Informer: Irregular Traffic Detection for Containerized
Microservices RPC in the Real World

Jiyu Chen Heqing Huang Hao Chen
University of California, Davis ByteDance Inc. University of California, Davis
jiych@ucdavis.edu huangheqing@bytedance.com chen@ucdavis.edu

ABSTRACT

Containerized microservices have been widely deployed in industry.
Meanwhile, security issues also arise. Many security enhancement
mechanisms for containerized microservices require predefined
rules and policies. However, it is challenging when it comes to
thousands of microservices and a massive amount of real-time
unstructured data. Hence, automatic policy generation becomes
indispensable. In this paper, we focus on the automatic solution for
the security problem: irregular traffic detection for RPCs.

We propose Informer, which is a two-phase machine learning
framework to track the traffic of each RPC and report anomalous
points automatically. Firstly, we identify RPC chain patterns by
density-based clustering techniques and build a graph for each
critical pattern. Next, we solve the irregular RPC traffic detection
problem as a prediction problem for time-series of attributed graphs
by leveraging spatial-temporal graph convolution networks. Since
the framework builds multiple models and makes individual pre-
dictions for each RPC chain pattern, it can be efficiently updated
upon legitimate changes in any of the graphs.

In evaluations, we applied Informer to a dataset containing more
than 7 billion lines of raw RPC logs sampled from an large Ku-
bernetes system for two weeks. We provide two case studies of
detected real-world threats. As a result, our framework found fine-
grained RPC chain patterns and accurately captured the anomalies
in a dynamic and complicated microservice production scenario,
which demonstrates the effectiveness of Informer.

KEYWORDS
containers, microservices, GCN, RPC, anomaly detection

ACM Reference Format:

Jiyu Chen, Heqing Huang, and Hao Chen. 2019. Informer: Irregular Traffic
Detection for Containerized Microservices RPC in the Real World. In SEC '19:
ACM/IEEE Symposium on Edge Computing, November 7-9, 2019, Arlington,
VA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3318216.
3363375

1 INTRODUCTION

The containerized microservice architecture, which makes each
module of the application loosely-coupled, easy to maintain, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC ’19, November 7-9, 2019, Arlington, VA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6733-2/19/11...$15.00
https://doi.org/10.1145/3318216.3363375

more elastic for dynamic service volumes, is prevalently applied by
companies to provide all kinds of internal applications and public
services. In 2014, Google released Kubernetes [8], aiming for au-
tomated container deployment, scaling, and management, which
has become the standard container orchestration platform in the
industry. Meanwhile, security issues inside the architecture are
frequently exposed by the community, and security strategies are
attracting more concerns. For example, many security enhancement
mechanisms require rules and policies to control access, resources,
and behavior of each container. However, in large enterprises that
maintain various applications, there can be thousands of contain-
ers. It is infeasible to make policies for each container manually.
Therefore, policy automation becomes an indispensable direction
in security solutions for such complex systems.

In this paper, we are interested in the following problem: since
microservices are deployed in different containers and machines,
they need to communicate by remote procedure calls (RPCs) to
provide the complete functionality. Once some of the containers
were compromised, or malicious users were abusing the public APIs
we provided, there could be unusual changes in RPC traffic. Our
research question is, can we make irregular RPC traffic detection
automatically in a simple yet effective framework?

To that end, we aim to design a machine learning framework
for irregular RPC traffic detection by predicting future traffic, and
detect anomalous traffic activities based on the predictions. We
propose to represent RPC traffic at each time point as a directed,
weighted, and attributed graph where each node stands for an RPC.
The attributes of each node include RPC traffic, which is how many
times the RPC is called in a fixed time period. The edges and weights
represent the dependency among these RPCs, such as the order of
the calls. With such representations, we can obtain a time-series of
graphs after observing the RPC logs for a while. Hence, our task
becomes making predictions given a time-series of graphs.

Machine learning techniques have shown promising perfor-
mance in various security-related tasks, such as malware detection
and intrusion detection. However, traditional machine learning
models can hardly handle graphs and time-series simultaneously.
To address this problem, graph convolution networks (GCNs) have
attracted much attention in recent year. Compared with traditional
graph analysis techniques, GCNs are advanced in their capability of
extracting spatial information from the complex graph-structured
data. Moreover, they can also be combined with other deep learning
modules such as recurrent units to extract temporal information,
which becomes spatial-temporal graph convolution networks.

