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Abstract—Multiple sources submit updates to a monitor
through an M/M/1 queue. A stochastic hybrid system (SHS)
approach is used to derive the average age of information (AoI)
for an individual source as a function of the offered load of that
source and the competing update traffic offered by other sources.
This work corrects an error in a prior analysis. By numerical
evaluation, this error is observed to be small and qualitatively
insignificant.

I. INTRODUCTION

Fueled by ubiquitous connectivity and advancements in

portable devices, real-time status updates have become in-

creasingly popular. This has driven emerging analytical interest

in the Age of Information (AoI) metric for characterizing

the timeliness of these updates [1]. Specifically, an update

packet with time-stamp u is said to have age t ´ u at a time

t ě u. When the monitor’s freshest received update at time t

has time-stamp uptq, the age is the random sawtooth process

∆ptq “ t ´ uptq depicted in Figure 1. Optimization based on

AoI metrics of both the network and the senders’ updating

policies has yielded new and even surprising results [2], [3].

Prior age analyses of the M/M/1 queue are based on graph-

ical analysis of the sawtooth age process. As indicated by the

title, this work revisits age analysis for updates from multiple

sources passing through the M/M/1 queue using the stochastic

hybrid systems (SHS) method. Prior use of SHS for age

analysis has been restricted to systems in which old updates in

the system are purged when new updates arrive. This resulted

in a finite discrete state space, a technical requirement of SHS

analysis. The challenge in this work is to apply SHS to an

M/M/1 queue in which the discrete state, namely the queue

backlog, can be arbitrarily large. Our approach is to employ

SHS for age analysis of the M/M/1/m queue in which the

system discards arriving updates that find m previously queued

updates and then allow m Ñ 8.

The main result, Theorem 2, can be shown to be numerically

identical to the independently derived result in [4, Equation

(55)]. In fact, both Theorem 2 and [4, Equation (55)] correct

a faulty age analysis of the multi-source M/M/1 queue in [5]

that propagated to [6].

A. Prior Work

AoI analysis of updating systems started with the analyses

of status age in single-source single-server queues [1], the

M/M/1 LCFS queue with preemption in service [7], and the

M/M/1 FCFS system with multiple sources [5]. Since these

initial efforts, there have been a large number of contributions

to AoI analysis. This section summarizes work related to the

analysis of age, with an emphasis on systems in which updates

arrive as stochastic processes to queues and networks.

To evaluate AoI for a single source sending updates through

a network cloud [8] or through an M/M/2 server [9], [10],

out-of-order packet delivery was the key analytical challenge.

A related (and generally more tractable) metric, peak age

of information (PAoI), was introduced in [11]. Properties of

PAoI were also studied for various M/M/1 queues that support

preemption of updates in service or discarding of updates

that find the server busy [12], [13]. In [11], [12], the authors

analyzed AoI and PAoI for queues that discard arriving updates

if the system is full and also for a third queue in which an

arriving update would preempt a waiting update.

For a single updating source, distributional properties of the

age process were analyzed for the D/G/1 queue under FCFS

[14], as well as for single server FCFS and LCFS queues

[15]. Packet deadlines were found to improve AoI [16]. Age-

optimal preemption policies were identified for updates with

deterministic service times [17]. AoI was evaluated in the

presence of packet erasures at the M/M/1 queue output [18]

and for memoryless arrivals to a two-state Markov-modulated

service process [19].

There have also been efforts to evaluate and optimize age

for multiple sources sharing a queue or simple network [6],

[20]–[25]. In [6], the SHS approach was introduced to extend

AoI results to preemptive queues with multiple sources. SHS

has also been employed in [25] to evaluate a two-source

M/M/1 queue in which the most recent update from each

source is queued. With synchronized arrivals, a maximum

age first policy was shown to be optimal under preemption

in service and near-optimal for non-preemptive service [26].

A similar maximum age matching approach was analyzed for

an orthogonal channel system [27]. Scheduling based on the

Whittle index was also shown to perform nearly optimally

[21], [28], [29]. AoI analysis of preemptive priority service

systems has also been explored [30], [31]. Updates through

communication channels have also been studied, including

hybrid ARQ [32]–[36] for channels with bit erasures, and

channel coding by an energy harvesting source [37].

