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Abstract—Internet-of-Things (IoT) applications have sources
sense and send their measurement updates over the Internet to a
monitor (control station) for real-time monitoring and actuation.
Ideally, these updates would be delivered fresh, at a high rate
constrained only by the supported sensing rate. However, such
a rate may lead to network congestion related delays in delivery
of updates at the monitor that make the freshest update at the
monitor unacceptably old for the application. Alternately, at low
rates, while updates arrive at the monitor with smaller delays,
new updates arrive infrequently. Thus, both low and high rates
may lead to an undesirably aged freshest update at the monitor.

We propose a novel transport layer protocol, namely the Age
Control Protocol (ACP), which enables timely delivery of such
updates to monitors over the Internet in a network-transparent
manner. ACP adapts the rate of updates from a source such
that the average age of updates at the monitor is minimized.
We detail the protocol and the proposed control algorithm. We
demonstrate its efficacy using extensive simulations and real-
world experiments, including wireless access for the sources and
an end-to-end connection with multiple hops to the monitor.

I. INTRODUCTION

Inexpensive IoT devices have led to the proliferation of

a relatively new class of real-time monitoring systems for

applications such as health care, smart homes, transportation,

and natural environment monitoring. Devices repeatedly sense

various physical attributes of a region of interest, for example,

traffic flow at an intersection. This results in a device (the

source) generating a sequence of packets (updates) containing

measurements of the attributes. A more recently generated

update contains a more current measurement. The updates are

communicated over the Internet to a monitor that processes

them and decides on any actuation that may be required.

For such applications, it is desirable that freshly sensed

information is available at monitors. However, simply gen-

erating and sending updates at a high rate over the Internet

is detrimental to this goal. In fact, freshness at a monitor is

optimized by the source smartly choosing an update rate, as

a function of the end-to-end network conditions. Freshness at

the monitor suffers when a too small or a too large rate of

updates is chosen by the source. See, for example, [7, Figure

3] for how age at the monitor varies as a function of source

rate for simple first-come-first-served queues with memoryless

arrival and service processes.

The requirement of freshness is not akin to requirements of

other pervasive real-time applications like voice and video.

While resilient to packet drops to a certain degree, they

require end-to-end packet delays to lie within known limits

and would like small end-to-end jitter. Monitoring applications

may achieve a low update packet delay by simply choosing

a low rate at which the source sends updates. This, however,

may be detrimental to freshness, as a low rate of updates can

lead to a large age of sensed information at the monitor, simply

because updates from the source are infrequent. More so than

voice/video, monitoring applications are exceptionally loss

resilient and they don’t benefit from the source retransmitting

lost updates. Instead, the source should continue sending new

updates at its configured rate.

At the other end of the spectrum are applications like

that of file transfer that require reliable transport and high

throughputs but are delay tolerant and use the transmission

control protocol (TCP). The congestion control algorithm

of TCP, which optimizes the use of the network pipe for

throughput, is detrimental to keeping age low. We detail the

impact of TCP on age in [11, Section 3]1. Its features of packet

retransmissions and in-order delivery can keep fresh packets

waiting at the monitor TCP for older packets to be successfully

received. This causes large increases in age on transmission

errors. Also, small sized updates may age more than larger

ones as the congestion window size doesn’t increase till a

sender maximum segment size bytes are acknowledged. This

delays the delivery of updates with fewer bytes.

Unlike TCP, UDP ignores dropped packets and delivers

packets to applications as soon as they are received. This

makes it desirable for age sensitive applications. In fact, while

ACP chooses the best rate of sending updates, it uses UDP to

transport them over the Internet.

Our specific contributions are listed next.

(a) We propose the Age Control Protocol (detailed in Sec-

tions II, III, IV, and V), a novel transport layer protocol for

real-time monitoring applications that aims to deliver fresh

updates over the Internet. ACP regulates the rate at which

a source sends its updates to a monitor over its end-to-end

connection in a manner that is application independent and

makes the network transparent to the source.

