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ABSTRACT
Recent advances in memory architectures have provoked renewed
interest in near-data-processing (NDP) as way to alleviate the “mem-
ory wall” problem. An NDP architecture places logic circuits, such
as simple processors, in close proximity to memory.

Effective use of NDP architectures requires rethinking data struc-
tures and their algorithms. Here, we provide an empirical evaluation
of several NDP-aware algorithms for general-purpose concurrent
data structures such as linked-lists, skiplists, and FIFO queues. The
empirical analysis reveals that the potential benefits of NDP-based
concurrent data structures are less than what had been expected in
earlier studies. In turn, we introduce lightweight NDP hardware
modifications, inspired by initial observations on data access pat-
terns and underlying DRAM activity. Even the minimal changes to
hardware significantly improve the performance and energy con-
sumption of NDP-based concurrent data structures, and in many
cases, the resulting data structures outperform state-of-the-art con-
current data structures.

ACM Reference Format:
Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R. Iris
Bahar. 2019. Concurrent Data Structures with Near-Data-Processing: an
Architecture-Aware Implementation. In 31st ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’19), June 22–24, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3323165.
3323191

1 INTRODUCTION
The increasing discrepancy between processor speeds and memory
access speeds (often referred to as the memory wall [33]) causes
memory access to be the principal performance bottleneck in many
of today’s data-intensive applications. Until recently, most architec-
tures have relied on multi-level caches to reduce data access latency.
However, caches have become less and less effective over time. As
data-intensive applications increasingly use data sets much larger
than cache sizes and exhibit irregular and unpredictable memory
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access patterns, it is hard to simply rely on caches to improve appli-
cation performance. Moreover, frequent data movement between
host processors and memory causes high energy consumption, a
growing concern with data-intensive applications.

Recent architectural advances – in particular, 3D die-stacking
technology – have renewed the interest in near-data-processing
(NDP) (also referred to as near-memory-computing) as a way around
the memory wall. This technology allows logic circuits, such as
simple processors, to be placed in close proximity to memory, us-
ing high-bandwidth Through-Silicon Via (TSV) interconnects for
communication between the near-memory processor and memory.

Today, commercially available devices that exploit the 3D die-
stacking technology, such as Hybrid Memory Cube (HMC) [20]
or High-Bandwidth Memory (HBM) [4], implement only simple
memory controller logic near memory. However, we expect that
soon simple processors will be placed near memory, enabling near-
data-processing. In this paper, we investigate how near-memory
accelerators can be combined with novel data structures and algo-
rithms to exploit the low-latency, high-bandwidth memory access
of future NDP architectures, while also preserving the high concur-
rency of conventional systems.

Prior works [1, 2, 7, 11, 15, 24, 28, 29, 31, 37] have investigated
using near-data-processing to improve the performance and energy
efficiency of specific applications. Here, however, we focus on soft-
ware libraries and architectural support for general-purpose concur-
rent data structures with near-data-processing architectures. These
data structures are used in many applications, and adapting them
to NDP architectures is a key step toward making these architec-
tures useful. In conventional architectures, “pointer-chasing” data
structures with poor cache locality and high-contention concurrent
data structures are often bottlenecks, while near-data-processing
architectures have the promise to alleviate or even eliminate these
problems.

Liu et al. [26] observed that naïve implementations of data struc-
tures on near-data-processing architecture will serialize data stru-
ture operations and will be outperformed by highly-concurrent
state-of-the-art data structures on conventional architectures. As
an algorithmic solution, they proposed using flat-combining tech-
niques [17] to add concurrency to NDP-based data structures. In the
absence of a specific architecural model, they provided a “back-of-
the-envelope” analysis based on simple hardware latency assump-
tions and suggested that this approach had promise.

In this paper, we implement and test those data structure algo-
rithms on a full-system NDP architecture framework with realistic
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hardware constraints. Through this more realistic and detailed anal-
ysis, we find that Liu et al.’s work is incomplete. Although the
results show that flat-combining does indeed enhance concurrency
in NDP-based data structures, the resulting performance falls short
compared to what was expected in the theoretical analysis. We
identify that the theoretical analysis had two major pitfalls: (1) it
ignored the cache impacts in host-based concurrent data structure
performance, and (2) it had overly optimistic assumptions on near-
data-processing memory access latencies. These pitfalls led to the
overestimated relative performance of NDP-based concurrent data
structures.

To address these shortcomings, we show that lightweight changes
to hardware can reduce the performance gap while using the same
algorithm. The hardware changes were inspired by observations on
data structures’ access patterns and underlying DRAM activity. The
changes show significant improvements in not only performance
but also energy consumption. While the improvements are still
somewhat less than what had been expected in prior theoretical
analysis, in many cases the resulting NDP-based data structures
exhibit better performance and energy consumption than state-of-
the-art concurrent data structures.

This paper makes the following contributions:

• We define a generic near-data-processing (NDP) architecture
that is well-suited for concurrent data structures.

• We implement actual software kernels of the NDP-based
concurrent data structures on a cycle-accurate full-system
NDP architecture framework, yielding a more realistic and
detailed analysis in terms of performance, energy, and power.

• Using our architecture framework, we identify the shortcom-
ings of prior theoretical analyses that led to overestimated
relative performance of NDP-based concurrent data struc-
tures.

• The findings from this evaluation suggest lightweight adjust-
ments to hardware design. We show that minimal hardware
changes can significantly improve the performance and en-
ergy consumption of NDP-based conurrent data structures.

2 ARCHITECTURE BACKGROUND
2.1 DRAM Basics
DRAM array: In DRAM, data is stored in two-dimensional arrays
of storage cells, referred to as DRAM arrays. Each storage cell holds
a very small electric charge representing one bit of data. In order to
read a value, the entire row specified by the row address is sent to
sense amplifiers, where the small charges get amplified for reading.
The specified column is selected and read from the sense amplifiers.
DRAM bank: A DRAM bank refers to a set of DRAM arrays that
act in unison to allow accessing multiple bits of data at once. The
number of bits accessed with a single command is equal to the
number of DRAM arrays in the bank and is referred to as the
column width. Each bank operates independently of another.
DRAM access process: All memory read and write requests pass
through the memory controller, where the memory request is trans-
lated into one or more DRAM access requests and put on the read

queue or write queue. The number of DRAM access requests de-
pends on the location and size of requested data. The DRAM ac-
cesses are processed one at a time. Usually, the read access requests
are serviced before the write access requests.

