Significantly Improving Lossy Compression for HPC Datasets
with Second-Order Prediction and Parameter Optimization

Kai Zhao Sheng Di" Xin Liang
University of California, Riverside Argonne National Laboratory University of California, Riverside
Riverside, CA Lemont, IL Riverside, CA
kzhao016@ucr.edu sdil@anl.gov xlian007 @ucr.edu
Sihuan Li Dingwen Tao Zizhong Chen

University of California, Riverside
Riverside, CA
sli049@ucr.edu

Washington State University
Pullman, WA
dingwen.tao@wsu.edu

University of California, Riverside
Riverside, CA
chen@cs.ucr.edu

Franck Cappello
Argonne National Laboratory
Lemont, IL
cappello@mcs.anl.gov

ABSTRACT

Today’s extreme-scale high-performance computing (HPC) appli-
cations are producing volumes of data too large to save or transfer
because of limited storage space and I/O bandwidth. Error-bounded
lossy compression has been commonly known as one of the best
solutions to the big science data issue, because it can significantly
reduce the data volume with strictly controlled data distortion
based on user requirements. In this work, we develop an adap-
tive parameter optimization algorithm integrated with a series of
optimization strategies for SZ, a state-of-the-art prediction-based
compression model. Our contribution is threefold. (1) We exploit
effective strategies by using 2nd-order regression and 2nd-order
Lorenzo predictors to improve the prediction accuracy significantly
for SZ, thus substantially improving the overall compression quality.
(2) We design an efficient approach selecting the best-fit parameter
setting, by conducting a comprehensive priori compression quality
analysis and exploiting an efficient online controlling mechanism.
(3) We evaluate the compression quality and performance on a
supercomputer with 4,096 cores, as compared with other state-of-
the-art error-bounded lossy compressors. Experiments with mul-
tiple real-world HPC simulations datasets show that our solution
can improve the compression ratio up to 46% compared with the
second-best compressor. Moreover, the parallel I/O performance is
improved by up to 40% thanks to the significant reduction of data
size.

“Corresponding author: Sheng Di, Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HPDC °20, June 23-26, 2020, Stockholm, Sweden

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7052-3/20/06.

https://doi.org/10.1145/3369583.3392688

KEYWORDS

Lossy Compression; Science Data; Parameter Optimization; Rate
Distortion; High-Performance Computing

ACM Reference Format:

Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen,
and Franck Cappello. 2020. Significantly Improving Lossy Compression for
HPC Datasets with Second-Order Prediction and Parameter Optimization. In
Proceedings of the 29th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’20), June 23-26, 2020, Stockholm, Sweden.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3369583.3392688

1 INTRODUCTION

Extremely large amounts of data are being produced by today’s
high-performance computing (HPC) applications. Serious conflicts
between the vast volume of data produced and the limited resources
(such as limited storage space, I/O bandwidth, and memory capacity)
significantly hinders today’s HPC applications from scaling up in a
parallel environment. According to cosmologists, HACC cosmology
simulations [16] may produce 20+ petebytes of data during one run
when simulating 1 trillion particles for hundreds of timesteps (or
snapshots), while the most powerful supercomputer—the Summit
supercomputer at Oak Ridge National Laboratory (ORNL) [36]—can
provide only hundreds of terabytes of storage for ordinary users or
at most several petabytes for specific users. Quantum computing
simulation [20] may produce up to 32 exabytes of data, which
need to be compressed and decompressed during the simulation
because of inadequate memory space (e.g., Summit has only 2.8 PB
of memory capacity in total).

Compression techniques designed particularly for big science
data have been studied for years. Lossless compressors are not suit-
able for science data in that the science data are composed mainly
of floating-point values that involve disordered ending mantissa
bits in their binary representations, such that few repeated patterns
could be found in the data streams. Error-bounded lossy compres-
sion has been considered a promising solution because not only
can it significantly reduce the data size (by 10X or even 100x) but it

https://doi.org/10.1145/3369583.3392688
https://doi.org/10.1145/3369583.3392688

can also strictly control the data distortion based on user-specified
error bounds. In fact, error-bounded lossy compressors have been
broadly verified as helpful in saving storage space and improving
1I/O performance for many production-level applications across dif-
ferent domains, such as cosmology [19, 30], molecular dynamics
[31], climate [18, 44], and quantum computing [20].

Error-bounded lossy compression can be categorized into two
models: prediction-based or transform-based. In general, the former
performs data prediction for each value in the dataset and then
converts the floating-point values to integer quantization codes,
followed by an entropy encoding [17] and dictionary coding [48].
SZ [12, 24, 37], FPZIP [27], and ISABELA [21] are three typical
examples adopting the prediction-based model. The transform-
based compression model performs orthogonal data transforms
to convert the original dataset to another data domain and then
removes insignificant values [33] or adopts embedded coding [25]
to shrink the size. Typical examples are ZFP [25] and wavelet-based
compression [33]. Much prior work [4, 12, 26] has demonstrated
that SZ and ZFP are the two top error-bounded lossy compressors
in most cases; however, none of them can always exhibit the best
compression quality on all datasets.

Our research objective is to significantly improve the compres-
sion quality of the SZ compression model [12, 37] for most of the
datasets across from different domains. Such a research goal is
challenging. On the one hand, SZ has been developed for many
years, so its design and implementation have been tuned to a fairly
optimized level, making further improvement to the compression
quality difficult. On the other, many parameter settings (such as
block size, dimension order, and regression order) are involved in
the prediction-based compression model, making it nontrivial to
select the best-fit combination to get the optimal compression qual-
ity, especially because of fairly diverse data characteristics in the
datasets.

In this paper, we successfully leverage adaptive parameter opti-
mization techniques with a series of optimization strategies on data
prediction, which can significantly improve the compression qual-
ity for SZ with the same level of data distortion. Our contributions
can be summarized as follows.

e We develop optimization strategies utilizing 2nd-order
Lorenzo and 2nd-order regression prediction to improve
the prediction accuracy significantly for SZ, such that the
overall compression quality can be improved prominently
in many cases.

e We design an efficient approach selecting the best-fit pa-
rameter settings during the compression. Specifically, we
perform a comprehensive priori compression quality analy-
sis to filter out the inferior settings based on error bounds
and data characteristics, and we then exploit an efficient on-
line controlling mechanism to determine the best-fit setting
at runtime.

e We evaluate the compression quality and performance by
running our new compression solution on a supercomputer
with 4,096 cores, as compared with other state-of-the-art
error-bounded lossy compressors.

The rest of the paper is organized as follows. In Section 2, we dis-
cuss related work. In Section 3, we formulate the research problem.

In Section 4, we provide an overview of our design and implementa-
tion. Section 5 and Section 6 describe our major solution (2nd-order
prediction and parameter optimization) in detail. In Section 7, we
present the evaluation results from using multiple real-world sim-
ulation datasets on a supercomputer. In Section 8, we present our
conclusions and discuss our future work.

2 RELATED WORK

To mitigate the storage burden and I/O bottleneck presented by
huge volumes of data, researchers have developed many data com-
pressors. Lossless compressors [2, 5,9, 11, 17, 47, 48] can guarantee
that reconstructed data suffer from no data distortion; however,
they cannot significantly reduce the scientific data size because
of the random ending mantissa bits in the floating-point values.
Their compression ratios are usually around 2 [26, 32, 34], far from
the desired level for large-scale scientific simulations running on
modern HPC systems [6, 13].

In contrast, error-bounded lossy compressors have been effective
in significantly reducing the science data volume for extreme-scale
simulations while being able to strictly control the data distortion
based on user requirements on pointwise compression errors. Two
state-of-the-art models exist for error-bounded lossy compression:
prediction-based [7, 12, 14, 21, 23, 24, 27, 37] and transform-based
(10, 25, 33, 39, 43]. SZ [12, 24, 37], ISABELA [21], FPZIP [27], and
NUMARCK [7] are typical prediction-based compressors. Prior
work [24] shows that SZ leads the compression quality among all
the prediction-based compressors. SZ includes four key steps: data
prediction, linear-scaling quantization, customized variable-length
encoding, and dictionary encoding such as gzip [11] or zstd [48].
Vapor [10] and ZFP [25] are typical transform-based compressors.
They use different data transformation methods (wavelet transform
and a customized (non)orthogonal transform, respectively) and
different encoding algorithms. Recent research [25, 37] indicates
that ZFP is one of the best error-controlled lossy compressors for
scientific simulation datasets. ZFP compresses the dataset block by
block (blocksize: 4x4 for 2D data and 4x4x4 for 3D data). Each block
involves four steps: exponent alignment, fixed-point alignment,
(non)orthogonal block transform to decorrelate the values, and
embedded encoding of the ordered coefficients one “bit plane” at a
time.

No existing error-bounded lossy compressor can always exhibit
the best compression quality (or rate distortion) over all other com-
pressors in most cases. Prior experiments [38], for example, show
that neither SZ nor ZFP consistently provides the best compression
results on the 13 fields of the Hurricane ISABEL dataset or on the
100+ fields of the CESM-ATM climate simulation dataset.

