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In this work, we present a non-destructive approach to characterize the heterogeneous mechanical behavior of
anisotropic elastic solids. This approach is based on iterative inverse algorithms using the framework of finite
element discretization schemes. We test the proposed approach with several theoretical studies and observe that
for a low noise level in measured displacement fields, it is possible to map the anisotropic linear elastic parameter
distributions with high accuracy. We also observe that with additional displacement field measurements, the

solution to the inverse problem becomes more unique. However, for higher noise levels (3%), the quality of the
reconstructions deteriorates for the parameter C,, of the orthotropic elasticity tensor. A theoretical analysis is
performed and we demonstrate that this may be due to small gradients of the objective function with respect to
C,,. Overall, the proposed approach has potential to characterize the anisotropic mechanical behavior of polymer
based materials or tissues for pathology.

1. Introduction

Understanding the mechanical behavior of materials is crucial not
only in traditional engineering fields including civil engineering, me-
chanical engineering, aerospace engineering, etc., but also in emerging
engineering fields, e.g., to analyze the structural integrity of engineered
tissues or to analyze the biomechanical behavior of body parts. A wide
range of important mechanical testing approaches such as uniaxial test-
ing, biaxial testing, shear testing are generally utilized for this purpose.
In mechanical testing, a sample with predefined geometry is subject to
controlled loadings, and the testing system records the applied force
and the resulting deformation [1]. With the measured force and defor-
mations, the stress-strain relation can be determined, from which the
mechanical properties can be inferred [2]. Beyond linear elastic pa-
rameters, these may include nonlinear elastic, viscoelastic, plastic, or
anisotropic parameters via curve fitting, using an appropriate constitu-
tive model for stiff solids such as alloys [3,4], concretes [5,6], ceramics
[71, and biological tissues [8-10].

With the development of imaging techniques, such as ultrasound,
magnetic resonance imaging (MRI), optical coherence tomography
(OCT), and digital cameras, it has been possible to measure the spa-
tial distribution of the displacement field that can be used to map the
nonhomogeneous mechanical property distributions. Ultrasound based
techniques measure quasi-static displacements [11-15] and the wave
speed [16-18] to infer the elastic modulus or viscoelastic property dis-

* Corresponding author.
E-mail address: sevangoenezen@gmail.com (S. Goenezen).

https://doi.org/10.1016/j.ijmecsci.2019.105131

tributions. MRI is mainly used to measure shear wave speeds from which
the storage and loss modulus distributions can be inferred [19-23]. OCT
is mainly used on softer materials such as soft tissues with a penetration
depth of about 2 mm [24]. It provides quasi-static and dynamic displace-
ments at micrometer length scales [25-29] to infer the elastic modulus
or viscoelastic property distribution. Digital camera images can be used
to trace displacement fields on the surface of a specimen provided a
speckle pattern [30-32]. The mechanical property distributions of flat
samples under two-dimensional loading conditions were computed for
nonlinear elastic [33] and elasto-viscoplastic [34,35] materials. In a
theoretical study, the linear elastic property distribution was also de-
termined for a non-homogeneous and volumetric solid under three di-
mensional loading conditions [36,37]. This expands the potential use
of digital camera imaging to “view” the interior mechanical property
distribution of three dimensional solids.

However, only few works are available on identifying the heteroge-
neous, linear elastic anisotropic parameter of solids from quasi-static dis-
placement fields [38-40]. In [38], the authors reconstructed the nonho-
mogeneous anisotropic elastic constants of solids by minimizing the dis-
crepancy in the stress fields. In [39], the authors mapped the nonhomo-
geneous and transversely isotropic linear elastic parameter distribution
of synthetic data and of bones in three dimensions by minimizing the
discrepancy between measured and computed displacements. Therein
the orientation of the material axes was assumed to be known. From
those works, it was apparent that it is a much harder task to recover
the anisotropic elastic constants as compared to the isotropic elastic
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Fig. 1. A schematic diagram of the cross section of a microstructure for an orthotropic material where the elliptic fiber bundles are in dark blue color. (a) The
material axes are aligned with the reference axes; (b) the material axes are not aligned with reference axes.

constants. The anisotropic material parameter distribution has been
poorly recovered even for low noise levels in measured displacements
[38,39]. This is because the number of linear elastic constants for an
anisotropic material is significantly higher than that of an isotropic ma-
terial.