A single DRAM access proceeds by taking the following steps:
(1) Bitlines are precharged so that sense amplifiers can detect

the small bit data charges coming from DRAM rows. (tRP)
(2) The row (also called page) specified by the row address is

activated and sent to sense amplifiers via bitlines. (tRCD)
(3) The column specified by the column address is read from

the sense amplifiers and is put on the data bus. (tCL)
(4) Data is transferred to the memory controller. (tBURST)

tRP, tRCD, tCL, and tBURST refer to the time it takes for each of the
steps to complete.

In modern DRAM devices, the column access in step (3) may
fetch more than one column of data at once. The data fetched and
transferred on a single DRAM access is referred to as a burst, and
tBURST depends on the burst size.
Row-buffer-management policy: Row-buffer-management poli-
cies define how the memory controller manages steps (1) and (2)
in the data access process. As explained by Jacob et al. [22], open-
page policy and close-page policy are the two primary row-buffer-
management policies.

In the open-page policy, an activated row is kept open until
another memory access requires activating a different row in the
same bank or until a refresh operation is issued on the bank. The
open-page policy is advantageous if the data access pattern often
shows consecutive accesses to the same row, for it removes dupli-
cate row activations and thereby reduces delay (tRCD) and energy
associated with row activation.

In the close-page policy, a row is activated for a single access
only, and the DRAM bank is precharged immediately after an ac-
cess. This not only hides precharge latency (tRP) for the next row
activation but also reduces background energy, for DRAM banks
draw more current when a row is activated than when the rows are
all precharged. This is effective when data is accessed randomly.
Modern DRAM devices used in high-performance multicore sys-
tems usually adopt the close-page row-buffer-management policy
because the highly concurrent memory accesses, coming from dif-
ferent contexts, are likely to require random row activations.

Note that in either row-buffer-management policy, all requests
in the request queue that access the currently activated row are
serviced before closing the row.

2.2 Generic Near-Data-Processing
Three-dimensional (3D) die-stacked memory consists of multiple
DRAM dies stacked on top of a single logic die. The memory is
divided into vertical sections called vaults, and each vault contains
multiple DRAM banks, connected to the logic die using Through-
Silicon Via (TSV) interconnect. The near-data compute units, which
we refer to as NDP cores, are placed in the logic die. We refer to the
memory vaults connected to NDP cores as NDP vaults. The memory
controller that manages memory requests to the NDP vault, which
we refer to as the NDP controller, is also contained in the logic
die. Each NDP core is tightly coupled with an NDP vault and has
exclusive access to the vault’s data (see Figure 1).
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Figure 1: Generic near-data-processing architecture. We as-
sume that each vault’s data is private to the coupled NDP
core.

NDP cores: While some have proposed using specialized acceler-
ators as NDP cores [2, 11, 19, 23, 24], we simply assume that NDP
cores are lightweight in-order, single-cycle processors. Sophisti-
cated functionalities, such as pipelining or caching, are inappro-
priate in NDP cores for two reasons: (1) it is difficult to implement
complex logic on the near-memory logic die, and (2) data structures
and applications that are well-suited for NDP are often those that
are bottlenecked by memory and benefit little from sophisticated
processors.
NDP vaults: While some have proposed making NDP vaults
shared among all NDP cores [36] or even with all host proces-
sors [3, 8, 19]. We treat NDP vaults as private to the coupled NDP
core, removing the need for complex hardware and software to
manage data races, coherence, and virtual address translation.

3 NDP-BASED CONCURRENT DATA
STRUCTURES

We implemented the NDP-based linked-list, skiplist, and FIFO queue
data structures of Liu et al. [26] on a cycle-accurate, full-system
architecture framework, with the goal of deriving more realistic
performance and energy evaluations.

Concurrency for these data structures is provided by the flat-
combining (FC) [17] synchronization scheme. In a non-NDP context,
a flat-combining data structure consists of a publication list and
a combiner lock. Each thread posts its operation request, such as
contains(X), add(X), remove(X), in a dedicated slot in the data
structure’s publication list. After posting the request, threads com-
pete for the combiner lock. The thread that acquires the combiner
lock becomes the combiner thread, and it is the only thread that ac-
cesses the actual data structure. The combiner thread goes through
the publication list, executes the posted operations, writes return
values to corresponding slots in the publication list, and releases
the combiner lock. Other threads that fail to acquire the combiner
lock simply spin on their own slots in the publication list until the
return value is set, which indicates that the operation has been
applied to the data structure.

Flat-combining is well-suited to NDP-based concurrent data
structures. The data structure itself resides in one or more NDP
vaults, and each NDP core acts as a dedicated combiner thread
for the portion of the data structure contained in its coupled NDP

vault. Host processor threads simply send data structure operation
requests to the corresponding NDP core.

We now describe these data structures in more detail.

3.1 Linked-List
A linked-list is a pointer-chasing data structure in which data is
represented as a sequence of nodes: each node holds a data item,
as well as a pointer to the next node. Operations on the data struc-
ture require chasing through pointers (i.e., iteratively accessing the
memory location specified by the next node pointer). Linked-lists,
like most pointer-chasing data structures, typically have poor cache
locality because each step in a traversal jumps to an unpredictable
memory location.

In our examples, linked-list nodes are sorted in ascending order
of integer keys. For the NDP-based implementation, we assume
that the entire linked-list is contained in a single NDP vault.1

The NDP core handles concurrent operations by a combination
of flat-combining and sorting operations in the order of their keys.
Since the linked-list is a sorted list, sorting the operation requests
according to requested keys allows the NDP core to execute all
combined operations over a single traversal through the linked-list.
Figure 2a shows an example of the NDP-based flat-combining and
operation sorting linked-list.