After further analyzing the real-world RPC data, we found that
the main challenge of modeling RPC graphs by GCNs is the large
number of unique RPCs existing in the system. It would be time-
consuming, error-prone, and hard-to-update if we built a unified

SEC ’19, November 7-9, 2019, Arlington, VA, USA

model to track all the RPCs at the same time. However, one fact
is that not all RPCs are related to each other. Usually, one RPC
is only dependent on a small group of RPCs in an RPC chain to
finish a target functionality. Hence it would be a good idea to build
independent models for different groups of RPCs.

Taking into account the aforementioned considerations, we pro-
pose Informer, a two-phase irregular RPC traffic detection frame-
work. In the first phase, we define the distance between two RPC
chains and apply the density-based clustering technique DBSCAN
to find different RPC chain patterns. In the second phase, we build
a spatial-temporal graph convolution network DCRNN for each
critical RPC chain pattern, instead of a unified model. Then we
make predictions and anomaly detection based on the observations
of the RPC traffic in previous timesteps. In evaluations, we demon-
strate the effectiveness of Informer by applying it to a large dataset
sampled from raw RPC logs in a real-world Kubernetes production
system, which faces billions of daily active users. The results show
that our framework is capable of finding fine-grained RPC chain
patterns and accurately predicting the behavior of all RPCs.

2 BACKGROUND

Containerized microservices. The microservice is an architec-
ture that decouples an application into multiple individule services.
Each microservice works independently for a small functionality of
the application and locates in a different container. A container is a
standard unit of software that packages up code and all its depen-
dencies, so the application runs quickly and reliably from one com-
puting environment to another [4]. The containerized microservice
architecture benefits from its advantage of high maintainability and
has become the mainstream strategy of application deployments.
Currently, the most widely used system for automating deploy-
ment, scaling, and management of containerized applications is
Kubernetes [8]. Though having much success, the containerized
microservice architecture also has its fallbacks. One main limitation
is that the complexity of the entire system increases significantly
with the number of microservices.

Graph Convolution Networks. Graph convolution networks
are designed to learn features from complex graph-structured data.
Graphs are non-euclidean, which means regular image convolution
layers cannot be directly applied to graphs. In general, there are
two ways to define graph convolutions. The first is the spectral
graph convolution, which leverages the spectral graph theory [7].
The second is the spatial graph convolution, which samples the
neighbors of each node and aggregates their features for each filter.
Since spectral convolutions only support undirected graphs, we
only consider spatial convolutions. The diffusion convolution [1] is
one of the spatial graph convolutions designed to train on directed
graphs. The diffusion graph convolution layer is defined as:

K
H= Z FOM D IWkx)
k=0
where f(-) is the activation function, D = diag(s;) is the diagonal
matrix which contains the sum s; of each row, A is the attribute
matrix, and ©%) is the parameter of the k;j, filter.
Graph convolution networks are deep neural networks with
graph convolution layers. Classic deep learning architectures for

Jiyu Chen, Heqing Huang, and Hao Chen

images and texts can be combined with GCNS, such as graph autoen-
coders [2, 13], graph attention networks [11, 15], spatial-temporal
graph convolution networks [9, 14].

3 METHODOLOGY

3.1 Data representation

Before discussing how we process and represent data, we provide
definitions to prevent confusion in the context:

e RPC RPCs or remote procedure calls are made between two

methods in different containers to provide a functionality col-

laboratively. Generally, we make each container locate on a

(logically) different machine. Note that there can be multiple

methods inside the same container. We can consider either

fine-grained RPCs made between two methods or coarse-
grained RPCs made between two containers, depends on
our requirements and computation resources. Moreover, the
same container can be duplicated and deployed on multiple
machines to provide concurrency, so we can also consider
even more fine-grained RPCs made between two pairs of

(method, container, machine).

RPC traffic The traffic of an RPC is the number of times the

RPC is called during a fixed period of time.