In this work, we solve for the orthotropic linear elastic parameter
distributions together with the unknown orientation of material axes
that changes as a function of space. In Guchhait et al. [38] the orienta-
tion of material axes was introduced as an additional unknown as well,
and they utilized a stress formulation in the objective function. In this
paper, we minimize the discrepancy between computed and measured
displacement fields in the objective function for the orthotropic elastic
parameter distribution and material axes orientation. The stability of the
solution is controlled with a regularization term. We solve the inverse
problem utilizing the adjoint equations to efficiently calculate the gradi-
ent of the objective function after discretizing the equations with finite
element based schemes. We present the proposed numerical algorithms
in Section 2 and evaluate them using three different regularization terms
in Section 3. In more detail, we utilize the total variation diminishing
regularization in Section 3.1, the L-1 regularization in Section 3.2, and
the L-2 regularization in Section 3.3. To understand the outcome of the
numerical results, a theoretical analysis will be presented in Section 3.4.
In Section 4, we will discuss the numerical results and end with conclu-
sions in Section 5.

2. Methods
2.1. Forward problem formulation for 2-D orthotropic linear elasticity
The strong form can be stated as: Find the displacement u such

that the equilibrium equations are satisfied for prescribed Neumann and
Dirichlet boundary conditions and are given by

Vo =0 in Q
u=g onl, €))]
c-n=t on I

Where o denotes the stress tensor, Q the problem domain, I', the dis-
placement boundary with prescribed displacements g, and I, the trac-
tion boundary with prescribed traction t. Furthermore, we require that
I, Ul =Q, constitutes the entire boundary, and I',n[,=@ yields the
empty set.

The constitutive equation here is given for a 2-D orthotropic linear
elastic material by:

Oxx Cll C12 0 Exx
o, =|Cla Cun 0 [e, )
ny 0 0 C66 7xy

where y,,, =2¢,, is the in-plane engineering shear strain. We note that
material axes are aligned with the x-y axes as shown in Fig. 1(a). It is

noted that there is no coupling effect between shear and axial deforma-
tions. In other words, pure shear stresses will only produce pure shear
strains, and normal stresses will only result in normal strains. If the ma-
terial axes are not aligned with the x-y axes, e.g., the material axes are
rotated counter-clockwise from the x-y coordinate system by an angle
of 6 as shown in Fig. 1(b), the stress-strain relation can be rewritten as:

Oxx C:'n C:'lz C:'m Exx
Oy (= (212 (222 (;26 Eyy )
Oyy Cis Cyx  Cos]|Vxy

It is noted that the statements we made for the constitutive Eq. (2) do
not hold here. The material parameters in Eq. (3) can be expressed in
terms of C;1,C15,Cyy,Ce6 and 0, that is,

Ci1 = Cy1c08*0 + Cyysin*6 + 2(Cpp + 2C44 ) sin*Gcos?0
Cyy = Cyy5in*0 + Cpyc05*0 + 2(C, + 2Cg4 ) sin*Gcos?d

Ciy = (Cyy + Cpy — 4C44)sin®Bcos?6 + Cy (cos*6 + sin*d) @
Ces = (C11 + Cpp — 2C5 — 2C¢g)5in*0c0s?8 + Ceg (cos*6 + sin*0)

Cig = (C) = C1p — 2Cg) sin 00530 — (Cyp — Cyy — 2C44)sin® 0 cos

Cyo = (C“ -Cyp — 2C66)sin39 cosf — (C22 -Cjp— 2C66) sin fcos>6

Eq. (4) is obtained after a coordinate transformation of the stress ten-
sor and strain tensor, as shown in [41]. With the constitutive laws from
(3) and (4), the governing equations, and prescribed boundary condi-
tions, we can solve the boundary value problem, also referred to here as
the forward problem, for a given problem domain, using finite element
methods and determine its displacement fields.

