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We investigate the energy landscape of the spherical mixed 
even p-spin model near its maximum energy. We relate the 
distance between pairs of near maxima to the support of 
the Parisi measure at zero temperature. We then provide 
an algebraic relation that characterizes one-step replica 
symmetric breaking Parisi measures. For these measures, we 
show that any two nonparallel spin configurations around the 
maximum energy are asymptotically orthogonal to each other. 
In sharp contrast, we study models with full replica symmetry 
breaking and show that all possible values of the asymptotic 
distance are attained near the maximum energy.
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1. Introduction and main results

This work deals with geometric properties of general Gaussian smooth functions on 
the N dimensional sphere as N goes to infinity. The questions addressed in this paper 
can be phrased as: Where are the peaks of a random Morse function in a high dimen-
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sional sphere? How can we travel between two peaks and what is their typical spherical 
distance?

A rich description of the landscape of these functions is predicted by the theory of 
mean-field spin glasses. The functions that we consider here are known as the Hamilto-
nians of mixed spherical p-spin models. Our main result relates the above questions to 
the structure of the Parisi measure of these models at zero temperature. We confirm and 
make precise a common prediction by physicists, that the landscape of these functions 
near the maxima heavily depends on the number of levels of replica symmetry breaking 
(RSB). For references in the physics literature the reader is invited to see [12]. For ap-
plications of spin glass theory in computer science, neural networks and more see [11]
and the references therein.

We now describe the functions that we analyze in the terminology of spin glass theory. 
Let SN be the sphere

{
σ ∈ R

N :
N∑
i=1

σ2
i = N

}
.

Consider the Hamiltonian of the spherical mixed even p-spin model indexed by SN ,

HN (σ) = XN (σ) + h

N∑
i=1

σi (1)

for

XN (σ) :=
∑
p∈2N

c
1/2
p

N (p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip ,

where gi1,...,ip ’s are i.i.d. standard Gaussian, h ≥ 0 denotes the strength of an external 
field, and the sequence (cp)p∈2N satisfies cp ≥ 0, 

∑
p∈2N cp = 1, and

∑
p∈2N

2pcp < ∞. (2)

It is easy to check that

EXN (σ1)XN (σ2) = Nξ(R1,2),

where

R1,2 := 1
N

N∑
i=1

σ1
i σ

2
i

is the normalized inner-product between σ1 and σ2, known as the overlap, and



A. Auffinger, W.-K. Chen / Advances in Mathematics 330 (2018) 553–588 555
ξ(s) :=
∑
p∈2N

cps
p.

Condition (2) is more than enough to guarantee that the sum (1) is almost surely finite, 
and the energy HN is a.s. smooth and Morse; see Theorem 11.3.1 of [1]. The simplest 
case is the spherical Sherrington–Kirkpatrick (SK) model, ξ(s) = s2.

We are interested in the collection of points σ ∈ SN such that HN (σ) is close to the 
maximum value of HN . For this, denote the maximum energy (ME) of HN by

MEN = max
σ∈SN

HN (σ)
N

.

Recently, Chen–Sen [7] and Jagannath–Tobasco [10] showed that the limiting maximum 
energy can be computed through a variational principle, similar to the Crisanti–Sommers 
formula [8]. More precisely, let K be the collection of all measures ν on [0, 1], which takes 
the form,

ν(ds) = 1[0,1)(s)γ(s)ds + Δδ{1}(ds),

where γ(s) is a nonnegative and nondecreasing function on [0, 1) with right-continuity, 
Δ > 0, and δ{1} is a Dirac measure at 1. Define the Crisanti–Sommers functional by

Q(ν) = 1
2

( 1∫
0

(ξ′(s) + h2)ν(ds) +
1∫

0

dq

ν((q, 1])

)

for ν ∈ K. The Crisanti–Sommers formula for the maximum energy derived in Chen–Sen 
[7]1 and Jagannath–Tobasco [10] states that

ME := lim
N→∞

MEN = inf
ν∈K

Q(ν). (3)

Note that Q is a strictly convex functional on K and it was proved in [7,10] that the 
right-hand side has a unique minimizer, denoted by

νP (ds) = γP (s)1[0,1)(s)ds + ΔP δ{1}(ds).

We denote by ρP the measure on [0, 1) induced by γP , i.e.,

γP (s) = ρP ([0, s]), ∀s ∈ [0, 1). (4)

We call ρP the Parisi measure at zero temperature.

1 Although the form in Chen–Sen [7] is not exactly the same as (3), it can be easily expressed in terms of 
the current form (3) by performing a change of variable, Δ = L −

∫ 1
0 γ(s)ds.
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1.1. Two general principles

For fixed η > 0, our main theorems relate the geometry of the set of spin configurations 
near the maximum energy

L(η) :=
{
σ ∈ SN : HN (σ) > N(ME − η)

}
, (5)

to the structure of the Parisi measure ρP . Clearly L(η1) ⊆ L(η2) ⊆ SN for 0 < η1 < η2.

1.1.1. Relevance of the Parisi measure
For fixed η > 0 and Borel measurable set A ⊂ [−1, 1], set

PN (η,A) := P
(
∃ σ1, σ2 ∈ L(η) with R1,2 ∈ A

)
.

In other words, PN (η, A) is the probability that there exist two spin configurations near 
the maximum energy and their overlap lies in A. Denote by

Γ = (suppρP ) ∪ {1},
sP = min Γ.

(6)

The following proposition summarizes some properties of sP :

Proposition 1. The quantity sP obeys the following statements:

(i) If h = 0, then sP = 1 when ξ(s) = s2 and sP = 0 when cp 
= 0 for at least one even 
p ≥ 4.

(ii) If h 
= 0, then sP > 0.

Note that since XN involves only even spin interactions, when the external field van-
ishes, HN is symmetric, i.e., HN (−σ) = HN (σ). Our first main result states that in 
the absence of external field, for any given u ∈ [−1, 1] with |u| ∈ Γ, with overwhelming 
probability there exist two spin configurations around the maximum energy such that 
their overlap is around u.

Theorem 1. Assume h = 0. Let u ∈ [−1, 1] with |u| ∈ Γ. For any ε, η > 0, there exists 
K > 0 such that for all N ≥ 1,

PN

(
η, (u− ε, u + ε)

)
≥ 1 −Ke−

N
K . (7)

In the case that the external field is present, i.e., h 
= 0, the Hamiltonian is no longer 
symmetric and Proposition 1(ii) asserts sP > 0. An analogous result of Theorem 1
remains valid. Furthermore, the overlap between any two spin configurations near the 
maximum energy does not lie in [−1, sP ).
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Theorem 2. Assume h 
= 0.

(i) Let u ∈ Γ. For any ε, η > 0, there exists K independent of N such that for all N ≥ 1,

PN

(
η, (u− ε, u + ε)

)
≥ 1 −Ke−

N
K . (8)

(ii) For any ε > 0, there exist η, K > 0 such that for all N ≥ 1,

PN

(
η, [−1, sP − ε]

)
≤ Ke−

N
K . (9)

In view of Theorems 1 and 2, one might wonder what the corresponding result could 
be when the overlap is restricted to [sP , 1] \ Γ. In Section 1.2, we explore three cases 
of the mixed even p-spin model, where we show that the probability of having two spin 
configurations near the maximum energy with overlap inside [sP , 1] \ Γ is exponentially 
small.

1.1.2. An equidistant structure
For any fixed q ∈ Γ, Theorems 1 and 2 assert the existence of a pair of spin configura-

tions near the maximum energy with overlap around u. The second principle here shows 
that if we take q = 0 when h = 0 and q = sP when h 
= 0, then there exist exponentially 
many equidistant spin configurations near the maximum energy. For any ε, η, K > 0 and 
q ∈ [0, 1], denote by

PN (ε, η, q,K)

the probability that there exists a subset ON ⊂ SN such that

(i) ON ⊂ L(η).
(ii) ON contains at least KeN/K many elements.
(iii) |R(σ, σ′) − q| ≤ ε for all distinct σ, σ′ ∈ ON .

Denote by q0 = 0 if h = 0 and q0 = sP if h 
= 0. Our main result is stated as follows.

Proposition 2. For any ε, η > 0, there exists K > 0 such that for any N ≥ 1,

PN (ε, η, q0,K) ≥ 1 −Ke−N/K .

A major feature of Proposition 2 is that when the external field vanishes h = 0, we 
can always find exponentially many orthogonal spin configurations around the maximum 
energy for any mixture ξ. In the setting of the mixed even p-spin model with Ising spin 
configuration space, an analogous statement of Proposition 2 also appears in [5].
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1.1.3. Ideas of the proof
Before moving to our examples, we briefly sketch the main approach and perspective 

of this paper and compare to the existing results. Our approach to Theorems 1 and 2 is 
via the maximum of the coupled energy (MCE) with overlap constraint,

MCEN (A) := 1
N

E max
R1,2∈A

(
HN (σ1) + HN (σ2)

)
.

