
Informer: Irregular Traffic Detection for Containerized
Microservices RPC in the Real World

Jiyu Chen
University of California, Davis

jiych@ucdavis.edu

Heqing Huang
ByteDance Inc.

huangheqing@bytedance.com

Hao Chen
University of California, Davis

chen@ucdavis.edu

ABSTRACT

Containerized microservices have been widely deployed in industry.

Meanwhile, security issues also arise. Many security enhancement

mechanisms for containerized microservices require predefined

rules and policies. However, it is challenging when it comes to

thousands of microservices and a massive amount of real-time

unstructured data. Hence, automatic policy generation becomes

indispensable. In this paper, we focus on the automatic solution for

the security problem: irregular traffic detection for RPCs.

We propose Informer, which is a two-phase machine learning

framework to track the traffic of each RPC and report anomalous

points automatically. Firstly, we identify RPC chain patterns by

density-based clustering techniques and build a graph for each

critical pattern. Next, we solve the irregular RPC traffic detection

problem as a prediction problem for time-series of attributed graphs

by leveraging spatial-temporal graph convolution networks. Since

the framework builds multiple models and makes individual pre-

dictions for each RPC chain pattern, it can be efficiently updated

upon legitimate changes in any of the graphs.

In evaluations, we applied Informer to a dataset containing more

than 7 billion lines of raw RPC logs sampled from an large Ku-

bernetes system for two weeks. We provide two case studies of

detected real-world threats. As a result, our framework found fine-

grained RPC chain patterns and accurately captured the anomalies

in a dynamic and complicated microservice production scenario,

which demonstrates the effectiveness of Informer.

KEYWORDS

containers, microservices, GCN, RPC, anomaly detection

ACM Reference Format:

Jiyu Chen, Heqing Huang, and Hao Chen. 2019. Informer: Irregular Traffic

Detection for ContainerizedMicroservices RPC in the RealWorld. In SEC ’19:

ACM/IEEE Symposium on Edge Computing, November 7–9, 2019, Arlington,

VA, USA.ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3318216.

3363375

1 INTRODUCTION

The containerized microservice architecture, which makes each

module of the application loosely-coupled, easy to maintain, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC ’19, November 7–9, 2019, Arlington, VA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6733-2/19/11. . . $15.00
https://doi.org/10.1145/3318216.3363375

more elastic for dynamic service volumes, is prevalently applied by

companies to provide all kinds of internal applications and public

services. In 2014, Google released Kubernetes [8], aiming for au-

tomated container deployment, scaling, and management, which

has become the standard container orchestration platform in the

industry. Meanwhile, security issues inside the architecture are

frequently exposed by the community, and security strategies are

attracting more concerns. For example, many security enhancement

mechanisms require rules and policies to control access, resources,

and behavior of each container. However, in large enterprises that

maintain various applications, there can be thousands of contain-

ers. It is infeasible to make policies for each container manually.

Therefore, policy automation becomes an indispensable direction

in security solutions for such complex systems.

In this paper, we are interested in the following problem: since

microservices are deployed in different containers and machines,

they need to communicate by remote procedure calls (RPCs) to

provide the complete functionality. Once some of the containers

were compromised, or malicious users were abusing the public APIs

we provided, there could be unusual changes in RPC traffic. Our

research question is, can we make irregular RPC traffic detection

automatically in a simple yet effective framework?

To that end, we aim to design a machine learning framework

for irregular RPC traffic detection by predicting future traffic, and

detect anomalous traffic activities based on the predictions. We

propose to represent RPC traffic at each time point as a directed,

weighted, and attributed graph where each node stands for an RPC.

The attributes of each node include RPC traffic, which is how many

times the RPC is called in a fixed time period. The edges and weights

represent the dependency among these RPCs, such as the order of

the calls. With such representations, we can obtain a time-series of

graphs after observing the RPC logs for a while. Hence, our task

becomes making predictions given a time-series of graphs.

Machine learning techniques have shown promising perfor-

mance in various security-related tasks, such as malware detection

and intrusion detection. However, traditional machine learning

models can hardly handle graphs and time-series simultaneously.