3.2 Skiplist
The skiplist [30] is another type of pointer-chasing data structure.
Skiplist nodes hold multiple levels of pointers, and the pointer at
each level points to the following node at that same level. Each
node is assigned a random maximum level, taken from a particular
distribution, to provide balanced tree-like characteristics. The nodes
in the skiplist are also ordered in ascending order of integer keys.

The NDP-based skiplist is optimized by partitioning the skiplist
across multiple NDP vaults based on pre-defined disjoint ranges of
keys, as shown in Figure 2b. We assume that the host processors
are provided with the range of keys belonging to each NDP vault.
Host processors send operation requests to the appropriate NDP
core, based on the requested operation key. Each NDP core acts
as the combiner for its designated partition, which takes care of
synchronization. Partitioning also enables multiple NDP cores to
execute operations in parallel.

3.3 FIFO Queue
The FIFO queue is a representative example of a contended data
structure. Unlike pointer-chasing data structures, FIFO queue op-
erations access only the queue head or tail, and do not require
extensive memory accesses. Moreover, consecutive items are often
stored in contiguous memory locations, so operations benefit from
good cache locality, especially in the single-threaded case. However,
in a concurrent FIFO queue, multiple threads access the same head
and tail locations. Locks or atomic operations are used on the head
and tail to ensure thread safety, but operations suffer greatly from
the contention at these locations.

1If the linked-list size exceeds that of a single NDP vault, it can be partitioned into
multiple vaults based on ranges of keys. The basic functionality of each NDP core-vault
pair remains the same; the hosts simply send operation requests to the NDP core that
corresponds to the requested key.

Session 8  SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

299



NDP vault

host processorhost processor host processor host processor. . .

1 4 6 8 10 11 12 26202

publication
list

NDP core

add(5)

5

1

contains(7)2
remove(11)3

X
contains(20)4

remove(11)contains(7) add(5) contains(20)
12 34

remove(11)contains(7) add(5) contains(20)

(a) Flat-combining and operation sorting linked-
list.

1

1

1

1

4

4

43 6

8

8

10

10

10

10 11

12

12 26

20

20

20

20

NDP vault 1 NDP vault 2 NDP vault 3

NDP core 3

host processorhost processor host processor host processor. . .

contains(7) remove(4) contains(13) add(21)

NDP core 2NDP core 1

NDP vault 1: [0-9], NDP vault 2: [10-19], NDP vault 3: [20-29]

(b) Partitioned and flat-combining skiplist.

NDP vault 1 NDP vault 2 NDP vault 3

NDP core 3

host processorhost processor host processor host processor. . .

deq() enq(32) enq(21)

NDP core 2NDP core 1

current deq: NDP vault 1, current enq: NDP vault 3

NDP vault 4

NDP core 4

deq()

89

34

1

58

91

27

33

42

77

102

5

32

21

head

tail
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Figure 2: NDP-based concurrent data structure design.

The NDP-based FIFO queue is based on flat-combining and par-
titioning, as shown in Figure 2c. The NDP core effectively removes
contention, for it is the only thread that operates on the data struc-
ture. Furthermore, partitioning the queue across multiple NDP
vaults allows for separate enq and deq partitions, which adds paral-
lelism among NDP cores.

The host processors maintain a shared record of the current
enq and deq partition and send operation requests to NDP cores
based on this record. When an enq partition is filled up or when
a deq partition is emptied out, the corresponding NDP core sends
a notification with the last operation that it completed. By this
notification, the host processor that issued the last completed op-
eration is designated as the thread to safely update the host-side
record. The host processors, while spinning on their own slots in
the publication list for the operation’s return value, also check the
shared enq/deq partition record to see if the operating partition has
changed. If the operating partition changes before the operation
completes, the host processor needs to clear out the existing opera-
tion request and reissue the operation to the new partition. Note
that this has little impact on performance, for the active partition
changes infrequently.

4 HARDWARE MODIFICATIONS
Our proposed NDP architecture is based on the generic NDP ar-
chitecture described in Section 2.2. Lightweight modifications —
inspired by data structure memory access patterns and underlying
hardware behavior — are made to the NDP controller.

We observe that data structure operations exhibit temporal and
spatial locality at DRAM row granularity. For list traversal in linked-
lists or skiplists, the NDP core reads two words of information from
each node, back-to-back: the node’s key value and the pointer to
the next node. A single node is stored in contiguous memory (i.e.,
in the same DRAM row). This implies that data in a single row is
accessed twice consecutively. The FIFO queue has an even higher
rate of row hits. Queue items are stored successively in memory,
according to queued order, so consecutive deq operations access all
items in a DRAM row before moving onto the next row.

However, because the NDP core is a simple in-order processor
without cache, it requests for only one word of data frommemory at
a time. In a typical memory controller, every memory access request
is translated into a separate DRAM access operation, regardless

read request
requested address: R V

tag register

data buffer

NDP controller

NDP
core

NDP
vault

DRAM
read queue

1

2

3

4

5

Figure 3: Proposed NDP controller design. The tag register
and data buffer are added to the existing NDP controller.
Steps 3 and 4 are skipped if the tag portion of the requested
read address matches the tag register content.

of the row locality. If close-page row-buffer-management policy
is used, this will require repetitive row activations; if open-page
policy is used, this will reduce row activation latencies but increase
background energy by leaving DRAM rows open. Moreover, data
is tranferred from a DRAM bank to the memory controller in units
of bursts (consecutive columns of data), which is often larger than
one word. If the NDP core requests for only one word of data, the
unused extra data is discarded, when oftentimes the next request
would need data from the very same burst.

To address these issues, a small data buffer is added to the NDP
controller. This buffer can be thought of as a single-block cache
placed in the memory controller. The buffer size depends on the
data structure: for the linked-list and skiplist, the buffer size is
equal to the node size, and for the FIFO queue, it is equal to the
DRAM row size. With the buffer, using the close-page policy is
sufficient because the buffer serves the same purpose as an open
row, except with additional benefits in access latency and power.