RPC log The system will log each RPC, which is the raw RPC

log. Fields of each log include the source method/container,

destination method/container, and the timestamp. An RPC
log also contains a field of chain ID identifying which in-
stance of functionality that the RPC belongs to.

e RPC chain A functionality usually requires a set of RPCs.
These RPCs can form a chain of calling dependencies, which
we refer as an RPC chain. By gathering all the RPC logs with
the same chain ID and ordering them by time, we can obtain
an RPC chain instance. The RPC chain instances can vary for
the same functionality, depends on real-time conditions. In
the context of this paper, each model will be built upon an
RPC chain pattern which contains all RPCs that are possibly
required by the functionality.

e RPC graphs A static RPC graph Gsatic =< V,E,W > isa
graph build from a set of related RPCs, where V is the node
set with each node representing an RPC and E is the edge set
with each edge representing an RPC dependency. A temporal
RPC graph G =< Gstatics X¢ > is a static RPC graph with
an attribute matrix X; at timestep ¢.

Now we introduce how we build RPC graphs. The procedure
for generating static RPC graphs is in algorithm 1. The RPC set C
stores RPCs in the form of (src, dst). We directly assign the RPC
set C to the node set V, which means nodes in the graph are RPC
source and destination pairs. There is an edge between two nodes
when they share the same source or destination, specifically: when
A and B are dependent (one’s destination is another’s source), there
is a directed edge from A to B (or B to A) with weight 1.0; when A
and B share same source or destination, there is both an edge from
A to B and from B to A with weight 0.5 (or any empirical value
depends on the real situations).

To build the temporal RPC graph, we go through the raw RPC
logs, compute the traffic (and other attributes that we are interested

Informer: Irregular Traffic Detection for Containerized Microservices RPC in the Real World

Algorithm 1: Generate RPC graph from a given RPC set.
Input: An RPC set S
Result: The static RPC graph G, The adjacency matrix A
V « S;
E « empty_set();
A « empty_matrix(shape = V.len() x V.len());
for i < 0 toV.len() do
for j « i toV.len() do
if V[i].src == V[j].src or V[i].dst == V[j].dst then
E.add([(V[il. VD, (Vi1 VIDD:

Ali, j] < 0.5;
A[j,i] « 0.5;
end

-

if V[i].src == V[j].dst then
E.add((V[jl, V[iD));

Alj,i] < 1;
end
if V[i].dst == V[j].src then
E.add((V[i], V[jD);
Al jl < 1
end
end
end
G « (V,E);

return G, A;

in) for each time period. Intuitively, RPC traffic should be calcu-
lated from RPC chain instances but not unordered raw RPC logs.
However, in real-world, since the number of new logs per second
is way too large for us to extract complete RPC chain instances, we
can hardly obtain a complete chain. Instead, we can only compute
from the raw data where chains are mixed.

3.2 RPC chain pattern mining

In real-world, a microservice system can have thousands of different
microservices distributed in even more containers. It is unfavorable
to build a unified model for the entire RPC set. The main reason
is that it is hard to maintain the large model when new RPCs are
coming in, and old RPCs are being deprecated very frequently. It
costs expensive resources to retrain the model. The second reason
is that sometimes we only want to track a small subset of RPCs.

Instead of the unified model, we build an independent model for
each RPC chain pattern, since RPCs made inside a chain pattern
are highly related, while RPCs made among chain patterns are
not, which is illustrated in Figure 1. Thus, the first phase of our
framework is identifying all RPC chain patterns from a set of RPC
chain instances.

Formally, suppose S is the set of all RPCs, and C = {Cy, ..., Cy|C; C
C} denotes a set of RPC chain instances we observed for a long
enough time period. Our task is to find a set {Si,...,S¢|S; C S},
where each element S; is an RPC chain pattern that contains all the
RPCs that are dependant and related to a same functionality.

We propose to apply clustering techniques, under the observa-
tion that RPC chain instances of the same functionality have similar

SEC ’19, November 7-9, 2019, Arlington, VA, USA

RPC chain pattern 1 /8@
e

z (4
b o RPC chain pattern 3
< Y P
| o = = § -
< > T L]
- § 3
3 AN I |
== ; ° o
z e ! - _a ' °
. -
o
. i i
RPC chain pattern 2 ™

Figure 1: Illustration of RPC chain patterns. Each circle is
an RPC chain pattern. Solid arrows are intra-cluster depen-
dencies, and dotted arrows are inter-cluster dependencies.

