
International Journal of Mechanical Sciences 163 (2019) 105131 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

Quantifying the anisotropic linear elastic behavior of solids 

Yue Mei a , b , c , Sevan Goenezen c , ∗ 

a State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China 
b International Research Center for Computational Mechanics, Dalian University of Technology, China 
c Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA 

a r t i c l e i n f o 

Keywords: 

Mechanical testing of heterogeneous materials 
Inverse problems 
Anisotropy 
Composite materials 

a b s t r a c t 

In this work, we present a non-destructive approach to characterize the heterogeneous mechanical behavior of 
anisotropic elastic solids. This approach is based on iterative inverse algorithms using the framework of finite 
element discretization schemes. We test the proposed approach with several theoretical studies and observe that 
for a low noise level in measured displacement fields, it is possible to map the anisotropic linear elastic parameter 
distributions with high accuracy. We also observe that with additional displacement field measurements, the 
solution to the inverse problem becomes more unique. However, for higher noise levels (3%), the quality of the 
reconstructions deteriorates for the parameter C 12 of the orthotropic elasticity tensor. A theoretical analysis is 
performed and we demonstrate that this may be due to small gradients of the objective function with respect to 
C 12 . Overall, the proposed approach has potential to characterize the anisotropic mechanical behavior of polymer 
based materials or tissues for pathology. 
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. Introduction 

Understanding the mechanical behavior of materials is crucial not
nly in traditional engineering fields including civil engineering, me-
hanical engineering, aerospace engineering, etc., but also in emerging
ngineering fields, e.g., to analyze the structural integrity of engineered
issues or to analyze the biomechanical behavior of body parts. A wide
ange of important mechanical testing approaches such as uniaxial test-
ng, biaxial testing, shear testing are generally utilized for this purpose.
n mechanical testing, a sample with predefined geometry is subject to
ontrolled loadings, and the testing system records the applied force
nd the resulting deformation [1] . With the measured force and defor-
ations, the stress-strain relation can be determined, from which the
echanical properties can be inferred [2] . Beyond linear elastic pa-
ameters, these may include nonlinear elastic, viscoelastic, plastic, or
nisotropic parameters via curve fitting, using an appropriate constitu-
ive model for stiff solids such as alloys [3,4] , concretes [5,6] , ceramics
7] , and biological tissues [8–10] . 
With the development of imaging techniques, such as ultrasound,
agnetic resonance imaging (MRI), optical coherence tomography
OCT), and digital cameras, it has been possible to measure the spa-
ial distribution of the displacement field that can be used to map the
onhomogeneous mechanical property distributions. Ultrasound based
echniques measure quasi-static displacements [11–15] and the wave
peed [16–18] to infer the elastic modulus or viscoelastic property dis-
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ributions. MRI is mainly used to measure shear wave speeds from which
he storage and loss modulus distributions can be inferred [19–23] . OCT
s mainly used on softer materials such as soft tissues with a penetration
epth of about 2 mm [24] . It provides quasi-static and dynamic displace-
ents at micrometer length scales [25–29] to infer the elastic modulus
r viscoelastic property distribution. Digital camera images can be used
o trace displacement fields on the surface of a specimen provided a
peckle pattern [30–32] . The mechanical property distributions of flat
amples under two-dimensional loading conditions were computed for
onlinear elastic [33] and elasto-viscoplastic [34,35] materials. In a
heoretical study, the linear elastic property distribution was also de-
ermined for a non-homogeneous and volumetric solid under three di-
ensional loading conditions [36,37] . This expands the potential use
f digital camera imaging to “view ” the interior mechanical property
istribution of three dimensional solids. 
However, only few works are available on identifying the heteroge-

eous, linear elastic anisotropic parameter of solids from quasi-static dis-
lacement fields [38–40] . In [38] , the authors reconstructed the nonho-
ogeneous anisotropic elastic constants of solids by minimizing the dis-
repancy in the stress fields. In [39] , the authors mapped the nonhomo-
eneous and transversely isotropic linear elastic parameter distribution
f synthetic data and of bones in three dimensions by minimizing the
iscrepancy between measured and computed displacements. Therein
he orientation of the material axes was assumed to be known. From
hose works, it was apparent that it is a much harder task to recover
he anisotropic elastic constants as compared to the isotropic elastic
ember 2019 
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Fig. 1. A schematic diagram of the cross section of a microstructure for an orthotropic material where the elliptic fiber bundles are in dark blue color. (a) The 
material axes are aligned with the reference axes; (b) the material axes are not aligned with reference axes. 
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onstants. The anisotropic material parameter distribution has been
oorly recovered even for low noise levels in measured displacements
38,39] . This is because the number of linear elastic constants for an
nisotropic material is significantly higher than that of an isotropic ma-
erial. 
In this work, we solve for the orthotropic linear elastic parameter

istributions together with the unknown orientation of material axes
hat changes as a function of space. In Guchhait et al. [38] the orienta-
ion of material axes was introduced as an additional unknown as well,
nd they utilized a stress formulation in the objective function. In this
aper, we minimize the discrepancy between computed and measured
isplacement fields in the objective function for the orthotropic elastic
arameter distribution and material axes orientation. The stability of the
olution is controlled with a regularization term. We solve the inverse
roblem utilizing the adjoint equations to efficiently calculate the gradi-
nt of the objective function after discretizing the equations with finite
lement based schemes. We present the proposed numerical algorithms
n Section 2 and evaluate them using three different regularization terms
n Section 3 . In more detail, we utilize the total variation diminishing
egularization in Section 3.1 , the L-1 regularization in Section 3.2 , and
he L-2 regularization in Section 3.3 . To understand the outcome of the
umerical results, a theoretical analysis will be presented in Section 3.4 .
n Section 4 , we will discuss the numerical results and end with conclu-
ions in Section 5 . 

