Attacking Memory-Hard scrypt with Near-Data-Processing

Jiwon Choe
Brown University
jiwon_choe@brown.edu

R. Iris Bahar

Brown University
iris_bahar@brown.edu

ABSTRACT

In a traditional DRAM-based main memory architecture, a memory
access operation requires much more time and energy than a simple
logic operation. This fact is exploited to build time-consuming and
power-hungry memory-hard cryptographic functions that serve
the purpose of hindering brute-force security attacks.

The security of such memory-hard functions depends entirely on
the non-trivial costs of memory access. However, various compute-
capable memory technologies have recently emerged as promising
ways to reduce the memory access bottleneck, yet no one has
looked into how they may impact the security of memory-hard
cryptographic functions. In this preliminary work, we investigate
the impact of near-data-processing (NDP) on scrypt, a widely used
memory-hard password-based key-derivation function, and discuss
the opportunities to further undermine scrypt using compute-
capable memory.

CCS CONCEPTS

« Hardware — Memory and dense storage; « Security and pri-
vacy — Hash functions and message authentication codes.

ACM Reference Format:

Jiwon Choe, Tali Moreshet, R. Iris Bahar, and Maurice Herlihy. 2019. At-
tacking Memory-Hard scrypt with Near-Data-Processing. In Proceedings of
the International Symposium on Memory Systems (MEMSYS ’19), September
30-October 3, 2019, Washington, DC, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3357526.3357570

1 INTRODUCTION

In a traditional DRAM-based main memory architecture, a memory
access operation requires much more time and energy than a simple
logic operation. This fact is exploited to build time-consuming
and power-hungry memory-hard cryptographic functions, which
serve the purpose of hindering brute-force security attacks. The
computation cost of the memory-hard function is negligible for an
honest user, who would compute it only once, but the cumulative

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MEMSYS °19, September 30-October 3, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7206-0/19/09...$15.00
https://doi.org/10.1145/3357526.3357570

Tali Moreshet

Boston University
talim@bu.edu

Maurice Herlihy
Brown University
mph@cs.brown.edu

computation cost is significant and therefore prohibitive for a brute-
force attacker, who would need to compute the function a large
number of times.

To this end, Colin Percival [34] defined the memory-hard algo-
rithm: an algorithm that requires amount of memory approximately
proportional to the number of operations to be performed. If suf-
ficiently large amount of memory is required, not only would the
compute time and power be bounded by memory access, but the
algorithms would also be resistant to brute-force attacks using cus-
tomized hardware. Memory is expensive and takes up large chip
area, and therefore requiring large amounts of memory for a single
function computation limits the amount of customized hardware
that can be built to execute large-scale parallel attacks.

The security of memory-hard functions depends entirely on the
non-trivial costs of memory access. However, various compute-
capable memory technologies have recently emerged as promising
ways to address the problems of slow and energy-intensive memory
access [18, 44]. Compute-capable memory supplements memory
devices with compute units, so that simple data-intensive computa-
tions can be done near memory (near-data-processing) or even in
memory (processing-in-memory). There has been extensive research
in improving application performance and reducing energy con-
sumption using compute-capable memory [1-4, 11-13, 15-17, 21-
23, 25-33, 37-39, 45-47], but to the best of our knowledge, no one
has looked into how compute-capable memory may impact the
security of memory-hard cryptographic functions.

In this preliminary work, we investigate the impact of near-
data-processing (NDP) on scrypt [34, 35], a widely used maximally
memory-hard password-based key derivation function. We show
that the scrypt algorithm can be accelerated with a simple NDP
architecture and provide realistic evaluations with a cycle-accurate,
full-system NDP architecture framework. We also suggest how
scrypt can be further accelerated with various compute-capable
memory technologies.

2 SCRYPT OVERVIEW

Scrypt is a sequential memory-hard [34] password-based key deriva-
tion function, meaning that the fastest sequential algorithm to solve
the function is memory-hard, and it is impossible for a parellel al-
gorithm to asymptotically achieve a significantly lower cost. The
algorithm was first proposed in 2009 [34] and was published as RFC
7914 [35] in 2016.