Figure 3 shows our modified design. Only two new hardware
components needed for the buffer design: the buffer itself, which
holds the most recently accessed block of data, and a tag register,
which holds the tag portion of the buffered block’s memory address.
Upon receiving a data read request (step 1), the NDP controller first
checks if the tag of the requested data address matches the tag
register (step 2). If so, the request is responded to immediately (step
5). This eliminates the DRAM data access process (described in
Section 2.1) entirely, which thereby reduces data access delays and
energy consumption.
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If requested data is not in the data buffer, the NDP controller
creates DRAM access operations to fill the buffer (steps 3 and 4).
If multiple DRAM accesses are necessary, the DRAM access op-
eration that retrieves data for the original request is issued first.
This ensures that the data buffer mechanism does not increase the
delay in responding to the original data request, while it also allows
effective latency hiding for the extra DRAM accesses needed for
filling the buffer.

Bits in the tag register are used as valid and ready flags. Once
the first DRAM access operation returns with its portion of data,
the tag register is updated with the new address, and the buffer is
marked valid. However, the ready flag is not set until the buffer
has been filled with the corresponding data block. When a memory
access request with an address tag that matches the tag register
arrives while the buffer is being updated, the request is blocked until
the buffer is set to ready. If a write request to the NDP controller
modifies data in the buffer, the buffer is simply marked as invalid.

5 EVALUATION SETUP
In this section, we describe how we measure the performance and
energy of the proposed data structure implementations, along with
the details of our architecture framework.

5.1 Benchmarks
We use simple benchmarks to evaluate the proposed NDP-based
concurrent data structures. The data structure is first initialized
with random items according to the given initial size. We measure
the performance, energy, and power of host threads concurrently
issuing random operations on the data structure. The total number
of random operations is fixed and is divided equally among the
specified number of host threads. Performance is measured in terms
of operation throughput, which refers to the total number of data
structure operations completed in a given period of time.

We implement each of the NDP-based data structures from Sec-
tion 3 and run them on the NDP architecture with and without
the NDP controller modifications described in Section 4, in order
to evaluate the impact of lightweight hardware modifications. We
compare the results against the host-based flat-combining data
structure, as a baseline for how the NDP-based algorithm would
perform in a non-NDP context, and also against the host-based
state-of-the-art concurrent data structure.

5.2 System Framework
We evaluate the benchmarks on a cycle-accurate, full-system ar-
chitecture framework with real hardware constraints. In particular,
we use SMCSim [5], a gem5 [6]-based full-system simulator, which
includes the software stack and architecture support for near-data-
processing. In order to build a framework that conforms to the NDP
architecture design described in Section 2.2, we made the following
modifications to SMCSim.

The default for the SMCSim simulator originally had 16 mem-
ory vaults, all used as host-accessible main memory and shared
with a single NDP core. We split the memory vaults and use eight
vaults as host-accessible main memory (referred to as main memory
vaults), and the other eight vaults as NDP vaults. Each NDP core
is connected directly to a memory controller and to the host, and

Host Configuration
Host cores 8 in-order processors (ARMv7 Cortex-A15), 1 thread/core
L1 cache 32kB icache, 64kB dcache, private, 2-way set-associative

0.8 ns dcache access latency, 256B/block
L2 cache 2MB, shared, 8-way set associative

1.8ns access latency, 256B/block
NDP configuration

NDP cores 1 in-order processor/vault (ARMv7 Cortex-A15)
scratchpad memory 40kB/NDP core, 8kB reserved for host memory-map

stores instructions and program stack
Memory Configuration

vaults 16 vaults, 128MB/vault (total 2GB), 8 DRAM banks/vault
for host-only baseline: 16 main memory vaults
for NDP: 8 main memory vaults, 8 NDP vaults

DRAM parameters row buffer size: 256B, burst size: 32B
tRP: 13.75ns, tRCD: 13.75ns, tCL: 13.75ns, tBURST: 3.2ns

Table 1: Evaluation framework configuration.

each NDP vault is visible only to the directly connected NDP core.
The configuration shown in Figure 1 is modeled after our resulting
architecture.

We also implement the data buffer described in Section 4 on
the NDP controllers. For evaluations without the NDP controller
change, an unmodified generic memory controller is used as the
NDP controller.

The NDP core used in the framework is a simple in-order pro-
cessor modeled after the ARM Cortex-A15 processor and does not
have any cache. A small program binary, referred to as the NDP
kernel, is offloaded to the NDP core for execution. Each NDP core
is equipped with a 40kB scratchpad memory, which stores the in-
structions and the program stack for the NDP kernel. A portion
of the scratchpad memory (8kB) is reserved for communication:
this region is memory-mapped into host memory and allows host
processors to communicate with the NDP cores through this inter-
face. We use the memory-mapped interface as slots for the data
structure publication list.

Table 1 summarizes the configuration details of our evaluation
framework. Although we use simple in-order processors for the
host, this will have little impact on host-based data structure perfor-
mance because data structure operations are primarily performance-
bounded by memory accesses or successful execution of atomic
operations.

5.3 Power Model
We take power measurements for core, cache, interconnect and
memory controller from McPAT [25]. Configuration parameters
were primarily drawn from the simulation framework settings, as
well as Endo et al. [12] and the official ARMv7 Cortex-A15 man-
ual [10] for both the NDP and host cores. Peripherals (i.e., flash
controllers, PCIE, network interface units) were not included. For
DRAM energy and power, we use statistics available through SMC-
Sim per simulation. They are calculated by DRAMPower [9] as an
integrated library of gem5, and separate outputs are produced for
precharge, read, write, activation, refresh, and background energy.

6 LINKED-LIST ANALYSIS
We implement the NDP-based linked-list described in Section 3.1
on our NDP architecture with the NDP controller modification
proposed in Section 4 (NDP ctrl buffer) and on a generic, unmodified
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NDP architecture. For the latter, we evaluate using both the open-
page and close-page row-buffer-management policies (NDP open-
page and NDP close-page, respectively). NDP ctrl buffer uses the
close-page policy, as described in Section 4.