2.2. Inverse problem formulation for 2-D orthotropic linear elasticity

In this paper, we utilize an iterative solution strategy to solve
the inverse problem in 2-D for an orthotropic linear elastic mate-
rial. The inverse problem is stated as: Given N measured displacement
fields uf',u' ... u}y, find the material parameter and angle distributions
(optimization variables) f=[C;; C15 Cyy Cgg 0] such that the objective
function

1 < 2
F=3 ; ”(uj - uj.”)“o +Reg(8) )

is minimized. In Eq. (5), uf is the i th computed displacement field and
satisfies the constraint of boundary value problem for the updated me-
chanical property distributions, obtained at the previous minimization
iteration. In Eq. (5), we have omitted the spatial dependencies x of dis-
placement fields and unknown optimization variables. Further, we note
that the discrepancy between computed and measured displacements in
Eq. (5) is minimized in the L-2 norm. Additionally, the displacements



Y. Mei and S. Goenezen

and optimization variables are discretized with finite element shape
functions, consequently the optimization variables are assumed to be
unknowns on finite element mesh nodes. Due to noise in displacement
measurements and the ill-posedness of the inverse problem, we aug-
ment the objective function in the second term with a regularization
term. We employ the total variation diminishing (TVD) regularization
[42,43], L-1 regularization, L-2 regularization, and compound regular-
ization (TVD+L-1) [44] given in that order by
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The weight of the regularization term and its contribution to the ob-
jective function are controlled by the regularization factor «;, which is
selected by a smoothness criteria discussed in past publications [45,46].
The smoothness criteria leads to a very low standard deviation less than
0.17 in a subregion of the background. In the total variation dimin-
ishing regularization, ¢ =0.01 is a constant to avoid singularities when
computing the gradient of the regularization term.

The constrained optimization problem is solved using a gradient
based method, here the L-BFGS method [47,48]. This requires the gra-
dient of the objective function with respect to mechanical properties
and angle (0F/0p;) to be computed at every node. To reduce the compu-
tational cost in evaluating the gradient, we adopt the adjoint method,
which merely requires solving two linear problems at each minimization
iteration. In more detail, in the first step we solve the forward problems
for each measurement “i” given by the weak form; Find u{ € Q such that

A(w,.,uj;ﬁj)—/w,..t,.dr=0 Vw, eV @)
r
where A(w;,uf; f;) = [ Vw; : 0,dQ, the subscript i denotes (no Einstein
Q

summation over repeated i here) the i-th measurement, and the stress
tensor o; was defined in Eq. (3) in terms of the strain components related
to the computed displacements uf by ¢; = %(Vuf + (Vuf)T). Further, we
define the function spaces Q and V as

0= (u|y, € H'(Q); u, =geonT,} ®)

V = {w|w, € H'(Q); wy =0 on T} ©)

In the second step, the dual problem is solved using the computed
displacement field u from solving the weak form in the first step. In par-
ticular, we solve for the Lagrange multipliers w; for each measurement
i given by
A(su, ;s §;,uf) =/5u§ S —uHdQ  Veui eV (10)

With uf and w; we can formulate the gradient of the objective func-
tion in Eq. (5) with respect to the mechanical property distributions. To
this end, we define variations of a function or the functional derivative
as

d
6 =Dy, 3B = =

Of(ﬁj +£5ﬂj) (11)

We express the variations in the objective function with respect to
the mechanical properties as

N
6 = Z/VW,. 1 Dj,0,68,dQ + Dy Reg(§) 65, (12)
i=1
Q
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Table 1
Target orthotropic linear elastic mechanical parameters as defined in
Fig. 3.
Cy; (kPa) C,(kPa) Cy, (kPa) Cg (kPa) 0C)
background 40 9 150 14 0
inclusion 200 40 300 42 0

from which the gradient can be directly computed. The derivation of
Eq. (12) has been omitted here and can be viewed in detail in [45,49,50].
We note that Egs. (4) to (12) are provided in continuous form. We dis-
cretize all spatially varying variables using finite element based dis-
cretization schemes, and more precisely with bilinear elements. The
computation of the gradient has been derived and expressed in ma-
trix/vector notation in [19,51] as an alternative representation to the
continuous form here.