To address this issue, some researchers studied how to improve
the compression quality by combining the two compression mod-
els intuitively. Lu et al. [28] concluded that SZ and ZFP were the
two best error-bounded lossy compressors. The authors also pro-
posed a solution to estimate the compression ratios for SZ and ZFP,
respectively. In [38], they explored an online approach that can
select the better strategy between SZ and ZFP in terms of peak
signal-to-noise ratio (PSNR). This solution, however, [24] is subject
to the existing compression quality and performance of SZ and ZFP.
Moreover, the two related works both used the outdated version of

SZ (SZ1.4), which exhibits much worse compression quality than
does the latest SZ version (SZ2.0) [24]. Liang et al. [22] proposed a
compression method that treats ZFP’s data transform as one pre-
dictor (called a transform-based predictor) in the SZ compression
model and selects the better one between SZ’s built-in predictor
and the transform-based predictor, which can prominently improve
the compression quality beyond SZ and ZFP. Compared with all
these works, we develop an efficient approach that can further
improve the compression quality of SZ. Specifically, experiments
with multiple real-world HPC simulation datasets show that our
approach can improve the compression quality by 10%~46% over
the second-best approach in most cases.

3 PROBLEM FORMULATION

QOur objective in this work is to significantly improve the compres-
sion quality for error-bounded lossy compression. Similar to related
work [22, 24, 37], we focus on structured datasets (i.e., 1D, 2D, or
3D structured mesh), because unstructured datasets (unable to be
represented by a regular mesh grid) either need particular com-
pression strategies [1] or are treated as 1D datasets for simplicity
[8].

The error-bounded lossy compression problem can be formulated
as follows: Given a structured mesh dataset (denoted by D = {d;,
dy, -+, dy}) with N floating-point data values, how can the data
be compressed to obtain a high compression quality, while the
reconstructed data (denoted D’) still strictly respect user-specified
pointwise error bounds?

In the error-bounded lossy compression community, three ways
have been formulated to assess compression quality in general.

(1) Checking the compression ratio (defined as the ratio of the
original raw data size to the compressed data size) based on
the same error bound for different compressors.

(2) Using rate distortion, a common indicator in the visualization
community. Rate distortion involves two metrics: bit rate
and data distortion. Bit-rate distortion is the average number
of bits used to represent one data point after compression.
The smaller the bit rate, the higher the compression ratio.
Distortion is usually evaluated by using the peak signal-to-
noise ratio, which is defined in Formula (1). In general, the
higher the PSNR, the better the compression result.

PSNR = 20-log,, (max(d;) — min(d;))—10log,, (MSE(D, D")) (1)

where MSE stands for mean-squared error between D and
D’. Rate distortion is arguably the most important indica-
tor because some domain scientists care about the overall
statistical errors, especially for visualization purposes.

(3) Checking the visual quality of the reconstructed data com-
pared with the original raw data, by aligning the compres-
sion ratios to the same level for different compressors. This
method is also widely used by existing error-bounded lossy
compression developers [10, 12, 21, 25, 27, 33, 37] and HPC
application users [16, 20, 30, 44].

We use all three assessment metrics for comparing our solution
with other state-of-the-art lossy compressors such as SZ [12, 37]
and ZFP [25]. We will also evaluate the I/O performance of these
COmPpressors on a supercomputer.

4 DESIGN OVERVIEW

We adopt the SZ compression model because it exhibits the best
compression quality (rate distortion) from among the different com-
pressors in literature and as confirmed by our experiments. SZ
adopts four stages in the compression: data prediction, linear-scale
quantization, Huffman encoding, and dictionary encoding (such
as Zstd [48]). Here we focus mainly on how to improve the data
prediction accuracy with as little overhead as possible and how to
determine the best parameter settings for the overall compression.
Our work involves only the prediction and quantization steps be-
cause the other steps involve lossless compression that already has

st-order
[Regressio

[2nd-order | | Ou[Znd-order | |5
Off|_Lorenzo | ef|Regression :
|
|

Block-wise Prediction Engine

Parameter
Optimization

quality
Optimizer

(Quantization encoding

012
' Compression 0100
0.13, H=:> o =p [Linear-scale | = | Huffman | = | Dictionary o 1011

encoding 1110

| = Data flow —> Rar2Me'er] Raw data [] Parameter Optimization [Qbramerars|

i[_] compre. quality optimization engine (main contributions) [] Quantization+coding

Figure 1: Design Overview

We present the design overview of our method in Figure 1, in
which we highlight the main contributions by purple rectangles.
Specifically, we develop a compression quality optimizer that in-
cludes three key engines working systematically: sampling engine,
parameter optimization engine, and blockwise prediction engine.

e Sampling Engine. The sampling engine is designed for sig-
nificantly reducing the overall overhead of our compression
quality optimization solution. At the compression runtime,
our approach selects a small portion of the whole dataset
by a uniform sampling method, and the subsequent steps
(i.e., parameter optimization and blockwise selection) are
performed on top of the sampled dataset.

e Parameter Optimization Engine. The parameter optimization
engine addresses two critical issues: (1) how to estimate the
overall compression ratio as accurately as possible based
on the sampled dataset and (2) how to select the best-fit
parameters as efficiently as possible. As for the first issue,
simply assembling a new dataset with the uniformly sam-
pled data blocks and performing lossy compression on top
of it would cause a large deviation of the estimation (demon-
strated later). Accordingly, we develop an effective method
that can estimate the compression ratios accurately for vari-
ous parameter settings. As for the second issue, we design
a two-stage (offline and online) optimization strategy that
can find the best-fit parameter setting with a fairly low time
complexity at runtime. Details are given in Section 6.

o Blockwise Prediction Engine. Blockwise prediction is the most
important step in our design. In addition to the traditional
prediction method [12, 24, 37] (either 1st-order Lorenzo or

1st-order regression), we introduce two new prediction meth-
ods, 2nd-order Lorenzo and 2nd-order regression, which can
improve the overall compression quality significantly. Based
on the optimized parameter settings selected by the param-
eter optimization engine, the blockwise prediction engine
checks the compression quality for each data block and se-
lects the best choice from among the four prediction methods
for each block. The 2nd-order prediction methods is detailed
in Section 5, and how to select the best-fit prediction method
is described in Section 6.

5 SECOND-ORDER DATA PREDICTION

In addition to the original 1st-order prediction methods, we pro-
pose to use 2nd-order Lorenzo and 2nd-order regression prediction,
which can significantly improve the compression quality.

5.1 Second-Order Lorenzo Prediction

Second-order Lorenzo prediction was proposed by other researchers
conceptually in the literature. For instance, it was called two-layer
prediction in [37]. However, no compressors are using this idea in
practice because of its limitations (detailed later). For instance, the
authors in [37] reported that they did not achieve higher prediction
accuracy in their experiments with 2nd-order Lorenzo prediction.
In our work, we combine 2nd-order Lorenzo prediction with other
prediction methods to make it work effectively. In what follows, we
review the 1st-order and 2nd-order Lorenzo predictor and then dis-
cuss the pros and cons of the two predictors and in what situations
2nd-order Lorenzo is better than 1st-order Lorenzo prediction.

We illustrate the 1st-order Lorenzo and 2nd-order Lorenzo pre-
diction in Figure 2 (using a 2D dataset as an example). As shown in
the figure, the 1st-order prediction involves 3 data points per data
prediction while the 2nd-order prediction requires 7 nearby data
points for predicting each value along the scanning order.

o Current data point (i,j) @ The points used in prediction

i-2 -1 i@ it+lit+2 i-2 i-1 @ i+lit2

Jj2 o o o j27e 6 et 0 o
j-1 o vo o jlie e eio o
j o o o j e eie o o

jt2 o o o j¥2 078 o o o
jt+l o o o jtl o o o o o

(a) 1st-order Lorenzo (b) 2nd-order Lorenzo

Figure 2: 1st-order Lorenzo vs. 2nd-order Lorenzo

In general, the more data points used, the higher the prediction
accuracy will be. For example, the average prediction accuracy on
the QMCPack dataset [20] is about 0.00197 and 0.00062 when using
1st-order and 2nd-order Lorenzo predictor, respectively. On the
other hand, we note that SZ needs to use the decompressed data
with biased values to do the prediction instead of the original data,
in order to fully respect the preset error bound during the decom-
pression. In this sense, the more data points involved, the more
the compression errors impact the prediction accuracy, causing a
lower prediction accuracy. Tao et al. [37] demonstrated that 2nd-
order Lorenzo prediction does not work as well as the 1st-order

Lorenzo, so they adopted only the 1st-order Lorenzo in the released
SZ compressor.