The first evaluation of the average AoI over multihop

network routes [38] employed a discrete-time version of the
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Fig. 1. Updates arrive at times tk and are received by the monitor at times
t1
k

. At instants t1
k

, the age is reset to t1
k

´ tk , which is the time spent by the
update in the system. Age increases linearly otherwise.

status sampling network subsequently introduced in [39].

When multiple sources employ wireless networks subject

to interference constraints, AoI has been analyzed under a

variety of link scheduling strategies [40]–[44]. When update

transmission times are exponentially distributed, sample path

arguments have shown that a preemptive Last-Generated, First-

Served (LGFS) policy results in smaller age processes at all

nodes of the network than any other causal policy [45]–[47].

B. System Model

Status updates from N independent sources are queued

in a first-come-first-served (FCFS) manner at a single server

facility. On completion of service, an update is delivered to a

monitor, as illustrated in Figure 2. Updates of source i arrive as

a Poisson process of rate λi and service times are exponentially

distributed with rate µ. The load offered by user i is ρi “ λi{µ.

The total offered load is ρ “
řN

i“1
ρi and the corresponding

total rate of arrivals of updates is λ. For queue stability we

require ρ ă 1.

Each update is associated with a timestamp that records

the time it was generated by its source. For this work, it is

also the time the update arrives at the facility. At time t, let

uiptq be the timestamp of an update of source i most recently

received by the monitor. The age of updates from source i

at the monitor is the stochastic process ∆iptq “ t ´ uiptq.

Figure 1 shows an illustration. We will calculate the average

age ∆i “ limtÑ8 Er∆iptqs. All sources other than i together

constitute a Poisson process of rate λ´i “
ř

j‰i λj and a

corresponding offered load of ρ´i “ λ´i{µ “ ρ ´ ρi.

II. STOCHASTIC HYBRID SYSTEMS FOR AOI

As in [6], we model the system as a stochastic hybrid system

(SHS) with hybrid state pqptq,xptq). Here, qptq is discrete and

represents a Markov state sufficient for the characterization

of age, while the row vector xptq P R
n`1 is continuous and

captures the evolution of n ` 1 age-related processes.

In this work, we use the SHS described in [48] in a

simplified form in which xptq is a piecewise linear process.

We now summarize this simplified SHS; further details can be

found in [6] and references therein.

The discrete state qptq P Q “ t0, . . . ,mu is the number of

update packets in the system. In the graphical representation

...

Source
1

Source
N

λ1

λN

µ Monitor

Fig. 2. N sources send updates through a shared queue to a monitor.

of the Markov chain qptq, each state q P Q is a node and

each transition l is a directed edge pql, q
1
lq with transition

rate λplqδql,qptq. Note that the Kronecker delta function δql,q
ensures that transition l occurs only in state ql. For each

transition l, there is a transition reset mapping that can induce

discontinuous jumps in the continuous state xptq. For AoI

analysis, we employ a linear mapping of the form x
1 “ xAl.

That is, transition l causes the system to jump to discrete

state q1
l and resets the continuous state from x to x

1 “ xAl.

For tracking of the age process, the transition reset maps are

binary: Al P t0, 1upn`1qˆpn`1q
. Moreover, in each discrete

state qptq “ q, the continuous state evolves as

9xptq “ bq. (1)

In using a piecewise linear SHS for AoI, the elements of

bq will be binary. We will see that the ones in bq correspond

to certain relevant components of xptq that grow at unit rate

in state q while the zeros mark components of xptq that are

irrelevant in state q to the age process and need not be tracked.

The transition rates
 

λplq
(

correspond to the transition rates

associated with the continuous-time Markov chain for the

discrete state qptq; but there are some differences. Unlike

an ordinary continuous-time Markov chain, the SHS may

include self-transitions in which the discrete state is unchanged

because a reset occurs in the continuous state. Furthermore,

for a given pair of states i, j P Q, there may be multiple

transitions l and l1 in which the discrete state jumps from i to

j but the transition maps Al and Al1 are different.