RPCs. Since we do not know the total number of different chain pat-
terns in advance, we leverage the density-based clustering method
DBSCAN [5]. For clustering, we define the distance metric between
two sets A and B by the overlap coefficient [12]:

|A N B

d(A.B) =1- AT Bl

The procedure for RPC chain clustering is shown in algorithm 2.
Note that two different RPC chain patterns S; and S; may con-
tain same RPCs, which means there exist some chain instances
C;,C; C S;,Cj C Sj such that d(C;,Cy) = d(Cj,Cj) = 0, so that
two chain patterns might be combined into one cluster. To eliminate
the influence of shared RPCs, we put all the C; into a noise point
set R which satisfy: 3j # i, such that d(C; € C;. The rest C; follow
the original clustering algorithm. Finally, each of the RPC chain
pattern is the union of all the RPC chain instances in each cluster.

Algorithm 2: RPC chain clustering

Input: An RPC chain instance set C, min points in a cluster
min_pts, epsilon eps, distance function d
Result: The RPC chain pattern set S
R «— empty_set();
for i « 0 toC.len() do
for j « i+ 1 toC.len() do
if d(C[i], C[j]) == 0 then
| R.add(min_len(C[i], C[j]);
end
end
end
C « C.substract(R);
clusters < DBSCAN(C, min_pts, eps,d);
for cluster in clusters do
| S.add(union(cluster))
end
return S;

SEC ’19, November 7-9, 2019, Arlington, VA, USA

After we obtained the RPC chain patterns set S, we can either
perform irregular traffic detection for all RPC chain patterns or only
select the RPC chain patterns that contain RPCs of our interests
(e.g., RPC that creates a new user). This phase can significantly
decrease the overhead when we need to update the models since
each model works independently.

3.3 Irregular RPC traffic detection

Now we address the irregular RPC traffic detection problem for a
selected RPC chain pattern. Assume that we have a stable RPC chain
pattern, which means no RPC will be modified during a long enough
time period. Essentially, we have a time-series of attribute matrices
with the same static graph, and we want to predict the attributes
of next (or next several) timestep based on previous observations.

Formally, we have a static graph G =< V,E,W > of the RPC
chain pattern, where V is the node set, E is the edge set and W is
the weighted adjacency matrix. At each timestep ¢, the attributes
of each node is represented as an matrix X; € R™™ where n = |V|
is the number of nodes and m is the number of attributes. When
we only consider the traffic, m = 1. Then the irregular RPC traffic
detection problem becomes given a time-series X: [X;_g, ..., Xz-1],
make prediction of the next k time steps [X, ..., X;,x_1], and learn
a function f(X,X) : R™™ x R™™ — R which take as input
the predictions and the real observations, and output the anomaly
classifications of the observations.

We propose to apply spatial-temporal graph convolution net-
works to simultaneously learn spatial features of the graph and
temporal features of the time-series. Spatial-temporal graph con-
volution networks are GCNs that combine with temporal units
such as the Gated Recurrent Unit (GRU) [3] to learn from graph
time-series. In our work, we leverage the Diffusion Convolution
Recurrent Neural Network (DCRNN)[9] to model our graphs. The
DCRNN leverages bidirectional diffusion convolutions to take into
account both upstream and downstream neighbors of each node.
The bidirectional diffusion convolution is defined as:

K
O *g X = Z(@ik)(DW_IW)k + 68 Dy TWTYR)X
k=0
where © = [010;] is the filter parameters, X is the attribute matrix,
K is the number of diffusion steps, W is the adjacent matrix, Dy is
the diagonal matrix of the sum of each of the rows in W.

Combining the diffusion convolution layer with the GRU, we get
the DCGRU, which is defined as follows:

) = 6(0, *g [XV,H!"V] +b,)
u® = 5(0, *g [XY,H! D] +by)
€ = tanh(0¢ *g [XY, (' 0 H! V)] + be)

HO = 4 o HED 4 (1 - u®) o

where O are filter parameters, X1 and HY is the input and the
output of time step ¢.