. Methods 

.1. Forward problem formulation for 2-D orthotropic linear elasticity 

The strong form can be stated as: Find the displacement u such
hat the equilibrium equations are satisfied for prescribed Neumann and
irichlet boundary conditions and are given by 

∇ 𝝈 = 0 in Ω
𝐮 = 𝐠 on Γ𝑢 

⋅ 𝐧 = 𝐭 on Γ𝑡 
(1)

here 𝝈 denotes the stress tensor, Ω the problem domain, Γu the dis-
lacement boundary with prescribed displacements g , and Γt the trac-
ion boundary with prescribed traction t . Furthermore, we require that
Γu ∪Γt = Ω, constitutes the entire boundary, and Γu ∩Γt = ∅ yields the
mpty set. 
The constitutive equation here is given for a 2-D orthotropic linear

lastic material by: 

 

 

 

 

 

𝜎𝑥𝑥 
𝜎𝑦𝑦 
𝜎𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎣ 
𝐶 11 𝐶 12 0 
𝐶 12 𝐶 22 0 
0 0 𝐶 66 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥𝑥 
𝜀 𝑦𝑦 
𝛾𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ (2)

here 𝛾xy = 2 𝜀 xy is the in-plane engineering shear strain. We note that
aterial axes are aligned with the x-y axes as shown in Fig. 1 (a). It is
oted that there is no coupling effect between shear and axial deforma-
ions. In other words, pure shear stresses will only produce pure shear
trains, and normal stresses will only result in normal strains. If the ma-
erial axes are not aligned with the x-y axes, e.g., the material axes are
otated counter-clockwise from the x-y coordinate system by an angle
f 𝜃 as shown in Fig. 1 (b), the stress-strain relation can be rewritten as:

 

 

 

 

 

𝜎𝑥𝑥 
𝜎𝑦𝑦 
𝜎𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎡ ⎢ ⎢ ⎣ 
𝐶̃ 11 𝐶̃ 12 𝐶̃ 16 
𝐶̃ 12 𝐶̃ 22 𝐶̃ 26 
𝐶̃ 16 𝐶̃ 26 𝐶̃ 66 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥𝑥 
𝜀 𝑦𝑦 
𝛾𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ (3)

It is noted that the statements we made for the constitutive Eq. (2) do
ot hold here. The material parameters in Eq. (3) can be expressed in
erms of C 11 , C 12 , C 22 , C 66 and 𝜃, that is, 

̃
 11 = 𝐶 11 cos 4 𝜃 + 𝐶 22 sin 4 𝜃 + 2 

(
𝐶 12 + 2 𝐶 66 

)
sin 2 𝜃cos 2 𝜃

̃
 22 = 𝐶 11 sin 4 𝜃 + 𝐶 22 cos 4 𝜃 + 2 

(
𝐶 12 + 2 𝐶 66 

)
sin 2 𝜃cos 2 𝜃

̃
 12 = 

(
𝐶 11 + 𝐶 22 − 4 𝐶 66 

)
sin 2 𝜃cos 2 𝜃 + 𝐶 12 

(
cos 4 𝜃 + sin 4 𝜃

)
̃
 66 = 

(
𝐶 11 + 𝐶 22 − 2 𝐶 12 − 2 𝐶 66 

)
sin 2 𝜃cos 2 𝜃 + 𝐶 66 

(
cos 4 𝜃 + sin 4 𝜃

)
̃
 16 = 

(
𝐶 11 − 𝐶 12 − 2 𝐶 66 

)
sin 𝜃cos 3 𝜃 − 

(
𝐶 22 − 𝐶 12 − 2 𝐶 66 

)
sin 3 𝜃 cos 𝜃

̃
 26 = 

(
𝐶 11 − 𝐶 12 − 2 𝐶 66 

)
sin 3 𝜃 cos 𝜃 − 

(
𝐶 22 − 𝐶 12 − 2 𝐶 66 

)
sin 𝜃cos 3 𝜃

(4) 

Eq. (4) is obtained after a coordinate transformation of the stress ten-
or and strain tensor, as shown in [41] . With the constitutive laws from
3) and (4) , the governing equations, and prescribed boundary condi-
ions, we can solve the boundary value problem, also referred to here as
he forward problem, for a given problem domain, using finite element
ethods and determine its displacement fields. 