The nodal optimization variables in f are updated at every mini-
mization call until the relative change in the objective function value or
gradients is close to machine precision. We note that for 2-D orthotropic
linear elasticity, a large number of unknowns must be determined, thus,
the solution to the inverse problem may be harder to solve uniquely.
To address this issue, we will solve the inverse problem using multi-
ple full-field displacement fields that are significantly distinct from one
another.

2.3. Creating theoretical-synthetic displacement fields

The performance of the iterative inverse strategy to characterize the
non-homogeneous orthotropic linear elastic parameters and the angle
(orientation of the material axes) will be tested with theoretical data,
i.e. synthetic displacements obtained from solving boundary value prob-
lems. To represent noise in actual displacement measurements, we add
white Gaussian noise to both the displacement fields and traction bound-
ary conditions (same noise level to each). To this end, let us consider
a 1cmx 1 cm square problem domain as shown in the first column of
Fig. 3. In this problem domain, a stiff inclusion with a radius of 0.1 cm
is embedded in a soft background. The specific mechanical parameters
for the background and inclusion are given in Table 1. In this case, the
mechanical parameters of the background are taken from the parame-
ters of a healthy human skin [52]. First, we assume that the material
axes of both background and inclusion are known and aligned with the
reference axes, i.e., 6 =0. The problem domain has been meshed with
900 bilinear finite elements having uniform grid spacing. We utilize
multiple synthetic full-field displacement “measurements” acquired by
solving boundary value problems for verification of our inverse prob-
lem implementation solution strategy. The location of measured dis-
placement points coincides with the mesh nodes, and the mesh used
to solve the inverse problem remains the same. The traction and dis-
placement boundary conditions are defined in Fig. 2(a) and (b) repre-
sent uniaxial tension tests, Fig. 2(c) and (d) represent shear tests, and
Fig. 2(e) and (f) represent biaxial tests. The prescribed non-zero tractions
are given by 7, = —3kPa, t, = 3kPa, 1,, = 1.5kPa, 1! = 0.3kPa, t; = ti =
0.3kPa and 12 = —0.3kPa.

3. Results
3.1. Reconstructions using total variation diminishing regularization

The results in this section utilize the total variation diminishing reg-
ularization, defined in the first row of Eq. (6). This regularization type
penalizes variations and oscillations and preserves sharp gradients in the
mapped solutions. Fig. 3 represents reconstructions using 4 full-field dis-
placement measurements (from Fig. 2(a) to (d)). The target domain is
given in column 1 for the orthotropic elatic parameters Cyy, Cyq, Cog,
Cge from row 1 to 4, respectively. Reconstructions in columns 2, 3, and
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ty Fig. 2. A total of six prescribed boundary conditions
R " Ly are employed for the problem domain with a stiff inclu-
T T T T T —n = —k —b sion embedded in a soft background to create distinct

displacement fields.
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Fig. 3. Problem domain with target material parameter distributions C;;,C;,,C5,,Cs¢ are defined in the first column and presented from top row to bottom row,
respectively. Column 2 to column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the
color bar: 10KPa).
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Fig. 4. Problem domain with target material parameter distributions C,;,C;,,Cy,,Cs¢ are defined in the first column and presented from top row to bottom row,
respectively. Column 2 to Column 4 represent parameter reconstructions using 6 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the

color bar: 10KPa).

4 are associated with noise levels of 0%, 1%, and 3%, respectively. The
regularization factor for each mechanical parameter is listed in Table 2.
We observe that the recovered orthotropic linear elastic parameter dis-
tributions for the noise free case (second column in Fig. 3) are fairly close
to the target distributions (first column in Fig. 3). Furthermore, for 1%
noise, all parameter distributions except for C;, are well-recovered with
respect to shape of the inclusions and its overall quantitative reconstruc-
tion. For the C;, parameter, the shape of the inclusion becomes larger
and its value in the inclusion is significantly smaller than the target. For
3% noise (fourth column in Fig. 3, the inclusion shape for all parameter
distributions except for C;, are visible (though distorted), but the over-
all quantitative reconstructions of all mechanical parameters are of poor
quality and significantly lower than their target distributions. Next, we

Table 2
Regularization factors associated with computations in Fig. 3.