On top of the DCGRU layers, the DCRNN refers to the famous
seq2seq model which leverages an encoder-decoder architecture
[10] to predict the attributes for each RPC simultaneously.

Jiyu Chen, Heqing Huang, and Hao Chen

After we obtained the predictions of the RPC traffic from the
DCRNN, we can perform anomaly detection. The most straightfor-
ward way would be manually setting thresholds on the prediction
loss. On the other hand, it would be better if we automated the
setting of thresholds under the assumption that the noises between
the observations and the real underlying patterns, which are ap-
proximated by the models, satisfy the normal distribution. We can
set the threshold using the testing data as follows:

(1) Compute the mean p and the standard deviation o of the
test errors from the predictions;

(2) The errors satisfy the empirical rule, so we set the upper/lower
thresholds for the predictions of timestep ¢ as (X; + M £3%X),
where M, € R™™ are the mean value matrix and the stan-
dard deviation matrix for each entry in E; = X; — X;.

4 EVALUATION

4.1 Experiment configurations

4.1.1 Dataset preparation. In section 3, building the framework
requires two data sets: a set of RPC chain instances, and a series of
attribute matrices. In our experiments, we uniformly sampled 10*
RPC chain IDs within 24 hours, which are then used for finding
the RPC chain instances. In the experiment, after we clustered
these chain instances into chain patterns, we selected an RPC chain
pattern with 51 RPCs that are related to user services.

The attribute matrices are generated from logs which are uni-
formly and real-timely sampled raw RPC logs from a real-world
Kubernetes system. Due to the massive data traffic, we only sam-
pled a small portion of raw logs. Specifically, we generated a data
point for a time interval of y = 20 (minutes), with around 7-million
lines of sampled raw RPC logs per interval.

We continuously sampled for two weeks, leading to a dataset
with % X 24 X7 X2 = 1008 data points. We set 80% of the dataset to
be the training set, and the rest to be the validation/test set. Since
the magnitude of the traffic varies from 0 to 10°, we took logarithms
of the RPC traffic in the training process to reduce data fluctuations
and took exponentiations in evaluations.

4.1.2 Models. We have two models in the framework:

DBSCAN: As described in algorithm 2, we apply the DBSCAN
clustering algorithm to obtain chain patterns. The parameters of
the DBSCAN are as follows: the minimum number of points inside
a cluster min_pts=1, the radius for neighbor searching eps=0.05.

DCRNN: The DCRNN model has 2 layers of DCGRU with bidi-
rectional diffusion convolution. Each DCGRU has 64 RNN units. The
maximum diffusion step K=2, and the model will predict attribute
matrices in 5 future timesteps. Some other training parameters
are listed as follows: using the Adam optimizer, learning rate=0.01,
learning rate decay ratio=0.1, max epoch=100 with early stopping.
The detailed parameters can be found in [9].

4.1.3 Environment. The experiments were run in Python3.7 + Ten-
sorflow 1.13, on an Intel Xeon E5-2630v4 CPU, and an NVIDIA
TESLA V100 GPU.

4.2 RPC chain mining

We compare clustering with a simple strategy: building a large
graph containing the union of all the RPCs inside the 10* RPC

Informer: Irregular Traffic Detection for Containerized Microservices RPC in the Real World

chain instances by algorithm 1, and then find RPC chain patterns
by looking for connected components inside the large graph. In the
end, each connected component is an RPC chain pattern.

10? 10?

10° L1 11 L J10° 1
0 100 200 300 400 0 500 1000 1500 2000 2500 3000 3500 4000

(a) DBSCAN (b) Connected components

Figure 2: Histogram of the number of unique RPCs inside a
RPC chain pattern obtained by two methods.

Figure 2 is the histogram showing the number of unique RPCs
inside each RPC chain pattern. Since many RPCs work individually
and independently, we can see that most of the RPC chain patterns
obtained by both methods contain a single RPC. Besides, from
Figure 2a we can see that all the chain patterns obtained by DBSCAN
clustering have tens to hundreds of unique RPCs. Meanwhile, in
Figure 2b there is a dominant chain pattern with more than 4000
RPCs, and the rest chain patterns are all tiny RPC patterns.

