
Timely Cloud Computing: Preemption and Waiting

Ahmed Arafa1, Roy D. Yates2, and H. Vincent Poor1

1Electrical Engineering Department, Princeton University
2Department of Electrical and Computer Engineering, Rutgers University

Abstract— The notion of timely status updating is investigated
in the context of cloud computing. Measurements of a time-
varying process of interest are acquired by a sensor node, and
uploaded to a cloud server to undergo some required computa-
tions. These computations have random service times that are
independent and identically distributed across different uploads.
After the computations are done, the results are delivered to a
monitor, constituting an update. The goal is to keep the monitor
continuously fed with fresh updates over time, which is assessed
by an age-of-information (AoI) metric. A scheduler is employed
to optimize the measurement acquisition times. Following an
update, an idle waiting period may be imposed by the scheduler
before acquiring a new measurement. The scheduler also has the
capability to preempt a measurement in progress if its service
time grows above a certain cutoff time, and upload a fresher
measurement in its place. Focusing on stationary deterministic
policies, in which waiting times are deterministic functions of the
instantaneous AoI and the cutoff time is fixed for all uploads,
it is shown that the optimal waiting policy that minimizes the
long term average AoI has a threshold structure, in which a new
measurement is uploaded following an update only if the AoI
grows above a certain threshold that is a function of the service
time distribution and the cutoff time. The optimal cutoff is then
found for standard and shifted exponential service times. While
it has been previously reported that waiting before updating can
be beneficial for AoI, it is shown in this work that preemption
of late updates can be even more beneficial.

I. INTRODUCTION

We consider the problem of timely computing. The setting

is motivated by some applications in which monitoring a time-

varying process of interest can be computationally demanding.

Hence, instead of extracting useful information from local

data measurements acquired by sensor nodes, measurements

are uploaded to a cloud server that can handle heavy-duty

computation tasks, and send them back in the form of updates.

Computation times, however, are random, and the process

may have already changed by the time they are done. We

therefore investigate the benefits of preempting an upload in

progress and replacing it by a new, fresher, one. Such fresh-

ness/timeliness is assessed by the age-of-information (AoI),

defined as the time elapsed since the latest received update.

Lots of work pertaining to AoI minimization have appeared

in the recent literature, with frameworks that include queuing,

optimization and scheduling, energy harvesting, remote esti-

mation, and coding, see, e.g., [1]–[14]. Of particular relevance

to our work are those in [15]–[23], which show that the notion

of preemption of updates in service and replacing them by new

This research was supported in part by the National Science Foundation
under Grants CCF-0939370, CCF-1513915 and CCF-1717041.

uploads

server
cloud

sensor

scheduler

monitor

Tx

updates

measurements

Fig. 1. A scheduler decides on when to acquire new measurements by the
sensor and send them to the cloud server by the transmitter. The server updates
the system’s monitor after it completes the required computations.

ones is viable for AoI minimization in various settings. This

is mainly owing to the nature of AoI that promotes sending

fresh updates. This is discussed in a queuing framework in

[15]–[17], and more recently in [18] that also extends to

the case of multiple sources. Different from [15]–[18] that

focus on exponential service times, the work in [19] considers

general service time distributions for multiple Poisson sources

with preemption. Preemption for general arrival and service

time distributions, for a single source, has been recently

studied in [20]. Reference [21] characterizes settings for which

preemption is age-minimal, subject to energy harvesting con-

straints with Poisson arrivals (of both energy and updates) and

exponential service times. The studies in [22], [23] investigate

a similar tradeoff, under different system models, namely,

that while preemption lets the system work with the freshest

information, it leads to restarting service from the beginning.

Thus, a decision has to be made on whether to drop the newly

arriving updates or switch to them via preemption. Recently,

in the context of computing, AoI analysis has been carried

out through various tandem queuing models in [24]–[27], and

through a task-specific age metric in [28]. The notion of

sending timely measurements to the cloud has been discussed

in the context of gaming in [29].

In this paper we investigate the tradeoff in [22], [23] in a

cloud computing setting. Different from [22], [23], however,

we consider a generate-at-will model, in which measurement

times are controlled by a scheduler. Each measurement is up-

loaded to a cloud server to undergo some computations before

being sent back as an update. The scheduler has the ability

to preempt a measurement in service if its computation time

is larger than a certain cutoff time and upload a fresher one

instead. After an update is eventually received, the acquisition

of a new measurement may be scheduled after an idle waiting

period. We note that due to preemption, the optimal waiting

policy derived in [3] does not apply in our setting.