It will be sufficient for average age analysis to define for

all q̂ P Q,

πq̂ptq “ E
“

δq̂,qptq

‰

, (2a)

vq̂jptq “ E
“

xjptqδq̂,qptq

‰

, 0 ď j ď n, (2b)

and the vector functions

vq̂ptq “ rvq̂0ptq, . . . , vq̂nptqs “ E
“

xptqδq̂,qptq

‰

. (2c)

Note that πq̂ptq “ E
“

δq̂,qptq

‰

“ Prqptq “ q̂s denote the

discrete state probabilities. Similarly, vq̂ptq is the conditional

expectation of the age process, given that qptq “ q̂, weighed

by the probability of being in q̂.

Let L be the set of all transitions. For each state q, let

L1
q “

 

l P L : q1
l “ q

(

and Lq “ tl P L : ql “ qu (3)

denote the respective sets of incoming and outgoing transi-

tions. A foundational assumption for age analysis is that the
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Fig. 3. The SHS Markov chain for transitions between discrete states.

Markov chain qptq is ergodic; otherwise, time-average age

analysis makes little sense. Under this assumption, the state

probability vector πptq “
“

π0ptq ¨ ¨ ¨ πmptq
‰

always converges

to the unique stationary vector π̄ “
“

π̄0 ¨ ¨ ¨ π̄m

‰

satisfying

π̄q̄

ÿ

lPLq̄

λplq “
ÿ

lPL1
q̄

λplqπ̄ql , q̄ P Q, (4a)

ÿ

q̄PQ

π̄q̄ “ 1. (4b)

When πptq “ π̄, vptq “
“

v0ptq ¨ ¨ ¨ vmptq
‰

has been shown

[6] to obey a system of first order differential equations, such

that for all q̄ P Q,

9vq̄ptq “ bq̄π̄q̄ `
ÿ

lPL1
q̄

λplq
vqlptqAl ´ vq̄ptq

ÿ

lPLq̄

λplq. (5)

Depending on the reset maps Al, the differential equation (5)

may or may not be stable. However, when (5) is stable, each

vq̄ptq “ E
“

xptqδq̄,qptq

‰

converges to a limit v̄q̄ as t Ñ 8. In

this case, it follows that

Erxs “ lim
tÑ8

Erxptqs “ lim
tÑ8

ÿ

q̄PQ

E
“

xptqδq̄,qptq

‰

“
ÿ

q̄PQ

v̄q̄.

Here we follow the convention adopted in [6] that x0ptq “
∆ptq is the age at the monitor. With this convention, the

average age of the process of interest is then ∆ “ Erx0s “
ř

q̄PQ v̄q̄0. The following theorem provides a simple way to

calculate the average age in an ergodic queueing system.

Theorem 1. [6, Theorem 4] If the discrete-state Markov chain

qptq is ergodic with stationary distribution π̄ and we can find

a non-negative solution v̄ “
“

v̄0 ¨ ¨ ¨ v̄m

‰

such that

v̄q̄

ÿ

lPLq̄

λplq “ bq̄π̄q̄ `
ÿ

lPL1
q̄

λplq
v̄qlAl, q̄ P Q, (6)

then the differential equation (5) is stable and the average age

of the AoI SHS is given by ∆ “
ř

q̄PQ v̄q̄0.

III. SHS ANALYSIS OF AGE

The discrete Markov state qptq P t0, 1, 2, . . .u tracks the

number of updates in the system at time t. Figure 3 shows the

evolution of the state for a corresponding blocking system that

has a finite occupancy of m. In states 0 ă k ă m, an arrival,

which results from a rate λ transition, increases the state to

k`1. A departure on completion of service, which results from

a rate µ transition, reduces the occupancy to k ´ 1. An empty

system, qptq “ 0, can only see an arrival; while when the

system is full, qptq “ m, all arrivals are blocked and cleared

and only a departure may take place.

TABLE I
SSH TRANSITIONS AND RESET MAPS FOR THE CHAIN IN FIGURE 3.

ql Ñ q1
l λplq

xAl Al vqlAl

1 Ñ 0 µ r x1 0 s D0 r v1,1 0 s
0 Ñ 1 λi r x0 0 0 s Λ1 r v0,0 0 0 s
0 Ñ 1 λ´i r x0 x0 0 s Γ1 r v0,0 v0,0 0 s
2 Ñ 1 µ r x1 x2 0 s D1 r v21 v22 0 s

...
...

...
...