For host-based references, we implement the flat-combining and
operation sorting linked-list (host FC w/ sort) [17], which is algo-
rithmically the host-based equivalent of the NDP linked-list, and
the lazy-lock linked-list (host lazy-lock) [16], a state-of-the-art con-
current linked-list algorithm. In host lazy-lock, locking is required
only on nodes that are affected by add or remove operations, so in
most cases list traversal can run completely in parallel, unaffected
by locking.

For all experiments, we set the initial linked-list to be approxi-
mately 5MB in total size (larger than the L2 cache). We set 90% of
the random operations to be read-only, and the remaining 10% of
the random operations are divided equally among add and remove
operations, in order to maintain a constant list size.

6.1 Performance
Figure 4a shows the operation throughput for each linked-list im-
plementation across varying numbers of concurrent threads. In
general, the NDP-based implementations perform better than the
host-based implementations, although NDP close-page barely does
better than host lazy-lock, with only 2.5% improvement in through-
put at eight concurrent threads. However, NDP open-page shows
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significant improvement and NDP ctrl buffer even more so. At eight
concurrent threads, NDP open-page and NDP ctrl buffer each have
16.4% and 73.7% higher operation throughput than host lazy-lock.
Note also that the operation throughput of NDP ctrl buffer scales
better than that of all other implementations with an increasing
number of threads.

NDP open-page has 13.5% higher throughput than NDP close-
page, and NDP ctrl buffer has 49.3% higher throughput than NDP
open-page. The performance difference among NDP-based imple-
mentations results from delays associated with DRAM access. For
NDP-based implementations, accessing a node in list traversal re-
quires the following DRAM delays: (1) tRCD to activate the row
containing the node’s key, (2) tCL to read the column that contains
the node’s key, and (3) tBURST to move the burst containing the
node’s key to the NDP controller. After accessing the node’s key
value, the NDP core also needs to read the node’s next node pointer.
This next node pointer is stored in the same row – better yet, in
the same burst – as the node’s key. However, with NDP close-page,
the row activated in step (1) is already precharged, so reading the
node’s next node pointer requires repeating steps (1), (2), and (3).
On the other hand, NDP open-page leaves the row activated, so the
DRAM access for the next node pointer requires only steps (2) and
(3). NDP ctrl buffer caches the burst from step (3), so no additional
DRAM accesses are needed. Therefore, DRAM delays associated
with a single node traversal sums up to:

(NDP close-page delay) = 2 × (tRCD + tCL + tBURST)

(NDP open-page delay) = tRCD + 2 × tCL + 2 × tBURST

(NDP ctrl buffer delay) = tRCD + tCL + tBURST

To get a better idea of how performance, power, and energy are
affected by the various NDP and host schemes, we also looked into
the memory accesses to the DRAMs. Figure 5 shows the number
of memory read requests that arrive at memory controllers, the
number of DRAM read accesses (read bursts) that the read requests
are translated to, and the number of DRAM row activations that
happen in order to serve these bursts. In the NDP-based imple-
mentations, the number of DRAM bursts are at most equal to the
number of memory requests because each request asks for only one
word of data. Although all NDP-based implementations make the
same number of read accesses to the NDP controller, the number
of DRAM row activations is reduced to half with NDP open-page,
and the number of DRAM read bursts is reduced to half with NDP
ctrl buffer.

In host-based implementations, the memory read request to
the memory controller originates from a cache miss and therefore
requests for a cache block size chunk of data. A cache block size
is normally a multiple of the DRAM burst size, so the number of
DRAM read bursts is much larger than the number of read requests.
In our case, the cache block size is equal to a DRAM row size
and is eight times the burst size. Because of the sheer number of
DRAM read bursts, host-based linked-lists perform worse than the
NDP-based linked-lists. However, although host lazy-lock has much
more read bursts than host FC w/ sort, host lazy-lock shows higher
throughput because the memory requests and DRAM bursts are
issued and processed in parallel, whereas the memory requests in
host FC w/ sort are issued sequentially by the combiner thread.
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average total power (W)
# host host NDP NDP NDP

threads lazy-lock FC w/ sort close-page open-page ctrl buffer
2 7.8965 7.8710 8.0127 8.0300 8.0460
4 7.9424 7.8704 8.0125 8.0299 8.0455
6 7.9837 7.8710 8.0149 8.0319 8.0473
8 8.0177 7.8718 8.0156 8.0329 8.0485

Table 2: Average power dissipation for linked-list implemen-
tations across varying numbers of concurrent threads.

6.2 Energy & Power
Table 2 shows the average power dissipation for various linked list
implementations, across increasing number of threads. It shows that
NDP-based implementations in general dissipate more power than
host-based implementations. First of all, the addition of NDP cores
to the system increases power dissipation. Secondly, the NDP-based
implementations require more power in the memory controllers
than their host-based equivalent, host FC w/ sort, because the mem-
ory controllers process more read requests (2.66x), as shown in
Figure 5.

Because extensive memory access is the limiting factor in linked-
list operations, the time intervals between read request arrivals at
the memory controller, DRAM row activations, and DRAM reads
also impacts the average power dissipation. In other words, if the
memory controllers and DRAM banks have less idle time and are
more frequently in dynamic operation, the average power increases.
For this very reason, NDP ctrl buffer dissipates more average power
than NDP open-page, and NDP open-page more than NDP close-page.
Another reason NDP open-page dissipates more power than NDP
close-page is that leakage power is higher when a DRAM row is
activated.

However, as shown in Figure 4b, performance gains allow for
lower total energy consumption with NDP open-page and NDP ctrl
buffer, despite the higher average power consumption. At eight
concurrent threads, NDP open-page and NDP ctrl buffer each show
13.9% and 42.2% decrease in energy consumption compared to host
lazy-lock.

In addition, we see from Table 2 that the increase in concurrent
memory accesses also impacts power dissipation. Whereas the
average power increases minimally with added threads in NDP-
based implementations and host FC w/ sort, the average power for
host lazy-lock increases at a much faster rate, and we expect that
with more threads, the power consumption of host lazy-lock would
exceed that of even NDP ctrl buffer.