1We don’t include evaluation of TCP in this paper because of limited space.978-1-7281-0270-2/19/$31.00 c©2019 IEEE
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Figure 3: A sample function of the age ∆(t). Updates are indexed
1, 2, . . .. The timestamp of update i is ai. The time at which update
i is received by the monitor is di. Since update 2 is received out-of-
sequence, it doesn’t reset the age process.

the monitor up to time t. Recall that this is the time the update

was generated by the source.

The age at the monitor is ∆(t) = t − z(t) of the freshest

update available at the monitor at time t. An example sample

function of the age stochastic process is shown in Figure 3.

The figure shows the timestamps a1, a2, . . . , a6 of 6 packets

generated by the source. Packet i is received by the monitor at

time di. At time di, packet i has age di−ai. The age ∆(t) at

the monitor increases linearly in between reception of updates

received in the correct sequence. Specifically, it is reset to the

age di − ai of packet i, in case packet i is the freshest packet

(one with the most recent timestamp) at the monitor at time

di. For example, when update 3 is received at the monitor,

the only other update received by the monitor until then was

update 1. Since update 1 was generated at time a1 < a3, the

reception of 3 resets the age to d3−a3 at time d3. On the other

hand, while update 2 was sent at a time a2 < a3, it is delivered

out-of-order at a time d2 > d3. So packet 2 is discarded by

the monitor ACP and age stays unchanged at time d2.

We want to choose the rate λ (updates/second) that min-

imizes the expected value limt→∞ E[∆(t)] of age at the

monitor, where the expectation is over any randomness in-

troduced by the network. Note that in the absence of a priori

knowledge of a network model, as is the case with the end-

to-end connection over which ACP runs, this expectation is

unknown to both source and monitor and must be estimated

using measurements. Lastly, we would like to dynamically

adapt the rate λ to nonstationarities in the network.

IV. GOOD AGE CONTROL BEHAVIOR AND CHALLENGES

ACP must suggest a rate λ updates/second at which a source

must send fresh updates to its monitor. ACP must adapt this

rate to network conditions. To build intuition, let’s suppose that

the end-to-end connection is well described by an idealized

setting that consists of a single first-come-first-served (FCFS)

queue that serves each update in constant time. An update

generated by the source enters the queue, waits for previously

queued updates, and then enters service. The monitor receives

an update once it completes service. Note that every update

must age at least by the (constant) time it spends in service

before it is received by the monitor. It may age more if it ends

up waiting for one or more updates to complete service.

In this idealized setting, one would want a new update to

arrive as soon as the last generated update finishes service. To

ensure that the age of each update received at the monitor is the

minimum, one must choose a rate λ such that new updates are

generated in a periodic manner with the period set to the time

an update spends in service. Also, update generation must be

synchronized with service completion instants so that a new

update enters the queue as soon as the last update finishes

service. In fact, such a rate λ is age minimizing even when

updates pass through a sequence of Q > 1 such queues in

tandem [10]. The update is received by the monitor when it

leaves the last queue in the sequence. The rate λ will ensure

that a generated packet ages exactly Q times the time it spends

in the server of any given queue. At any given time, there will

be exactly Q update packets in the network, one in each server.
Of course, the assumed network is a gross idealization. We

assumed a series of similar constant service facilities and that

the time spent in service and instant of service completion

were known exactly. We also assumed lack of other traffic.

However, the resulting intuition is significant. Specifically, a

good age control algorithm must strive to have as many update

packets of a source in transit as possible while simultaneously

ensuring that these updates avoid waiting for other previously

queued updates of the source2.
As described next, ACP tracks changes in the number of

backlogged packets, which are updates for whom the source

awaits an ACK from the monitor, and average age over short

intervals. In case backlog and age increase, ACP acts to rapidly

reduce the backlog.

V. THE ACP CONTROL ALGORITHM

Let the control epochs of ACP (Section II) be indexed

1, 2, . . .. Epoch k starts at time tk. At t1 the update rate λ1

is set to the inverse of the average packet round-trip-times

(RTT) obtained at the end of the initialization phase. At time

tk, k > 1, the update rate is set to λk. The source transmits

updates at a fixed period of 1/λk in the interval (tk, tk+1).
Let ∆k be the estimate at the source ACP of the time

average update age at the monitor at time tk. This average

is calculated over (tk−1, tk). To calculate it, the source ACP

must construct its estimate of the age sample function (see

Figure 3), over the interval, at the monitor. It knows the time

ai a source sent a certain update i. However, it needs the time

di at which update i was received by the monitor, which it

approximates by the time the ACK for packet i was received.

