, # 0 for at least one even p > 4. From this and

(21),
s zs

§(s) &)

is a convex function on (0,1). Since ¢(1) = 0, we conclude that on (0,1) ¢ has at most
one zero and therefore, ( <0 on (0,1). O

Proof of Corollary 1. Our proof relies on Theorem 7. Note that p, ¢ > 4 implies £”(0) =
0, so the condition (20) is satisfied. To verify (21), we denote 1(s) = &’(s)/s and compute

a1 1

ds?(s)  W(s)?

(20/(s)* = ¥(s)y""(s)).
Since
P(s) = pesP™2 + q(1 — ¢)s172,

a long computation yields

2¢/(5)* — ()¢ (s) = A (p = 2)(p — 2P + (1 = 0)* (¢ — 2)(q — )¢*s*"~°
—c(1=c)pa(3(p+q) + (p — q)* — (2pg + 4)) " T97°.

Here the second line of this equation is nonnegative provided the assumption (22) is in
force. O
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