...
k ´ 1 Ñ k λi r pxq0:k´1 0 0 s Λk r pvk´1q0:k´1 0 0 s
k ´ 1 Ñ k λ´i r pxq0:k´1 xk´1 0 s Γk r pvk´1q0:k´1 vk´1,k´1 0 s
k ` 1 Ñ k µ r pxq1:k`1 0 s Dk r pvk`1q1:k`1 0 s

...
...

...
...

...
m ´ 1 Ñ m λi r pxq0:m´1 0 0 s Λm r pvm´1q0:m´1 0 0 s
m ´ 1 Ñ mλ´i r pxq0:m´1 xm´1 0 s Γm r pvm´1q0:m´1 vm´1,m´1 0 s

Let ∆m
i be the average age of source i for the size m

blocking system. The average age ∆i of source i at the monitor

can be obtained as

∆i “ lim
mÑ8

∆
m
i . (7)

For the blocking system, xptq “
“

x0ptq x1ptq . . . xmptq
‰

is

the age state. Here x0ptq is the age process of source i at

the monitor. The age process xjptq, 1 ď j ď k, tracks the

age to which the age x0ptq will be reset when the packet

currently in the jth position in the queue completes service,

where j “ 1 corresponds to the packet in service. Note that

since an update packet in the queue may not be of source i,

xjptq is in general not the age of the update itself. Also, in

any discrete state k we must track only the k`1 age processes

x0ptq, x1ptq, . . . , xkptq. The rest are irrelevant. We assume that

in state qptq “ k, xjptq “ 0 for j ą k. The age state evolves

according to

9xptq “ bk ”
“

1k`1 0m´k

‰

. (8)

We use the shorthand notation pxqj:l and pvqqj:l, respectively,

to denote the vectors
“

xj ¨ ¨ ¨ xl

‰

and
“

vq,j . . . vq,l
‰

. Table I

shows the transition reset maps for the transitions in the

Markov chain in Figure 3. We also show the age state xq1

and the vector vq1 obtained on transitioning from state q to q1.

Consider an arrival that transitions the system into state 0 ă
k ă m from k ´ 1 as a result of an arrival from source i. The

age processes x0ptq, x1ptq, . . . , xk´1ptq stay unaffected by the

transition and continue to evolve as in k´1. That is x1
j “ xj ,

0 ď j ď k´1. In state k we must in addition track xkptq. We

set xkptq “ 0, since the age of this new update from source i

is 0. Further, 9xkptq “ 1. The transition reset map is given by

Λk “

»

—

—

—

—

—

—

—

–

1 0 ¨ ¨ ¨ 0 0

0 1 ¨ ¨ ¨ 0 0

...
...

. . .
...

...

0 0 ¨ ¨ ¨ 1 0

kˆpk`1q

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (9)

If the arrival is of another source, we must set xkptq in a
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manner such that when this arrival completes service, it must

not change the age of i at the monitor. We set xkptq “ xk´1ptq.

As before, 9xkptq “ 1. Note that in this case we are effectively

setting xkptq to the age of the freshest update of source i, if

any, in the system. If there is no update of source i in the

system, we are effectively setting xkptq to x0ptq as in this

case all relevant age processes x0ptq, x1ptq, . . . , xkptq will be

tracking the age at the monitor. The transition reset map is

Γk “

»

—

—

—

—

—

—

—

–

1 0 ¨ ¨ ¨ 0 0

0 1 ¨ ¨ ¨ 0 0

...
...

. . .
...

...

0 0 ¨ ¨ ¨ 1 1

kˆpk`1q

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (10)

Now consider a departure in state k ` 1. The SSH transitions

to state k. The age process x1ptq in k ` 1 corresponds to the

departure. On completion of service, this resets the process

x0ptq at the monitor in state k. Once the packet departs, the

one next in queue enters service. Thus the process x2ptq in

state k ` 1 resets x1ptq in state k and so on. The reset map is

given by

Dk “

»

—

—

—

—

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0

...
...

. . .
...

0 0 ¨ ¨ ¨ 1

pk`2qˆpk`1q

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (11)

We can now write the equations given by (6) in Theorem 1

for our blocking system.