Here, A is a Borel measurable subset of [−1, 1]. In particular, we care for which sets A, 
MCEN (A) and 2MEN are asymptotically the same. When this occurs, we will show 
that one can always find two spin configurations, whose energies are around the global 
maximum and the overlap is in A. If MCEN (A) and 2MEN are asymptotically different, 
then the overlap between any two spin configurations around the maximum energy does 
not lie in A. While it is in general very difficult to compare the values of two extrema 
Gaussian fields, it turns out that the current case is achievable and the set A depends 
closely on the Parisi measure ρP .

The above strategy is different from the approaches used in the recent studies of the 
landscape of spherical p-spin models, especially those connected to the complexity of 
such functions [3,2,15–17]. Here, we neither rely on the use of the Kac–Rice formula, nor 
restrict ourselves to the study of local maxima or critical points. Of course, inside each 
connected component of L(η) there exists at least one local maxima of HN . As we will 
see in the next section, this fact combined with Theorem 6 below provides a different 
proof and extends the results of Subag [16] about the orthogonality of critical points in 
the pure p-spin model (see Remark 2). Another advantage of our approach is that it also 
allows to establish Theorems 1 and 2 in the setting of the mixed even p-spin models with 
Ising-spin configuration space following an identical argument.

1.2. Levels of replica symmetry breaking at zero temperature

In this section, we explore the consequences of Theorems 1 and 2 depending on the 
structure of the support of the Parisi measure ρP . We say that ρP is replica symmetric 
(RS) if ρP ≡ 0 on [0, 1), is k-step replica symmetry breaking (kRSB) if ρP =

∑k
i=1 Aiδ{qi}

for some A1, . . . , Ak > 0 and distinct q1, . . . , qk ∈ [0, 1), and is full replica symmetry 
breaking (FRSB) otherwise. Under different conditions on ξ and h, examples of RS, 
1RSB, and FRSB were discussed in Chen–Sen [7], while Jagannath–Tobasco [10] pre-
sented a description on the structure of the Parisi measure in general situations.

1.2.1. RS solution
In the first example, we consider the mixed even p-spin model, whose ξ and h satisfy

ξ′′(1) ≤ ξ′(1) + h2. (10)
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In [7, Proposition 1], it was shown that this is a sufficient and necessary condition 
to guarantee that the Parisi measure of the Crisanti–Sommers formula (3) is replica 
symmetric. In this case, it was readily computed in [7, Proposition 1] that

νP (ds) =
(
ξ′(1) + h2)−1/2

δ{1}(ds),

ME =
(
ξ′(1) + h2)1/2. (11)

Therefore, Γ = {1}.

Theorem 3 (RS). Assume h 
= 0 and (10) holds. For any ε ∈ (0, 1), there exist η, K > 0
such that

PN

(
η, [−1, 1 − ε]

)
≤ Ke−

N
K .

This theorem says that if the strength of the external field h dominates the mixed 
p-spin interactions XN , i.e., (10) holds, then any two near maximizers must be very close 
to each other. The picture of Theorem 3 will change drastically if one considers different 
mixtures.

1.2.2. FRSB solution
The second example is the mixed even p-spin model with FRSB Parisi measure. As-

sume that the external field h no longer dominates XN , i.e., ξ′′(1) > ξ′(1) +h2. Suppose 
that 1/

√
ξ′′ is concave on (0, 1]. Recall Γ from (6). From [7, Proposition 2], it was com-

puted that

νP (ds) = γP (s)1[0,1)(s)ds + ξ′′(1)−1/2δ{1}(ds),

ME = sP ξ
′′(sP )1/2 +

1∫
sP

ξ′′(s)1/2ds,

where sP ∈ [0, 1] is the unique solution to

sP ξ
′′(sP ) = ξ′(sP ) + h2

and

γP (s) =
{

0, if s ∈ [0, sP ),
ξ′′′(s)

2ξ′′(s)3/2 , if q ∈ [sP , 1). (12)

From (12), the Parisi measure ρP is supported on [sP , 1) and thus it is FRSB. Our results 
below present a completely different behavior compared to Theorem 3 if one considers 
the opposite region of (10).
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Theorem 4 (FRSB). Assume ξ′′(1) > ξ′(1) + h2 and 1/
√
ξ′′ is concave on (0, 1].

(i) Assume h = 0. Let u ∈ [−1, 1]. For any ε, η > 0, there exist K > 0 such that

PN

(
η, (u− ε, u + ε)

)
≥ 1 −Ke−

N
K .

(ii) Assume h 
= 0. We have that
(ii′) Let u ∈ [sP , 1]. For any ε, η > 0, there exists K > 0 such that

PN

(
η, (u− ε, u + ε)

)
≥ 1 −Ke−

N
K .

(ii′′) For any ε > 0, there exists η, K > 0 such that

PN

(
η, [−1, sP − ε]

)
≤ Ke−

N
K .

This theorem shows that for any η > 0, the overlap attains any possible value of [sP , 1]
in the set L(η). As far as we know, this is the first rigorous result in spherical models 
that matches the physicists’ expectation that, in models with FRSB, local maxima of 
the Hamiltonian HN slightly below the maximum energy should be separated by only 
O(1) barriers. More precisely, the barrier between two local maxima σ and σ′ is defined 
as

BN (σ, σ′) := inf
τ

max
0≤t≤1

(
|HN (σ) −HN (τ(t))|, |HN (σ′) −HN (τ(t))|

)
,

where the infimum is taken over all continuous paths τ : [0, 1] �→ SN with τ(0) = σ

and τ(1) = σ′. For FRSB models, it is expected that BN/N c → 0 for any c > 0, see [9, 
Section 9] for detail. This is in deep contrast with 1RSB models where local maxima near 
the maximum energy are orthogonal to each other with BN = O(N) barrier separating 
them, see Theorem 6 below.

1.2.3. 1RSB solution
Let z ≥ 0 be the unique solution to

1
ξ′(1) = 1 + z

z2 log(1 + z) − 1
z
. (13)

Note that the right hand-side is a strictly decreasing function and decreases from 1/2 to 
0 as z tends from 0 to infinity. Since

2 = 2
∑
p∈2N

cp ≤
∑
p∈2N

pcp = ξ′(1),

the solution z to (13) is ensured. Also note that z = 0 if and only if ξ(s) = s2, the 
spherical SK model. If cp 
= 0 for at least one p ≥ 4, then z > 0 and we define
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ζ(s) = ξ(s) + ξ′(s)(1 − s) + ξ′(s)
z

− (1 + z)ξ′(1)
z2 log

(
1 + zξ′(s)

ξ′(1)

)
. (14)

Here ζ(0) = ζ(1) = 0. For h = 0, our main result below gives a full characterization of 
the mixture parameter ξ for the 1RSB Parisi measure with suppρP = {0}.

Theorem 5 (1RSB). Assume h = 0. The Parisi measure ρP is 1RSB with suppρP = {0}
if and only if cp > 0 for at least one p ≥ 4 and

ζ(s) ≤ 0, ∀s ∈ [0, 1]. (15)

In this case,

νP (ds) =
z1[0,1)(s)ds√
(1 + z)ξ′(1)

+
δ{1}(ds)√
(1 + z)ξ′(1)

, (16)

ME = ξ′(1) + z√
(1 + z)ξ′(1)

. (17)

If the inequality (15) is strict, we obtain a description of the energy landscape of the 
model around the maximum energy.

Theorem 6 (Orthogonal structure). Let h = 0. If

ζ(s) < 0, ∀s ∈ (0, 1), (18)

then for any ε > 0, there exist η, K > 0 such that for all N ≥ 1,

PN

(
η, [−1 + ε,−ε] ∪ [ε, 1 − ε]

)
≤ Ke−

N
K . (19)

Theorem 6 reads that with overwhelming probability, any two nonparallel spin con-
figurations around the maximum energy are nearly orthogonal to each other. In other 
words, if one wishes to travel between any two such spin configurations along a path 
on the energy landscape, then one unavoidably needs to climb down to a lower energy 
level at some point. Furthermore, recall the set L(η) from (5). Theorem 6 combined with 
Proposition 2 (sP = 0) implies that the number of nearly orthogonal components of L(η)
is at least of exponential order.

The assumption (18) is numerically easy to check. Nonetheless, the following theorem 
provides a simple sufficient criterion for (18).

Theorem 7. Let h = 0. If

ξ′(1) > ξ′′(0)(1 + z) (20)

and
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s

ξ′(s) is convex on (0, 1), (21)

then the strict inequality (18) holds.

Note that ξ′′(0) = c2. If c2 = 0, then (20) is redundant and one only needs to verify 
(21). An important example of Theorem 7 is the pure p-spin model, i.e., ξ(s) = sp

for p ≥ 4. In this case, the maximum energy and the Parisi measure were previously 
computed in [3] and [7, Proposition 3], which agree with (16).

Remark 1. The condition (21) should be compared with the well-known criterion of 
testing 1RSB Parisi measure at both positive and zero temperatures in [8,10,18], where 
it was shown that the Parisi measure is either RS or 1RSB if 1/

√
ξ′′ is convex in (0, 1). 

Reportedly, there exists some ξ, which satisfies (21), but 1/
√
ξ′′ is not convex on (0, 1). 