.2. Inverse problem formulation for 2-D orthotropic linear elasticity 

In this paper, we utilize an iterative solution strategy to solve
he inverse problem in 2-D for an orthotropic linear elastic mate-
ial. The inverse problem is stated as: Given N measured displacement
elds 𝐮 𝑚 1 , 𝐮 

𝑚 
2 … 𝐮 𝑚 

𝑁 
, find the material parameter and angle distributions

optimization variables) 𝛽 = [ C 11 C 12 C 22 C 66 𝜃] such that the objective
unction 

 = 

1 
2 

𝑁 ∑
𝑖 =1 

‖‖‖(𝐮 𝑐 𝑖 − 𝐮 𝑚 
𝑖 

)‖‖‖2 0 + Re 𝑔( 𝛽𝑖 ) (5)

s minimized. In Eq. (5) , 𝐮 𝑐 
𝑖 
is the i th computed displacement field and

atisfies the constraint of boundary value problem for the updated me-
hanical property distributions, obtained at the previous minimization
teration. In Eq. (5) , we have omitted the spatial dependencies x of dis-
lacement fields and unknown optimization variables. Further, we note
hat the discrepancy between computed and measured displacements in
q. (5) is minimized in the L-2 norm. Additionally, the displacements
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Table 1 

Target orthotropic linear elastic mechanical parameters as defined in 
Fig. 3 . 

C 11 (kPa) C 12 (kPa) C 22 (kPa) C 66 (kPa) 𝜃( ͦ ) 

background 40 9 150 14 0 

inclusion 200 40 300 42 0 
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C  
nd optimization variables are discretized with finite element shape
unctions, consequently the optimization variables are assumed to be
nknowns on finite element mesh nodes. Due to noise in displacement
easurements and the ill-posedness of the inverse problem, we aug-
ent the objective function in the second term with a regularization
erm. We employ the total variation diminishing (TVD) regularization
42,43] , L-1 regularization, L-2 regularization, and compound regular-
zation (TVD + L-1) [44] given in that order by 

1 
2 

𝑚 ∑
𝑗=1 
𝛼𝑗 ∫

Ω

√ |∇ 𝛽𝑗 |2 + 𝑐 2 𝑑Ω

1 
2 

𝑚 ∑
𝑗=1 
𝛼𝑗 ∫

Ω

√ |𝛽𝑗 |2 𝑑Ω
1 
2 

𝑚 ∑
𝑗=1 
𝛼𝑗 ∫

Ω

(
𝛽𝑗 
)2 
𝑑Ω

1 
2 

𝑚 ∑
𝑗=1 
𝛼𝑗 ∫

Ω

√ |∇ 𝛽𝑗 |2 + 𝑐 2 𝑑Ω + 

1 
2 

2 𝑚 ∑
𝑗= 𝑚 +1 

𝛼𝑗 ∫
Ω

√ |𝛽𝑗 |2 𝑑Ω
(6) 

The weight of the regularization term and its contribution to the ob-
ective function are controlled by the regularization factor 𝛼j , which is
elected by a smoothness criteria discussed in past publications [45,46] .
he smoothness criteria leads to a very low standard deviation less than
.17 in a subregion of the background. In the total variation dimin-
shing regularization, c = 0.01 is a constant to avoid singularities when
omputing the gradient of the regularization term. 
The constrained optimization problem is solved using a gradient

ased method, here the L-BFGS method [47,48] . This requires the gra-
ient of the objective function with respect to mechanical properties
nd angle ( 𝜕 F / 𝜕 𝛽 j ) to be computed at every node. To reduce the compu-
ational cost in evaluating the gradient, we adopt the adjoint method,
hich merely requires solving two linear problems at each minimization
teration. In more detail, in the first step we solve the forward problems
or each measurement “i ” given by the weak form; Find 𝐮 𝑐 

𝑖 
∈ 𝑄 such that

 

(
𝐰 𝑖 , 𝐮 𝑐 𝑖 ; 𝛽𝑗 

)
− ∫

Γ

𝐰 𝑖 ⋅ 𝐭 𝑖 𝑑Γ = 0 ∀𝐰 𝑖 ∈ 𝑉 (7)

here 𝐴 ( 𝐰 𝑖 , 𝐮 𝑐 𝑖 ; 𝛽𝑗 ) = ∫
Ω
∇ 𝐰 𝑖 ∶ 𝝈𝑖 𝑑Ω, the subscript i denotes (no Einstein

ummation over repeated i here) the i -th measurement, and the stress
ensor 𝝈i was defined in Eq. (3) in terms of the strain components related
o the computed displacements 𝐮 𝑐 

𝑖 
by 𝜺 𝑖 = 

1 
2 (∇ 𝐮 𝑐 

𝑖 
+ (∇ 𝐮 𝑐 

𝑖 
) 𝑇 ) . Further, we

efine the function spaces Q and V as 

 = { 𝐮 |𝑢 𝑘 ∈ 𝐻 
1 (Ω); 𝑢 𝑘 = 𝑔 𝑘 on Γ𝑢 } (8)

 = { 𝐰 |𝑤 𝑘 ∈ 𝐻 
1 (Ω); 𝑤 𝑘 = 0 on Γ𝑢 } (9)