On receiving the ACK, it resets its estimate of age to the

resulting round-trip-time (RTT) of packet i.
Note that this value is an overestimate of the age of the

update packet when it was received at the monitor, since it

includes the time taken to send the ACK over the network.

The time average ∆k is obtained simply by calculating the

area under the resulting age curve over (tk−1, tk) and dividing

it by the length tk − tk−1 of the interval.
Let Bk be the time average of backlog calculated over

the interval (tk−1, tk). This is the time average of the in-

stantaneous backlog B(t) over the interval. The instantaneous

2Simulations that further build on this intuition may be found in [11]. We
skip them here due to lack of space.
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Figure 4: A snippet from the function of ACP. The y-axis of the
plot showing actions denotes the action and the line number in
Algorithm 1. Note the action marked by the dotted red line. At the
time instant ACP observes an increase in both backlog and age and
chooses (9,DEC) initially. However, there is still a significant jump in
age. This results in the choice of multiplicative decrease (7,MDEC).

backlog increases by 1 when the source sends a new update.

When an ACK corresponding to an update i is received, update

i and any unacknowledged updates older than i are removed

from the instantaneous backlog.

In addition to using RTT(s) of updates for age estimation,

we also use them to maintain an exponentially weighted

moving average (EWMA) RTT of RTT. We update RTT =
(1−α)RTT+αRTT on reception of an ACK that corresponds

to a round-trip-time of RTT.

The source ACP also estimates the inter-update arrival times

at the monitor and the corresponding EWMA Z. The inter-

update arrival times are approximated by the corresponding

inter-ACK arrival times. The length T of a control epoch is

set as an integral multiple of T = min(RTT, Z). This ensures

that the length of a control epoch is never too large and allows

for fast enough adaptation. Note that at sufficiently low rate

λk of sending updates Z is large and at a sufficiently high

update rate RTT is large. At time tk we set tk+1 = tk + T .

In all our evaluation we have used T = 10T . The resulting

length of T was observed to be long enough to see desired

changes in average backlog and age in response to a choice of

source update rate at the beginning of an epoch. The source

updates RTT, Z, and T every time an ACK is received.

At the beginning of control epoch k > 1, at time tk, the

source ACP calculates the difference δk = ∆k −∆k−1 in av-

erage age measured over intervals (tk−1, tk) and (tk−1, tk−2)
respectively. Similarly, it calculates bk = Bk −Bk−1.

ACP at the source chooses an action uk at the kth epoch
that targets a change b∗

k+1
in average backlog over an interval

of length T with respect to the kth interval. The actions, may
be broadly classified into (a) additive increase (INC), additive
decrease (DEC), and multiplicative decrease (MDEC). MDEC
corresponds to a set of actions MDEC(γ), where γ = 1, 2, . . ..

Algorithm 1 Control Algorithm of ACP

1: INPUT: bk, δk, T
2: INIT: flag ← 0, γ ← 0

3: while true do

4: if bk > 0 && δk > 0 then

5: if flag == 1 then

6: γ = γ + 1

7: MDEC(γ)
8: else

9: DEC
10: flag ← 1

11: else if bk < 0 && δk > 0 then

12: if flag == 1 && |bk| < 0.5 ∗ |b∗
k
| then

13: γ = γ + 1

14: MDEC(γ)
15: else

16: INC, flag ← 0, γ ← 0

17: else if bk > 0 && δk < 0 then

18: INC, flag ← 0, γ ← 0

19: else bk < 0 && δk < 0

20: if flag == 1 && γ > 0 then

21: MDEC(γ)
22: else

23: DEC, flag ← 0, γ ← 0

24: update λk

25: wait T

We have

INC: b
∗

k+1 = κ, DEC: b
∗

k+1 = −κ,

MDEC(γ): b
∗

k+1 = −(1− 2−γ)Bk, (1)

where κ > 0 is a step size parameter.

ACP attempts to achieve b∗
k+1

by setting λk appropriately.