Cll C12 C22 C66
0% noise 10712 10-12 10-12 10-12
1% noise  5.0x10°1©  2,0x107' 1.0x10°19 2.0x10°'°
3% noise 3.0x107° 5.0%x10-10 2.0x10-10 2.0x107°

include two additional displacement measurements from biaxial testing
in Fig. 2 (e) and (f), thus have a total of 6 displacement fields to recon-
struct the mechanical parameters, shown in Fig. 4. The corresponding
regularization factors are listed in Table 3. For a low noise level, the
orthotropic elastic parameter distribution can be well recovered quan-
titatively, similar to what we observed in Fig. 3, while they are poorly
recovered at a higher noise level. We also observe that for 3% noise,
the inclusion shape and parameter values in the mapped distribution of
the parameter C;, can be improved after including displacement fields
from biaxial tests and thereby increasing the total number of displace-
ment measurements.

So far we have shown that the reconstructions are fairly reason-
able even in the presence of noise for a single stiff inclusion. Since the

Table 3
Regularization factors associated with computations in Fig. 4.
Cll C12 C22 C66
0% noise 10712 10-12 10-12 10712
1% noise  3.0x107'  50x10-'""  2.0x10-'""  3.0x10°'°
3% noise 1.0x107° 2.0x10°10 3.0x10°10 2.0x107?
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Fig. 5. Problem domain with target material parameter distributions C;;,C;5,C,,,Cs¢ are defined in the first column and presented from top row to bottom row,
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the

color bar: 10KPa).

orthotropic elastic parameters are specified as unknowns on finite el-
ement mesh nodes and no assumptions are made on the presence
of any stiff regions, it should be possible to recover additional non-
homogeneities. To demonstrate this, we define a second stiff inclusion
with the same orthotropic elastic parameters as in the previous exam-
ples, with target domain given in the first column of Fig. 5 for the or-
thotropic elastic parameters C;q, C15, Ca9, Cge from row 1 to 4, respec-
tively. The reconstructions with 4 displacement fields are given in Fig.
5 in columns 2, 3, and 4 for noise levels of 0%, 1%, and 3%. The asso-
ciated regularization factors are listed in Table 4. We observe that the
reconstructions behave similar to the reconstructions obtained with 1
inclusion.

For some materials, the angle of material axes with the reference co-
ordinate system (here also referred to as “angle”) may not be known,
e.g., skin tissue or engineered materials with unknown manufacturing

Table 4
Regularization factors associated with computations in Fig. 5.
Cll CIZ C22 C66
0% noise 10712 10712 10712 10712
1% noise  5.0x1071°  1.0x10-' 1.0x10-'© 4.0x10°'°
3% noise  3.0x107° 40x10°1%  20x107'© 3.0x107°

details. Thus, in the following, we will demonstrate feasibility to recover
the distribution of the angle ¢ in addition to the material parameters.
We define the problem domain similar to the previous example with the
same target material parameter distributions, but vary the angle of the
material axes in the inclusion according to Table 5. As detailed for the
previous examples, we create displacement fields by solving boundary
value problems for given boundary conditions in Fig. 2 and augment
the resulting displacement fields with noise to represent noise in dis-
placement measurements. We also utilize the same strategy to solve the
inverse problem, but now include the angle of material axes as an addi-
tional unknown. Figs. 6 and 7 present reconstructions of the mechani-
cal property distributions using 4 and 6 full-field displacement measure-
ments, respectively, with noise levels of 0%, 1%, and 3%. The associated
regularization factors are listed in Tables 6 and 7. For no or low noise
levels of 1%, the mechanical property distributions are generally well

Table 5
Target orthotropic linear elastic material parameters used in Fig. 6.