Algorithm 1 shows the scrypt algorithm as described in [34,
35]. Lines 1-4 give the high-level flow of scrypt. Inputs P and S
are password and salt phrases, respectively, and dkLen is the de-
sired key length. The password and salt are first passed through

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Algorithm 1 scrypt algorithm

1: function ScryprT(P, S, p, N, r,dkLen)
2: (BOHBIH-“”BP—I) «— PBKDF2514256(P, S, 1, 128rp)
3 fori=0top—1do
4: B; <« SM1x,(Bj, N)
return PBKDF2g 7 4256 (P, Bo||B1]| ...||BP_1, 1,dkLen)
5. function SMix,(B, N)
6 X« B
7: fori=0toN —1do
8 Vie— X
9 X BLOCKMIXSalsaZO/S,r(X)

10: fori=0toN —1do

11 j < INTEGERIFY(X) mod N
12: X « BLOCKMIXg4/5420/8,r (X © Vj)
return X
13: function BLoCKMIXg475420/8, r(Bol|B1ll...|| B2r-1)
14: » each B; must be 64-bytes (enforced by Salsa20/8 definition)
15: X « Bzrfl
16: fori=0to2r—-1do
17: X « SALsa20/8(X @ B;)
18:

Yi « X
return Yo|Yzl[...||Y2r—2|Y1][Y3]]...|| Y2r—1

PBKDF25p 4256 to generate a 128rp-byte string. The generated
string is divided into p equal-length blocks, and the SMix func-
tion is called on each of them. The results from the SMix function
are concatenated back together to be used as the salt in a final
PBKDF 2511 4256 call, which takes the original password and new salt
to generate a final dkLen-byte output key.

p, N, and r are scrypt-specific parameters. p determines the
number of times SMix is called in scrypt (lines 3-4). It is referred to
as the parallelization parameter, for the p SMix calls are independent
of one another and can be computed in parallel. N is a cost parameter
passed to the SMix function; it controls the CPU and memory usage
of scrypt by requiring the SMix function to compute, store, and
pseudorandomly access N different BlockMix hashes (lines 5-12).
r is the block size parameter that determines the size of a block that
the BlockMix function operates on (lines 13-14).

The SMix function is central to the scrypt algorithm and makes
up the memory-hard component of scrypt. The scrypt RFC [35]
recommends the block size parameter to be r = 8. With this param-
eter, the initial input block to SMix is only 1kB in size and can easily
fit in cache. However, the SMix function expands this 1kB block
into an array of N blocks, and the blocks are iteratively accessed
in a pseudorandom order, based on the contents of the previously-
accessed block. Assuming a sufficiently large N, the SMix function
is bound by memory access and makes up the non-trivial cost of
running scrypt.

IPBKDF?2 iteratively applies a designated pseudorandom function on the password and
salt a specified number of times to generate a cryptographic key. In scrypt, SHA256
is used as the pseudorandom function and is iterated only once. SHA256 is easy to
compute and is not memory-hard.

Jiwon Choe, Tali Moreshet, R. Iris Bahar, and Maurice Herlihy

connection to host processors

[NDP core][NDP core][NDP core][NDP core]

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM

bank bank bank bank bank bank bank bank
DRAM Ed DRAM DRAM Ed DRAM DRAM Ed DRAM DRAM Ed DRAM
bank FY bank bank [y bank bank EY bank bank E§ bank
DRAM K8 DRAM DRAM Kl DRAM DRAM Ml DRAM || DRAM Kl DRAM
bank bank bank bank bank bank bank bank
DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM
bank bank bank bank bank bank bank bank
NDP vault NDP vault NDP vault NDP vault

Figure 1: Generic near-data-processing architecture. Our in-
vestigations of scrypt with NDP are based on this generic
architecture.

3 SCRYPT ACCELERATED WITH
NEAR-DATA-PROCESSING

As apreliminary investigation into scrypt’s vulnerability to compute-
capable memory, we implement and evaluate the scrypt algorithm
on a generic near-data-processing architecture.

3.1 Generic NDP Architecture

Figure 1 describes the generic NDP architecture that our work is
based on. NDP architectures are implemented via 3D die-stacked
memory, in which a logic die is stacked together with multiple
DRAM dies. The memory is divided into vertical sections, referred
to as NDP vaults, and each NDP vault has a tightly coupled compute
unit, referred to as the NDP core, placed in the stacked logic die. The
NDP core’s low-latency memory access is enabled by its physical
proximity to the NDP vault and the high-performance through-
silicon via (TSV) interconnect. NDP cores are generally assumed
to have minimal functionality with exclusive access to data in its
coupled NDP vault. Data-intensive parts of computation can be
offloaded to the NDP cores to exploit the low-latency memory
access.