The estimate of Z at the source ACP of the average inter-

update arrival time at the monitor gives us the rate 1/Z at

which updates sent by the source arrive at the monitor. This

and λk allow us to estimate the average change in backlog over

T as (λk − (1/Z))T . Therefore, to achieve a change of b∗
k+1

requires choosing λk = 1

Z
+

b
∗

k+1

T
. Algorithm 1 summarizes

how ACP chooses its action uk as a function of bk and δk.

Figure 4 shows an example of ACP in action.

The source ACP targets a reduction in average backlog over

the next control interval in case either bk > 0, δk > 0 or

bk < 0, δk < 0. The first condition (line 4) indicates that the

update rate is such that updates are experiencing larger than

optimal delays. ACP attempts to reduce the backlog, first using

DEC (line 9), followed by multiplicative reduction MDEC

to reduce congestion delays and in the process reduce age

quickly. Consecutive occurrences (flag == 1) of this case

(tracked by increasing γ by 1 in line 6) attempt to decrease

backlog even more aggressively, by a larger power of 2.

The condition bk < 0, δk < 0 occurs on a reduction in

both age and backlog. ACP greedily aims at reducing backlog

further hoping that age will reduce too. It attempts MDEC

(line 21) if previously the condition bk > 0, δk > 0 was

satisfied. Else, it attempts an additive decrease DEC.

The source ACP targets an increase in average backlog over

the next control interval in case either bk > 0, δk < 0 or bk <
0, δk > 0. On the occurrence of the first condition (line 18)

ACP greedily attempts to increase backlog.
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As the numbers of sources become large in comparison to

the number of hops (six) in the network, even at an average

backlog of about 1 update per source, there is little value in

a source sending more than one update per RTT. Note that

there are only 6 hops (queues) in the network. When there are

five or more sources, a source sending at a rate faster than

1 every RTT will have its updates waiting for each other to

finish service. This results in ACP maintaining a backlog close

to Lazy when the numbers of sources are 5 and more.

Figure 6d shows the average source rate of sending update

packets. Observe that the average source rate drops in propor-

tion to the number of sources. While the source rate is about

800 updates/second when there is only a single source, it is

about 70 when the wireless access is shared by 20 sources.

This scaling down is further evidence of ACP adapting to

the introduction of larger numbers of sources. While a source

using ACP ramps down its update rate from 800 to 70, Lazy

more or less sticks to the same update rate throughout.

This artificial constraint of a very few hops combined

with a single end-to-end path is removed in the real-world

experiments that we present in the next section. As we will see,

sources accessing a common access point will maintain high

backlogs over their end-to-end connections to their monitors.

The absolute improvements in average age achieved by

ACP, see Figure 6a, for fewer numbers of sources seem

nominal but must be seen in light of the fact that end-to-

end RTT of the simulated network under light load conditions

is very small (about 5 msec as seen in Figure 6c). ACP

achieves a 21% and 13% reduction in age with respect to

Lazy, respectively, for a single source and two sources.

The only impact that changing the link rates of the P2P

links had was a corresponding change in RTT and Age. For

example, while the average age achieved by a source using

ACP in a 20 source network with P2P link rates 0.3 Mbps

was ≈ 6 seconds, it was ≈ 0.25 seconds when the P2P link

rates were set to 6.0 Mbps. The larger RTT for the latter meant

smaller λ of about 5 updates/second/source. The backlogs, as

one would expect, were similar, however.
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Figure 7: (a) Age and (b) retry rate as a function of number and
density of sources and maximum retry limit. The vertical bars denote
a region of ±1 standard deviation around the mean (marked).

Next consider Figure 7a that shows the impact of maximum

allowed retries, numbers of sources (varied from 5 to 50), and

source density (areas of 50 × 50 m2 and 20 × 20 m2), on

average age. The standard deviation of shadowing was set to

12. Note that age is similar for the two simulated areas for a

Figure 8: ACP adapts to network changes. Blue circles show the
achieved age by an ACP client over time. A UDP client of rate 0.2
Mbps is connected to AP-1 at 200 − 400 secs and 1000 − 1200
secs. Another UDP client of rate 0.3 Mbps is connected to AP-2
at 600 − 800 secs and 1000 − 1200 secs. A darker shade of pink
signifies a larger aggregate UDP load on the network.

given setting of maximum retries. However, it is significantly

larger for when the max retry limit is set to 7 in comparison

to when no retries are allowed. This is especially true when

the network has larger numbers of sources. Larger numbers

of sources witness higher rates of retries (Figure 7b, retry

limit is 7) due to a higher rate of packet decoding errors that

result from collisions over the WiFi medium access shared

by all sources. Retries create a two-fold problem. One that

a retry may keep a fresher update from being transmitted.