To address this problem, graph convolution networks (GCNs) have

attracted much attention in recent year. Compared with traditional

graph analysis techniques, GCNs are advanced in their capability of

extracting spatial information from the complex graph-structured

data. Moreover, they can also be combined with other deep learning

modules such as recurrent units to extract temporal information,

which becomes spatial-temporal graph convolution networks.

After further analyzing the real-world RPC data, we found that

the main challenge of modeling RPC graphs by GCNs is the large

number of unique RPCs existing in the system. It would be time-

consuming, error-prone, and hard-to-update if we built a unified

SEC ’19, November 7–9, 2019, Arlington, VA, USA Jiyu Chen, Heqing Huang, and Hao Chen

model to track all the RPCs at the same time. However, one fact

is that not all RPCs are related to each other. Usually, one RPC

is only dependent on a small group of RPCs in an RPC chain to

finish a target functionality. Hence it would be a good idea to build

independent models for different groups of RPCs.

Taking into account the aforementioned considerations, we pro-

pose Informer, a two-phase irregular RPC traffic detection frame-

work. In the first phase, we define the distance between two RPC

chains and apply the density-based clustering technique DBSCAN

to find different RPC chain patterns. In the second phase, we build

a spatial-temporal graph convolution network DCRNN for each

critical RPC chain pattern, instead of a unified model. Then we

make predictions and anomaly detection based on the observations

of the RPC traffic in previous timesteps. In evaluations, we demon-

strate the effectiveness of Informer by applying it to a large dataset

sampled from raw RPC logs in a real-world Kubernetes production

system, which faces billions of daily active users. The results show

that our framework is capable of finding fine-grained RPC chain

patterns and accurately predicting the behavior of all RPCs.

2 BACKGROUND

Containerized microservices. The microservice is an architec-

ture that decouples an application into multiple individule services.

Each microservice works independently for a small functionality of

the application and locates in a different container. A container is a

standard unit of software that packages up code and all its depen-

dencies, so the application runs quickly and reliably from one com-

puting environment to another [4]. The containerized microservice

architecture benefits from its advantage of high maintainability and

has become the mainstream strategy of application deployments.

Currently, the most widely used system for automating deploy-

ment, scaling, and management of containerized applications is

Kubernetes [8]. Though having much success, the containerized

microservice architecture also has its fallbacks. One main limitation

is that the complexity of the entire system increases significantly

with the number of microservices.

Graph Convolution Networks. Graph convolution networks

are designed to learn features from complex graph-structured data.

Graphs are non-euclidean, which means regular image convolution

layers cannot be directly applied to graphs. In general, there are

two ways to define graph convolutions. The first is the spectral

graph convolution, which leverages the spectral graph theory [7].

The second is the spatial graph convolution, which samples the

neighbors of each node and aggregates their features for each filter.

Since spectral convolutions only support undirected graphs, we

only consider spatial convolutions. The diffusion convolution [1] is

one of the spatial graph convolutions designed to train on directed

graphs. The diffusion graph convolution layer is defined as:

H =

K∑

k=0

f (Θ(k)(D−1
W)kX)

where f (·) is the activation function, D = diaд(si) is the diagonal

matrix which contains the sum si of each row, A is the attribute

matrix, and Θ
(k) is the parameter of the kth filter.

Graph convolution networks are deep neural networks with

graph convolution layers. Classic deep learning architectures for

images and texts can be combined with GCNs, such as graph autoen-

coders [2, 13], graph attention networks [11, 15], spatial-temporal

graph convolution networks [9, 14].

3 METHODOLOGY

3.1 Data representation

Before discussing how we process and represent data, we provide

definitions to prevent confusion in the context:

• RPC RPCs or remote procedure calls are made between two

methods in different containers to provide a functionality col-

laboratively. Generally, we make each container locate on a

(logically) different machine. Note that there can be multiple

methods inside the same container. We can consider either

fine-grained RPCs made between two methods or coarse-

grained RPCs made between two containers, depends on

our requirements and computation resources. Moreover, the

same container can be duplicated and deployed on multiple

machines to provide concurrency, so we can also consider

even more fine-grained RPCs made between two pairs of

(method, container, machine).