In the second step, the dual problem is solved using the computed
isplacement field 𝐮 𝑐 

𝑖 
from solving the weak form in the first step. In par-

icular, we solve for the Lagrange multipliers 𝐰̄ 𝑖 for each measurement
 given by 

 

(
𝛿𝐮 𝑐 
𝑖 
, 𝐰̄ 𝑖 ; 𝛽𝑗 , 𝐮 𝑐 𝑖 

)
= ∫ 𝛿𝐮 𝑐 

𝑖 
⋅ ( 𝐮 𝑐 

𝑖 
− 𝐮 𝑚 

𝑖 
) 𝑑Ω ∀𝛿𝐮 𝑐 

𝑖 
∈ 𝑉 (10)

With 𝐮 𝑐 
𝑖 
and 𝐰̄ 𝑖 we can formulate the gradient of the objective func-

ion in Eq. (5) with respect to the mechanical property distributions. To
his end, we define variations of a function or the functional derivative
s 

𝑓 = 𝐷 𝛽𝑗 
𝑓 𝛿𝛽𝑗 = 

𝑑 

𝑑𝜀 

||||𝜀 →0 
𝑓 ( 𝛽𝑗 + 𝜀 𝛿𝛽𝑗 ) (11)

We express the variations in the objective function with respect to
he mechanical properties as 

𝜋 = 

𝑁 ∑
𝑖 =1 

∫
Ω

∇ 𝐰 𝑖 ∶ 𝐷 𝛽𝑗 
𝝈𝑖 𝛿𝛽𝑗 𝑑Ω + 𝐷 𝛽𝑗 

Re 𝑔 ( 𝛽𝑖 ) 𝛿𝛽𝑗 (12)
rom which the gradient can be directly computed. The derivation of
q. (12) has been omitted here and can be viewed in detail in [45,49,50] .
e note that Eqs. (4) to (12) are provided in continuous form. We dis-
retize all spatially varying variables using finite element based dis-
retization schemes, and more precisely with bilinear elements. The
omputation of the gradient has been derived and expressed in ma-
rix/vector notation in [19,51] as an alternative representation to the
ontinuous form here. 
The nodal optimization variables in 𝛽 are updated at every mini-
ization call until the relative change in the objective function value or
radients is close to machine precision. We note that for 2-D orthotropic
inear elasticity, a large number of unknowns must be determined, thus,
he solution to the inverse problem may be harder to solve uniquely.
o address this issue, we will solve the inverse problem using multi-
le full-field displacement fields that are significantly distinct from one
nother. 

.3. Creating theoretical-synthetic displacement fields 

The performance of the iterative inverse strategy to characterize the
on-homogeneous orthotropic linear elastic parameters and the angle
orientation of the material axes) will be tested with theoretical data,
.e. synthetic displacements obtained from solving boundary value prob-
ems. To represent noise in actual displacement measurements, we add
hite Gaussian noise to both the displacement fields and traction bound-
ry conditions (same noise level to each). To this end, let us consider
 1 cm ×1 cm square problem domain as shown in the first column of
ig. 3 . In this problem domain, a stiff inclusion with a radius of 0.1 cm
s embedded in a soft background. The specific mechanical parameters
or the background and inclusion are given in Table 1 . In this case, the
echanical parameters of the background are taken from the parame-
ers of a healthy human skin [52] . First, we assume that the material
xes of both background and inclusion are known and aligned with the
eference axes, i.e., 𝜃 = 0. The problem domain has been meshed with
00 bilinear finite elements having uniform grid spacing. We utilize
ultiple synthetic full-field displacement “measurements ” acquired by
olving boundary value problems for verification of our inverse prob-
em implementation solution strategy. The location of measured dis-
lacement points coincides with the mesh nodes, and the mesh used
o solve the inverse problem remains the same. The traction and dis-
lacement boundary conditions are defined in Fig. 2 (a) and (b) repre-
ent uniaxial tension tests, Fig. 2 (c) and (d) represent shear tests, and
ig. 2 (e) and (f) represent biaxial tests. The prescribed non-zero tractions
re given by 𝑡 𝑥 = −3 kPa , 𝑡 𝑦 = 3 kPa , 𝑡 𝑥𝑦 = 1 . 5 kPa , 𝑡 1 

𝑥 
= 0 . 3 kPa , 𝑡 1 

𝑦 
= 𝑡 2 

𝑦 
=

 . 3 kPa and 𝑡 2 
𝑥 
= −0 . 3 kPa . 

. Results 

.1. Reconstructions using total variation diminishing regularization 

The results in this section utilize the total variation diminishing reg-
larization, defined in the first row of Eq. (6) . This regularization type
enalizes variations and oscillations and preserves sharp gradients in the
apped solutions. Fig. 3 represents reconstructions using 4 full-field dis-
lacement measurements (from Fig. 2 (a) to (d)). The target domain is
iven in column 1 for the orthotropic elatic parameters C 11 , C 12 , C 22 ,
 66 from row 1 to 4, respectively. Reconstructions in columns 2, 3, and
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Fig. 2. A total of six prescribed boundary conditions 
are employed for the problem domain with a stiff inclu- 
sion embedded in a soft background to create distinct 
displacement fields. 