We note, however, that 2nd-order Lorenzo prediction may sig-
nificantly improve the compression ratio, especially when the error
bound is required to be relatively low. Figure 3 demonstrates the
frequency distribution of quantization bins generated by the 1st-
order and 2nd-order Lorenzo predictors with the same compression
error bound for four example datasets. In principle, the sharper the
distribution is, the higher the compression ratio will be. We observe
that when the relative error bound! is set to the order of 1E-6~1E-8,
the 2nd-order Lorenzo predictor turns out to be better than the
1st-order Lorenzo. The key reason is discussed as follows. SZ has
to perform the data prediction using decompressed data each with
certain errors, which may impact the prediction accuracy in turn. If
the error bound is small enough, the impact of decompressed data
to the prediction accuracy will be very small. This result is also
verified by our evaluation of the percentage breakdown of different
predictors used in compression (discussed in Section 7).

© >
w, 1st order Lorenzo w 1st order Lorenzo
Z' Il 2nd order Lorenzo f, 4| mmm 2nd order Lorenzo
c 3 c
2 23
> >
22 22
] s
ol ol I
9] 9] I
Lto Wil |I||u.. u‘Zo 1 I
65, 65, 650 650 650 65 65, 6 65, 65, 65 65 65 65 65, 6
Sq SOSq)55 5005 5 355 5 505 X)5560056 25 Sq. 5054)55 S, 005 5 255 X 505 X3)3560056 25
Quantization Bin Index Quantization Bin Index
(a) Hurricane (Wf48), reb=1E-6 (b) Hurricane (QICEf48), reb=1E-6
8 = 4.0V
w12 1st order Lorenzo w 1.75 1st order Lorenzo
; 1.0/ mmm 2nd order Lorenzo Z 1.50| mmm 2nd order Lorenzo
Sos £1.25
= Z1.00
506 S0.75
50.4 e
i $0.50
g02 , g0.25 |
o0 ! . . Wl
654,654,055 655 655 655 056 65, 054,654,055 655055 655 056 65,
5o P25 00y V25 05y 525005025 5o P25 00y V25 05y 2500y 025

Quantization Bin Index

(c) QMCPack dataset 1, reb=1E-7

Quantization Bin Index

(d) Scale-LETKEF (Pres), reb=1E-8

Figure 3: Frequency Distribution of Quantization Bins be-
tween 1st- and 2nd-order Lorenzo Prediction

5.2 Second-Order Regression-Based Prediction

In this subsection, we describe how we design the 2nd-order regres-
sion predictor in terms of the 2nd-order polynomial multivariate
regression. The basic idea is constructing a 2nd-order regression
hyperplane based on the coordinates and the values of all data in
a specific data block and minimizing the mean squared error by
derivation. In what follows, we first discuss the generic formula
and then extend it to fit the blockwise design in compression.

The generic formula can be derived based on a m-dimensional
dataset (n1xnzX-: - - Xnp,). The independent variable vector of the
m-dimensional dataset is denoted as x = (x1, x2, .., X). Its corre-
sponding dependent variable vector is fy. We use f2"(x) to denote
the prediction value of x by 2nd-order regression:

!Relative error bound here refers to value-range-based error bound, which is
defined as the ratio of absolute error bound to the data value range.

) =1x)" B,

where t(x) = (1,x1,X2,"** », Xms
X2, X1X, X1X3, X1 Xm, @
x%,xzxg, Cee L X2Xm,
C L XmXm),

where B = (Bo, 1, Po. ..Pm,) represents the coefficient vector in
which fy is the intercept coefficient. We denote the total number
of coefficients by mpy = mx (m + 1)/2+ m + 1.

The 2nd-order regression uses f2"(x) to estimate the dependent
variable fyx. The objective is to minimize the mean squared error
between 2" (x) and f, as shown in Equation (3).

Jopy = arg min > (1(x")B - f(x))’ ®)
Vx

This objective function is hard to solve with a closed-form solu-
tion because of the unknown dimension m. Thus, we resolve it for
each specific dimension separately. For simplicity, we describe our
solution using a 3D dataset case, which can be extended to other
dimensions easily without loss of generality.

For a 3D dataset, (x1, x2, x3) in Formula (2) can be replaced by
coordinates (i, j, k), where 0 < i < n1,0 < j < n2,0 < k < ns.
Then, the objective function can be simplified to

fobj = arg nlﬁinZ?;O_IZfiElZZiBl(ﬁo+/31i+ﬁzj+/33k

4
+ﬁ4i2+ﬂ5ij+ﬂ6ik+ﬁ7j2+ﬂ8jk+ﬁ9k2—fijk)2. @
It can be solved by setting all partial derivatives to 0.
S S N AT = VT 5)
1 j k i2 ij ik j? Jjk k?
i il ij ik i3 i%j i’k i% ijk ik?
V2R VAN GO | £ R 7 CRN 77 S LR & S 1
k ik jk K i’k ijk ik* %k k2K
A [SR L B L) S o i3 Bk %% %k kP
i % i ik i %% %k i i%k ijk?
ik i’k ijk ik? i3k %k i?K? ik ijk* ik?
jz ijz j3 jzk izjz ij3 ijzk j4 j3k jz k2
jk ijk 2k jk* %k ij?k ijk? Pk Ak K3
kK2 ik? k%KY iRk ikt ik AR K k4

ni—1n3-1n3-1
Vo= (Vi Vo s Vol V= 0 D0 S qui(t) s fijr, 0 < £ <9
i=0 =0 k=0
9i,j,k(t) returns ¢th element from list [1, i, j, k, i2,ij, ik, j?, jk, k?]

Denote ffé,flz,fm = Zgal Zj"ial ZZZ)I A. The solution f equals

(fl.‘j‘j’k)_lVT. Since f,f}’nz’ns is fixed under given (ny, na, n3), its in-
verse matrix can be calculated beforehand. During the process of
2nd-order regression, we just need to compute V followed by a
matrix-vector multiplication to get the solution # with the opti-
mized coefficients. Based on the optimized coefficients, the predic-
tion value for each data point (i, j, k) can be written as £27(i, j, k) =
Bo + Bui + Paj + Psk + Bai® + Psij + Peik + f7j° + Psjk + Pok®.

Figure 4 demonstrates the frequency distribution of quantiza-
tion bins generated after the 1st-order regression predictor versus
the 2nd-order regression predictor with the same compression er-
ror bound for four example datasets. The 2nd-order regression
exhibits sharper distribution than does the 1st-order regression,
which means that the 2nd-order regression will likely obtain higher
compression ratios in these cases.

E 2.00 1st order Regression $ 1.2 1st order Regression
— 175/ mmm 2nd order Regression ~ 1.0/ mmm 2nd order Regression
2150 Z0s

35125 37

>1.00 206

C =4

505 gos

$0.25 g0.2

- 0.00 o -

65, 6 65, 6 65, 6
5% 5532 355y 3035 S35 S,
(b) Nyx(velocityz), reb=1E-3

6 6 6 6 6 6
5530 5532 5534 5536‘ 5530 5570
(a) Hurricane(TCf48), reb=1E-3

$ 35 1st order Regression ﬁ 1.2 1st order Regression
E ;g HEm 2nd order Regression :‘ 1.0/ mmm 2nd order Regression
520 508

§ 15 §0.6

21.0 g 0.4

gO.S g 0.2

[nllm w |]

‘65 30555 39655 34655 36555 3@555 40655 = '0655 % 655 5 655 3 655 S 655 S 655, o

(c) QMCPack dataset 1, reb=1E-4 (d) Scale-LETKF(W), reb=1E-3
Figure 4: Frequency Distribution of Quantization Bins be-
tween 1st- and 2nd-Order regression Prediction

Next we compress the 10 coefficients (fp~f10) used to construct
the hyperplane. Specifically, we compress them using the SZ com-
pressor, because this can lead to outstanding compression ratios that
other compressors such as FPZIP [27], ZFP [25], or bit-truncation
methods [15] cannot achieve.

6 PARAMETER OPTIMIZATION

In this section, we describe another important contribution, which
can further improve the compression ratios prominently.

The key idea is to optimize the parameter settings involved
in the whole compression. This is motivated by our observation
that different parameter settings (such as block size, number of
quantization bins) may affect the compression quality.

Based on our new compression design supporting 2nd-order
prediction, we summarize a total of 12 critical parameters for the
whole compression. Five of them are from SZ (version 2.0), as shown
in Table 1, and the other 7 parameters are based on the 2nd-order
prediction we designed, as shown in Table 2.

From among the 7 parameters related to the 2nd-order predic-
tion, four of them are of Boolean values used to control the four
prediction methods (1st-order/2nd-order + Lorenzo/regression). For
example, if use_lorenzo is set to false, the Lorenzo predictor will
be excluded in the whole process of blockwise prediction. The
other three parameters are used to control the compression of the
coefficients for the 2nd-order regression.