• RPC traffic The traffic of an RPC is the number of times the

RPC is called during a fixed period of time.

• RPC logThe systemwill log each RPC, which is the rawRPC

log. Fields of each log include the source method/container,

destination method/container, and the timestamp. An RPC

log also contains a field of chain ID identifying which in-

stance of functionality that the RPC belongs to.

• RPC chain A functionality usually requires a set of RPCs.

These RPCs can form a chain of calling dependencies, which

we refer as an RPC chain. By gathering all the RPC logs with

the same chain ID and ordering them by time, we can obtain

an RPC chain instance. The RPC chain instances can vary for

the same functionality, depends on real-time conditions. In

the context of this paper, each model will be built upon an

RPC chain pattern which contains all RPCs that are possibly

required by the functionality.

• RPC graphs A static RPC graph Gstatic =< V,E,W > is a

graph build from a set of related RPCs, where V is the node

set with each node representing an RPC and E is the edge set

with each edge representing an RPC dependency. A temporal

RPC graph Gt =< Gstatic,Xt > is a static RPC graph with

an attribute matrix Xt at timestep t .

Now we introduce how we build RPC graphs. The procedure

for generating static RPC graphs is in algorithm 1. The RPC set C

stores RPCs in the form of (src,dst). We directly assign the RPC

set C to the node set V, which means nodes in the graph are RPC

source and destination pairs. There is an edge between two nodes

when they share the same source or destination, specifically: when

A and B are dependent (one’s destination is another’s source), there

is a directed edge from A to B (or B to A) with weight 1.0; when A

and B share same source or destination, there is both an edge from

A to B and from B to A with weight 0.5 (or any empirical value

depends on the real situations).

To build the temporal RPC graph, we go through the raw RPC

logs, compute the traffic (and other attributes that we are interested

SEC ’19, November 7–9, 2019, Arlington, VA, USA Jiyu Chen, Heqing Huang, and Hao Chen

After we obtained the RPC chain patterns set S, we can either

perform irregular traffic detection for all RPC chain patterns or only

select the RPC chain patterns that contain RPCs of our interests

(e.g., RPC that creates a new user). This phase can significantly

decrease the overhead when we need to update the models since

each model works independently.

3.3 Irregular RPC traffic detection

Now we address the irregular RPC traffic detection problem for a

selected RPC chain pattern. Assume that we have a stable RPC chain

pattern, whichmeans no RPCwill be modified during a long enough

time period. Essentially, we have a time-series of attribute matrices

with the same static graph, and we want to predict the attributes

of next (or next several) timestep based on previous observations.

Formally, we have a static graph G =< V,E,W > of the RPC

chain pattern, where V is the node set, E is the edge set andW is

the weighted adjacency matrix. At each timestep t , the attributes

of each node is represented as an matrix Xt ∈ R
n×m where n = |V|

is the number of nodes andm is the number of attributes. When

we only consider the traffic,m = 1. Then the irregular RPC traffic

detection problem becomes given a time-series X: [Xt−s , ...,Xt−1],

make prediction of the next k time steps [X̃t , ..., X̃t+k−1], and learn

a function f (X, X̃) : R
n×m × R

n×m −→ R which take as input

the predictions and the real observations, and output the anomaly

classifications of the observations.

We propose to apply spatial-temporal graph convolution net-

works to simultaneously learn spatial features of the graph and

temporal features of the time-series. Spatial-temporal graph con-

volution networks are GCNs that combine with temporal units

such as the Gated Recurrent Unit (GRU) [3] to learn from graph

time-series. In our work, we leverage the Diffusion Convolution

Recurrent Neural Network (DCRNN)[9] to model our graphs. The

DCRNN leverages bidirectional diffusion convolutions to take into

account both upstream and downstream neighbors of each node.

The bidirectional diffusion convolution is defined as:

Θ⋆G X =

K∑

k=0

(θ
(k)
1

(DW
−1
W)k + θ

(k)
2

(DW⊺
−1
W
⊺)k)X

where Θ = [θ1θ2] is the filter parameters, X is the attribute matrix,

K is the number of diffusion steps,W is the adjacent matrix, DW is

the diagonal matrix of the sum of each of the rows inW.