However, it is not clear to us whether the convexity of 1/
√
ξ′′ always implies that of 

s/ξ′(s).

It is easy to construct models satisfying Theorem 7. The corollary below deals with 
mixture of two spin interactions.

Corollary 1. Consider the spherical (p + q)-spin model with h = 0 and p, q ≥ 4, i.e.,

ξ(s) = csp + (1 − c)sq

for some c ∈ [0, 1]. If

2pq + 4 ≥ 3(p + q) + (p− q)2, (22)

then both conditions (20) and (21) are valid.

Remark 2. Several authors studied the energy landscape of the p-spin model in recent 
years. The averaged complexity of critical points of HN was found in Auffinger–Ben 
Arous–Černý [3] and in Auffinger–Ben Arous [2]. Later, for the pure p-spin model, con-
centration of the complexity of the local maxima was established by Subag [15]. The 
energy landscape of the pure p-spin model around the maximum energy coincides with 
the picture described above. Theorem 6 works not only for the pure p-spin model, but 
also for any mixture such that ζ(s) > 0. For an example of ξ that involves infinitely 
many interactions in XN , one could take

ξ(s) = es
2 − 1 − s2

e− 2 .

Thus, we recover and extend the orthogonality structure of local maxima discovered in 
[15] (see also [16, Corollary 13]) to other models.
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Remark 3. It would be interesting to decide if condition ζ(s) < 0 coincides with the 
definition of pure-like models introduced in [3] and also investigated in [10].

2. Parisi’s formula and RSB bound for the free energies

In this section we review some well-known results from Talagrand [18] on the Parisi 
formula for the free energy and the Guerra–Talagrand RSB bound for the coupled free 
energy with overlap constraint. These will be of great use in the next section, where we 
develop their analogues at zero temperature. For any inverse temperature β > 0, define 
the free energy by

FN,β = 1
Nβ

E log
∫
SN

expβHN (σ)λN (dσ),

where λN is the uniform probability measure on SN . For any measurable subset A of 
[−1, 1], we set the coupled free energy as

CFN,β(A) = 1
Nβ

E log
∫

R1,2∈A

expβ
(
HN (σ1) + HN (σ2)

)
λN (dσ1) × λN (dσ2).

Let M be the space of all (b, x) for b ∈ R and x a c.d.f. on [0, 1] such that

max
(
1,

1∫
0

β2ξ′′(s)x(s)ds
)
< b.

Define the Parisi functional by

Pβ(b, x) = 1
2β

( β2h2

b− dxβ(0) +
1∫

0

β2ξ′′(q)
b− dxβ(q)dq + b− 1 − log b−

1∫
0

qβ2ξ′′(q)x(q)dq
)

(23)

for any (b, x) ∈ M, where

dxβ(q) :=
1∫

q

β2ξ′′(s)x(s)ds.

The Parisi formula for the free energy states that

Theorem 8 (Parisi’s formula for the free energy).

lim
N→∞

FN,β = inf
(b,x)∈M

Pβ(b, x). (24)
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The Parisi formula was rigorously established by Talagrand [18] and extended to 
general mixture of the model by Chen [4]. In [18], it was known that the optimization 
problem on the right-hand side has a unique minimizer, denoted by (bβ,P , xβ,P ). The 
probability measure μβ,P induced by xβ,P is called the Parisi measure.

The coupled free energy can be controlled by a two-dimensional extension of the Parisi 
functional. Let M′ be the collection of all (b, λ, x) for b, λ ∈ R and x a c.d.f. on [0, 1]
such that

max
(
1, |λ| +

1∫
0

β2ξ′′(s)x(s)ds
)
< b.

Let u ∈ [−1, 1] be fixed. Set ι = 1 if u ≥ 0 and ι = −1 if u < 0. For (b, λ, x) ∈ M′, define

Pβ,u(b, λ, x) = Tβ,u(b, λ, x)
β

+ 1
β

⎧⎨
⎩

β2h2

b−λ−dx
β(0) , if u ∈ [0, 1],

β2h2

b−λ−dx
β(|u|) , if u ∈ [−1, 0),

where

Tβ,u(b, λ, x) := log
√

b2

b2 − λ2 +
|u|∫
0

β2ξ′′(q)
b− ιλ− dxβ(q)dq

+ 1
2

1∫
|u|

β2ξ′′(q)
b− λ− dxβ(q)dq + 1

2

1∫
|u|

β2ξ′′(q)
b + λ− dxβ(q)dq

− λu + b− 1 − log b− β2
1∫

0

qξ′′(q)x(q)dq.

The following theorem gives the Guerra–Talagrand RSB bound for the coupled free 
energy.

Theorem 9 (RSB bound for the coupled free energy). Let u ∈ [−1, 1]. For any (b, λ, x) ∈
M′, we have

lim
ε↓0

lim sup
N→∞

CFN,β((u− ε, u + ε)) ≤ Pβ,u(b, λ, x). (25)

This bound was previously introduced in [18] in order to establish the Parisi formula 
(23). One may find its higher dimensional extension addressing temperature chaos and 
ultrametricity in [14]. In addition, a version of (25) devoted to chaos in disorder was 
developed in [6].
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3. Bounds for the maximum energies

We present analogous results of Theorems 8 and 9 for the maximum energy MEN as 
well as the maximum coupled energy MCEN .

3.1. Parisi’s formula and RSB bound for the maximum energies

Recall K from the paragraph before (3). For ν ∈ K, define

ν̂(s) =
1∫

s

ξ′′(r)ν(dr), s ∈ [0, 1]. (26)

Let U be the collection of all (B, ν) ∈ R ×K satisfying

ν̂(0) < B.

Define the Parisi functional on U by

P(B, ν) = 1
2

( h2

B − ν̂(0) +
1∫

0

ξ′′(s)
B − ν̂(s)ds + B −

1∫
0

sξ′′(s)ν(ds)
)
. (27)

Our first main result in this subsection states another expression of the maximum energy 
via the Parisi formula at zero temperature.

Theorem 10 (Parisi’s formula for the maximum energy).

ME = inf
(B,ν)∈U

P(B, ν). (28)

Here the minimum of the right-hand side is uniquely achieved by (BP , νP ) ∈ U , where 
νP is the minimizer in the Crisanti–Sommers formula (3) and BP satisfies

BP = ν̂P (0) + 1
νP ([0, 1]) . (29)

The following proposition provides a characterization for the optimizer (BP , νP ).

Proposition 3. Let (B, ν) ∈ U . Define

f̄(s) =
1∫

s

f(r)ξ′′(r)dr,

where
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f(r) := h2

(B − ν̂(0))2 +
r∫

0

ξ′′(s)ds
(B − ν̂(s))2 − r.

Then (B, ν) is the minimizer of P if and only if f(1) = 0, minr∈[0,1] f̄(r) ≥ 0, and 
ρ(S) = ρ([0, 1)), where S := {r ∈ [0, 1) : f̄(r) = 0}, and ρ is the measure on [0, 1)
induced by γ, i.e., ρ([0, s]) = γ(s) for s ∈ [0, 1).

Next, we proceed to state the RSB bound for the maximum coupled energy. Recall ν̂
from (26). Denote by U ′ the collection of all (B, λ, ν) with B, λ ∈ R and ν ∈ K such that

|λ| + ν̂(0) < B.

For u ∈ [−1, 1], define the functional Pu on U ′ by

Pu(B, λ, ν) =
|u|∫
0

ξ′′(q)
B − ιλ− ν̂(q)dq + 1

2

1∫
|u|

ξ′′(s)
B − λ− ν̂(s)ds + 1

2

1∫
|u|

ξ′′(s)
B + λ− ν̂(s)ds

− λu + B −
1∫

0

sξ′′(s)ν(ds) +
{

h2

B−λ−ν̂(0) , if u ∈ [0, 1],
h2

B−λ−ν̂(|u|) , if u ∈ [−1, 0).

Our RSB bound for the maximum coupled energy is stated as follows.

Theorem 11 (RSB bound for the maximum coupled energy). Let u ∈ [−1, 1]. For any 
(B, λ, ν) ∈ U ′, we have

lim
ε↓0

lim sup
N→∞

MCEN

(
(u− ε, u + ε)

)
≤ Pu(B, λ, ν). (30)

One may find a similar inequality in Chen–Sen [7, Theorem 6], where (30) was shown 
to be valid along a special choice of the parameter (B, ν). In next sections, Theorem 11
plays an essential role in controlling the maximum coupled energy by choosing proper 
parameter (B, λ, ν).

3.2. Proof of Theorems 10, 11 and Proposition 3

Proof of Theorem 10. Let (B, ν) ∈ U . Let γ be the density of ν on [0, 1) and Δ be the 
mass at 1. First, we assume that γ(1−) < ∞. For β > 0, let bβ = B/β and define

xβ(s) = γ(s)
β

1[0,1−Δ/β)(s) + 1[1−Δ/β,1](s).

The assumption γ(1−) < ∞ guarantees that (bβ, xβ) ∈ M for β sufficiently large. A di-
rect computation gives
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lim
β→∞

Pβ(bβ , xβ) = P(B, ν).