Fig. 3. Problem domain with target material parameter distributions C 11 , C 12 , C 22 , C 66 are defined in the first column and presented from top row to bottom row, 
respectively. Column 2 to column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the 
color bar: 10KPa). 
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Fig. 4. Problem domain with target material parameter distributions C 11 , C 12 , C 22 , C 66 are defined in the first column and presented from top row to bottom row, 
respectively. Column 2 to Column 4 represent parameter reconstructions using 6 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the 
color bar: 10KPa). 
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a  
 are associated with noise levels of 0%, 1%, and 3%, respectively. The
egularization factor for each mechanical parameter is listed in Table 2 .
e observe that the recovered orthotropic linear elastic parameter dis-
ributions for the noise free case (second column in Fig. 3 ) are fairly close
o the target distributions (first column in Fig. 3 ). Furthermore, for 1%
oise, all parameter distributions except for C 12 are well-recovered with
espect to shape of the inclusions and its overall quantitative reconstruc-
ion. For the C 12 parameter, the shape of the inclusion becomes larger
nd its value in the inclusion is significantly smaller than the target. For
% noise (fourth column in Fig. 3 , the inclusion shape for all parameter
istributions except for C 12 are visible (though distorted), but the over-
ll quantitative reconstructions of all mechanical parameters are of poor
uality and significantly lower than their target distributions. Next, we
Table 2 

Regularization factors associated with computations in Fig. 3 . 

C 11 C 12 C 22 C 66 

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 5.0 × 10 − 10 2.0 ×10 − 10 1.0 ×10 − 10 2.0 × 10 − 10 

3% noise 3.0 × 10 − 9 5.0 ×10 − 10 2.0 ×10 − 10 2.0 × 10 − 9 
nclude two additional displacement measurements from biaxial testing
n Fig. 2 (e) and (f), thus have a total of 6 displacement fields to recon-
truct the mechanical parameters, shown in Fig. 4 . The corresponding
egularization factors are listed in Table 3 . For a low noise level, the
rthotropic elastic parameter distribution can be well recovered quan-
itatively, similar to what we observed in Fig. 3 , while they are poorly
ecovered at a higher noise level. We also observe that for 3% noise,
he inclusion shape and parameter values in the mapped distribution of
he parameter C 12 can be improved after including displacement fields
rom biaxial tests and thereby increasing the total number of displace-
ent measurements. 
So far we have shown that the reconstructions are fairly reason-

ble even in the presence of noise for a single stiff inclusion. Since the
Table 3 

Regularization factors associated with computations in Fig. 4 . 

C 11 C 12 C 22 C 66 

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 3.0 × 10 − 10 5.0 ×10 − 11 2.0 × 10 − 11 3.0 × 10 − 10 

3% noise 1.0 × 10 − 9 2.0 ×10 − 10 3.0 × 10 − 10 2.0 × 10 − 9 
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Fig. 5. Problem domain with target material parameter distributions C 11 , C 12 , C 22 , C 66 are defined in the first column and presented from top row to bottom row, 
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the 
color bar: 10KPa). 
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rthotropic elastic parameters are specified as unknowns on finite el-
ment mesh nodes and no assumptions are made on the presence
f any stiff regions, it should be possible to recover additional non-
omogeneities. To demonstrate this, we define a second stiff inclusion
ith the same orthotropic elastic parameters as in the previous exam-
les, with target domain given in the first column of Fig. 5 for the or-
hotropic elastic parameters C 11 , C 12 , C 22 , C 66 from row 1 to 4, respec-
ively. The reconstructions with 4 displacement fields are given in Fig.
 in columns 2, 3, and 4 for noise levels of 0%, 1%, and 3%. The asso-
iated regularization factors are listed in Table 4 . We observe that the
econstructions behave similar to the reconstructions obtained with 1
nclusion. 
For some materials, the angle of material axes with the reference co-

rdinate system (here also referred to as “angle ”) may not be known,
.g., skin tissue or engineered materials with unknown manufacturing
Table 4 

Regularization factors associated with computations in Fig. 5 . 

C 11 C 12 C 22 C 66 

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 5.0 ×10 − 10 1.0 ×10 − 10 1.0 × 10 − 10 4.0 ×10 − 10 

3% noise 3.0 ×10 − 9 4.0 ×10 − 10 2.0 × 10 − 10 3.0 ×10 − 9 
etails. Thus, in the following, we will demonstrate feasibility to recover
he distribution of the angle 𝜃 in addition to the material parameters.
e define the problem domain similar to the previous example with the
ame target material parameter distributions, but vary the angle of the
aterial axes in the inclusion according to Table 5 . As detailed for the
revious examples, we create displacement fields by solving boundary
alue problems for given boundary conditions in Fig. 2 and augment
he resulting displacement fields with noise to represent noise in dis-
lacement measurements. We also utilize the same strategy to solve the
nverse problem, but now include the angle of material axes as an addi-
ional unknown. Figs. 6 and 7 present reconstructions of the mechani-
al property distributions using 4 and 6 full-field displacement measure-
ents, respectively, with noise levels of 0%, 1%, and 3%. The associated
egularization factors are listed in Tables 6 and 7 . For no or low noise
evels of 1%, the mechanical property distributions are generally well
Table 5 

Target orthotropic linear elastic material parameters used in Fig. 6 . 