Combining the diffusion convolution layer with the GRU, we get

the DCGRU, which is defined as follows:

r
(t)
= σ (Θr ⋆G [X(t)

,H
(t−1)] + br)

u
(t)
= σ (Θu ⋆G [X(t)

,H
(t−1)] + bu)

C
(t)
= tanh(ΘC ⋆G [X(t)

, (r(t) ⊙ H
(t−1))] + bC)

H
(t)
= u

(t) ⊙ H
(t−1)

+ (1 − u
(t)) ⊙ C

(t)

where Θ are filter parameters, X(t) and H
(t) is the input and the

output of time step t .

On top of the DCGRU layers, the DCRNN refers to the famous

seq2seq model which leverages an encoder-decoder architecture

[10] to predict the attributes for each RPC simultaneously.

After we obtained the predictions of the RPC traffic from the

DCRNN, we can perform anomaly detection. The most straightfor-

ward way would be manually setting thresholds on the prediction

loss. On the other hand, it would be better if we automated the

setting of thresholds under the assumption that the noises between

the observations and the real underlying patterns, which are ap-

proximated by the models, satisfy the normal distribution. We can

set the threshold using the testing data as follows:

(1) Compute the mean µ and the standard deviation σ of the

test errors from the predictions;

(2) The errors satisfy the empirical rule, sowe set the upper/lower

thresholds for the predictions of timestep t as (X̃t +M±3∗Σ),

whereM,Σ ∈ R
n×m are the mean value matrix and the stan-

dard deviation matrix for each entry in Et = Xt − X̃t .

4 EVALUATION

4.1 Experiment configurations

4.1.1 Dataset preparation. In section 3, building the framework

requires two data sets: a set of RPC chain instances, and a series of

attribute matrices. In our experiments, we uniformly sampled 10
4

RPC chain IDs within 24 hours, which are then used for finding

the RPC chain instances. In the experiment, after we clustered

these chain instances into chain patterns, we selected an RPC chain

pattern with 51 RPCs that are related to user services.

The attribute matrices are generated from logs which are uni-

formly and real-timely sampled raw RPC logs from a real-world

Kubernetes system. Due to the massive data traffic, we only sam-

pled a small portion of raw logs. Specifically, we generated a data

point for a time interval of γ = 20 (minutes), with around 7-million

lines of sampled raw RPC logs per interval.

We continuously sampled for two weeks, leading to a dataset

with 60

20
× 24× 7× 2 = 1008 data points. We set 80% of the dataset to

be the training set, and the rest to be the validation/test set. Since

the magnitude of the traffic varies from 0 to 105, we took logarithms

of the RPC traffic in the training process to reduce data fluctuations

and took exponentiations in evaluations.

4.1.2 Models. We have two models in the framework:

DBSCAN: As described in algorithm 2, we apply the DBSCAN

clustering algorithm to obtain chain patterns. The parameters of

the DBSCAN are as follows: the minimum number of points inside

a clustermin_pts=1, the radius for neighbor searching eps=0.05.

DCRNN: The DCRNN model has 2 layers of DCGRU with bidi-

rectional diffusion convolution. Each DCGRU has 64 RNN units. The

maximum diffusion step K=2, and the model will predict attribute

matrices in 5 future timesteps. Some other training parameters

are listed as follows: using the Adam optimizer, learning rate=0.01,

learning rate decay ratio=0.1, max epoch=100 with early stopping.

The detailed parameters can be found in [9].

4.1.3 Environment. The experiments were run in Python3.7 + Ten-

sorflow 1.13, on an Intel Xeon E5-2630v4 CPU, and an NVIDIA

TESLA V100 GPU.

4.2 RPC chain mining

We compare clustering with a simple strategy: building a large

graph containing the union of all the RPCs inside the 10
4 RPC

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data representation
	3.2 RPC chain pattern mining
	3.3 Irregular RPC traffic detection

	4 Evaluation
	4.1 Experiment configurations
	4.2 RPC chain mining
	4.3 Irregular RPC traffic detection
	4.4 Case study

	5 Related work
	6 Conclusion
	Acknowledgments
	References