C;,(kPa)  Cpp(kPa)  Cpy(kPa)  GCee(kPa)  6()
background 40 9 150 14 0
inclusion 200 40 300 42 30
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0.496

0.00784

Fig. 6. Problem domain with target material parameter and angle distributions C;,,C;,,C5,,C¢6, 0 are defined in the first column and presented from top row to
bottom row, respectively. Column 2 to column 4 represent reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. Note that
the unit of the angle 6 used in the last row is in radians, and for other parameters, the unit is 10 KPa.

recovered, whereas the reconstruction of ¢ for 1% noise yields a slightly
deteriorated inclusion shape, but overall quantitative values in inclu-
sion and background are well reconstructed. For higher noise levels of

Table 6
Regularization factors associated with computations in Fig. 6.

3%, the mechanical property distribution and angle are poorly recon-
structed. More precisely, the shape of the inclusion appears enlarged,
and the mechanical property values overall are underestimated.

Table 7
Regularization factors associated with computations in Fig. 7.

Cll C12 C22 C66 0

Cll C12 C22 C66 0

0% noise  10-12 10-12 10-12 1012 1012
1% noise  1.0x10°1° 80x10°'' 50x10"'" 3.0x10°1© 9.0x10°10
3% noise  5.0x 1079 1.0x107° 40%x10°10  4.0x1079 2.5%x10°8

0% noise 1012 10-12 10-12 10-12 10-12
1% noise  1.0x10°©  8.0x10°'" 50x10"'" 3.0x10°'°© 1.0x10°°
3% noise 2.0x107° 4.0x10°10 2.0x10°10 2.0x107° 3.0x10°8
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Fig. 7. Problem domain with target material parameter and angle distributions C;,C;5,Cy,,Cg6, 6 are defined in the first column and presented from top row to
bottom row, respectively. Column 2 to Column 4 represent reconstructions using 6 displacement measurements with 0%, 1%, and 3% noise, respectively. Note that
the unit of rotation ¢ used in the last row is in radians, and for other parameters, the unit is 10KPa.

3.2. Reconstructions using L-1 regularization

In the following, we explore the performance of reconstructing the
orthotropic elastic parameter distributions using the L-1 regulariza-
tion, defined in the second row in Eq. (6). Fig. 8 shows the recon-
structions of the orthotropic elastic parameters Cy;, Cpy, Cyy, Cgg in
rows 1, 2, 3, and 4, respectively. Columns 2, 3, and 4 represent re-
constructions with noise levels of 0%, 1%, and 3%, respectively. The
regularization factors associated with these reconstructions are given in
Table 8. We observe that the reconstructions with 1% and 3% noise are
very poor and the solutions oscillate extremely throughout the entire
domain.

Table 8
Regularization factors associated with computations in Fig. 8.
Cll C12 C22 C66
0% noise 10712 1012 1012 1012
1% noise 2.0x10°8 5.0x107° 3.0x107° 9.0x10°°
3% noise  1.0x1077 9.0x10° 7.0x10° 7.0x1078

3.3. Reconstructions using L-2 regularization

Next, we explore the performance of reconstructing the orthotropic
elastic parameter distributions using the L-2 regularization, defined in
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Fig. 8. Problem domain with target material parameter distributions C;;,C;,,Cs,,Cs¢ are defined in the first column and presented from top row to bottom row,
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the

color bar: 10KPa).

Table 9
Regularization factors associated with computations in Fig. 9.
Cll ClZ CZZ C66
0% noise ~ 10-12 10-12 10-12 10-12
1% noise 7.0x107° 1.0x1078 8.0x 10710 2.0x10°8
3% noise 8.0x107? 1.0x107° 5.0x 1079 6.0x107?

the third row in Eq. (6). Fig. 9 shows the reconstructions of the or-
thotropic elastic parameters C;;, Ciy, Coy, Cgg in rows 1, 2, 3, and 4,
respectively. Column 2, 3, and 4 represent reconstructions with noise
levels of 0%, 1%, and 3%, respectively. The regularization factors as-
sociated with these reconstructions are given in Table 9. We observe
that the reconstructions with 1% and 3% noise are very poor and the
solutions oscillate extremely throughout the entire domain.

3.4. Reconstructions using compound regularization

Finally, we test the performance of reconstructing the orthotropic
elastic parameter distributions using the compound regularization.
Fig. 10 shows the reconstructions of the orthotropic elastic parameters
C11> C1g5 Cyy, Cge in rows 1 to 4, respectively. Columns 2, 3, and 4

Table 10
Regularization factors associated with computations in Fig. 10. (We
use the same regularization factors for TVD part and L-1 part).