C 11 (kPa) C 12 (kPa) C 22 (kPa) C 66 (kPa) 𝜃(°) 

background 40 9 150 14 0 

inclusion 200 40 300 42 30 
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Fig. 6. Problem domain with target material parameter and angle distributions C 11 , C 12 , C 22 , C 66 , 𝜃 are defined in the first column and presented from top row to 
bottom row, respectively. Column 2 to column 4 represent reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. Note that 
the unit of the angle 𝜃 used in the last row is in radians, and for other parameters, the unit is 10 KPa. 
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a

ecovered, whereas the reconstruction of 𝜃 for 1% noise yields a slightly
eteriorated inclusion shape, but overall quantitative values in inclu-
ion and background are well reconstructed. For higher noise levels of
Table 6 

Regularization factors associated with computations in Fig. 6 . 

C 11 C 12 C 22 C 66 𝜃

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 1.0 × 10 − 10 8.0 × 10 − 11 5.0 ×10 − 11 3.0 × 10 − 10 9.0 × 10 − 10 

3% noise 5.0 × 10 − 9 1.0 × 10 − 9 4.0 ×10 − 10 4.0 × 10 − 9 2.5 × 10 − 8 
%, the mechanical property distribution and angle are poorly recon-
tructed. More precisely, the shape of the inclusion appears enlarged,
nd the mechanical property values overall are underestimated. 
Table 7 

Regularization factors associated with computations in Fig. 7 . 

C 11 C 12 C 22 C 66 𝜃

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 1.0 × 10 − 10 8.0 × 10 − 11 5.0 ×10 − 11 3.0 × 10 − 10 1.0 ×10 − 9 

3% noise 2.0 × 10 − 9 4.0 × 10 − 10 2.0 ×10 − 10 2.0 × 10 − 9 3.0 ×10 − 8 
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Fig. 7. Problem domain with target material parameter and angle distributions C 11 , C 12 , C 22 , C 66 , 𝜃 are defined in the first column and presented from top row to 
bottom row, respectively. Column 2 to Column 4 represent reconstructions using 6 displacement measurements with 0%, 1%, and 3% noise, respectively. Note that 
the unit of rotation 𝜃 used in the last row is in radians, and for other parameters, the unit is 10KPa. 
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Table 8 

Regularization factors associated with computations in Fig. 8 . 

C 11 C 12 C 22 C 66 

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 2.0 × 10 − 8 5.0 × 10 − 9 3.0 × 10 − 9 9.0 × 10 − 9 

3% noise 1.0 × 10 − 7 9.0 × 10 − 9 7.0 × 10 − 9 7.0 × 10 − 8 

3

 

.2. Reconstructions using L-1 regularization 

In the following, we explore the performance of reconstructing the
rthotropic elastic parameter distributions using the L-1 regulariza-
ion, defined in the second row in Eq. (6) . Fig. 8 shows the recon-
tructions of the orthotropic elastic parameters C 11 , C 12 , C 22 , C 66 in
ows 1, 2, 3, and 4, respectively. Columns 2, 3, and 4 represent re-
onstructions with noise levels of 0%, 1%, and 3%, respectively. The
egularization factors associated with these reconstructions are given in
able 8 . We observe that the reconstructions with 1% and 3% noise are
ery poor and the solutions oscillate extremely throughout the entire

omain. e  
.3. Reconstructions using L-2 regularization 

Next, we explore the performance of reconstructing the orthotropic
lastic parameter distributions using the L-2 regularization, defined in
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Fig. 8. Problem domain with target material parameter distributions C 11 , C 12 , C 22 , C 66 are defined in the first column and presented from top row to bottom row, 
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the 
color bar: 10KPa). 

Table 9 

Regularization factors associated with computations in Fig. 9 . 

C 11 C 12 C 22 C 66 

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 7.0 ×10 − 9 1.0 ×10 − 8 8.0 ×10 − 10 2.0 × 10 − 8 

3% noise 8.0 ×10 − 9 1.0 ×10 − 9 5.0 ×10 − 9 6.0 × 10 − 9 
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Table 10 

Regularization factors associated with computations in Fig. 10 . (We 
use the same regularization factors for TVD part and L-1 part). 

C 11 C 12 C 22 C 66 

0% noise 10 − 12 10 − 12 10 − 12 10 − 12 

1% noise 5.0 × 10 − 10 2.0 ×10 − 10 1.0 × 10 − 10 2.0 × 10 − 10 

3% noise 3.0 × 10 − 9 5.0 ×10 − 10 2.0 × 10 − 10 2.0 × 10 − 9 
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3
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o  
he third row in Eq. (6) . Fig. 9 shows the reconstructions of the or-
hotropic elastic parameters C 11 , C 12 , C 22 , C 66 in rows 1, 2, 3, and 4,
espectively. Column 2, 3, and 4 represent reconstructions with noise
evels of 0%, 1%, and 3%, respectively. The regularization factors as-
ociated with these reconstructions are given in Table 9 . We observe
hat the reconstructions with 1% and 3% noise are very poor and the
olutions oscillate extremely throughout the entire domain. 