This is reasonable since many RPC chain patterns contain a
same subset of RPCs, there definitely will be a dominant connected
component containing most of the RPCs inside the graph, leading
to the situation of building a large unified model which we want
to circumvent. Instead, by applying the clustering strategy, we can
find more fine-grained RPC chain patterns with smaller scales and
make our model more light-weighted and flexible.

4.3 Irregular RPC traffic detection

Table 1 shows the performance of the trained model for our selected
RPC chain pattern. We quantify the model’s prediction performance
from three different metrics:

e Mean Absolute Error MAE = % X% = xil
e Mean Absolute Percentage Error MAPE = % Z?Zl |’C"x;i’c”|

e Root Mean Square Error RMSE = l% 2 &= xi)?

We can see that the model can make pretty well prediction on the
future five steps, while the first prediction has the best performance.

Table 1: Model performance on 5-step future predictions

m MAE MAPE RMSE

1 0.24 0.0379 0.33
2 0.24 0.0393 0.35
3 0.24 0.0390 0.34
4 0.25 0.0400 0.35
5 0.25 0.0404 0.35

SEC ’19, November 7-9, 2019, Arlington, VA, USA

1200
1 J
1000 f {

00 A i

600 4

f .
Y ‘L-“'\J)‘\-
400 / I

/

200 /
\ 4 / W/
. /" = L \l"

0 3 50 75 100 125 150

Figure 3: Traffic prediction of a randomly selected RPC. X-
axis is the timeline, Y-axis is the traffic. The orange curve is
the real observation, and the blue curve is the prediction.

Figure 3 shows the predictions of a randomly selected RPC of the
coming two days. We can observe that though the traffic has a pe-
riodical changing trend, there exists no universal pattern. Nonethe-
less, we see that the model can well-capture the changing trend of
the RPC traffic with a smooth prediction curve, despite the noises
in the real-world data, indicating the model indeed is capable of
making predictions based on the observations of the past timesteps.

4.4 Case study

We perform two case studies of real-world malicious traffic to
demonstrate the effectiveness of Informer in anomaly detection.

Case study 1: Batch resgiration. Batch registration of bot ac-
counts is illegal behavior that is commonly found in real-world
applications. These bot accounts will be used for other hacking
services for the black market, from fake followers to scamming.
Maintainers of the applications need to detect the bot accounts as
sooner to the time they are registered as possible.

In this case, we focus on the RPC that is used to perform human-
machine validation, which is a mandatory step for account regis-
tration. Each registration at least requires one (but not too many)
human-machine validation RPC. When malicious users did batch
registration, the traffic of this RPC would significantly increase.

Case study 2: Account cracking. Account cracking is another
case where malicious users abuse the public APIL. Currently, most of
the applications support retrieving forgotten accounts, which have
been bound to a mobile number, by the Short Message Service (SMS)
via mobile phone. Once the users type in the correct validation codes
sent by the service, they will be validated as legal users.

In this case, we focus on the RPC that sends requests to the SMS
server. If the malicious users want to crack accounts violently, they
have to send a large number of requests in a short time.

Figure 4 shows the result of the case studies, where each upper
threshold is computed based on the mean p and standard deviation
o of the MAE (after exponentiations) as discussed in subsection 3.3.
From Figure 4a we can see that there are three anomalous points at
two significant increments of RPC traffic, the first one is at timestep
18, and the other two are at timestep 71 and 72. Similarly, from

SEC ’19, November 7-9, 2019, Arlington, VA, USA

7001 (1,0)=(5.54,24.35) X 7000
600 6000
500 5000
400 . 4000
300 R 3000
200 2000
100 1000

0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

(a) Batch registration (b) Account cracking
Figure 4: Case study: The orange curve is the real observa-
tion, the blue curve is the prediction, the red dotted curve is
the upper threshold, and crosses are anoamlous points.

Figure 4b we can see that there are two anomalous points at timestep
15 and 50. We manually checked the raw RPC logs during these
time periods and found that all these points are anomalous or at
least some users made irregular behavior.