On the other hand, it is well-known (see e.g. [2, Theorem 4,1] or [7, Lemma 6]) that

ME = lim
N→∞

MEN = lim
β→∞

lim
N→∞

FN .

Using (24), the last two limits yield

lim
N→∞

MEN ≤ P(B, ν).

One can easily release the assumption γ(1−) < ∞ by an approximation argument and 
consequently,

ME ≤ inf
(B,ν)∈U

P(B, ν).

To see that the equality holds, we recall the optimizer (bβ,P , xβ,P ) from (24). If we can 
show that Pβ(bβ,P , xβ,P ) converges to P(B, ν) for certain (B, ν) ∈ U , then the Parisi 
formula (8) together with the above inequality completes our proof. This part of the 
derivation has appeared in the work [7]. From Theorem 1, Lemma 7, and Equation (78) 
in [7], it is known that there exists a sequence (βk)k≥1 with limk→∞ βk = ∞ such that

BP := lim
k→∞

β−1
k bβk,P ,

νP = lim
k→∞

βxβk,P (s)ds vaguely,

BP >

1∫
0

ξ′′(s)νP (ds),

and more importantly,

ME = lim
N→∞

MEN = P(BP , νP ).

This means that (BP , νP ) ∈ U and the announced formula holds. To see (29), we note 
that it was already established in the proof of [7, Lemma 10]. �
Proof of Proposition 3. Assume that (B, ν) is the minimizer. Let (B′, ν′) be an arbitrary 
element in U . Write

ν(ds) = γ(s)1[0,1)(s)ds + Δδ{1}(ds),

ν′(ds) = γ′(s)1[0,1)(s)ds + Δ′δ{1}(ds).

Let ρ and ρ′ be the measures induced by γ and γ′. For θ ∈ [0, 1], define
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(Bθ, νθ) = (1 − θ)(B, ν) + θ(B′, ν′).

Then

P(Bθ, νθ)
∣∣∣
θ=0

=
(
− h2

(B − ν̂(0))2 −
1∫

0

ξ′′(s)ds
(B − ν̂(s))2 + 1

)
(B′ −B)

+ h2(ν̂′(0) − ν̂(0))
(B − ν̂(0))2 +

1∫
0

ξ′′(s)(ν̂′(s) − ν̂(s))
(B − ν̂(s))2 ds−

1∫
0

sξ′′(s)(ν′ − ν)(ds) ≥ 0.

(31)

From the first line of (31), f(1) = 0. On the other hand, noting that

h2(ν̂′(0) − ν̂(0))
(B − ν̂(0))2 =

1∫
0

h2ξ′′(r)(ν′ − ν)(dr)
(B − ν̂(0))2

and by Fubini’s theorem,

1∫
0

ξ′′(s)(ν̂′(s) − ν̂(s))
(B − ν̂(s))2 ds =

1∫
0

r∫
0

ξ′′(s)ds
(B − ν̂(s))2 ξ

′′(r)(ν′ − ν)(dr)

the second line leads to

1∫
0

f(r)ξ′′(r)(ν′ − ν)(dr) ≥ 0.

From this, Fubini’s theorem yields

0 ≤
1∫

0

f(r)ξ′′(r)(ν′ − ν)(dr)

=
1∫

0

f(r)ξ′′(r)(γ′(r) − γ(r))dr + f(1)ξ′′(1)(Δ′ − Δ)

=
1∫

0

1∫
s

f(r)ξ′′(r)dr(ρ′ − ρ)(ds) + f(1)ξ′′(1)(Δ′ − Δ).

The validity of this inequality is equivalent to that f(1) = 0, minr∈[0,1] f̄(r) ≥ 0, and 
ρ(S) = ρ([0, 1)). �
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The proof of Theorem 11 follows a similar argument as Theorem 10.

Proof of Theorem 11. First we assume that u ∈ (−1, 1). Let ε ∈ (0, 1 −|u|). An argument 
similar to [7, Lemma 8] implies that

lim
N→∞

MCEN ((u− ε/2, u + ε/2)) ≤ lim sup
β→∞

lim sup
N→∞

CFN,β((u− ε, u + ε)). (32)

To bound the limit on the right-hand side, we use the RSB bound for the coupled free 
energy in Theorem 9 combined with a covering argument (see for instance [7, Theorem 6]) 
to obtain that for any (b, λ, x) ∈ M′,

lim sup
N→∞

CFN,β((u− ε, u + ε)) ≤ sup
v∈(u−ε,u+ε)

Pβ,v(b, λ, x). (33)

Consider an arbitrary (B, λ, ν) ∈ U ′. Write

ν(ds) = 1[0,1)(s)γ(s)ds + Δδ{1}(ds).

Assume that γ(1−) < ∞. Set

bβ = βB, λβ = βλ

and

xβ(s) = 1[0,1−Δ/β)(s)
γ(s)
β

+ 1[1−Δ/β,1](s).

Then (bβ , λβ , xβ) ∈ M′ for β sufficiently large. A direct computation leads to

lim
β→∞

Pβ,v(bβ , λβ , xβ) = Pv(B, λ, ν).

A key fact here is that this convergence is uniform over all v ∈ [u −ε, u +ε]. This together 
with (32) and (33) implies

lim
N→∞

MCEN ((u− ε/2, u + ε/2)) ≤ sup
v∈[u−ε,u+ε]

Pv(B, λ, ν).

Letting ε ↓ 0 yields that

lim
ε↓0

lim
N→∞

MCEN ((u− ε, u + ε)) ≤ Pu(B, λ, ν). (34)

By an approximation argument, we can remove the assumption γ(1−) < ∞ and this 
inequality remains valid. To see how this inequality is also true for u = ±1, we note that
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lim
u→1−

Pu(B, λ, ν) = P1(B, λ, ν),

lim
u→−1+

Pu(B, λ, ν) = P−1(B, λ, ν).

On the other hand, using Dudley’s entropy integral, we can show that

lim
u→1−

lim
ε↓0

lim sup
N→∞

MCEN (u− ε, u + ε) = lim
ε↓0

lim sup
N→∞

MCEN ((1 − ε, 1 + ε)),

lim
u→−1+

lim
ε↓0

lim sup
N→∞

MCEN (u− ε, u + ε) = lim
ε↓0

lim sup
N→∞

MCEN ((−1 − ε,−1 + ε)).

For a detailed argument of these, we refer the readers to [7, Lemma 13]. Finally, our 
proof is completed by these inequalities and (34). �
4. Control of maximum coupled energy

In this section, we present the proof of Theorems 1, 2 and Proposition 2, which is 
based on a subtle control of the RSB bound in the foregoing section.

4.1. Proof of Theorem 1

Recall the measure ρP from (4). The proof of Theorem 1 is a consequence of the 
following theorem.

Theorem 12. If u ∈ suppρP , then for any ε > 0,

lim
N→∞

MCEN

(
(u− ε, u + ε)

)
= 2ME.

Proof of Theorem 1. The assumption h = 0 implies that HN (σ) = HN (−σ) for all 
σ ∈ SN , from which

MCEN

(
(u− ε, u + ε)

)
= MCEN

(
(−u− ε,−u + ε)

)
for any |u| ∈ suppρP . Thus, it suffices to prove (7) only for u ∈ suppρP . From Theo-
rem 12,

lim
N→∞

MCEN

(
(u− ε, u + ε)

)
= 2 lim

N→∞
MEN .

For any η > 0, there exists N0 such that

MCEN

(
(u− ε, u + ε)

)
≥ 2ME − η

for all N ≥ N0. Consequently, using concentration of measure for the Gaussian extrema 
processes, there exists a positive constant K independent of N such that with probability 
at most 1 −Ke−N/K ,
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1
N

max
R1,2∈(u−ε,u+ε)

(
HN (σ1) + HN (σ2)

)
≥ 2ME − 2η (35)

and

max
σ∈SN

HN (σ)
N

≤ ME + η

4 (36)

for all N ≥ N0. Therefore, from (35), there exist σ1, σ2 with R1,2 ∈ (u − ε, u + ε) such 
that

HN (σ1) + HN (σ2)
N

≥ 2ME − η

2 .

If either HN (σ1) ≤ N(ME − η) or HN (σ2) ≤ N(ME − η), then from this inequality and 
(36),

2ME − 3η
4 = 2ME + η

4 − η >
HN (σ1) + HN (σ2)

N
≥ 2ME − η

2 ,

which forms a contradiction. Therefore, PN (η, (u − ε, u + ε)) ≥ 1 − Ke−N/K for all 
N ≥ N0 and this clearly implies Theorem 1 with an adjusted constant K. �

For the remainder of this section, we prove Theorem 12. Recall the Parisi formula 
in Theorem 8 and the optimizer (bβ,P , xβ,P ). Recall that μβ,P is the measure induced 
by xβ,P . We say that the mixed even p-spin model is generic if the linear span of {sp :
cp 
= 0 for some p ∈ 2N} ∪{1} is dense in C[0, 1]. We need two crucial lemmas. Lemma 1
below shows that the coupled free energy is twice of the original free energy if the overlap 
constraint lies in the support of μβ,P .