Second, ACP, like TCP, confuses packet drops due to channel

errors to be network congestion. This causes it to unnecessarily

reduce λ in response to packet errors, which increases age.

In summary, retries at the wireless access are detrimental to

keeping age low. Finally, observe in Figure 7a that the spread

of ages achieved by sources is very small. In fact, we see

that sources in a network achieve similar ages and in all our

simulations the Jain’s fairness index [2] was found to be close

to the maximum of 1.

ACP adapts rather quickly to the introduction of other flows

that congest the network. This is exemplified by Figure 8. We

introduced one to two UDP flows at different points in the

network used for simulation (Figure 5), where all links are

1 Mbps. ACP reduces λ appropriately and adapts backlog to

desired levels.

VIII. INTER-CONTINENTAL UPDATES

We will show results for when 10 sources sent their updates

to monitors on a server in another continent. The sources, as

described earlier, gained access to the Internet via an enterprise

access point. The results were obtained by running ACP and

Lazy alternately for 10 runs. Each run was restricted to 1000
update packets long so that on an average ACP and Lazy

experienced similar network conditions. We ran ACP for κ = 1
and κ = 2. Using traceroute, we observed that the number of

hops was large, about 30, during these experiments.

Figure 9 summarizes the comparison of ACP and Lazy.

Figure 9a shows the cumulative distribution functions (CDF)

of the average age obtained by each source when using ACP

(using κ = 1) and the corresponding CDF(s) when using Lazy.

As is seen in the figure, ACP outperforms Lazy and obtains

a median improvement of about 100 msec in age (≈ 33%
over average age obtained using Lazy). This over an end-to-

end connection with median RTT of about 185 msec. Further,
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Figure 10: The time evolution of average backlog and age that
resulted from one of the ACP source sending updates over the
Internet.

observe that the age CDF(s) for all the sources when using

either ACP or Lazy are similar. This hints at sources sharing

the end-to-end connection in a fair manner. Also, observe from

Figure 9b that the median RTT(s) for both ACP and Lazy are

almost the same. This signifies that ACP maintains a backlog

of update packets in a manner such that the packets don’t suffer

additional delays because multiple packets of the source are

traversing the network at the same time.

Lastly, consider a comparison of the CDF of average

backlogs shown in Figure 9c. ACP exploits very well the fast

end-to-end connection with multiple hops and achieves a very

high median average backlog of about 30 when using a step

size of 1 and a much higher backlog when using a step size

of 2. We observe that step size κ = 1 worked best age wise.

Lazy, however, achieves a backlog of about 1 (not shown).

We end by showing snippets of ACP in action over the

end-to-end path. Figures 10a and 10b show the time evolution

of average backlog and average age, as calculated at control

epochs. ACP increases backlog in small steps (see Figure 10a,

14 seconds onward) over a large range followed by a rapid

decrease in backlog. The increase coincides with a reduction

in average age, and the rapid decrease is initiated once age

increases. Also, observe that age decreases very slowly (dense

regions of points low on the age curve around the 15 second

mark) with an increase in backlog just before it increases

rapidly. The region of slow decrease is around where, ideally,

backlog must be set to keep age to a minimum.

IX. CONCLUSIONS

We proposed the Age Control Protocol, which is a novel

transport layer protocol for real-time monitoring applications

that desire the freshness of information communicated over the

Internet. ACP works in an application-independent manner. It

regulates the update rate of a source in a network-transparent

manner. We detailed ACP’s control algorithm that adapts the

rate so that the age of the updates at the monitor is mini-

mized. Via network simulations and real-world experiments,

we showed that ACP adapts the source update rate well to

make an effective use of network resources available to the

end-to-end connection between a source and its monitor.
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