Discussion. From Figure 3 and Figure 4, we can see the real-
world observations have much more noises than the predictions. It
is common in real-world that the data are noisy, especially when
sampling, which makes the curves fluctuate significantly. The noises
in the real-world may cause false positives in the predictions. How
to mitigate the influence of these noises will be an important future
work when applying the model to large real-world systems.

5 RELATED WORK

The irregular RPC traffic detection is similar to road traffic forecast-
ing, where several spatial-temporal graph convolution networks
have been explored. For example, STGCN [14] combines 1-D con-
volution layers with graph convolution layers; ASTGCN [6] adds
attention mechanisms to STGCN to further capture the dynamic
spatial-temporal information; and DCRNN [9], which we leverage
in the Informer framework, makes use of the diffusion process and
the GRU. Deep learning models have shown excellent performance
in such problems, which motivated our work. On the other hand,
the core difference between our scenario and road traffic is the way
to build the graph and the scale of the data.

To the best of our knowledge, we are the first to study the prob-
lem of irregular RPC traffic detection and apply state-of-the-art
machine learning techniques in containerized microservices scenar-
ios. Our framework can handle large containerized microservice
system with thousands of RPCs and real-time data which can hardly
be handled by a unified GCN model.

6 CONCLUSION

In the past few years, more and more companies have been deploy-
ing their applications in a distributed and containerized manner. In
this paper, we focus on the automatic solution for irregular RPC
traffic detection in containerized microservice productions. For
microservice architectures, due to its characteristics of frequent
development iteration and massive data flows, it is better to build
light-weighted and distributed models instead of a unified model
for irregular traffic detection.

Jiyu Chen, Heging Huang, and Hao Chen

Under such considerations, we propose a two-phase machine
learning framework named Informer. It firstly extracts RPC chain
patterns by clustering and then builds a graph model for each RPC
chain pattern, which simultaneously learns spatial and temporal
features, to predict future RPC traffic. The framework is flexible and
easy to deploy since the model of each chain pattern is independent,
light-weighted, and easy-to-update upon changes in the system. We
evaluated our framework on billions of lines of data sampled from
a large Kubernetes system. From the results of two case studies, we
demonstrate the strength and effectiveness of Informer in detecting
real-world threats among microservices communications.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1801751.

This research was partially sponsored by the Combat Capabili-
ties Development Command Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-13-
2-0045 (ARL Cyber Security CRA). The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Combat Capabilities Development Command Army
Research Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] James Atwood and Don Towsley. 2015. Search-Convolutional Neural Networks.
CoRR abs/1511.02136 (2015). arXiv:1511.02136 http://arxiv.org/abs/1511.02136

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for learn-

ing graph representations. In Thirtieth AAAI Conference on Artificial Intelligence.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555 (2014).

[4] Docker Inc. [n.d.]. Docker: Enterprise Container Platform. https://www.docker.
com/

[5] Martin Ester, Hans-Peter Kriegel, Jérg Sander, Xiaowei Xu, et al. [n.d.]. A density-
based algorithm for discovering clusters in large spatial databases with noise.

[6] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic
Flow Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 922-929.

[7] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

[8] Kubernetes contributors. [n.d.]. Kubernetes: Production-Grade Container Or-
chestration. https://kubernetes.io/

[9] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion convolu-
tional recurrent neural network: Data-driven traffic forecasting. arXiv preprint
arXiv:1707.01926 (2017).

[10] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. CoRR abs/1409.3215 (2014). arXiv:1409.3215
http://arxiv.org/abs/1409.3215

[11] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[12] MK Vijaymeena and K Kavitha. 2016. A survey on similarity measures in text
mining. (2016).

[13] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225-1234.

[14] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph con-
volutional networks: A deep learning framework for traffic forecasting. arXiv
preprint arXiv:1709.04875 (2017).

[15] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
2018. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv preprint arXiv:1803.07294 (2018).

3

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data representation
	3.2 RPC chain pattern mining
	3.3 Irregular RPC traffic detection

	4 Evaluation
	4.1 Experiment configurations
	4.2 RPC chain mining
	4.3 Irregular RPC traffic detection
	4.4 Case study

	5 Related work
	6 Conclusion
	Acknowledgments
	References