Table 1: SZ Parameters

Type Name Explanation
Input data Original data
Input dim The dimension of original data
Input reb Value range based relativity error bound
Param block_size Block size used by predictors
. The dimension used by Lorenzo and
Param pred_dim
regression predictors, pred_dim < dim
Param quan_bins Number of bins used in quantization algorithm
. Error bound for compressing the intercept
Param | reg_coef_intercept . . .
coefficient of regression predictor
. Error bound for compressing the linear
Param reg_coef_linear . . .
coefficients of regression predictor

Table 2: Extended Parameters in Our Solution

Name Explanation
enable_lorenzo Enable Lorenzo predictor or not

enable_2ndlorenzo Enable 2nd-order Lorenzo predictor or not

enable_regression Enable regression predictor or not
enable_2ndregression | Enable 2nd-order regression predictor or not
Error bound for compressing the intercept
coefficient of 2nd-order regression predictor
Error bound for compressing the linear
coefficients of 2nd-order regression predictor
Error bound for compressing the polynomial
coefficients of 2nd-order regression predictor

2ndreg_coef_intercept

2ndreg_coef_linear

2ndreg_coef_poly

The 12 parameters are determined by our in-depth analysis of
their impact on the compression ratios based on experiments us-
ing 5 real-world simulation datasets each with multiple time steps,
involving about 100 fields and thousands of data files in total. Dif-
ferent settings of these parameters may lead to largely different
compression ratios. We demonstrate three examples in Figure 5,
Figure 6, and Figure 7. For instance, based on Figure 5(a), SZ’s
compression ratio is 180:1 and 100:1 on Hurricane(TCf48) with the
error bound 5E-3, when its block size is set to 5 and 11, respectively.
In Figure 6, none of pred_dim = 2 or pred_dim = 3 can always
exhibit the best compression ratio when the error bound is between
1E-3 and 1E-4. In Figure 7, 8192 is the best setting for quan_bin to
compress the Hurricane dataset with a 1E-5 error bound. However,
in order to compress the same dataset with 1E-7 error bound, the
best setting for quan_bin is 1024.

ggg L —+— 5E-3 160 —— 1E-2
[e 1E-3] 5140 ——
£180 e 1E-4 |9
160 N £120
140 L c \\
%120 ,%100 \
3100 8 80
e g 60 T~
60
Sl e S P e e e
20
0 20 ko S
e v &6 2O D CAEE SR R Y
Block Size Block Size

(a) Hurricane(TCf48)

180 —+— 5E-3
P A NG we 1E-3
£140 | e K]
X120

(b) Miranda(velocityx)

e v & 6 2 9

Block Size
(d) Scale-LETKF(QI)

¢ v &6 SO pH D
Block Size
(c) QMCPack dataset 1

Figure 5: Change of Compression Ratios with Block Sizes
In the following text, we describe the detailed optimization strate-
gies, including optimization of estimating compression quality by
sampled datasets, offline parameter optimization, and online pa-
rameter optimization.

6.1 Optimizing Compression Quality
Estimation over Sampled Dataset

Accurately estimating the compression quality based on the sam-
pled dataset is critical to selecting the best-fit parameter settings

[
S
N
)
o

—— pred_dim=2 —— pred_dim =2

050 T\ * pred_dim =3 0100 Fre Dy s pred_dim =3
= =
40
c
9o
230
I
%20
o
o10
06‘ Z S Z S Z Z % o S Za Sa %
I T T N T
Error Bound Error Bound
(a) Hurricane(Uf48) (b) Miranda(density)

60 30

—+— pred_dim=2 —— pred_dim=2
050 P - pred_dim = 3 025 I - pred_dim =3
k] T |
o 12
40 20
9o k)
230 @15
I o
E—ZO §-10
o10 o5

0 Z S Z S Z Z Z 0 Z S Z S Z y/
R R N T T

Error Bound
(d) Scale-LETKF(V)

Error Bound
(c) QMCPack dataset 1

Figure 6: Change of Compression Ratios with Various Pre-
diction Dimensions

70 T T T T T
Hurricane(1E-7)
Hurricane(1E-5)
60 - Scale(1E-7) 1
Scale(1E-5)
il
S B0 [e
§ et
2 40
4
Q
E 30
o
20 —_— \
10 i} B L= L5] Lo Lo
7 < % & 7 Q- 7
(22 Q O 7 (o} <. o 3,
Y e % e %, Ty W 2,

Number of Quantization Bins

Figure 7: Change of Compression Ratios with Numbers of
Quantization Bins (Hurricane(QCLOUDf48) and Scale(QI))

and predictors at runtime. To this end, we design an approach that
takes into account how the data will be predicted and quantized
for each block, in that the existing compression quality estimation
methods are not suitable for our case. Lu et al. [28], for exampe,
proposed a sampling-based estimation method based on the distri-
bution of quantization bins, which can estimate the compression
ratios of SZ to a certain extent. Since this method can support only
Huffman encoding but not dictionary encoding (zstd), it cannot be
applied to our estimation. Moreover, since it is designed based on
SZ 1.4, which has no regression predictor, it cannot estimate the
compression ratios accurately for SZ 2.0.

Another straight-forward idea is adopting a black-box compres-
sion quality estimation method by ignoring the detailed compres-
sion principles. In order to control the overhead, it needs to estimate
the real compression ratio for the overall dataset based on the sam-
pled datasets. That is, one can estimate the compression ratios by
simply assembling a new dataset using the sampled data blocks and
compressing the assembled dataset by a particular compressor such
as SZ 2.0. Such a black-box estimation method, however, may easily

cause biased estimation of compression ratios because it totally
ignores the compression principle.

Unlike the simple black-box estimation method, we take into
account how the data will be used in the compression steps. Specif-
ically, we ensure that the sampled block size is consistent with
the block size to be used in the compression steps. Our estimation
method also leverages the data points from other adjacent blocks
to estimate the prediction accuracy in each compression block.

Figure 8 presents the significant improvement of our compression-
principle-based estimation method over the black-box estimation
method. We can clearly see that even under a small sampling rate
8%, the compression ratios can be estimated accurately, with only
about 5% estimation errors in most cases. Accordingly, we set the
sampling rate to 8% in our experiments.

11 3.4
N
o210 — i} 32 \‘_“ \
x 9 x "*“\x*_\ \
c c28
S S O\
28 226
g "\‘ﬂ———*\’\\ 854 \
a7 g 4
£ " E22 \
© 6 - —— Our estimator © 2 t. —+— Our estimator \
5 —»— Black-box estimator 18 —»— Black-box estimator
0. 200 %00 7050, 70, 9% 92 V5 72 U, 70,500 %00 05~05 70, %5 S5 < 72 s,
%% % 6 © o 3 %5 6 6 © © 82

Sampling Rate
(a) Hurricane(Uf48), reb=1E-4

Sampling Rate
(b) Hurricane(Uf48), reb=1E-6

N
[
N

24 PN
o ol1
522 \\ S S0 T~
£20 c \
216\ 79
ge\ g 1\
I 5° T S~
514 “~137 ~5
12 | —— Our estimator © —+— Our estimator
10 —»— Black-box estimator 6 - —«— Black-box estimator
000505 %050, 0, % % % 75 %5, 0207007050, 700 % % % 75 %,
T © ° o o o 5 6 © 6 82

o
2 ° 2 °

Sampling Rate
(c) Miranda(velocityy), reb=1E-4

Sampling Rate
(d) Miranda(velocityy), reb=1E-5

Figure 8: Comparison of Estimation Accuracy (sampling
rate refers to the fraction of sampled data to the full data;
sampling rate = 100% refers to the full dataset)

6.2 Offline Parameter Optimization

Table 3: Range of Parameters

Name Value Range Values to be Tested Ou(st:{ndmg
Candidates
enable_lorenzo True,False] True, False True
enable_2ndlorenzo True,False True, False True, False
enable_regression True,False True, False True
enable_2ndregression True,False True, False True, False
pred_dim [1.2,3] 12,3 23
block_size N 3,4,5,6,7,8,9,10,11,12,15,20,25,30 4,5,6,7,8
quan_bins N s,1 4096, 8192, 16384, 32768, 65536, 131072 S,1 16384
reg_coef_intercept R* 0.01,0.1,0.5, 1, 2, 5, 10, 20, 50, 100 1
reg_coef_linear R* 0.01, 0.1, 0.5, 1, 2, 5, b210, 20, 50, 100 b’
2ndreg_coef_intercept R* 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 0.1
2ndreg_coef_linear R* 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 0.5
2ndreg_coef_poly RY 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 2

! s means use the estimation value provided by SZ

2 b means use block_size as reg_coef_linear
Bold values in column 3 are used in the first step of manual parameter search.
Finding the best parameter combination for a given dataset is
a multivariable optimization problem. The objective is to find the

maximum compression ratio using the same compression func-
tion and original data. Gradient-based algorithms such as gradient
descent are difficult to apply for this problem since it is unclear
whether the compression function itself is a differentiable func-
tion; also, the derivative is hard to obtain even if this function is
differentiable. Derivative-free methods such as coordinate descent
and (meta)heuristic methods such as simulated annealing, genetic
algorithm, and ant colony optimization could be used to find the
approximate global optimization in a large search space if the deriv-
ative is unknown or nonexistent. However, those (meta)heuristic
algorithms are all time-consuming (generally requiring 20+ itera-
tions to converge a near-global optimum solution [42]). By contrast,
we need to control the number of iterations to under 20 such that
the analysis overhead can be limited within 100% when the sam-
pling rate is set to 8%. To this end, we propose an offline + online
parameter optimization method.