Cll C12 C22 C66
0% noise 1072 10-12 1012 1012
1% noise 5.0x10-10 2.0x10°10 1.0x10-10 2.0x10-1°
3% noise  3.0x107? 50%x1071©  2.0x10°1° 2.0x107?

represent reconstructions with noise levels of 0%, 1%, and 3%, respec-
tively. The regularization factors associated with these reconstructions
are given in Table 10. We observe that the reconstructions of Cyy with
3% noise are very poor and the solutions oscillate extremely throughout
the entire domain. For other mechanical properties, the reconstruction
results look decent.

3.5. Theoretical analysis

We observed from the reconstructions in this paper that C;, was
poorly recovered. To understand why this happens, we employ a 2-D
homogeneous and orthotropic square membrane with unit length of 1
on each side and subjected to biaxial testing as shown in Fig. 11. We
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Fig. 9. Problem domain with target material parameter distributions C;;,C;,,C,,,Cs¢ are defined in the first column and presented from top row to bottom row,
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the

color bar: 10KPa).

assume that the material axis is aligned with x-y (reference) plane, thus
we only consider the three parameters C;;, Cy, and C;, for the analysis.
Since the solution of the inverse problem relies on a gradient based op-
timization approach, the gradient of the objective function with respect
to the optimization variables may help to understand the performance
of the optimization scheme and the results presented in this paper. Thus,
in the following analysis, we will derive the analytical solution for the
gradient of the objective function with respect to f;. Let us also assume
that there is no noise in measured displacements and neglect the regu-
larization term, leading to the following objective function:

Ve (e om?
F=§/0/)<(MX_MX) +<My—uy)>dXdy (13)

where subscripts x and y denote the associated displacement compo-
nents in x and y direction, respectively. As the strain fields are homoge-
neous throughout the domain, Eq. (5) can be expressed in terms of the
strain components:

2
F = é((eix—s;"x)z+ (e;y—s'y"y> ) (14)

Here, the measured strain fields £}, and ¢} are determined using
the target mechanical properties defined for the inclusion material in

Table 1 and the applied traction defined in Fig. 2(e) or 2(f), related by

- S

Bk 8l
€5 Chn Cyp 1,

where C, |, C,,, C,, denote the target mechanical properties. Further, the

computed strain fields £ and €}, are given by:

-1
()l '
€5y Cn Cxn 1
Thus, the gradient of the objective function with respect to the me-
chanical properties are given by

oF 1 O, o5,
g _ 2 c_ m\__X c_m\__7Y 17
aﬁj 3((£x £X)aﬂj +(gy EJ’)aﬂj ( )

Thus, for each parameter, the corresponding gradient is a function
of C;1,Cq5,Cqy if the target parameter C,, C),, Cy, are fixed. However,
it is not easy to visualize 3D contour plots and draw any conclusion
from them. To this end, when we calculate and plot the gradient of the
objective function with respect to one mechanical property, we simplify
this analysis and fixed the other two parameters to be the target. For
instance, if we calculate dF/dC;, we fix the other two parameters: C;, =
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Fig. 10. Problem domain with target material parameter distributions C;,C;5,Cy,,Cge are defined in the first column and presented from top row to bottom row,
respectively. Column 2 to Column 4 represent parameter reconstructions using 4 displacement measurements with 0%, 1%, and 3% noise, respectively. (Unit in the

color bar: 10KPa).
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Fig. 11. A homogeneous square sample subjected to biaxial testing (a) the
square sample is stretched along both directions; (b) the square sample is com-
pressed and stretched along x and y directions, respectively.

C), and Cy, = C,, . Thereby, Eq (17) can be rewritten as:

|

€ ¢, C ] {t }

xx \ |21 ~12 x 18)
{8;y} [CIZ C22 ty

From Fig. 12, we observe that 0F/dC, is much smaller than dF/0Cy;
and 0F/0C,,, and the mapped distribution of C;, may be more sensitive

to noise. This may explain why the parameter C;, has been poorly re-
covered in the numerical simulations.