.4. Reconstructions using compound regularization 

Finally, we test the performance of reconstructing the orthotropic
lastic parameter distributions using the compound regularization.
ig. 10 shows the reconstructions of the orthotropic elastic parameters
 11 , C 12 , C 22 , C 66 in rows 1 to 4, respectively. Columns 2, 3, and 4
epresent reconstructions with noise levels of 0%, 1%, and 3%, respec-
ively. The regularization factors associated with these reconstructions
re given in Table 10 . We observe that the reconstructions of C 22 with
% noise are very poor and the solutions oscillate extremely throughout
he entire domain. For other mechanical properties, the reconstruction
esults look decent. 

.5. Theoretical analysis 

We observed from the reconstructions in this paper that C 12 was
oorly recovered. To understand why this happens, we employ a 2-D
omogeneous and orthotropic square membrane with unit length of 1
n each side and subjected to biaxial testing as shown in Fig. 11 . We
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Fig. 9. Problem domain with target material parameter distributions C 11 , C 12 , C 22 , C 66 are defined in the first column and presented from top row to bottom row, 
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the 
color bar: 10KPa). 
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ssume that the material axis is aligned with x-y (reference) plane, thus
e only consider the three parameters C 11 , C 22 and C 12 for the analysis.
ince the solution of the inverse problem relies on a gradient based op-
imization approach, the gradient of the objective function with respect
o the optimization variables may help to understand the performance
f the optimization scheme and the results presented in this paper. Thus,
n the following analysis, we will derive the analytical solution for the
radient of the objective function with respect to 𝛽 j . Let us also assume
hat there is no noise in measured displacements and neglect the regu-
arization term, leading to the following objective function: 

 = 

1 
2 ∫

1 

0 ∫
1 

0 

( (
𝑢 𝑐 
𝑥 
− 𝑢 𝑚 

𝑥 

)2 + 

(
𝑢 𝑐 
𝑦 
− 𝑢 𝑚 

𝑦 

)2 
) 

𝑑 𝑥𝑑 𝑦 (13)

here subscripts x and y denote the associated displacement compo-
ents in x and y direction, respectively. As the strain fields are homoge-
eous throughout the domain, Eq. (5) can be expressed in terms of the
train components: 

 = 

1 
6 

( (
𝜀 𝑐 
𝑥𝑥 

− 𝜀 𝑚 
𝑥𝑥 

)2 + 

(
𝜀 𝑐 
𝑦𝑦 

− 𝜀 𝑚 
𝑦𝑦 

)2 
) 

(14)

Here, the measured strain fields 𝜀 𝑚 
𝑥𝑥 
and 𝜀 𝑚 

𝑦𝑦 
are determined using

he target mechanical properties defined for the inclusion material in
able 1 and the applied traction defined in Fig. 2 (e) or 2 (f) , related by

 

𝜀 𝑚 
𝑥𝑥 

𝜀 𝑚 
𝑦𝑦 

} 

= 

[ 
𝐶̄ 11 𝐶̄ 12 
𝐶̄ 12 𝐶̄ 22 

] −1 { 

𝑡 𝑥 
𝑡 𝑦 

} 

(15)

here 𝐶̄ 11 , 𝐶̄ 12 , 𝐶̄ 22 denote the target mechanical properties. Further, the
omputed strain fields 𝜀 𝑐 

𝑥𝑥 
and 𝜀 𝑐 

𝑦𝑦 
are given by: 

 

𝜀 𝑐 
𝑥𝑥 

𝜀 𝑐 
𝑦𝑦 

} 

= 

[ 
𝐶 11 𝐶 12 
𝐶 12 𝐶 22 

] −1 { 

𝑡 𝑥 
𝑡 𝑦 

} 

(16)

Thus, the gradient of the objective function with respect to the me-
hanical properties are given by 

𝜕𝐹 

𝜕 𝛽𝑗 
= 

1 
3 

( (
𝜀 𝑐 
𝑥 
− 𝜀 𝑚 

𝑥 

)𝜕𝜀 𝑐 𝑥 
𝜕 𝛽𝑗 

+ 

(
𝜀 𝑐 
𝑦 
− 𝜀 𝑚 

𝑦 

)𝜕𝜀 𝑐 
𝑦 

𝜕 𝛽𝑗 

) 

(17)

Thus, for each parameter, the corresponding gradient is a function
f C 11 , C 12 , C 22 if the target parameter 𝐶̄ 11 , 𝐶̄ 12 , 𝐶̄ 22 are fixed. However,
t is not easy to visualize 3D contour plots and draw any conclusion
rom them. To this end, when we calculate and plot the gradient of the
bjective function with respect to one mechanical property, we simplify
his analysis and fixed the other two parameters to be the target. For
nstance, if we calculate 𝜕 F / 𝜕 C , we fix the other two parameters: 𝐶 =
11 12 
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Fig. 10. Problem domain with target material parameter distributions C 11 , C 12 , C 22 , C 66 are defined in the first column and presented from top row to bottom row, 
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the 
color bar: 10KPa). 