The offline algorithm manually searches for the best parameters
by testing as many parameter combinations as possible and analyzes
the data generated by this process to get the best candidates. We
manually tested more than 30K combinations of parameters for
each field of each dataset and analyzed all the results to get the
best candidate parameters. For parameters with discrete numbers
(such as pred_dim), we evaluate all the possible values. For the
parameters with continuous numbers (such as block_size or the
error bounds of compressing regression coefficients), we evaluate
10+ values for each parameter; those values are actually outstanding
settings based on our numerous experiments with many datasets.
That is, the values outside this range are unlikely to achieve a good
compression quality, based on our experience.

The pseudocode of the manual parameter search algorithm is
demonstrated in Algorithm 1. In the first step (lines 2-6), the goal
is to optimize the parameters with priority on the 1st-/2nd-order
Lorenzo predictor. Two value sets are used for regression-related pa-
rameters, decided by our prior experience. In the second step (lines
7-9), the goal is to optimize the parameters of the 1st-order regres-
sion predictor: reg_coef_intercept, and reg_coef_linear. The third
step (lines 10-12) is to optimize the parameters of the 2nd-order
regression predictor: 2ndreg_coef _intercept, 2ndreg_coef _linear,
2ndreg_coef_poly. The final step (lines 13-15) is to optimize the
quan_bin since it is independent of predictors.

We analyze the data generated by a manual parameter search to
get the outstanding candidates. The manual search was conducted
offline; that is, it does not involve runtime overhead for compres-
sion. The manual search results are maintained separately based on
data fields. For each field, we first identify the best compression ra-
tio (denoted as best_ratio) and then collect good parameter settings
whose compression ratios are larger than 95% X best_ratio. Having
gleaned relatively good parameter combinations for each field, we
can choose any one parameter combination selected and use it to do
compression, which can achieve at least a 95% top compression ra-
tio. Then we collect the outstanding candidates for each individual
parameter statistically based on a prior probability. Specifically, if
some parameter value appears frequently (larger than 85%), we put
it in the outstanding-candidate set. For instance, if the parameter
block_size=5 appears in the good candidate parameter combina-
tions for 86 fields from among 100 fields, we choose it as one of the

Algorithm 1 MANUAL PARAMETER SEARCH

Input: raw data D, relative error bound reb
Output: list of parameter settings and its compression ratio
1: compressMode < no_sampling
2: for (enable_lorenzo, enable_2ndlorenzo, enable_2ndregression, pred_dim,
block_size) in (values from Table 3) do
3: for (reg_coef_intercept, reg_coef_linear, 2ndreg_coef_intercept,
2ndreg_coef linear, 2ndreg coef poly) in (bold values from Table 3)
do
4: Do compression, Record parameter settings and compression ratio
5: end for
6: end for
7: for (enable_regression, block_size, reg_coef intercept, reg_coef linear) in (values
from Table 3) do
8: Do compression, Record parameter settings and compression ratio
9: end for
10: for (enable_2ndlorenzo, block_size, 2ndreg_coef_intercept, 2ndreg_coef_linear,
2ndreg_coef poly) in (values from Table 3) do
11: Do compression, Record parameter settings and compression ratio
12: end for
13: for quan_bin in (Values from Table 3) do
14: Do compression, Record parameter settings and compression ratio
15: end for

outstanding candidates. The final results are shown in the last col-
umn of Table 3. By this selection method, we considerably reduce
the number of parameter values to be focused on during online
parameter optimization.

6.3 Online Parameter Optimization

Our solution searches the best parameters based on the outstanding
candidates generated by the offline optimization. This auto param-
eter search process is an online process, which means it will be
executed every time when we run the compressor. The subsets
generated by sampling are used to find the best parameters. After
that, the original datasets will be compressed by our compressor
using the best parameters. The overhead of the online parameter
optimization process is around 100% based on the runtime of SZ
and the overhead of second-order predictors is 20%~50% based
on SZ. Thus, the total runtime overhead of our solution is around
120%~150% based on SZ.

Parameters with multiple outstanding candidates in Table 3 will
be evaluated to find the best setting. There are 5 parameters that
need to be evaluated and we clarify them to 3 groups: pred_dim and
enable_2ndlorenzo as group 1, block_size and enable_2ndregression
as group 2, quan_bins as group 3. The evaluation is performed group
by group since parameters between groups have little correlation in
terms of the compression process. To find the best settings, Group
1, 2, and 3 require 4, 10, and 2 iterations respectively, according to
the number of outstanding candidates of each parameter in Table 3.
Thus, there are 16 iterations in total in our auto parameter search
to choose the best setting regarding the first 5 parameters. The
remaining 7 parameters have only one outstanding candidate each;
thus, they do not need to be optimized during this step. Using a
heuristic algorithm such as simulated annealing or a derivative-free
algorithm such as coordinate descent is unnecessary for the auto
parameter search because there are only 16 iterations in total which
is already efficient.

Although the online auto parameter search performs on top
of the outstanding candidates generated by an offline parameter
optimization, this solution is also efficient on new datasets, as we
verify in Section 7.4.

7 PERFORMANCE EVALUATION

In this section, we present the evaluation results based on the
datasets produced by five real-world scientific simulations from
different domains.

7.1 Experimental Settings

Table 4 describes the five applications, which all require compres-
sion techniques to store big science data [16, 20, 30, 44]. In particu-
lar, QMCPack here involves three datasets that are stored in three
scales—288%115x69%69 (1 field), 816X115x69x69 (2 fields), and
6192%x115X69%69 (1 field)—corresponding to 0.6 GB, 3.4 GB, and
13 GB, respectively. We call them QMCPack dataset 1, QMCPack
dataset 2, and QMCPack dataset 3, respectively. Since our experi-
ments involve parallel processes each with several gigabytes, the
de facto total data size is up to 10+ terabytes for one application in
our experiments, when the execution scale is 4,096 cores.

Table 4: Applications Used in Our Experiments

Name Domain # Fields Size Per Snapshot
Hurricane [18] Weather 13 1.3 GB (= 13x 96MB)
Miranda [29] Hydrodynamics 7 1 GB (= 7 X 144MB))
QMCPack [20] | Atom/Molecules 4 ~17 GB (=0.6 + 3.4 +13) GB
Scale-LETKF [44] Weather 12 6.4 GB (=12x539MB)
NYX [30] Cosmology 6 3.1 GB (=6x512MB)

We conducted our experiments on the Bebop supercomputer [35]
at Argonne National Laboratory using up to 4,096 cores. Specif-
ically, the experiments involve 64~128 nodes, and each node is
equipped with 128 GB memory and two Intel Xeon E5-2695 v4
processors (each with 16 cores). Its storage system adopts a General
Parallel File System (GPFS) equipped with 2 I/O nodes, and the I/O
system is a typical high-end supercomputer facility. We perform
data writing/reading by a file-per-process method with POSIX I/O
[45] in parallel.!

We compare our solution with three state-of-the-art lossy com-
pression methods: SZ2.1.8 [24], ZFP0.5.5 [25], and a hybrid model
[22], which have been confirmed as the best in class [8, 22, 28].
The hybrid model merges the SZ2.0 and ZFP0.3.1 to get the best
compression quality, while suffering from 200% time overhead [22].

In what follows, we first present the compression quality results
based on second-order prediction and parameter optimization and
then present the overall compression quality in terms of the in-
dicators defined in our problem formulation (Section 3). We also
evaluate the I/O performance gain by running a series of paral-
lel experiments on a supercomputer with up to 4,096 cores, and
compare the results with those of other existing state-of-the-art
compressors.

7.2 Assessment of Second-Order Prediction

In Figure 9, we present the rate distortion improvement obtained
with the second-order prediction (shown as blue curves in the fig-
ure) over the original design in SZ 2.0 (called Base(SZ) and shown
as black curves in the figure) that uses the 1st-order prediction.
As mentioned in Section 3, the higher the PSNR, the better the

! Another researcher [41] verified that POSIX I/O has comparable performance
with parallel I/O, such as MPI-IO [40] when reading/writing thousands of files simulta-
neously on GPFS. We also further verified that the read/write performance difference
of POSIX IO and MPI-IO is within £10% on this supercomputer, when the execution
scales between 2k cores and 8k cores.

compression quality; and the lower the bit rate, the higher the com-
pression ratio. We can clearly see that using 2nd-order prediction
(see Section 5) can significantly improve the compression quality
over the original SZ with 1st-order prediction in many cases, es-
pecially with relatively high bit rates or relatively high precision.
For instance, the compression ratios can be improved by about
50% when the PSNR is greater than 120 dB for the Miranda and
QMCPack simulation. The main reason is the high-order nature
of the datasets. However, we can also see that at some bit rates,
the original SZ with 1st-order prediction outperforms the one with
2nd-order prediction. As shown in Figure 9, for instance, 1st-order
prediction is much better than 2nd-order prediction when the bit
rate is in the range of [1.5,5] for the Scale-LETKF(Pres) field. This
result provides motivation for adopting both 1st- and 2nd-order
predictions in the compression.