7 SKIPLIST ANALYSIS
We implemented the NDP-based skiplist as described in Section 3.2
with 1, 2, 4, and 8 NDP vaults (NDP 1part, 2part, 4part, 8part).We also
implemented host-based partitioned and flat-combining skiplists
(host FC 1part, 2part, 4part, 8part) [17] as references on how the
NDP-based algorithm would perform in a host-only setting. As
described in Section 3.2, partitioning achieves higher concurrency
by allowing multiple NDP cores (or in the case of host FC skiplists,
multiple combiner threads) to safely operate on different parts of
the skiplist in parallel.

In particular, the NDP-based skiplists are evaluated both with
andwithout the NDP controller modifications described in Section 4.
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Figure 6: Baseline skiplist operation throughput. Solid lines
and dashed lines show results fromNDP-based implementa-
tionswith andwithoutNDP controller changes, respectively,
and dotted lines show results from host-based implementa-
tions.
For evaluations without the NDP controller modifications, we use
the open-page row-buffer-management policy for NDP vaults. We
refer to the NDP-based implementations with and without NDP
controller modifications as NDP ctrl buffer and NDP open-page.

We also implement the state-of-the-art host-based lock-free
skiplist (host LF ) [13] for comparison. Host LF allows complete
concurrency among host threads by using only atomic compare-
and-swap operations to apply changes to the skiplist.

7.1 Performance
7.1.1 Baseline. For the baseline skiplist evaluation, we use an ini-
tial skiplist that is approximately 12MB in size. We set 90% of the
random operations to be read-only (contains) and divide the re-
maining 10% of the operations equally among add and remove
operations, in order to maintain a consistent skiplist size.

Figure 6 shows the operation throughput of different skiplist
implementations across varying number of concurrent threads.
Results from 1 and 2 partition skiplists were omitted in order to
highlight the most relevant and interesting results.

Just as it had been in the linked-list case, adding a node-size
data buffer to the NDP controller improves NDP-based skiplist
performance. Skiplist node traversal is subject to DRAM access
delays similar to the linked-list node traversal: (1) tRCD to activate
the row containing the node, (2) tCL to read the column containing
the node’s key, and (3) tBURST to move the burst containing the key.
After reading the key, the node’s next node pointer is accessed,
which requires no additional DRAM access delay with NDP ctrl
buffer, whereas an additional (tCL + tBURST) delay is required with
NDP open-page.

However, skiplist traversal sometimes requires backtracking to
the previous node in order to move down a level. In this case, even
with NDP ctrl buffer, the previous node needs to be accessed from
DRAM again, for the buffer has already been overwritten. This
results in an increased rate of buffer misses, compared to the linked-
list.

Figure 7 shows the number of memory read requests, DRAM
read bursts, DRAM row activations, and NDP controller buffer
hits for various skiplist implementations. Because a skiplist node
contains multiple levels of pointers, a skiplist node is much larger
than a linked-list node and requires multiple DRAM bursts to fill

Session 8  SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

303



0

2000000

4000000

6000000

8000000

host
LF

host
FC 8part

host
FC 4part

NDP 8part
open-page

NDP 4part
open-page

NDP 8part
ctrl buffer

NDP 4part
ctrl buffer

# reads
(to ctrl)

# read bursts
(to DRAM)

# row
activations

# buffer hits
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the buffer (4 bursts in our experiments). Nevertheless, the latency-
hiding mechanism described in Section 4 allows NDP ctrl buffer to
still yield higher performance than NDP open-page.

At eight concurrent threads, the partitioned NDP ctrl buffer
skiplists on average have 17.2% higher operation throughput than
the NDP open-page counterparts. Note that the improvement is
greater with more threads, for execution on NDP cores is increas-
ingly bound by memory accesses with more threads.

Figure 6 also reveals interesting results that were not captured in
the theoretical analysis of [26]. At eight concurrent threads, with 4
partitions, NDP open-page and NDP ctrl buffer have 8.1% and 26.5%
higher throughput respectively than host FC 4part; with 8 partitions,
we observe 19% and 38.3% higher throughput respectively than host
FC 8part. Although the NDP-based skiplists perform better than
their host-based counterparts, the scale of improvement is not as
great as what was expected in [26] (3x throughput). Moreover,
contrary to the projection in [26], host LF completely outperforms
the NDP-based implementations.

We find that cache effects account for the relatively high per-
formance of host-based skiplists. The skiplist is inherently a bal-
anced tree-like data structure, so an operation on the skiplist al-
ways begins at the few high-level nodes and traverses through
only O(log2 N ) nodes (where N is the total number of nodes in
the skiplist). Therefore, higher-level nodes are likely to remain in
cache, and only a small number of accesses actually go out to main
memory, even with a skiplist that is much larger than the last-level
cache.

As shown in Figure 7, based on an 8-thread execution, the total
number of read requests that go out to memory in NDP-based
implementations is nearly 10x more than the number in host-based
implementations. Even if NDP controller buffer hits are not counted
towards memory read requests, NDP 4part ctrl buffer and NDP 8part
ctrl buffer still have nearly 6x more memory read requests than
host-based skiplists.

Yet, increasing the number of partitions has a greater impact on
NDP-based skiplists than on host-based flat-combining skiplists:
host FC 8part, NDP 8part open-page, and NDP 8part ctrl buffer each
have 42.1%, 56.5%, and 55.3% higher throughput than its 4-partition
counterpart. When the number of partitions doubles, the size of
each skiplist partition is reduced in half. This decreases the height
of each skiplist partition, which in turn slightly reduces the number
of node accesses required per operation. Even this slight reduction
significantly reduces the total number of memory accesses for NDP-
based skiplists. On the other hand, in the host FC case, because the
total number of nodes across all partitions remains the same, the
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nodes that consistently remain in cache are the same regardless of
the partitioning. The same lower-level nodes that had to be read
from memory still need to be read from memory, and therefore the
number of data accesses that go out to memory remains relatively
constant for host-based implementations.