Lemma 1. Consider the generic mixed even p-spin model. Let u be in the support of μβ,P . 
For any ε > 0, we have

lim
N→∞

CFN,β

(
(u− ε, u + ε)

)
= 2 lim

N→∞
FN,β . (37)

Proof. The assumption that the model is generic guarantees (see [13] or [18]) that 
the limiting law of the overlap |R1,2| is given by the Parisi measure μβ,P under the 
measure E〈·〉β , where 〈·〉β is the Gibbs average with respect to the exponential weight 
expβHN (σ)λN (dσ). Let u ∈ suppμβ,P and ε > 0 be fixed. Note that the trivial bound 
holds,

CFN,β

(
(u− ε, u + ε)

)
≤ 2FN,β .

If (37) is not valid, then there exists some η0 > 0 such that
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CFN,β

(
(u− ε, u + ε)

)
< 2FN,β − η0,

for infinitely many N . Consequently, using the Gaussian concentration of measure for 
both CFN,β

(
(u − ε, u + ε)

)
and FN,β , there exists some constant K independent of N

such that with probability at least 1 −Ke−N/K ,

1
βN

log
∫

|R1,2−u|<ε

expβ
(
HN (σ1) + HN (σ2)

)
λN (dσ1) × λN (dσ2)

<
2

βN
log

∫
expβHN (σ)λN (dσ) − η0

2

for N sufficiently large. This inequality yields

lim inf
N→∞

E
〈
I
(
|R1,2 − u| < ε

)〉
β
≤ lim

N→∞

(
e−

βη0N
2 + Ke−

N
K

)
= 0.

In other words, u is not in the support of μβ, a contradiction. Thus, (37) must hold. �
Next, we prove that the result of Lemma 1 remains valid for the maximum coupled 

energy.

Lemma 2. Assume that the model is generic. If u ∈ suppρP , then for any ε > 0,

lim
N→∞

MCEN

(
(u− ε, u + ε)

)
= 2ME. (38)

Proof. Let u be in the support of ρP and ε > 0 be fixed. Recall that (βxβ,P (s)ds)β>0
converges to νP vaguely from [7, Theorem 1]. There exists uβ ∈ suppμβ,P such that 
limβ→∞ uβ = u. Using Dudley’s entropy integral, we can approximate the maximum 
coupled energy via the coupled free energy,

CFN,β((uβ − ε/2, uβ + ε/2)
)

+ o1(N, β) ≤ MCEN

(
(u− ε, u + ε)

≤ CFN,β((uβ − 2ε, uβ + 2ε)
)

+ o2(N, β),
(39)

where oi(N, β) satisfies limβ→∞ limN→∞ oi(N, β) = 0 for i = 1, 2. Since a similar argu-
ment for this type of the inequality has already appeared in the appendix of [7] with 
great detail, we omit the proof here. From (37),

lim
β→∞

lim
N→∞

CFN,β

(
(uβ − 2ε, uβ + 2ε)

)
= 2 lim sup

β→∞
lim

N→∞
FN,β = 2ME ,

lim
β→∞

lim
N→∞

CFN,β

(
(uβ − ε/2, uβ + ε/2)

)
= 2 lim sup

β→∞
lim

N→∞
FN,β = 2ME .

These equations combined with (39) lead to (38). �



A. Auffinger, W.-K. Chen / Advances in Mathematics 330 (2018) 553–588 573
Proof of Theorem 12. Let ξ and h be fixed. Recall the optimizer (BP , νP ) associated to 
ξ and h in Theorem 10. For each n ≥ 1, let (cn,p)p∈2N be a sequence satisfying 0 < cn,p
and |cp − cn,p| < 2−n−p for all p ∈ 2N. Define ξn(s) =

∑
p∈2N cn,ps

p. Let XN,n be the 
mixed even p-spin Hamiltonian corresponding to ξn and set

HN,n(σ) := XN,n(σ) + h

N∑
i=1

σi.

Note that the assumption cn,p > 0 for all n ∈ N and p ∈ 2N guarantees that HN,n is 
generic. Denote by (Bn, νn) the optimizer associated to ξn and h in Theorem 10.

We claim that there exists a subsequence (Bnk
, νnk

)k≥1 such that

lim
k→∞

Bnk
= BP ,

lim
k→∞

νnk
= νP vaguely on [0, 1].

Recall Theorem 8. Denote by (bβ,n, xβ,n) the optimizer the Parisi formula for the free 
energy associated to ξn and h. Recall two key inequalities from [7, Lemma 2],

βxβ,n(s) ≤ 2
√

ξ′n(1)
ξn(1) − ξn(s) , s ∈ [0, 1)

and

1∫
0

βxβ,n(s)ds ≤ 2
√
ξ′n(1)

( 1
ξn(1) − ξn(1/2) + 1

ξ′n(1/2)

)
.

From [7, Theorem 1], sending β in these two inequalities to infinity yields

γn(s) ≤ 2
√

ξ′n(1)
ξn(1) − ξn(s) , ∀s ∈ [0, 1)

and

νn([0, 1]) ≤ 2
√
ξ′n(1)

( 1
ξn(1) − ξn(1/2) + 1

ξ′n(1/2)

)
,

where γn is the density of νn on [0, 1). Since |cn,p − cp| < 2−n−p, the first inequality 
implies that γn is uniformly bounded on any interval [0, s] for s ∈ (0, 1) and the second 
inequality means that νn is a sequence of bounded measures on [0, 1]. From these, we 
can pass to subsequences such that (γnk

)k≥1 converges to some γ0 vaguely on [0, 1) and 
(νnk

)k≥1 converges to some ν0 vaguely on [0, 1], where

ν0(ds) = γ0(s)1[0,1)(s)ds + 1{1}(s)ν0({1})
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For n ≥ 0, define

Pn(B, ν) = h2

B − ν̂n(0) +
1∫

0

ξ′′n(s)
B − ν̂n(s)ds + B −

1∫
0

sξ′′n(s)νn(ds),

where ν̂n(s) :=
∫ 1
q
ξ′′n(r)ν(dr) for q ∈ [0, 1]. Recall that ME is the limiting maximum 

energy of HN associated to ξ and h. Denote by MEn the maximum energy of HN,n

associated to ξn and h. From the weak convergence of (νnk
)k≥1 and Fatou’s lemma,

ME = lim
k→∞

MEnk

= lim
k→∞

Pnk
(Bnk

, νnk
)

≥ h2

B0 − ν̂0(0) +
1∫

0

ξ′′(q)
B0 − ν̂0(q)

dq + B0 −
1∫

0

sξ′′(s)ν0(ds)

= P(B0, ν0),

(40)

where B0 := lim supk→∞ Bnk
. Note that (Bn, νn) ∈ U . This means ν̂n(0) < Bn for all 

n ≥ 1. It follows that ν̂0(0) ≤ B0. Now from the first and third terms of the third line 
of (40), we can further conclude that ν̂0(0) < B0 < ∞. In other words, (B0, ν0) ∈ U . 
Consequently, from the Parisi formula for ME in Theorem 10, (40) implies that (B0, ν0)
is a minimizer and thus, (B0, ν0) = (BP , νP ). This finishes the proof of our claim.

Next, let u ∈ suppνP . Recall that MCEN is the maximum coupled energy correspond-
ing to ξ and h. Denote by MCEN,n the maximum couped energy associated to ξn and h. 
Using the subsequence (νnk

)k≥1 obtained in the previous claim, we pick uk ∈ suppνnk

such that limk→∞ uk = u. From this,

lim
N→∞

MCEN

(
(u− ε, u + ε)

)
= lim

k→∞
lim

N→∞
MCEN,nk

(
(uk − ε, uk + ε)

)
= 2 lim

k→∞
MEnk

= 2ME ,

where the first and third equalities hold since (cn,p)n≥1 converges to cp uniformly over 
p and the second equality used Lemma 2. This completes our proof. �
4.2. Proof of Proposition 1 and Theorem 2

Recall the constant sP from (6). Define

c(u) = νP
(
[0, 1]

)2(
h2 + ξ′(u)

)
− u (41)
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for u ∈ [−sP , sP ]. Recall the functions f and f̄ from Proposition 3 associated to the 
minimizer (BP , νP ). We first establish a crucial lemma.

Lemma 3. We have that

c(u) = f(u) (42)

on [0, sP ]. In addition,

c(sP ) = 0 (43)

and if sP ∈ (0, 1], then

c′(sP ) ≤ 0. (44)

Proof. From νP ([0, sP )) = 0 and (29), (42) holds. To see (43) and (44), if suppρP = ∅, 
then sP = 1. Since in this case the Parisi measure is replica symmetric, we obtain (43)
from (11). On the other hand, the discussion before Theorem 3 implies (10). From this, 
(44) follows since

c′(1) = ξ′′(1)
ξ′(1) + h2 − 1 ≤ 0.