240

220 r.p
200 = %00 /
/ 1 /
@150 = 0160 —
g g0 e
% %120 =
& 100 2100 e
Base (SZ) —— Zg Base (SZ) —— |
50 2nd order Pred —e— | 2nd order Pred —e—
182 order Pred + Par-Opt —=— 40 182 order Pred + Par-Opt —=— 4
0 2 4 6 8 10 12 14 0P ¥ 6
Bit Rate Bit Rate

(a) Hurricane (b) Hurricane(Pf48)

220 160
—
200
e 140 =
180 g /_%
_.160 et 120
% 140 e g W
Sl sl 4
F) 2 %
2 100 # % 8o
& Base (52) 60 y .
ase — 1
60 j" 2nd order Pred —e— 2nd t?rng éfezd) —_—
40 1&2 order Pred + Par-Opt —=— 40 182 order Pred + Par-Opt —=— |
[A A) ° ~ ° B 7 & 6

Bit Rate Bit Rate
(c) Miranda (d) Miranda(density)

200 —"1 200 A~
180 — 180 e
_160 ///;/ _160 ///;/
B 140 S 140
4 e 14 i
Z 120 Z120 A
£ 100 /% £ 100
80 /ﬁ/ 80)’4!/
0 Base (57) —— | o f Base (S2) —— |
2nd order Pred —&— 2nd order Pred —&—
40 1&2 order Pred + Par-Opt —=— 40 1&2 order Pred + Par-Opt —=—
o < 4 6 4 70 76, 77 ,6' o < g 6 4 70 ,é’ 77 76\
Bit Rate Bit Rate
() QMCPack - dataset 1 (f) QMCPack - dataset 2
220 180
200 / 160 -
180 ,/V//
160 ol 140
o / o M
S 140 2120
Z120 / 1 %100 -
[
2100 2l A
g0 .2 80
f Base (SZ) —— V 4
60 2nd order Pred —a— | 60 2nd gg:?é?gg =
40 1&2 order Pred + Par-Opt —=— 40 182 order Pred + Par-Opt —= y
0 9 ¥ 6 ¢ B b K % 0 ;7 2 ¢ ¥ & 6 2 & O

Bit Rate

Rit Rata
(g) Scale-LETKF (h) Scale-LETKF(Pres)

Figure 9: Breakdown Compression Quality Analysis

7.3 Assessment of Parameter Optimization

In Figure 9, we also demonstrate the further compression quality
improvement (see the red curves versus the blue curves) when using
parameter optimization strategies on top of 2nd-order prediction.
In absolute terms, the rate distortion can be improved by 4%~50%
in most cases, depending on the bit rates. Such a significant im-
provement is attributed to our design of integrating both 1st-order
prediction and 2nd-order prediction (four predictors in total) and an
efficient online parameter optimization strategy selecting the best-
fit parameter setting at runtime in fine granularity (as per block)
(for details, see Section 6.1 and Section 6). The variation in the rate
distortion improvement shows that the default parameter settings
of the original SZ is nearly optimal for some datasets while it is far
from the optimal level for some other datasets. This confirms the
significance of our parameter optimization in order to achieve the
optimal results for all datasets.

To demonstrate the effect of our parameter optimization engine,
in Figure 10 we illustrate the percentage breakdown of the four
different prediction methods used in the compression of different
applications or fields. We clearly observe an interesting distribution
pattern of the four prediction methods in terms of different error
bounds. Specifically, when the error bound is relatively large (such
as 1E-2), the regression-based predictor would take a major role,
since the Lorenzo predictor may suffer from huge prediction errors
in this situation because of the impact of decompressed data (keep
in mind that Lorenzo prediction has to be performed by using
decompressed data during the compression stage). When the error
bound is relatively small, the Lorenzo prediction would outperform
the regression-based prediction. In particular, when the error bound
is extremely small, our optimization engine selects the 2nd-order
Lorenzo predictor in most blocks. This action is consistent with our
analysis in Section 5.1: many of the application datasets actually
exhibit high-order smoothness, such that the 2nd-order Lorenzo
predictor is more accurate for data prediction, especially with small
compression error bounds.

7.4 Overall Compression Quality

In Figure 11 we present the overall compression quality (rate distor-
tion) based on five real-world scientific simulation datasets, and we
demonstrate the result of one example field for Hufficane ISABEL,
Miranda, and Scale-LETKEF, respectively. The blue curve (called op-
timum) refers to the ideal level obtained by our offline parameter
searching (MS) for optimal parameters. As highlighted in the fig-
ures, our compression solution can improve the compression ratios
over SZ (see red curve versus black curve) by 20+% for Hurricane, by
~40+% for Miranda, and by ~30+% for QMCPack, respectively, with
the same PSNR. Our solution also exhibits the best compression
quality from among all existing compressors on the three appli-
cations. Specifically, with the same PSNR, its overall compression
ratio is higher than that of the second best compressor generally
by 20~25% and by 5~10% and 20~30% for the three applications,
respectively. For some specific fields, the improvement can be up to
46%, as shown in Figure 11(b). As for the simulation Scale-LETKF
and NYX, our solution still leads to the best compression quality
from among all the compressors, although it has no prominent
improvement over the second-best compressor, probably because

0)
W 1st order Lorenzo 100 1st order Lorenzo
g0 ™ 2nd order Lorenzo 2nd order Lorenzo
o W 1st order Regression v 80 1st order Regression
© | mmm 2nd order Regression o 2nd order Regression
@ 60 Il
= 8 w0
c c
] [
2o 2w
7} 7}
a a
20 20
. 0
\)&j&g@ 0 0 0 0 G‘g&‘ O{Qge gs‘o {Q\)\)Q \% \)@0‘)@0{@0\)@0\%0\)@0\%0{@0
0% %% %% %% % % %% o CRCR MR IR N dhs g
Relative Error Bound Relatlve Error Bound
(a) Hurricane(Wf48) (b) Miranda(velocity)
1007 mmm 1st order Lorenzo 1st order Lorenzo
s 2nd order Lorenzo 2nd order Lorenzo
o 871 mmm 1st order Regression o 1st order Regression
o W 2nd order Regression o 2nd order Regression
8 e 8
c c
[} [}
2 a0 I~
7} [}
a a
2
0
?0 \)00 f{“;@g@;@g& Y \)00 0 ‘) {{00\5\ \)00’200\)00’2@0@ \)@ Q \)
V50080 2505 %5850y 0 0525 % 5% % 05 05 % 5 %5 % % %
Relative Error Bound Relative Error Bound
(c) QMCPack dataset 1 (d) Scale-LETKF(W)

Figure 10: Percentage Breakdown of Four Predictors Used in
the Blockwise Compression

the default parameter setting of the original SZ is also (or nearly)
the best choice in those cases.

Figure 12 presents the compression quality of the QMCPack
dataset 2 and dataset 3 compared with the QMCPack dataset 1
shown in Figure 11(g). Note that our offline parameter optimization
was performed not based on these two QMCPack datasets, which
are largely different from the QMCPack dataset 1 in scale. Based
on the figure, we clearly see that for both datasets our solution can
still get much better compression quality than the others can. This
means that our optimization method can also be applied effectively
on new simulation datasets that were not included in our offline
optimization analysis.

We also evaluate the autocorrelation metric of the compression
errors (as shown in Table 5), in order to check the randomness of the
compression errors. The users generally expect to see close-to-zero
autocorrelation results, because this introduces less bias to their
post-analysis. Table 5 shows that our solution achieves comparable

autocorrelation values of compression errors compared with SZ,

indicating the same randomness of compression errors.

Table 5: Lag One Autocorrelation of Compression Error

Autocorrelation (lag=1)

Dataset Error Bound (reb) 7 TP Our Solution
. 1E3 0.040711 | 0.151458 | 0.053633
Hurricane (Uf48) 1E5 0.001358 | 0.115680 | 0.001687
Miranda (velocity?) 1E3 0211425 | 0343711 | 0.216588
4 1E5 0.071940 | 0.266735 | 0.059465
1E3 0211425 | 0.374731 | 0.241557
QMCPack (dataset 1) 1E5 0022431 | 0.217974 | 0.028725

7.5 1/0 Performance Evaluation

In this subsection, we present the parallel I/O evaluation results
based on two scientific simulations (Hurricane and Miranda) on the
Bebop supercomputer [35]. The value-range-based relative error