λv̄0 “ b0π̄0 ` µv̄1D0, (12a)

pλ ` µqv̄k “ bkπ̄k ` λiv̄k´1Λk

` λ´iv̄k´1Γk ` µv̄k`1Dk, 0 ă k ă m,

(12b)

µv̄m “ bmπ̄m ` λiv̄m´1Λm ` λ´iv̄m´1Γm. (12c)

We extract equations corresponding to the discrete states q̄ and

the relevant age processes xjptq in the states. We have k ` 1

relevant age processes in state 0 ă k ă m. For such a state k

and xjptq, 0 ď j ď k, we have

pλ ` µqv̄k,j “ π̄k ` λv̄k´1,j

` µv̄k`1,j`1, 0 ď j ď k ´ 1, (13a)

pλ ` µqv̄k,k “ π̄k ` λ´iv̄k´1,k´1 ` µv̄k`1,k`1. (13b)

In state k “ 0, no departures take place and the only relevant

age process is x0ptq. We have

λv̄0,0 “ π̄0 ` µv̄1,1. (14)

Lastly, in state k “ M , arrivals are inconsequential while a

departure may take place. All age processes x0ptq, . . . , xmptq

are relevant. We have

µv̄m,j “ π̄m ` λv̄m´1,j , 0 ď j ď n ´ 1, (15a)

µv̄m,m “ π̄m ` λ´iv̄m´1,m´1. (15b)

The steady state probability π̄k of k updates in the blocking

M/M/1 system can be obtained by solving (4a)-(4b). The

equations are

λπ̄0 “ µπ̄1, (16a)

pλ ` µqπ̄k “ λπ̄k´1 ` µπ̄k`1, 0 ă k ă m, (16b)

µπ̄m “ λπ̄m´1. (16c)

Combined with the normalization constraint
řm

q“0
π̄q “ 1,

(16) yields the M/M/1/m stationary distribution

π̄k “

ˆ

1 ´ ρ

1 ´ ρm`1

˙

ρk, 0 ď k ď m. (17)

From Theorem 1 we know that the average age of source i

in the blocking system is

∆
m
i “

m
ÿ

q̄“0

v̄q̄0. (18)

The average age ∆i is obtained using Equation (7). Details

regarding calculation of ∆m
i and ∆i are in the Appendix. With

the definition

Ei ”
1 ` ρ ´

a

p1 ` ρq2 ´ 4ρ´i

2ρ´i

, (19)

we state our main result.

Theorem 2. Poisson sources 1, 2, . . . , N send their status

updates to a monitor via an M/M/1 FCFS queue with service

rate µ. The sources offer loads ρ1, . . . , ρN . The average age

of updates of source i at the monitor is

∆i “
1

µ

„

1 ´ ρ

pρ ´ ρ´iEiqp1 ´ ρEiq
`

1

1 ´ ρ
`

ρ´i

ρi



. (20)

Note that the expression approaches the age of a single user

M/M/1 queue as ρ´i Ñ 0. This is easy to see on noting the

fact that limρ´iÑ0 Ei “ 1{p1 ` ρq.

IV. EVALUATION

Figure 4 compares average age obtained using (20) with that

estimated using simulation experiments. We plot the age ∆1 of

source 1 as a function of its offered load ρ1 for various choices

of the load ρ2 offered by the other users. Each empirically

estimated value of age was obtained by simulating on the order

of 108 transitions of the Markov chain. As is shown in the

figure, empirical results match our analysis. We also show

the age that was obtained via analysis in our earlier work [6,

Theorem 1]. We observe that the error in the age increases

with the load of the other user. This error does disappear as

ρ2 Ñ 0. This is understandable as the error was introduced

in accounting for the number of packets of other users in the

system that are found by such an arrival of source 1 that arrives

after the previous arrival of the source has completed service.
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Fig. 4. Age of source 1 as a function of its utilization is shown for different
values of utilization ρ2 of the other source. For each ρ2, the ˆ markers
correspond to the age given by (20), the ˝ markers show the age obtained
using simulations, and the ` show the age obtained in the earlier work that
analyzed multiple memoryless sources [6, Theorem 1]. While (20) matches
well with simulations, the ` drift away as ρ2 increases. We set µ “ 1.