We assume that the NDP core is a simple, lightweight processor
without cache. Instead, each NDP core is equipped with a small
scratchpad memory to which data in the NDP vault can be read
in via DMA. The scratchpad memory also stores the NDP core’s
program memory, and a reserved portion of the scratchpad memory
is memory-mapped into host address space for the NDP core’s
communication with host processors.

3.2 NDP-Aware scrypt Implementation

As described in Section 2, SMix makes up the memory-hard com-
ponent of scrypt, and therefore we offload it to the NDP core.
PBKDF 25 4256 computations are not memory-hard and are run on
the host processor.

An SMix call runs entirely on a single NDP core-vault pair. The
host processor communicates the 128r-byte input block B and pa-
rameters r and N for SMix through the memory-mapped portion of
the NDP core’s scratchpad memory. The output of SMix is also com-
municated back to the host via the memory-mapped region. The
128rN-byte array V generated in SMix (lines 7-9 of Algorithm 1)

Attacking Memory-Hard scrypt with Near-Data-Processing

HOST

NDP core
(scratchpad memory
oﬂcmlils /
2] output B

Figure 2: The host-NDP interaction and data placement for
the SMix function in the NDP-aware scrypt implementation.

Table 1: Evaluation framework details.

Host Configuration
processor | 8 in-order processors (ARMv7 Cortex-A15)

L1 cache | 32kB icache, 64kB dcache, private, 2-way set-associative
0.8 ns dcache access latency, 256B/block
L2 cache 2MB, shared, 8-way set associative

1.8ns access latency, 256B/block
memory | 2GB

NDP configuration

NDP core | 1in-order processor/vault (ARMv7 Cortex-A15)
scratchpad | 40kB/NDP core, stores program memory

memory | 8kB reserved for memory-map
DMA capability between scratchpad and NDP vault
NDP vault | 128MB/vault

is stored in the NDP vault. However, the pseudorandomly chosen
128r-byte block V; (lines 11-12) is always read into the scratchpad
memory prior to the bitwise-xor operation in line 12. Figure 2 de-
scribes the host-NDP interaction and the data placement for the
SMix function in the NDP-aware scrypt implementation.
Reading the random blocks into scratchpad memory is necessary
in order to reduce redundant DRAM activity that causes delays
and power consumption that cannot be reduced by NDP, as was
identified in [15]. Because the NDP core is simple and does not
have any sophisticated functionality, the bitwise-xor is expected to
be executed as a sequence of simple xor instructions that operate
on word-length data. Since the NDP core also does not have cache,
every one of these xor instructions would incur DRAM operations
to access the small portion of the block being xor-ed. Reading a
word-length portion of interest from V; in memory goes through
the following process: the DRAM row containing the portion is
activated, the corresponding columns are selected, and then the
bits are transferred to the NDP core. Each of these steps with non-
negligible delays would all be repeated for every word in Vj, even
though the DRAM row contains several contiguous words of V;.
Therefore, the entire block V; must be read into scratchpad memory
using DMA in order to eliminate redundant DRAM row activations.

4 EVALUATION

Our evaluations are made on Brown-SMCSim?, a gem5 [8]-based
cycle-accurate, full-system NDP architecture simulator with real

2QOriginally SMCSim [6], extensively modified to conform to the NDP architecture
design described in 3.1. Brown-SMCSim had been used for evaluations in [15].

MEMSYS *19, September 30-October 3, 2019, Washington, DC, USA

hardware constraints. Table 1 summarizes the details of the evalua-
tion framework.

We referred to code in the scrypt git repository [40] to imple-
ment the scrypt algorithm on Brown-SMCSim. Our host-based
and NDP-based scrypt implementations and the Brown-SMCSim
framework are available as open-source at https://github.com/jiwon-
choe/Brown-SMCSim/tree/scrypt.

We compare the total execution time of scrypt with the SMix
function executed on the host processor and on the NDP core. We
varied the scrypt parameters for these measurements — Table 2
shows the execution times with varying values of N; table 3 shows
the execution times with varying values of r. For all experiements,
p was set to 1, and the desired key length was set to 64 bytes. We
used the password and salt “pleaseletmein” and “SodiumChloride”
that were used to generate some of the test vectors provided in the
RFC [35].