Architecture constraints restrict the number of memory parti-
tions in a memory space to be a power of 2.2 We were limited by
configurations in the architecture framework (16 memory vaults
total) and could not empirically verify the performance with more
than 8 partitions. Nonetheless, because increasing the number of
partitions greatly improves NDP-based skiplist performance, we
expect the NDP-based skiplists to outperform host LF with more
partitions and enough concurrent host threads to saturate the NDP
cores.

7.1.2 Cache & Skiplist Size. We do a sweep on cache sizes to find
the skiplist size relative to the cache size that makes using the NDP
8-partition skiplist more advantageous than using the host lock-free
skiplist.3 The initial skiplist size is set to approximately 850MB, and
the ratio of random operations is set to 90% contains, 5% add, and
5% remove.
2Bits in the address are used in order to determine the partition in which the data is
placed.
3 In reality, the skiplist size could be much larger than the size we experiment with, but
we were restricted by memory address space limitations in the architecture framework.
We therefore simulated the effects of having a larger data structure by reducing the
cache size.
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As expected, Figure 8 shows that cache size severely impacts
the performance of host lock-free skiplists. On the other hand, the
NDP-based skiplist performance is insensitive to cache size, so any
cache configuration below 64kB/2MB shows clear advantages for
the NDP schemes. Figure 9 shows the average number of memory
read requests made by each thread in host LF. The black dotted line
marks the average number of memory read requests per NDP vault
in NDP 8part (both open-page and ctrl buffer), and the red dotted
line marks the cutoff point where an 8-thread execution of NDP
8part ctrl buffer shows higher operation throughput than host LF.
When the number of memory read requests per thread exceeds
26.5% of the memory read requests per vault, host LF performs
worse than the 8-thread NDP 8part ctrl buffer.

7.2 Energy & Power
The skiplist energy and power analysis is based on the results from
Section 7.1.2. We compare the energy and power of NDP 8part open-
page, NDP 8part ctrl buffer, and host LF with 64kB L1 data cache
and 2MB L2 cache (baseline cache size configurations).

Table 3 shows the average power dissipation for the different
skiplist implementations across varying number of threads. The
average power for NDP-based implementations are notably high
compared to the power dissipated with host LF. Just as it had been
in the linked-list case (Section 6.2), for NDP 8part open-page, the
difference in average power compared to host LF comes from the
NDP cores and the 3.23x more read requests processed at memory
controllers (as shown in Figure 10b). Although host LF has higher
average read power than NDP 8part open-page, it evens out with
the higher leakage power with activated DRAM rows in NDP 8part
open-page. NDP 8part ctrl buffer requires even higher average power
than NDP 8part open-page because of the sheer number of extra
DRAM reads (2.44x compared to NDP 8part open-page) that happen
in order to fill the data buffer.

average total power (W)
# host NDP NDP

threads LF open-page ctrl buffer
2 7.897 8.005 8.023
4 7.938 8.060 8.094
6 7.984 8.107 8.153
8 8.030 8.140 8.193

Table 3: Average power dissipation for host lock-free and
NDP-based 8-partition skiplists across varying numbers of
concurrent threads.

Despite the significantly higher power dissipation, NDP 8part
ctrl buffer still shows lower energy consumption than host LF due
to the improvement in performance. Figure 10a shows the total
energy consumption of the three different skiplist implementations
across varying numbers of concurrent threads. At eight concurrent
threads, NDP 8part ctrl buffer has 7.4% higher operation throughput
and consumes 5% less energy compared to host LF.

8 FIFO QUEUE ANALYSIS
For brevity, we refer to the FIFO queue simply as the queue. Queues
are inherently different from the pointer-chasing data structures we
considered earlier. Items are usually stored in contiguous memory,
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so they do not suffer from the same poor cache locality. Neverthe-
less, they do suffer from contention among multiple threads trying
to access and modify the head and tail of the data structure.

We implement the NDP-based queue as described in Section 3.3
on NDP architecture with and without the NDP controller data
buffer (NDP ctrl buffer and NDP open-page, respectively). The NDP
core effectively removes contention, for it is the only thread that op-
erates on the data structure. We also implement the host-based dual
flat-combining queue (host dual FC), which has separate combiner
threads for the enq and deq operations, as the host-based coun-
terpart. As the state-of-the-art concurrent queue, we implement
the host-based lock-free queue (host LF ) [27], in which concurrent
threads use atomic compare-and-swap operations to safely execute
enq and deq operations on the queue.

There are two ways to implement a queue. One is implementing
it as a circular array buffer with indices specifying the head and tail
(array-based), and another is implementing it as a linked-list with
pointers to the head and tail (list-based). The array-based implemen-
tation uses fewer atomic operations for each enq or deq operation
compared to the list-based implementation, but it requires setting
aside a block of memory that is larger than the maximum possible
size of the queue ahead of time. We considered both implementa-
tions for the host-based queues. However, the NDP-based queues
were implemented array-based only, for the NDP vault is already
memory dedicated to store the data structure.

For the evaluation, we set the initial queue size to be 2MB (4MB
for the list-based implementations because each queue item needs
to store a pointer to the next item, which is unnecessary in the
array-based implementations). Random operations on the queue
are divided as 50% enq and 50% deq.

8.1 Performance
Figure 11a shows the operation throughput of various queue im-
plementations across varying number of concurrent threads. At
eight concurrent threads, NDP open-page and NDP ctrl buffer each
yield 3.5x and 3.7x higher throughput than the array-based host
dual FC, just by removing contention. Compared to the list-based
host LF, NDP open-page and NDP ctrl buffer show 40.5% and 48%
higher throughput.
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As mentioned earlier, the array-based host LF does fewer atomic
operations for each queue operation than the list-based host LF
and thus yields higher operation throughput than the NDP-based
queues. However, while the operation throughput for host-based
queues flatten out due to contention, the throughput for NDP-
based queues scale linearly, and we expect the NDP-based queues
to outperform even the array-based host LF with more concurrent
threads. Also, depending on the variance in queue size, it may be
wasteful to set aside a contiguous block of memory to store queue
items in a host-based queue implementation.