Next, if suppρP 
= ∅, then sP ∈ suppρP and f̄(sP ) = 0 from Proposition 3. In the case 
when sP ∈ (0, 1), the optimality of sP implies c(sP ) = f(sP ) = −f̄ ′(sP ) = 0 and also 
c′(sP ) = −f̄ ′′(sP ) ≤ 0. These give (43) and (44). If sP = 0, then again by optimality of 
sP ,

0 ≤ f̄ ′(sP ) = −f(sP ) = − h2

(BP − ν̂P (0))2 .

This inequality holds only when h = 0, from which c(sP ) = f(sP ) = 0. This completes 
our proof. �
Proof of Proposition 1. Assume that h = 0. If ξ(s) = s2, then sP = 1 by (11). Suppose 
that cp > 0 for at least one even p ≥ 4. If sP > 0, then from (44),

c′(u) = νP
(
[0, 1]

)2
ξ′′(u) − 1 ≤ νP

(
[0, 1]

)2
ξ′′(sP ) − 1 = c′(sP ) ≤ 0

for u ∈ [0, sP ]. Since evidently c(0) = 0 and c(sP ) = 0 from (43), the above inequality 
implies that c(u) = 0 on [0, sP ]. However, since ξ is analytic on (−1, 1), this forces that

ξ′(u) = u( )2

νP [0, 1]
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on [0, 1], which contradicts the assumption. This completes the proof of Proposition 1(i). 
As for Proposition 1(ii), it can be easily obtained by noting that sP must satisfy 
c(sP ) = 0 by (43) and that c(0) > 0. �
Proof of Theorem 2. From the assumption h 
= 0, sP > 0 by the above remark. The 
statement of Theorem 2(i) follows immediately via an identical reasoning as the proof of 
Theorem 1 gives (8). As for the proof of Theorem 2(ii), it relies on the statement that 
for any 0 < ε0 < sP , there exists some η > 0 such that for every u ∈ [−1, sP − ε0],

lim
ε↓0

lim sup
N→∞

MCEN

(
(u− ε, u + ε)

)
≤ 2ME − η. (45)

If this is valid, a standard covering argument (see, e.g., [6] or [18]) yields Theorem 2(ii). 
Indeed, from (45), for any u ∈ [−1, sP − ε0], there exist εu > 0 and Nu ≥ 1 such that

MCEN

(
(u− εu, u + εu)

)
≤ 2ME − η

2 (46)

for all N ≥ Nu. Since [−1, sP −ε] is a compact set, it can be covered by (ui−εui
, ui+εui

)
for i = 1, . . . , n for some u1, . . . , un ∈ [−1, sP − ε0]. Therefore, from (46),

MCEN

(
[−1, sP − ε0]

)
≤ 2ME − η

2 ,

for all N ≥ N0 := max1≤i≤n Nui
. Next from concentration of measure for Gaussian 

extrema processes, there exists K > 0 such that with probability at least 1 −Ke−N/K ,

1
N

max
R1,2∈[−1,sP−ε0]

(
HN (σ1) + HN (σ2)

)
≤ 2ME − η

4 . (47)

If there exist σ1, σ2 such that R1,2 ∈ [−1, sP − ε0], HN (σ1) ≥ N(ME − η/16), and 
HN (σ2) ≥ N(ME − η/16), then

HN (σ1) + HN (σ2)
N

≥ 2ME − η

8 .

From (47), this means that PN (η/16, [−1, sP − ε0]) ≤ Ke−N/K for all N ≥ N0 and this 
clearly implies (9).

In what follows, we establish (45) by four steps.
Step 1: We claim that there exists some η1 > 0 such that for any u ∈ [−sP , sP − ε0],

lim
ε↓0

lim sup
N→∞

MCEN

(
(u− ε, u + ε)

)
≤ 2ME − η1. (48)

Note that for u ∈ [−sP , sP ], a direct differentiation yields that
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∂λPu(BP , λ, νP )
∣∣∣
λ=0

= h2(
BP − ν̂P (0)

)2 +
|u|∫
0

ιξ′′(s)ds(
BP − ν̂P (s)

)2 − u = c(u),

where ι is the sign of u and c(u) is defined in (41). In addition, it can be easily derived 
that

|∂λλPu(BP , λ, νP )| ≤ M

for all |λ| ≤ K := (BP − ν̂P (0))/2. Using Taylor’s formula, for any |λ| ≤ K,

Pu(BP , λ, νP ) ≤ Pu(BP , 0, νP ) + c(u)λ + ηλ2

2 .

By varying |λ| ≤ K in this inequality, we can find K ′ > 0 small enough such that for 
any u ∈ [−sP , sP ],

lim
ε↓0

lim sup
N→∞

MCEN

(
(u− ε, u + ε)

)
≤ min

|λ|≤K
Pu(BP , λ, νP )

≤ 2ME −K ′c(u)2,
(49)

where the first inequality used (30) and the second inequality relied on the fact that for 
u ∈ [−sP , sP ],

Pu(BP , 0, νP ) = P(BP , νP ) = 2ME .

Note that c′(u) ≤ c′(sP ) ≤ 0 for u ∈ [−sP , sP ] by (44). This and (43) together imply

c(u) ≤ c(sP − ε) < c(sP ) = 0

on [−sP , sP − ε0]. From this and (49), (48) follows with η1 := minu∈[−sP ,sP−ε0] K
′c(u)2

> 0.
Step 2: We check that there exist some ε′0 > 0 and η2 > 0 such that for u ∈ [−sP −

ε′0, −sP ],

lim
ε↓0

lim sup
N→∞

MCEN

(
(u− ε, u + ε)

)
≤ 2ME − η2. (50)

Note that if sP = 1, then Step 1 completes our proof since the overlap satisfies |R1,2| ≤ 1. 
In what follows, we assume that sP < 1. Observe that (u, λ) �→ Pu(BP , λ, νP ) is contin-
uous function on [−1, 0] × [−K, K]. We can choose ε′0 > 0 small enough such that

max
u∈[−sP−ε′0,−sP ]

min
|λ|≤K

Pu(BP , λ, νP ) ≤ min
|λ|≤K

P−sP (BP , λ, νP ) + η1

2 .

From (49), our claim (50) is valid with η2 = η1/2.
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Step 3: Assume u ∈ [−1, −sP − ε′0]. Letting (B, λ, ν) = (BP , 0, νP ) in (30) yields

Pu(BP , 0, νP ) =
1∫

0

ξ′′(q)
BP − ν̂P (q)dq + BP −

1∫
0

sξ′′(s)νP (ds) + h2

B − ν̂P (|u|) .

In view of Theorem 10,

lim
ε↓0

lim sup
N→∞

MCEN

(
(u− ε, u + ε)

)
≤ 2ME − η3, (51)

where η3 := minr∈[−1,−sP−ε′0] g(r) > 0 for

g(r) :=
h2 ∫ |r|

0 ξ′′(s)νP (ds)(
BP − ν̂P (0)

)(
BP − ν̂P (r)

) .
Step 4: Combining (48), (50), and (51) and letting η = min(η1, η2, η3) > 0 validate 

(45). �
4.3. Proof of Proposition 2

Our proof adapts an identical argument as [5]. The key ingredient is played by the 
so-called chaotic property in disorder for the maximum energy. For a fixed k ∈ N, denote 
by X1

N , . . . , Xk
N i.i.d. copies of XN . Let t ∈ [0, 1]. Define the Hamiltonians

H�
N,t(σ�) =

√
tXN (σ�) +

√
1 − tX�

N (σ�) + h

N∑
i=1

σ�
i

for σ� ∈ SN . For any measurable A ⊂ [−1, 1], we consider the maximum coupled energy,

MCEN,t(A) := 1
N

E max
R(σ�,σ�′ )∈A

(
H�

N,t(σ�) + H�′

N,t(σ�′)
)
.

For t ∈ [0, 1], define

ct(u) = νP
(
[0, 1]

)2(
tξ′(u) + h2)− u

on [−sP , sP ]. Recall c(u) from (41). If t = 1, then HN = H�
N,t, MCEN = MCEN,t, 

and c1(u) = c(u). While Theorem 12 says that the maximum coupled energy MCEN

converges to 2ME if the overlap is restricted to any point in the support of the Parisi 
measure, chaos in disorder states that as long as t ∈ (0, 1), MCEN,t

(
(u − ε, u + ε)

)
converges to 2ME only if we take u equal to a single point ut. This result was established 
in Proposition 7 and Theorem 7 from [7], for which we recall as follows.
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Proposition 4. Suppose t ∈ (0, 1) and 1 ≤ � < �′ ≤ k. For any ε > 0, there exists some 
η > 0 such that

lim
N→∞

MCEN,t

(
[−1, 1] \ (ut − ε, ut + ε)

)
≤ 2ME − η,

where ut is the unique solution to ct(u) = 0 and it satisfies ut = 0 if h = 0 and 
ut ∈ (0, sP ) if h 
= 0.

Lemma 4. If h 
= 0, then t �→ ut is continuous on (0, 1) with limt↑1 ut = sP .