240 Compr. ratio improved by 32%,36%,46%
Compr. ratio improved by 19%,24%,23% |
220 1 Gyer SZ under the same PSNR' & over SZ under the same PSNR
200 o N 200 N
8180 = =
S 160 s
5) 140 z
B 120 | 18
100 . 1 . 1
80 | Hybrid Model 4 Hybrid Model
50 e~ Optimum (MS) | - Optimum (MS)
40 ---m--= QurSol (AS) ---m--= QurSol (AS) 4
o <@ t4 é & o b % o S) 75) <>
Bit Rate Bit Rate
(a) Hurricane (overall) (b) Hurricane (Wf48)
240 — 7Ty T
220 Compr. ratio improved by 44%;50%,36%4 220 Compr. ratio improved by 53%,46%,47%
200 rSZ under the same PSNR.—..--=" over SZ under the same PSNR
180 - 3
@ 160
S
140
& 120
% 100 - 1 - |
80 Hybrid Model ;! Hybrid Model 9
60 e~ Optimum (MS) | - Optimum (MS)
40 ---m--= QurSol (AS) ---m--= QurSol (AS)
AR R S - R A o Q¥ 6 O L n %
Bit Rate Bit Rate
(c) Miranda (overall) (d) Miranda (velocityx)
. 220 [Compr. ratio improved by 28%;33%,339
200 |--over SZ under the same PSNR
Hybrid Model 1 Hybrid Model 1
e~ Optimum (MS) | - Optimum (MS) |
---#--- OurSol (AS) ---m--- QurSol (AS)
0 P ¥ 6 & I I % 14 N 7 6 & %
Bit Rate Bit Rate
(e) Scale-LETKEF (overall) (f) Scale-LETKF (Pres)
220 mpr:-ratio-i d-by-28%;53%:;46% 180 |
200 |- over SZ under the same PSNR Bt .
180
%\160
@ 140
& 120 |
% 100) 1)
80 Hybrid Modet 4 90§ Hybrid Model
60 e~ Optimum (MS) | 40 | - Optimum (MS)
40 ---=-- OurSol (AS) 20 ---m--= QurSol (AS)
0 P ¥ 6 O I I i m O 9 % 6 & I In %4
Bit Rate Bit Rate
(g) QMCPack dataset 1 (overall) (h) NYX (overall)
Figure 11: Overall Evaluation
220 [-Compr. rati .54%,48% 220 [Compr. ratio improved by 29%51%44%
R - 200 |-over.SZ under the same PSNR
g 180
@ 160
140
2120
%100 ¢ 1
- 80 . 4
Hybrid Model 60 Hybrid Model]
---u--= OurSol (AS) hs ---w-= OurSol (AS)
6 6 B K O PTG KB
Bit Rate Bit Rate
(a) QMCPack - dataset 2 (b) QMCPack - dataset 3

Figure 12: Evaluation on Multiple QMCPack Dataset

bounds are set to 1E-6 and 1E-5 respectively. We first show that
the lossy compression with these two error bounds leads to fairly
high precision of the reconstructed data compared with the original

raw data. We then show the parallel I/O performance when using
different compressors.

The reconstructed data under lossy compression with these error
bounds are of fairly high precision. On the one hand, some domain
scientists [3] recommend keeping the structural similarity index
measure (SSIM) [46] no less than 0.99995, based on their postanal-
ysis using existing lossy compressors. The reconstructed data in
our experiments here can get an overall SSIM up to 0.99999+, so
the data are supposed to be acceptable to users w.r.t. SSIM. On the
other hand, to confirm that the error bounds in our evaluation lead
to high precision of the reconstructed data, we demonstrate the
visual quality of the reconstructed data for the two applications in
Figure 13 and Figure 14. We zoom in on a small region to 625X for
each image.

P i r = .
(a) original data (b) dec_data(reb=1e-6)

Figure 13: Visualization of Hurricane(Uf48)

Figure 14: Visualization of Miranda (velocityz)

We present the parallel I/O performance evaluation results in
Figure 15 and Figure 16. Without any compression techniques, it
took 6,141 s and 4,881 s to store the original data and 7,274 s and
5,891 s to read the original data (using 4,096 processes) because of
limited I/O bandwidth. The figures clearly show that the parallel I/O
performance with compression techniques is always less than 1,800
seconds. In particular, our solution has the least overall elapsed
times, which are 20%~40% less than the times when using the
second-best lossy compressor (SZ). This is due to the significantly
reduced data sizes achieved by our compressor. Such a performance
gain can benefit the applications significantly. On the one hand,
for the applications suffering a bottleneck in I/O cost, the overall
runtime can be reduced significantly. On the other hand, the storage
requirement would be decreased for each application, enabling more
applications to run on supercomputers.

2000
1800
1600

1200 1400
1200
oo 3100
o 800
E 600 = 600
[
3 400 I 400
2 200 I l I 200
& | 0
& _ _ _

0
Na T
[P
N

m Compression time
M Data writing time

m Decompression time
M Data reading time

ime(s)

Elapsed

N o ©
[
N

N o ©
B oo
N

Sz .

ZFP
Hybrid

ZFP
Hybrid | IE——

OurSol

Sz

=
o

>
I

Hybri
OurSo
OurSo
8
& Hybri
OurSo
OurSol —
SZ —
ZFP
Hybrid |
OurSol I

1024

.
o
N~
i

2048 4096
Numer of Cores

(b) Data loading performance

2048
Numebr of Cores
(a) Data dumping performance

Figure 15: Parallel Performance on Hurricane

M Decompression time
M Data reading time |
N a
kK E v o
N

2048
Numer of Cores
(b) Data loading performance

600 — 700
m Compression time

500 | M Data writing time

a
&
N

2048
Numer of Cores
(a) Data dumping performance

OurSol 1l
o

Hybrid |—
OurSol ———

Elapsed Time(s)
= N w S
(=] (=] (=3 o
o & & & o
Sz .
ZFP
Hybrid I
SZ |
Hybrid I
OurSol .
SZ |
ZFP | ——
Hybrid I
OurSol I
EI’a;pse,:\leinJ’e(s}> .
o © &6 © & ©
o O O O O o
Sz .
ZFP s
Hybrid [
SZ
ZFP .
Hybrid |——
OurSol .

OurSol

=
o
R
5
N
[=]
o
a
=
o
R
s
S
o
©
a

Figure 16: Parallel Performance on Miranda

8 CONCLUSIONS AND FUTURE WORK

In this paper, we present an efficient solution to significantly im-
prove the compression quality for the datasets produced by parallel
scientific simulations. In our solution, we develop more efficient
methods (2nd-order prediction) based on both Lorenzo prediction
and regression prediction. We develop an efficient algorithm that
can select the best-fit predictors and optimized parameter settings
at runtime. We thoroughly evaluate the compression quality and
performance on a supercomputer with 5 real-world scientific simu-
lations. The key findings are summarized below.

e The 2nd-order prediction can improve the compression ratio
by 50+% when the PSNS is around 120 dB for the Miranda
and QMCPack simulations.

e Our parameter optimization can further improve the com-
pression by 4%~50% in most cases.

e When using lossy compression techniques, the overall I/O
times are reduced to several hundreds of seconds from the
original several hours on the supercomputer.

o Our solution has the least overall elapsed I/O times, which
are 20%~40% less than the times when using the second-best
lossy compressor.

As future work, we plan to explore more effective prediction models
and coding algorithms.

9 ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number:
17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science
and the National Nuclear Security Administration, responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hard-
ware, advanced system engineering and early testbed platforms, to support the nation’s

exascale computing imperative. The material was supported by the U.S. Department
of Energy, Office of Science, under contract DE-AC02-06CH11357. This work was
also supported by the National Science Foundation under Grants CCF-1513201, CCF-
1619253, OAC-1948447, and OAC-2034169. We acknowledge the computing resources
provided on Bebop, which is operated by the Laboratory Computing Resource Center
at Argonne National Laboratory.

REFERENCES

[1] Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. 2018. Multilevel
techniques for compression and reduction of scientific data—the univariate case.
Computing and Visualization in Science 19, 5-6 (2018), 65-76.

[2] Francesc Alted. 2017. Blosc, an extremely fast, multi-threaded, meta-compressor
library.

[3] Allison H Baker, Dorit M Hammerling, Sheri A Mickelson, Haiying Xu, Martin B
Stolpe, Phillippe Naveau, Ben Sanderson, Imme Ebert-Uphoff, Savini Samaras-
inghe, Francesco De Simone, et al. 2016. Evaluating lossy data compression on
climate simulation data within a large ensemble. Geoscientific Model Development
9,12 (2016), 4381-4403. https://doi.org/10.5194/gmd-9-4381-2016

[4] Allison H. Baker, Haiying Xu, Dorit M. Hammerling, Shaomeng Li, and John P.
Clyne. 2017. Toward a Multi-method Approach: Lossy Data Compression for
Climate Simulation Data. In High Performance Computing. Springer International
Publishing, Cham, 30-42.

[5] Martin Burtscher and Paruj Ratanaworabhan. 2009. FPC: A high-speed compres-
sor for double-precision floating-point data. IEEE Trans. Comput. 58, 1 (Jan 2009),
18-31.

[6] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,
Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. 2019.
Use cases of lossy compression for floating-point data in scientific data sets. The
International Journal of High Performance Computing Applications 33, 6 (2019),
1201-1220.

[7] Zhengzhang Chen, Seung Woo Son, William Hendrix, Ankit Agrawal, Wei-keng
Liao, and Alok Choudhary. 2014. NUMARCK: machine learning algorithm for
resiliency and checkpointing. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE Press, IEEE,
New York, NY, USA, 733-744.