At eight concurrent threads, NDP ctrl buffer has 5.3% higher oper-
ation throughput compared to NDP open-page. Figure 12 shows the
number of memory read requests, DRAM read bursts, and DRAM
row activations for the twoNDP-based queues, based on an 8-thread
execution. Among all the data structures that we considered, the
queue has the highest controller data buffer hit rate (98.3%, while
the linked-list and skiplist have approximately 50% and 40% hit
rates, respectively), and this greatly reduces the number of DRAM
bursts and row activations.

However, the impact of the data buffer on overall performance
is not as dramatic compared to the pointer-chasing data structures
because of Amdahl’s law. In pointer-chasing data structures, suc-
cessive memory accesses consume a large portion of the execution
time in a data structure operation. On the other hand, each queue
operation requires only one memory access, and because this is
such a small portion of the total operation execution time, reducing
the memory access latency improves the overall performance only
slightly.

average total power (W)
# host host NDP NDP

threads LF dual FC open-page ctrl buffer
2 7.848 7.844 7.936 7.923
4 7.850 7.843 7.936 7.927
6 7.850 7.844 7.940 7.930
8 7.851 7.845 7.942 7.931

Table 4: Average power dissipation for various implementa-
tions across varying numbers of concurrent threads. (List-
based queue results omitted for simplicity.)

8.2 Energy & Power
Despite the limited performance improvement from the data buffer,
the significant reduction in number of DRAM read bursts and
DRAM row activations reduces average power consumption. Fewer
DRAM row activations lead to lower NDP vault activation energy,
and fewer DRAM read bursts lead to lower NDP vault read energy.
Also, in NDP ctrl buffer, activated DRAM rows can be precharged
immediately after the buffer has been filled, whereas in NDP open-
page rows must remain activated. This leads to a lower background
power, for precharged rows draw slightly less leakage current than
activated rows. As shown in Table 4, NDP ctrl buffer consumes
less power on average than NDP open-page, which had not been
the case with linked-lists or skiplists. In fact, for queues, the main
factor in the power difference between NDP-based and host-based
implementations is power drawn from the NDP cores.

FIgure 11b shows the total energy consumption of various queue
implementations. Although the energy consumption of NDP-based
queues are higher than that of the array-based host LF, at eight
concurrent threads, NDP open-page and NDP ctrl buffer each con-
sume 28% and 31.8% less energy than the list-based host LF. NDP
ctrl buffer consumes 5.2% less energy than NDP open-page.

9 RELATED WORK
While Liu et al. [26] proposed ways to refactor data structures to
exploit NDP, they did not attempt any empirical tests of the re-
sulting data structures, relying instead on a theoretical analysis
based on a simple model of hardware latencies. Here, we implement
actual software kernels of the NDP-based concurrent data struc-
tures on a full-system NDP architecture framework and provide
empirical performance and energy analysis based on real hardware
constraints.

Several other works have designed and evaluated near-data-
processing mechanisms that improve data structure performance
and energy consumption [18, 19, 32], but all are focused only on
pointer-chasing data structures. Moreover, while [18] does evaluate
the scalability of their design, the design targets only linked-list
traversals. The works of [19] and [32] do not scrutinize the impact
of increased concurrency on performance and energy, even though
their designs support parallelism.

To our knowledge, our work is the first to implement and empiri-
cally evaluate contended concurrent data structures with near-data-
processing. Nai et al. [28] offload atomic operations to near-data
computation units to address contention issues in graph process-
ing, but our work focuses on more conventional data structures in
which contention is the sole performance bottleneck.
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Many of the prior work also support concurrency with near-data-
processing. To this end, Zhang et al. [36] implement GPU compute
units as the NDP cores, but the compute units share data in all
the vaults and do not leverage the benefits of vault-level locality.
Other works [1, 2, 11, 15, 24, 31] implement NDP cores coupled
with NDP vaults, which not only take advantage of data locality
in NDP vaults but also enable concurrent execution among NDP
cores. However, the parallelization techniques and data partitioning
schemes to exploit provided concurrency in these works are very
specific to the application they target.

There are works that provide more generic enhancements with
near-data-processing. The work of Yikbarek et al. [34] builds near-
data accelerators for representative data-intensive operations that
are part of many big-data workloads. Other work [23] implements
the multiply-accumulate operation in the logic die of 3D-stacked
memory, which is a commonly used operation in many digital
signal processing systems. The host processor ISA is extended
in [3] to provide data-locality-aware general instruction execution.
The work of [35] provides power management schemes that are
applicable to any near-data-processing system. Finally, there are
also works that utilize new memory technologies such as non-
volatile memory [14, 21] to implement simple yet massively parallel
arithmetic or bitwise logic directly into the memory circuitry. While
these proposed schemes have been shown to provide performance
and/or power advantages, they are orthogonal to what we are
proposing in this paper.

10 CONCLUSION & FUTUREWORK
In this work, we provide the architectural support and actual soft-
ware implementations of general-purpose concurrent data struc-
tures that are adapted to exploit near-data-processing hardware. We
show through empirical evidence that thorough understanding of
hardware limitations is essential in order to maximize performance
and energy gains with NDP-based concurrent data structures. Our
work in identifying and addressing the discrepancy between ideal
and realistic gains of near-data-processing serves as a valuable
guide for future investigations.

Based on our findings, we propose adding a small data buffer to
the NDP controller. The NDP-based concurrent data structures –
without any additional algorithmic modifications and with minimal
hardware support – yield better performance and energy consump-
tion than state-of-the-art concurrent data structures in many cases,
particularly when the data structures are bottlenecked by frequent
memory accesses.

We achieved good performance gains and energy savings with
the simplest hardware and software designs. More sophisticated
hardware-software co-designs are needed in order to further im-
prove the data structures implemented in this work or to imple-
ment other concurrent data structures. The problems that need
to be addressed in the hardware-software co-design include but
are not limited to: referencing data across different NDP vaults,
dynamically reallocating data among vaults to balance workloads,
and designing specialized near-memory accelerators that further
increase the benefits of NDP.

We plan to publicly release the data structure software libraries
that we implemented, as well as our extensions to the SMCSim
framework.
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