Figure 5 shows average ages ∆1 and ∆2 of the sources as

their relative loads are varied, for a fixed total load of ρ. The

sum age is minimized when ρ « 0.6 and the sources share

the load equally. At other relative loadings of the sources, the

sum age may not be minimized at ρ “ 0.6.

V. CONCLUSION

This work revisits average age analysis of status updates

from multiple sources passing through the M/M/1 queue. SHS

analysis of the M/M/1/m blocking queue enables a relatively

simple analysis and closed form result for the average age.
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APPENDIX: PROOF OF THEOREM 2

Proof. We start by calculating the average ∆m
i of the blocking

system as given in (18). We proceed by writing
řm

k“1
v̄k,0 in

terms of the probabilities π̄k, 0 ď k ď m. That leaves us with

the tedium of calculating v̄0,0. Using (13a), we can write

λv̄0,0 “ π̄0 ` µv̄1,1, (21a)

λv̄1,0 ` µv̄1,0 ´ λv̄0,0 “ π̄1 ` µv̄21, (21b)

...

λv̄m´1,0 ` µv̄m´1,0 ´ λv̄m´2,0 “ π̄m´2 ` µv̄m,1, (21c)

µv̄m,0 ´ λv̄m´1,0 “ π̄m. (21d)

Adding these equations we obtain

m
ÿ

k“1

v̄k,0 “
1

µ

m
ÿ

k“0

π̄k `
m
ÿ

k“1

v̄k,1. (22)

Similarly, using (13a) to write equations corresponding to v̄k,1,

1 ď k ď m, we obtain

m
ÿ

k“1

v̄k,1 “
1

µ

m
ÿ

k“1

π̄k `
λ´i

µ
`

m
ÿ

k“2

v̄k,2. (23)
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Fig. 5. Age contours obtained by varying the share of two sources of a
given total utilization ρ. The squares ˝ correspond to the ages obtained when
each source offers a load of ρ{2. Sum age is minimized when ρ « 0.6 for
ρ1 “ ρ2 « 0.3.

Proceeding similarly, we obtain expressions for
řm

k“2
v̄k,2,

řm

k“3
v̄k,3, . . . ,

řm

k“m´1
v̄k,m´1. Further (15b)

gives us v̄m,m. We can now rewrite (22) as

m
ÿ

k“1

v̄k,0 “
1

µ

m
ÿ

k“0

pk ` 1qπ̄k `
λ´i

µ

m´1
ÿ

k“0

v̄k,k. (24)

Now consider equations (13b) for 1 ă k ă m, (14), and (15b).

Summing them gives

m´1
ÿ

k“0

v̄k,k “
1

λi

. (25)

Substituting in (24) allows us to write
řm

k“1
v̄k,0 in terms of

the steady state probabilities given by (17). To calculate v̄0,0,

we will express v̄k,k in terms of v̄0,0 and then use (25).

Rearranging terms in Equation (13b) we get

v̄k,k “

ˆ

λ ` µ

µ

˙

v̄k´1,k´1´

ˆ

λ´i

µ

˙

v̄k´2,k´2´
π̄k´1

µ
. (26)

Repeated application of the equation to expand the terms

v̄k´1,k´1 and v̄k´2,k´2 gives

v̄k,k “

ˆ

c1,k
λ

µ
´ c2,k

λ´i

µ

˙

v̄0,0 ´
k
ÿ

j“1

cj,k
π̄j´1

µ
. (27)

The coefficients cj,k are obtained by solving the equations

ck´j,k “
λ ` µ

µ
ck´j`1,k ´

λ´i

µ
ck´j`2,k, (28)

with ck,k “ 1 and 0 ď j ď k. We get

cj,k “
pβ ´ ρ´1

´i p1 ` ρqq
`

p1 ` ρqρ´1

´i ` β
˘j´k

2β

`
pβ ` ρ´1

´i p1 ` ρqq
`

p1 ` ρqρ´1

´i ´ β
˘j´k

2β
, (29)

where β “
b

p1 ` ρq2ρ´2

´i ´ 4ρ´1

´i . Substituting cj,k obtained

above in (27) and substituting the resulting v̄k,k in (25) gives

us v̄0,0. Together with (24) and (25), we can obtain the average

age ∆m
i of the blocking system. Taking the limit as m Ñ 8

gives us the average age ∆i in Theorem 2.
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