Fig. 11. A homogeneous square sample subjected to biaxial testing (a) the 
square sample is stretched along both directions; (b) the square sample is com- 
pressed and stretched along x and y directions, respectively. 
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 12 and 𝐶 22 = 𝐶̄ 22 . Thereby, Eq (17) can be rewritten as: 
 

𝜀 𝑐 
𝑥𝑥 

𝜀 𝑐 
𝑦𝑦 

} 

= 

[ 
𝐶 11 𝐶̄ 12 
𝐶̄ 12 𝐶̄ 22 

] −1 { 

𝑡 𝑥 
𝑡 𝑦 

} 

(18) 

From Fig. 12 , we observe that 𝜕 F / 𝜕 C 12 is much smaller than 𝜕 F / 𝜕 C 11
nd 𝜕 F / 𝜕 C , and the mapped distribution of C may be more sensitive
22 12 
o noise. This may explain why the parameter C 12 has been poorly re-
overed in the numerical simulations. 

. Discussion 

In this work, we have shown that it is feasible to quantitatively iden-
ify the heterogeneous parameter distributions for a 2-D orthotropic lin-
ar elastic solid together with the distribution of the angle of material
xes using a gradient based optimization scheme. 
We tested the performance of the inverse algorithms with theoret-

cal displacement fields acquired by solving boundary value problems
ith defined target non-homogenous mechanical property and angle of
aterial axes distributions. These boundary value problems were cho-
en as to represent uniaxial, shear, and biaxial tests. The results using
otal variation diminishing regularization revealed that the orthotropic
inear elastic parameter and angle distributions are sensitive to noisy
ata. When the noise level was low, e.g. 1% or less, the orthotropic lin-
ar elastic parameter and angle distributions were mapped well, while
n the presence of a high noise level of 3% the quality of the reconstruc-
ions deteriorated significantly. The high sensitivity of the reconstructed
nisotropic linear elastic parameter distributions to noise in displace-
ent fields has also been observed in other works [38,39] with noise
evels of about 0.1% to 1%. In contrast, past works using an isotropic
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Fig. 12. Plots of the gradient of the objective function with re- 
spect to a range of elastic parameter values for different cases: 
Row 1 and 2 correspond to Figure 11 (a) and (b), respectively. 
The target values are the target values used in the inclusion 
listed in Table 1 . The red point represents the associated gra- 
dient equals zero. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version 
of this article.) 
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inear elastic solid yielded superior and highly accurate reconstructions
n the presence of high noise levels of about 3%. 
A direct comparison in performance between the work by Shore et al.

39] and this work is not possible due to two main reasons. First, their
ork has been done in three-dimensional space utilizing a transversely
sotropic model, while our work is in two-dimensional space. Second,
e map the unknown orientation of the material axes in addition to the
lastic properties, while Shore et al. assumes that the material axes is
nown. The work by Guchhait et al. [38] utilized an orthotropic material
odel in two dimensional space and their results were more sensitive
o noise than the reconstructions presented in this paper. In particular,
he results in this paper with total variation diminishing (TVD) regular-
zation smooth out oscillations in the reconstructions without penalizing
nd smoothing sharp gradients in the parameter distributions. However,
e also note that the results in Guchhait et al. [38,53] were tested on
roblem domains with many inclusions in a homogeneous background,
hile our problems had at most two inclusions. Given that the recon-
tructions with one inclusion versus two inclusions in this paper did not
ake a significant difference, it is assumed that additional inclusions
ill not deteriorate the reconstructions much. However, the inclusions
n Guchhait et al. [38] were smaller than the inclusions modeled in this
aper. 
We observed that uniqueness of the problem improves by including

dditional measured displacement fields (see Figs. 3 and 4 ). These addi-
ional displacement measurements need to be distinct from one another.
f one were to use a measured displacement field that is off by some con-
tant factor from another one, it would not help to steer the solution to
 unique one, given that the problem is linear elastic. The only help it
ould provide may be some robustness towards reducing the effect of
oisy measurements on the reconstructions. 
Finally, we also tested L-1 regularization and L-2 regularization and

bserved that they do not perform well. However, compound regulariza-
ion which contains the TVD regularization part performs well. Clearly,
otal variation diminishing regularization performs superior to L-1 and
-2 regularization in this work. 

. Conclusions 

In this paper, we have presented an approach to quantitatively map
he 2-D heterogeneous, orthotropic, linear elastic material parameter
istributions of solids. The feasibility of this approach has been tested
nd it has been shown that multiple datasets are needed to uniquely
econstruct the parameter distributions. We have observed that the
apped anisotropic elastic parameter distributions are well recovered
t low noise levels, while the reconstructions degrade at higher noise
evels of about 3%. This preliminary study has been conducted using
heoretical data with added noise to simulate noisy measurements. Fu-
ure work will focus on a proof of concept with experimental datasets
nd generalizing this approach to three-dimensional problem domains. 
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