[8] Jong Youl Choi and et al. 2018. Coupling exascale multiphysics applications:
Methods and lessons learned. In Proceedings of IEEE International Conference on
eScience. IEEE, IEEE, New York, NY, USA, 442-452.

[9] S. Claggett, S. Azimi, and M. Burtscher. 2018. SPDP: An Automatically Syn-
thesized Lossless Compression Algorithm for Floating-Point Data. In 2018 Data
Compression Conference. IEEE, New York, NY, USA, 335-344. https://doi.org/10.
1109/DCC.2018.00042

[10] John Clyne, Pablo Mininni, Alan Norton, and Mark Rast. 2007. Interactive desktop

analysis of high resolution simulations: application to turbulent plume dynamics

and current sheet formation. New Journal of Physics 9, 301 (2007), 1-29.

L Peter Deutsch. 1996. GZIP file format specification version 4.3.

Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC data com-

pression with SZ. In 2016 IEEE International Parallel and Distributed Processing

Symposium. IEEE, New York, NY, USA, 730-739.

[13] Ian T. Foster et al. 2017. Computing just what you need: Online data analysis
and reduction at extreme scales. In European Conference on Parallel Processing.
Springer, Springer International Publishing, Cham, 3-19.

[14] Ali Murat Gok, Sheng Di, Alexeev Yuri, Dingwen Tao, Vladimir Mironov, Xin
Liang, and Franck Cappello. 2018. PaSTRI: A novel data compression algorithm
for two-electron integrals in quantum chemistry. In IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, New York, NY, USA, 1-11.

[15] L. A. B. Gomez and F. Cappello. 2013. Improving floating point compression

through binary masks. In 2013 IEEE International Conference on Big Data. IEEE,

New York, NY, USA, 326-331.

Salman Habib, Vitali A. Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, Ka-

trin Heitmann, Kalyan Kumaran, Venkatram Vishwanath, Tom Peterka, Joseph A.

Insley, David Daniel, Patricia K. Fasel, and Zarija Lukic. 2016. HACC: extreme

scaling and performance across diverse architectures. Commun. ACM 60, 1 (2016),

97-104.

David A Huffman. 1952. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE 40, 9 (1952), 1098-1101.

Hurricane ISABEL simulation data. 2019. http://vis.computer.org/vis2004contest/

data.html. Online.

[19] Sian Jin, Pascal Grosset, Christopher M Biwer, Jesus Pulido, Jiannan Tian, Ding-
wen Tao, and James Ahrens. 2020. Understanding GPU-Based Lossy Compression
for Extreme-Scale Cosmological Simulations. https://arxiv.org/abs/2004.00224.
Online.

[20] Jeongnim Kim and et al. 2018. QMCPACK: an open source ab initio quantum

Monte Carlo package for the electronic structure of atoms, molecules and solids.

Journal of Physics: Condensed Matter 30, 19 (2018), 195901.

Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Seung-Hoe Ku, Choong-

Seock Chang, Scott Klasky, Rob Latham, Rob Ross, and Nagiza F Samatova. 2013.

U
[OR=

[16

[17

=
&

[21

[22

[23

S
=}

[25

[26

[27

[28

@
&,

=
=

[41]

[42

[43

[44]

[45

[46]

[47]

(48]

Isabela for effective in situ compression of scientific data. Concurrency and
Computation: Practice and Experience 25, 4 (2013), 524-540.

Xin Liang, Sheng Di, Sihuan Li, Dingwen Tao, Bogdan Nicolae, Zizhong Chen,
and Franck Cappello. 2019. Significantly improving lossy compression quality
based on an optimized hybrid prediction model. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-26.

Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2018. An
Efficient Transformation Scheme for Lossy Data Compression with Point-wise
Relative Error Bound. In IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, New York, NY, USA, 179-189.

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. 2018. Error-controlled lossy compression optimized
for high compression ratios of scientific datasets. In 2018 IEEE International
Conference on Big Data. IEEE, IEEE, New York, NY, USA.

Peter Lindstrom. 2014. Fixed-rate compressed floating-point arrays. IEEE Trans-
actions on Visualization and Computer Graphics 20, 12 (2014), 2674-2683.

Peter Lindstrom. 2017. Error Distributions of Lossy Floating-Point Compressors.
Joint Statistical Meetings 1, 1 (2017), 2574-2589.

Peter Lindstrom and Martin Isenburg. 2006. Fast and efficient compression of
floating-point data. IEEE Transactions on Visualization and Computer Graphics
12, 5 (2006), 1245-1250.

Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric Suchyta, Jong Choi, Norbert
Podhorszki, Scott Klasky, Mathew Wolf, Tong Liu, et al. 2018. Understanding
and modeling lossy compression schemes on HPC scientific data. In 2018 IEEE
International Parallel and Distributed Processing Symposium. IEEE, 348-357.
Miranda. 2019. https://wci.llnl.gov/simulation/computer-codes/miranda/papers.
Online.

NYX simulation. 2019. https://amrex-astro.github.io/Nyx. Online.

EXAALT project. 2019. https://www.exascaleproject.org/project/
exaalt-molecular-dynamics-at-the-exascale-materials-science/. Online.

Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. 2006. Fast lossless compres-
sion of scientific floating-point data. In Data Compression Conference (DCC’06).
IEEE, IEEE, New York, NY, USA, 133-142.

Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. 2015. Exploration
of lossy compression for application-level checkpoint/restart. In 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE, New York,
NY, USA, 914-922.

Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng
Liao, and Alok Choudhary. 2014. Data compression for the exascale computing
era-survey. Supercomputing Frontiers and Innovations 1, 2 (2014), 76-88.

Bebop supercomputer. 2019. Available at https://www.lcrc.anl.gov/systems/
resources/bebop. Online.

ORNL Summit supercomputer. 2019. https://www.olcf.ornl.gov/summit/. Online.
Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017. Significantly
improving lossy compression for scientific data sets based on multidimensional
prediction and error-controlled quantization. In 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, New York, NY, USA, 1129-1139.
Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. 2019.
Optimizing Lossy Compression Rate-Distortion from Automatic Online Selection
between SZ and ZFP. IEEE Trans. Parallel Distrib. Syst. 30, 8 (2019), 1857-1871.
David Taubman and Michael Marcellin. 2013. JPEG2000 Image Compression Fun-
damentals, Standards and Practice. Springer Publishing Company, Incorporated,
New York, NY, USA.

Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. On Implementing MPI-IO
portably and with high performance. In Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems (IOPADS °99). ACM, New York, NY, USA,
23-32.

Andy Turner. 2019. Parallel I/O Performance. https://www.archer.ac.uk/training/
virtual/2017-02-08-Parallel-10/2017_02_ParallellO_ARCHERWebinar.pdf. On-
line.

Robert Underwood, Sheng Di, Jon C. Calhoun, and Franck Cappello. 2020. FRaZ:
A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific
Floating-point Data. https://arxiv.org/abs/2001.06139. Online.

Gregory K Wallace. 1992. The JPEG still picture compression standard. IEEE
Transactions on Consumer Electronics 38, 1 (1992), xviii-xxxiv.

SCALE-LETKF weather model. 2019. https://github.com/gylien/scale-letkf. On-
line.

Brent Welch. 2005. POSIX IO extensions for HPC. In 4th USENIX Conference on
File and Storage Technologies (FAST05). USENIX Association, USA, 1.

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (April 2004), 600-612.

Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on information theory 23, 3 (1977), 337-343.
zstd. 2019. https://github.com/facebook/zstd/releases. Online.

https://doi.org/10.5194/gmd-9-4381-2016
https://doi.org/10.1109/DCC.2018.00042
https://doi.org/10.1109/DCC.2018.00042
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
https://arxiv.org/abs/2004.00224
https://wci.llnl.gov/simulation/computer-codes/miranda/papers
https://amrex-astro.github.io/Nyx
https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-exascale-materials-science/
https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-exascale-materials-science/
 https://www.lcrc.anl.gov/systems/resources/bebop
 https://www.lcrc.anl.gov/systems/resources/bebop
https://www.olcf.ornl.gov/summit/
https://www.archer.ac.uk/training/virtual/2017-02-08-Parallel-IO/2017_02_ParallelIO_ARCHERWebinar.pdf
https://www.archer.ac.uk/training/virtual/2017-02-08-Parallel-IO/2017_02_ParallelIO_ARCHERWebinar.pdf
https://arxiv.org/abs/2001.06139
https://github.com/gylien/scale-letkf
https://github.com/facebook/zstd/releases

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Design Overview
	5 Second-Order Data Prediction
	5.1 Second-Order Lorenzo Prediction
	5.2 Second-Order Regression-Based Prediction

	6 Parameter Optimization
	6.1 Optimizing Compression Quality Estimation over Sampled Dataset
	6.2 Offline Parameter Optimization
	6.3 Online Parameter Optimization

	7 Performance Evaluation
	7.1 Experimental Settings
	7.2 Assessment of Second-Order Prediction
	7.3 Assessment of Parameter Optimization
	7.4 Overall Compression Quality
	7.5 I/O Performance Evaluation

	8 Conclusions and Future Work
	9 ACKNOWLEDGMENTS
	References