Proof. From Proposition 4, since ut > 0 and ∂tct(u) = νP
(
[0, 1]

)2
ξ′(u) > 0 for u ∈ (0, 1), 

the implicit function theorem implies that ut is continuous on (0, 1). If there exists 
(tn) ⊂ (0, 1) such that limn→∞ tn = 1 and v := limn→∞ utn < sP , then passing to the 
limit yields

c(v) = νP
(
[0, 1]

)2(
ξ′(v) + h2)− v = 0.

Note that sP > 0 since h 
= 0. From (44),

c′(u) = νP
(
[0, 1]

)2
ξ′′(u) − 1 ≤ νP

(
[0, 1]

)2
ξ′′(sP ) − 1 = c′(sP ) ≤ 0.

Consequently, the last two displays together with c(sP ) = 0 deduce that c(u) = 0 for all 
u ∈ [v, sP ] or equivalently

ξ′(u) = u

νP
(
[0, 1]

)2 − h2 (52)

on [v, sP ]. However, since ξ is analytic in (−1, 1), this forces that (52) holds for all 
u ∈ [−1, 1], a contradiction as −h2 = ξ′(0) = 0. �
Proof of Proposition 2. We first prove the case h 
= 0. Let ε, η > 0. From Lemma 4, 
there exists t0 such that

|ut − sP | <
ε

2 (53)

whenever t0 < t < 1. Let 1 ≤ � < �′ ≤ k. Denote by σ�
t an maximizer of H�

N,t over SN . 
Also denote by LN the maximum of |XN | over SN and by L�

N the maximum of |X�
N |

over SN . Note that

∣∣∣H�
N,t(σ�

t )
N

− HN (σ�
t )

N

∣∣∣ ≤ (
1 −

√
t
)LN

N
+

√
1 − t

L�
N

N
.

Using the concentration of measure for Gaussian extrema processes LN and L�
N , it can 

be show that there exists a constant C > 0 independent of t such that with probability 
at least 1 − Ce−N/C ,
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∣∣∣H�
N,t(σ�

t )
N

− HN (σ�
t )

N

∣∣∣ ≤ (
1 −

√
t +

√
1 − t

)
C

for all t ∈ [0, 1]. Consequently, from (3),

P

(HN (σ�
t )

N
≥ ME − η

)
≤ Ce−

N
C (54)

provided that t is sufficiently close to 1 such that

(
1 −

√
t +

√
1 − t

)
C < η.

From now on, we fix a t > t0 for the rest of the proof.
Next, from Proposition 4, one can argue in the same way as the proof of Theorems 1(i)

and 2(ii) to show that there exists some C ′ > 0 such that the probability

P

(∣∣R(σ�
t , σ

�′

t ) − ut

∣∣ > ε

2

)
≤ C ′e−

N
C′ (55)

for all N ≥ 1. From (53),

P

(∣∣R(σ�
t , σ

�′

t ) − sP
∣∣ > ε

)
≤ C ′e−

N
C′ . (56)

Note that all the estimates above are independent of 1 ≤ � < �′ ≤ k. Combining (54)
and (56), if we take k to be the largest integer such that

k ≤ exp
( N

2 max(2C ′, C)

)

and ON = {σ1
t , . . . , σ

k
t }, then Proposition 2 follows for the case h 
= 0. The case h = 0 is 

easier since now ut = 0 for all t ∈ (0, 1). With this we can combine (54) and (55) directly 
to obtain the announced result. �
5. Establishing energy landscapes

We provide the proofs for Theorems 3, 4 and 5. The proof of Theorems 3 and 4 are 
immediate consequence of Theorems 1 and 2, while the verification of Theorem 5 is based 
on the RSB bound in (30) with a careful choice of the parameters.

5.1. RS and FRSB solutions

The proofs of Theorems 3 and 4 are immediate consequences of Theorems 1 and 2.

Proof of Theorem 3. From (11), we see that ρP = ∅ and Γ = {1}. Since h 
= 0, Theorem 3
follows from Theorem 2. �
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Proof of Theorem 4. From 12, Γ = [−1, 1] if h = 0 and Γ = [sP , 1] if h 
= 0. Theorem 4(i)
follows from Theorem 1, while Theorem 4(ii) is valid by Theorem 2. �
5.2. 1RSB solution

First we develop an auxiliary lemma. Recall the functional P form (27), the constant 
z from (13), and the function ζ from (14).

Lemma 5. Consider (B, ν) ∈ U defined by

ν(ds) = A1[0,1)(s)ds + Δδ{1}(ds),

B = ξ′′(1)Δ + Δ−1,

where

δ := z(1 + z)−1,

A := δ1/2z1/2ξ′(1)−1/2 = z(1 + z)−1/2ξ′(1)−1/2,

Δ := δ1/2z−1/2ξ′(1)−1/2 = (1 + z)−1/2ξ′(1)−1/2.

(57)

Recall the two functions f, f̄ in Proposition 3 associated to (B, ν) and h = 0. Then

f̄(s) = −ζ(s), ∀s ∈ [0, 1], (58)

f(1) = 0 (59)

and

P(B, ν) = ξ′(1) + zξ(1)√
(1 + z)ξ′(1)

. (60)

Proof. Since

B − ν̂(s) = Δ−1 −A(ξ′(1) − ξ′(s)),

a direct computation gives

s∫
0

ξ′′(r)dr(
B − ν̂(r)

)2 = − 1
A
(
Δ−1 −A(ξ′(1) − ξ′(r))

) ∣∣∣s
0

= Δ2ξ′(s)(
1 − ΔA(ξ′(1) − ξ′(s))

)(
1 − ΔAξ′(1)

)
= δw(s)

z(1 − δ)(1 − δ + δw(s))
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for w(s) := ξ′(s)/ξ′(1). Thus, (59) follows from

f(1) =
1∫

0

ξ′′(r)dr(
B − ν̂(r)

)2 − 1 = δ

z(1 − δ)(1 − δ + δ) − 1 = 0.

In addition, we compute

1∫
u

s∫
0

ξ′′(r)dr(
B − ν̂(r)

)2 ξ′′(s)ds

= 1
(1 − δ)z

1∫
u

δw(s)ξ′′(s)ds
1 − δ + δw(s)

= 1
(1 − δ)z

1∫
u

(
1 − 1 − δ

1 − δ + δw(s)

)
ξ′′(s)ds

= 1 + z

z

1∫
u

(
ξ′′(s) − ξ′′(s)

1 + zξ′(s)
ξ′(1)

)
ds

= 1 + z

z

(
ξ′(1) − ξ′(u)

)
− (1 + z)ξ′(1)

z2

(
log

(
1 + zξ′(s)

ξ′(1)

)∣∣∣1
u

)

= 1 + z

z

(
ξ′(1) − ξ′(u)

)
− (1 + z)ξ′(1)

z2

(
log(1 + z) − log

(
1 + zξ′(u)

ξ′(1)

))
,

and

1∫
u

sξ′′(s)ds = ξ′(1) − ξ′(u)u−
(
ξ(1) − ξ(u)

)
.

Combining these two equations together and applying (13) yield

f̄(u) =
1∫

u

( s∫
0

ξ′′(r)dr(
B − ν̂(r)

)2 − s
)
ξ′′(s)ds

= ξ(1) − ξ(u) − ξ′(1) + ξ′(u)u + 1 + z

z

(
ξ′(1) − ξ′(u)

)
− (1 + z)ξ′(1)

z2

(
log(1 + z) − log

(
1 + zξ′(u)

ξ′(1)

))
= −ζ(u).

This gives (58). As for (60), it can be justified by
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P(B, ν) = 1
2

(
Δ−1 − (ξ′(1) − ξ(1))A + 1

A
log 1

1 − δ

)

= 1
2

(√
(1 + z)ξ′(1) − z(ξ′(1) − ξ(1))√

(1 + z)ξ′(1)
+

√
(1 + z)ξ′(1)

z
log(1 + z)

)

= 1
2
√

(1 + z)ξ′(1)

(
(1 + z)ξ′(1) − z(ξ′(1) − ξ(1)) + (1 + z)ξ′(1)

z
log(1 + z)

)

= 1
2
√

(1 + z)ξ′(1)

(
ξ′(1) + zξ(1) + zξ′(1)

( ξ(1)
ξ′(1) + 1

z

))

= ξ′(1) + zξ(1)√
(1 + z)ξ′(1)

. �

Proof of Theorem 5. Assume that the Parisi measure ρP is 1RSB with suppρP = {0}. 
If cp = 0 for all even p ≥ 4, then ξ(s) = s2. In this case, we learn from (11) that ρP must 
be RS, a contradiction. Thus, cp > 0 for at least one even p ≥ 4. We prove that ζ ≤ 0
on [0, 1]. Write

νP (ds) = AP 1[0,1)(s)ds + ΔP δ{1}(ds) (61)

for some AP , ΔP > 0. Recall the variational representation (3). It is known from [7, The-
orem 2] that the optimality of νP in the Crisanti–Sommers formula yields the following 
two equations

1∫
0

(
ξ′(s) −

s∫
0

dr

νP ([r, 1])2
)
ds = 0,

1∫
0

ds

νP ([s, 1])2 = ξ′(1).