Table 2: Scrypt execution times on host and NDP with vary-
ing values of N (r = 8,p = 1).

execution time (seconds)
host NDP
N = 16384 || 2.223813 | 1.507814
N =32768 || 4.455462 | 3.014112
N = 65536 || 8.910643 | 6.026549

Table 3: Scrypt execution times on host and NDP with vary-
ing values of r (N = 16384, p = 1).

execution time (seconds)

host NDP
r=328 2.223813 | 1.507814
r =16 || 4.434392 | 3.002565
r =32 || 8.848431 | 5.986616

From the evaluation, we see that offloading the SMix function
to the NDP core yields a 1.5x speedup in scrypt execution time,
regardless of the N and r values. Note that this speedup would not
be affected much by varying p either, for an increased p would only
require more NDP core-vault pairs to run in parallel.

5 OPEN PROBLEMS & DISCUSSION

Parts of the scrypt algorithm have the potential to be further accel-
erated with compute-capable memory. For example, the Salsa20/8
stream cipher [7] used in BlockMix (line 17 of Algorithm 1) is sim-
ply bitwise add-rotate-xor operations repeated over several rounds
on a 64-byte block, and the BlockMix function output is just a
reordering of the 64-byte output blocks from Salsa2@/8. These
functions have the potential to be accelerated with specialized near-
memory accelerators or even with processing-in-memory (PIM). In
fact, computing bitwise operations in memory has been frequently
explored in PIM research [1, 16, 21, 30, 39], but extending the prior
PIM work to accelerate scrypt computation is still an open prob-
lem.

Scrypt is only one of many memory-hard cryptographic hash
functions. Argon2 [9], Catena [20], Lyra2 [5], and yescrypt [36]

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

are all memory-hard password hashing algorithms that received
recognition in the Password Hashing Competition>. In particular,
Argon2 was the winner of this competition, and its implementations
using compute-capable memory would be interesting to look into.
More recently, memory-hard algorithms are being explored not
only as password hashing algorithms, but also as proof-of-work
(PoW) puzzles for blockchain mining. Ethash [19] (used in Ethereum
[42]), Equihash [10] (used in Zcash [24]), and Cuckoo Cycle [41]
(used in Cortex [14]) are some examples of memory-hard algorithms
being used as Blockchain PoW puzzles. Building accelerators for
these memory-hard PoW puzzles can undermine the tamper-proof
quality of blockchains, making this an interesting area of future
work. Wu et al. [43] have proposed a memory architecture-aware
accelerator design for Ethash, but further work remains in applying
compute-capable memory to accelerate memory-hard puzzles.

6 CONCLUSION

Our results show that even the simplest NDP hardware can yield a
stable 1.5x speedup in evaluating the scrypt function. Although
the 1.5x speedup may not be a great threat to the security of scrypt,
we pose an important research question: how much can scrypt
be accelerated with compute-capable memory, and at what point
would scrypt be considered insecure?

ACKNOWLEDGEMENTS

We thank Erfan Azarkhish for his efforts in implementing the origi-
nal SMCSim simulator [6] and providing it as open-source software.

This work was supported by National Science Foundation grants
1561807 and 1908806.

REFERENCES

[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David
Blaauw, and Reetuparna Das. 2017. Compute caches. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 481-492.
Paula Aguilera, Dong Ping Zhang, Nam Sung Kim, and Nuwan Jayasena. 2016.
Fine-Grained Task Migration for Graph Algorithms using Processing in Memory.
In Parallel and Distributed Processing Symposium Workshops, 2016 IEEE Interna-
tional. IEEE, 489-498.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. IEEE, 105-117.

[4] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
instructions: A low-overhead, locality-aware processing-in-memory architec-
ture. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. IEEE, 336-348.

[5] Ewerton R Andrade, Marcos A Simplicio, Paulo SLM Barreto, and Paulo CF
dos Santos. 2016. Lyra2: Efficient password hashing with high security against
time-memory trade-offs. IEEE Trans. Comput. 65, 10 (2016), 3096-3108.

[6] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2016. Design and
evaluation of a processing-in-memory architecture for the smart memory cube.
In International Conference on Architecture of Computing Systems. Springer, 19-31.