4. Discussion

In this work, we have shown that it is feasible to quantitatively iden-
tify the heterogeneous parameter distributions for a 2-D orthotropic lin-
ear elastic solid together with the distribution of the angle of material
axes using a gradient based optimization scheme.

We tested the performance of the inverse algorithms with theoret-
ical displacement fields acquired by solving boundary value problems
with defined target non-homogenous mechanical property and angle of
material axes distributions. These boundary value problems were cho-
sen as to represent uniaxial, shear, and biaxial tests. The results using
total variation diminishing regularization revealed that the orthotropic
linear elastic parameter and angle distributions are sensitive to noisy
data. When the noise level was low, e.g. 1% or less, the orthotropic lin-
ear elastic parameter and angle distributions were mapped well, while
in the presence of a high noise level of 3% the quality of the reconstruc-
tions deteriorated significantly. The high sensitivity of the reconstructed
anisotropic linear elastic parameter distributions to noise in displace-
ment fields has also been observed in other works [38,39] with noise
levels of about 0.1% to 1%. In contrast, past works using an isotropic
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le—8 le—8 le—8 Fig. 12. Plots of the gradient of the objective function with re-
spect to a range of elastic parameter values for different cases:
Row 1 and 2 correspond to Figure 11(a) and (b), respectively.
0.0 0.0 - 0.0 | ——&— The target values are the target values used in the inclusion
o] o s listed in Table 1. The red point represents the associated gra-
% g g dient equals zero. (For interpretation of the references to color
'-E —-0.5 1 ';l; —-0.5 1 '-E —-0.5 A in this figure legend, the reader is referred to the web version
of this article.)
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linear elastic solid yielded superior and highly accurate reconstructions
in the presence of high noise levels of about 3%.

A direct comparison in performance between the work by Shore et al.
[39] and this work is not possible due to two main reasons. First, their
work has been done in three-dimensional space utilizing a transversely
isotropic model, while our work is in two-dimensional space. Second,
we map the unknown orientation of the material axes in addition to the
elastic properties, while Shore et al. assumes that the material axes is
known. The work by Guchhait et al. [38] utilized an orthotropic material
model in two dimensional space and their results were more sensitive
to noise than the reconstructions presented in this paper. In particular,
the results in this paper with total variation diminishing (TVD) regular-
ization smooth out oscillations in the reconstructions without penalizing
and smoothing sharp gradients in the parameter distributions. However,
we also note that the results in Guchhait et al. [38,53] were tested on
problem domains with many inclusions in a homogeneous background,
while our problems had at most two inclusions. Given that the recon-
structions with one inclusion versus two inclusions in this paper did not
make a significant difference, it is assumed that additional inclusions
will not deteriorate the reconstructions much. However, the inclusions
in Guchhait et al. [38] were smaller than the inclusions modeled in this
paper.

We observed that uniqueness of the problem improves by including
additional measured displacement fields (see Figs. 3 and 4). These addi-
tional displacement measurements need to be distinct from one another.
If one were to use a measured displacement field that is off by some con-
stant factor from another one, it would not help to steer the solution to
a unique one, given that the problem is linear elastic. The only help it
would provide may be some robustness towards reducing the effect of
noisy measurements on the reconstructions.

Finally, we also tested L-1 regularization and L-2 regularization and
observed that they do not perform well. However, compound regulariza-
tion which contains the TVD regularization part performs well. Clearly,
total variation diminishing regularization performs superior to L-1 and
L-2 regularization in this work.

5. Conclusions

In this paper, we have presented an approach to quantitatively map
the 2-D heterogeneous, orthotropic, linear elastic material parameter

distributions of solids. The feasibility of this approach has been tested
and it has been shown that multiple datasets are needed to uniquely
reconstruct the parameter distributions. We have observed that the
mapped anisotropic elastic parameter distributions are well recovered
at low noise levels, while the reconstructions degrade at higher noise
levels of about 3%. This preliminary study has been conducted using
theoretical data with added noise to simulate noisy measurements. Fu-
ture work will focus on a proof of concept with experimental datasets
and generalizing this approach to three-dimensional problem domains.
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