Plugging (61) into these equations gives

1
A2

P

log
(
1 + AP

ΔP

)
− 1

AP (AP + ΔP ) = ξ(1), (62)

1
ΔP (AP + ΔP ) = ξ′(1). (63)

A substitution of (62) by (63) yields

ΔP (AP + ΔP )
A2

P

ξ′(1) log
(
1 + AP

ΔP

)
− ΔP

AP
ξ′(1) = ξ(1).

If we let z = AP /ΔP , then this equation coincides with (13). Furthermore, from (63), 



584 A. Auffinger, W.-K. Chen / Advances in Mathematics 330 (2018) 553–588
we obtain

AP = z(1 + z)−1/2ξ′(1)−1/2,

ΔP = (1 + z)−1/2ξ′(1)−1/2,

to get (16) and (17). Now by comparing the two formulas (3) and (28) and letting 
B = ξ′′(1)ΔP + Δ−1

P , since a direct verification gives

Q(νP ) = ξ′(1) + zξ(1)√
(1 + z)ξ′(1)

= P(B, νP ),

we see that BP = B by Theorem 10. Next, recall the functions f, f̄ associated to (BP , νP )
and h = 0 from Proposition 3. Then Proposition 3 and Lemma 5 together imply that 
−ζ(s) = f̄(s) ≥ 0 for all s ∈ [0, 1]. This validates (15).

Conversely, assume that cp > 0 for at least one even p ≥ 4 and (15) is valid. From 
Lemma 5, recall the pair (B, ν) and note f̄(s) = −ζ(s). From (15) and (58), it follows that 
f̄(s) ≥ 0 on [0, 1] and f̄(0) = 0. In addition, f(1) = 0 by (59) and ρ(S) = A = ρ([0, 1))
since 0 ∈ S, where S = {s ∈ [0, 1) : f(s) = 0} and ρ the measure induced by ν. These 
together imply that (B, ν) must be the minimizer of P by Proposition 3. This means 
that the Parisi measure is 1RSB with suppρP = {0}. Finally the validity of (16) and 
(17) follows by Lemma 5. �
Proof of Theorem 6. Assume that h = 0 and (18) holds. We verify the following inequal-
ity: For any 0 < ε < 1/2, there exists some η > 0 such that

lim sup
N→∞

MCEN

(
[−1 + ε,−ε] ∪ [ε, 1 − ε]

)
< 2ME − η.

Recall (B, ν) from (57) and δ, A, Δ from (57). Let u ∈ [−1, 1] with ε ≤ |u| ≤ 1 − ε. 
Denote a = |u|. For 0 < m < 2, set

νm(ds) = A
(
m1[0,a)(s) + 1[a,1)(s)

)
ds + Δδ{1}(ds).

Note that for s ∈ [0, 1),

B − ν̂m(s) =B −
1∫

s

ξ′′(r)νm(dr)

=Δ−1 −A
(
m(ξ′(a) − ξ′(s)) + ξ′(1) − ξ′(a)

)
1[0,a)(s)

−A
(
ξ′(1) − ξ′(s)

)
1[a,1)(s).

Then
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1∫
0

ξ′′(s)
B − ν̂m(s)ds

= 1
Am

log
(
Δ−1 −Am(ξ′(a) − ξ′(s)) −A(ξ′(1) − ξ′(a))

)∣∣∣a
0

+ 1
A

log
(
Δ−1 −A(ξ′(1) − ξ′(s)

)∣∣∣1
a

= 1
Am

log Δ−1 −A(ξ′(1) − ξ′(a))
Δ−1 −Amξ′(a) −A(ξ′(1) − ξ′(a)) − 1

A
log Δ−1 −A(ξ′(1) − ξ′(a))

Δ−1

= 1
Am

log 1 −AΔ(ξ′(1) − ξ′(a))
1 −AΔmξ′(a) −AΔ(ξ′(1) − ξ′(a)) − 1

A
log

(
1 −AΔ(ξ′(1) − ξ′(a)

)

= 1
Am

log 1 − δ(1 − w(a))
1 − δmw − δ(1 − w(a)) − 1

A
log

(
1 − δ(1 − w(a))

)

for w(a) := ξ′(a)/ξ′(1). In addition,

1∫
0

sξ′′(s)νm(ds) = Am

a∫
0

sξ′′(s)ds + A

1∫
a

sξ′′(s)ds + ξ′′(1)Δ

= Am(aξ′(a) − ξ(a)) + A
(
ξ′(1) − ξ(1) − (aξ′(a) − ξ(a))

)
+ ξ′′(1)Δ

= −A(aξ′(a) − ξ(a))(1 −m) + A(ξ′(1) − ξ(1)) + ξ′′(1)Δ.

From these two equations,

Pu(B, 0, νm) =
1∫

0

ξ′′(s)
B − ν̂m(s)ds + B −

1∫
0

sξ′′(s)νm(ds)

= Δ−1 + A(aξ′(a) − ξ(a))(1 −m) −A(ξ′(1) − ξ(1))

+ 1
Am

log 1 − δ(1 − w(a))
1 − δmw(a) − δ(1 − w(a)) − 1

A
log

(
1 − δ(1 − w(a))

)
.

In particular, if m = 1, from the first equality and (17),

Pu(B, 0, ν1) = 2P(B, ν) = 2ME .

Next,

∂mPu(B, 0, νm)
∣∣∣
m=1

= −A(aξ′(a) − ξ(a)) + 1
A

log 1 − δ

1 − δ(1 − w) + δw(a)
A(1 − δ)

= A
(
−(aξ′(a) − ξ(a)) + 1

2 log 1 − δ + δw(a)
2

)

A 1 − δ(1 − w(a)) A (1 − δ)
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= A
(
−(aξ′(a) − ξ(a)) − ξ′(1)(1 + z)

z2 log(1 + w(a)z) + ξ′(1)w(a)(1 + z)
z

)
= Aζ(a),

where ζ is defined in (14). Since ζ < 0 on (0, 1),

∂mPu(B, 0, νm)
∣∣∣
m=1

< 0.

Since (u, m) �→ ∂mPu(B, 0, νm) is continuous on {u : ε ≤ |u| ≤ 1 − ε} × [0, 2], from 
the mean value theorem, there exist m around 1 and η > 0 such that for any u with 
|u| ∈ [ε, 1 − ε],

Pu(B, 0, νm) ≤ Pu(B, 0, ν1) − 4η

= 2ME − 4η.

Therefore, from Theorem 11, for any u satisfying |u| ∈ [ε, 1 − ε],

lim
ε′↓0

lim sup
N→∞

MCEN

(
(u− ε′, u + ε′)

)
< 2ME − 4η.

The assertion (19) then follows by an identical argument as the proof of Theo-
rem 2(ii). �
Proof of Theorem 7. Recall ζ from (14). Our goal is to show that ζ < 0 on (0, 1). Observe 
that ζ(0) = ζ(1) = 0. Computing directly gives

ζ ′(s) = ξ′′(s)(1 − s) − ξ′(1)(1 + z)
z

ξ′′(s)
ξ′(1) + zξ′(s) + ξ′′(s)

z

= ξ′′(s)
z(ξ′(1) + zξ′(s)

(
z(1 − s)(ξ′(1) + zξ′(s)) − ξ′(1)(1 + z) + ξ′(1) + zξ′(s)

)

= − sξ′′(s)
ξ′(1) + zξ′(s)

(
ξ′(1) + zξ′(s) − ξ′(s)

s
(1 + z)

)

= −ξ′(1)ξ′(s)ξ′′(s)φ(s)
ξ′(1) + zξ′(s) ,

where

φ(s) := s

ξ′(s) + zs

ξ′(1) − 1 + z

ξ′(1) , s ∈ [0, 1].

Observe that from (20),

φ(0) = 1
′′ − (1 + z)

′ > 0.

ξ (0) ξ (1)
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If cp = 0 for all even p ≥ 4, then z = 0 and φ(0) = 0, which contradicts the above 
inequality. Thus, we may assume that cp 
= 0 for at least one even p ≥ 4. From this and 
(21),

s

ξ′(s) + zs

ξ′(1)

is a convex function on (0, 1). Since φ(1) = 0, we conclude that on (0, 1) φ has at most 
one zero and therefore, ζ < 0 on (0, 1). �
Proof of Corollary 1. Our proof relies on Theorem 7. Note that p, q ≥ 4 implies ξ′′(0) =
0, so the condition (20) is satisfied. To verify (21), we denote ψ(s) = ξ′(s)/s and compute

d2

ds2
1

ψ(s) = 1
ψ(s)2

(
2ψ′(s)2 − ψ(s)ψ′′(s)

)
.

Since

ψ(s) = pcsp−2 + q(1 − c)sq−2,

a long computation yields

2ψ′(s)2 − ψ(s)ψ′′(s) = c2(p− 2)(p− 2)p2s2p−6 + (1 − c)2(q − 2)(q − 1)q2s2p−6

− c(1 − c)pq
(
3(p + q) + (p− q)2 − (2pq + 4)

)
sp+q−6.

Here the second line of this equation is nonnegative provided the assumption (22) is in 
force. �
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