[7] Daniel J Bernstein. 2008. The Salsa20 family of stream ciphers. In New stream
cipher designs. Springer, 84-97.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1-7.

[9] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: new gener-
ation of memory-hard functions for password hashing and other applications. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 292-302.

[10] Alex Biryukov and Dmitry Khovratovich. 2017. Equihash: Asymmetric proof-of-
work based on the generalized birthday problem. Ledger 2 (2017), 1-30.

[2

3https://password-hashing net/

[11

[12

=
&

[14]

[15

=
&

(17

(18

[19

[20

[21

[22]

[23

[24

~
2

[26

[27

[28

[29

[30

[31

Jiwon Choe, Tali Moreshet, R. Iris Bahar, and Maurice Herlihy

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer De-
vices: Mitigating Data Movement Bottlenecks. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 316-331.
https://doi.org/10.1145/3173162.3173177

Amirali Boroumand, Saugata Ghose, Brandon Lucia, Kevin Hsieh, Krishna Mal-
ladi, Hongzhong Zheng, and Onur Mutlu. 2017. LazyPIM: An efficient cache
coherence mechanism for processing-in-memory. IEEE Computer Architecture
Letters (2017).

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu. 2019. CoNDA: Efficient Cache Coherence
Support for Near-data Accelerators. In Proceedings of the 46th International Sym-
posium on Computer Architecture (ISCA '19). ACM, New York, NY, USA, 629-642.
https://doi.org/10.1145/3307650.3322266

Ziqi Chen, Weiyang Wang, Xiao Yan, and Jia Tian. [n. d.].
Blockchain. ([n. d.]).

Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R Iris Bahar.
2019. Concurrent Data Structures with Near-Data-Processing: an Architecture-
Aware Implementation. In Proceedings of the 31st ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA °19). ACM, New York, NY, USA. https:
//doi.org/10.1145/3323165.3323191

Zamshed Chowdhury, Jonathan D. Harms, S. Karen Khatamifard, Masoud Zabihi,
Yang Lv, Andrew P. Lyle, Sachin S. Sapatnekar, Ulya R. Karpuzcu, and Jian-Ping
Wang. 2018. Efficient In-Memory Processing Using Spintronics. IEEE Comput.
Archit. Lett. 17, 1 (Jan. 2018), 42-46. https://doi.org/10.1109/LCA.2017.2751042
Palash Das, Shivam Lakhotia, Prabodh Shetty, and Hemangee K Kapoor. 2018.
Towards Near Data Processing of Convolutional Neural Networks. In VLSI Design
and 2018 17th International Conference on Embedded Systems (VLSID), 2018 31st
International Cunference on. IEEE, 380-385.

Reetuparna Das. 2017. Blurring the Lines between Memory and Computation.
IEEE Micro 37, 6 (2017), 13-15.

Ethereum Wiki. 2017. Ethash. (2017). https://github.com/ethereum/wiki/wiki/
Ethash

Christian Forler, Stefan Lucks, and Jakob Wenzel. [n. d.]. Catena: a memory-
consuming password-scrambling framework. Technical Report. Citeseer.

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory Data Parallel
Processor. In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS ’18).
ACM, New York, NY, USA, 1-14. https://doi.org/10.1145/3173162.3173171

M. Gao, G. Ayers, and C. Kozyrakis. 2015. Practical Near-Data Processing for
In-Memory Analytics Frameworks. In 2015 International Conference on Parallel
Architecture and Compilation (PACT). 113-124. https://doi.org/10.1109/PACT.
2015.22

Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik Kim,
and John Kim. 2016. Accelerating Linked-list Traversal Through Near-Data
Processing. In Proceedings of the 2016 International Conference on Parallel Ar-
chitectures and Compilation (PACT ’16). ACM, New York, NY, USA, 113-124.
https://doi.org/10.1145/2967938.2967958

Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash
protocol specification. Tech. rep. 2016—1.10. Zerocoin Electric Coin Company, Tech.
Rep. (2016).

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating pointer chasing
in 3D-stacked memory: Challenges, mechanisms, evaluation. In Computer Design
(ICCD), 2016 IEEE 34th International Conference on. IEEE, 25-32.

Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. FloatPIM:
In-memory Acceleration of Deep Neural Network Training with High Precision.
In Proceedings of the 46th International Symposium on Computer Architecture (ISCA
’19). ACM, New York, NY, USA, 802-815. https://doi.org/10.1145/3307650.3322237
Mohsen Imani, Saransh Gupta, and Tajana Rosing. 2018. GenPIM: Generalized
Processing In-Memory to Accelerate Data Intensive Applications. (2018).
Dong-Ik Jeon, Kyeong-Bin Park, and Ki-Seok Chung. 2018. HMC-MAC:
Processing-in Memory Architecture for Multiply-Accumulate Operations with
Hybrid Memory Cube. IEEE Comput. Archit. Lett. 17, 1 (Jan. 2018), 5-8. https:
//doi.org/10.1109/LCA.2017.2700298

Jeremie S Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu. 2018.
GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-
in-memory technologies. BMC genomics 19, 2 (2018), 89.

Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories. In Proceedings of the 53rd Annual Design
Automation Conference. ACM, 173.

Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017. Concurrent
Data Structures for Near-Memory Computing. In Proceedings of the 29th ACM

Cortex-Al on

Attacking Memory-Hard scrypt with Near-Data-Processing

[32]

[33]

[34]

[36

[37]

[38]

[39]

Symposium on Parallelism in Algorithms and Architectures (SPAA ’17). ACM, New
York, NY, USA, 235-245. https://doi.org/10.1145/3087556.3087582

Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. Graphpim: Enabling instruction-level pim offloading in graph
computing frameworks. In High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on. IEEE, 457-468.

Lifeng Nai and Hyesoon Kim. 2015. Instruction Offloading with HMC 2.0 Stan-
dard: A Case Study for Graph Traversals. In Proceedings of the 2015 International
Symposium on Memory Systems (MEMSYS ’15). ACM, New York, NY, USA, 258-261.
https://doi.org/10.1145/2818950.2818982

Colin Percival. 2009. Stronger key derivation via sequential memory-hard func-
tions. (2009).

C. Percival and S. Josefsson. 2016. The scrypt Password-Based Key Derivation
Function. RFC 7914. RFC Editor.

Alexander Peslyak. 2014. Yescrypt-a password hashing competition submission.
Password Hashing Competition. v0 edn 14 (2014).

Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijay-
alakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. NDC:
Analyzing the impact of 3D-stacked memory+ logic devices on MapReduce
workloads. In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, 190-200.

Paulo C Santos, Geraldo F Oliveira, Jodo P Lima, Marco AZ Alves, Luigi Carro,
and Antonio CS Beck. 2018. Processing in 3D memories to speed up operations
on complex data structures. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018. IEEE, 897-900.

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM

[40
[41

[42

[43

[45

[46

]

]
]

MEMSYS *19, September 30-October 3, 2019, Washington, DC, USA

International Symposium on Microarchitecture. ACM, 273-287.

Tarsnap. 2019. Tarsnap/scrypt. (2019). https://github.com/Tarsnap/scrypt
John Tromp. 2015. Cuckoo cycle: a memory bound graph-theoretic proof-of-
work. In International Conference on Financial Cryptography and Data Security.
Springer, 49-62.

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Kun Wu, Guohao Dai, Xing Hu, Shuangchen Li, Xinfeng Xie, Yu Wang, and
Yuan Xie. 2019. Memory-Bound Proof-of-Work Acceleration for Blockchain
Applications. In Proceedings of the 56th Annual Design Automation Conference
2019 (DAC ’19). ACM, New York, NY, USA, Article 177, 6 pages. https://doi.org/
10.1145/3316781.3317862

Yuan Xie. 2018. Intelligent Memory Architecture with New Memory Technologies.
Computer Architecture Today Blog (2018). https://www.sigarch.org/intelligent-
memory-architecture- with-new-memory-technologies/ https://www.sigarch.
org/intelligent-memory-architecture-with-new-memory-technologies/.
Salessawi Ferede Yitbarek, Tao Yang, Reetuparna Das, and Todd Austin. 2016.
Exploring specialized near-memory processing for data intensive operations. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016. IEEE,
1449-1452.

Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: throughput-oriented pro-
grammable processing in memory. In Proceedings of the 23rd international sympo-
sium on High-performance parallel and distributed computing. ACM, 85-98.
Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing Commu-
nication for PIM-based Graph Processing with Efficient Data Partition. In High
Performance Computer Architecture (HPCA), 2018 IEEE International Symposium
on. IEEE, 544-557.