2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, September 24-27, 2019

978-1-7281-3151-1/19/$31.00 ©2019 IEEE 528

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

Focusing on stationary deterministic policies, in which

cutoff times are constant and waiting times are function of the

instantaneous AoI, we show that optimal waiting has a thresh-

old structure. Specifically, a new measurement is uploaded,

following an update, only if the AoI grows above a certain

threshold that is a function of the cutoff time and the service

time distribution. Such function is given in closed-form. We

also provide a necessary and sufficient condition on the

optimality of zero-wait policies, in which a new measurement

is uploaded just-in-time as an update is received. When zero-

wait is not optimal, we provide a a relatively simple method

of evaluating the long term average AoI through a bisection

search. We then discuss the evaluation of the optimal cutoff

time explicitly under exponential service times. Finally, we

compare the proposed preemption and waiting scheme to three

baselines: no preemption and zero-waiting; no preemption and

optimal waiting, the scheme proposed in [3]; and optimal

preemption and zero-waiting. While it is demonstrated that

our proposed scheme perfoms best, our results also show that,

depending on the system parameters, the optimal preemption

and zero-waiting policy can actually beat the no preemption

and optimal waiting policy. This sheds light on the fact that,

in some situations, working with fresh measurements provides

the highest gains in terms of AoI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system comprised of a sensor, a scheduler,

a transmitter, a cloud computing server and a monitor. The

overall goal is to keep the system’s monitor continuously fed

with fresh status updates pertaining to a physical phenomenon

of interest. Such updates, however, require some heavy-duty

computations on the raw data measurements acquired by the

sensor that need to be carried out by the cloud computing

server. Therefore, in order for a status update to reach the

monitor, the following series of events need to occur. First, the

scheduler decides on when to acquire a new data measurement

by the sensor, and send (upload) it to the server by the

transmitter. The server then undertakes the computations and

feeds back the end result to the monitor in the form of an

update. Hence, the goal is to design a scheduling policy such

that these updates reach the monitor in a timely manner. A

depiction of the system model considered is shown in Fig. 1.

Hereafter, we will refer to data sent to the server by uploads,

and data received from the server by updates.

Uploads are time-stamped so that when updates eventually

reach the monitor, the system knows when their corresponding

measurements were acquired. We use an AoI metric to assess

the timeliness of updates at the monitor. This is defined as

a(t) = t− u(t), (1)

where u(t) is the time stamp of the latest update that has

reached the monitor.

To minimize the AoI, measurements are uploaded to the

cloud server right away after being acquired by the sensor.

We assume that upload transmission times are negligible.

However, each measurement consumes a computational time

Yi−1

Ti

Xi,1 Xi,2 Xi,3

Qi

time

AoI

. . .

. . .

Wi

Yi = Xi,3

Fig. 2. AoI evolution example in the ith epoch. Red lines denote preemptions
and the green line denotes completed service. In this example Ni = 3.

at the cloud server denoted as the service time. Service times

of different measurements are independent and identically

distributed (i.i.d.) according to the distribution of a random

variable X . Depending on the application or the task being

considered, the server may incur a constant delay before the

actual computation starts. Let us denote such time by c ∈ R+,

which is the largest constant such that

X ≥ c a.s. (2)

This is without loss of generality since X ≥ 0 a.s.1 Motivated

by freshness, the scheduler is capable of preempting the

current upload in service if its service time surpasses a certain

cutoff time. Thus, an update will reach the monitor only if its

service ends within the cutoff time. Following a preemption,

a new measurement is taken and uploaded immediately. Fol-

lowing an update delivery, however, the scheduler may wait

for some idle time before uploading a new measurement.

We denote by the ith epoch the time in between the

reception of the (i− 1)th and the ith updates. The ith epoch

starts with age Yi−1 and ends with age Yi.
2 A waiting period of

Wi time units occurs at the start of the epoch, through which

the server is idle. After that, the first measurement in the epoch

is acquired and uploaded to the server. Note that, depending on

the preemption policy, there can be multiple uploads during a

single epoch. We denote by Ni the number of uploads during

the ith epoch, with Ni ≥ 1, and Ni−1 denoting the number of

preemptions. Let Xi,j denote the service time of the jth upload

during the ith epoch, 1 ≤ j ≤ Ni. Note that Xi,j’s are i.i.d

∼ X . Now observe that only the Xi,Ni
service time period

concludes with an update sent back to the monitor, and all

other service time periods end with a preemption. Therefore,

the ith epoch ends with age

Yi = Xi,Ni
. (3)

We denote by Ti the server’s busy period in the ith epoch,

defined as

Ti , Xi,1 +Xi,2 + · · ·+Xi,Ni
. (4)

1One might consider the constant c a necessary overhead to initiate service
at the cloud server for each measurement.

2We assume that the first epoch starts with some given age Y0 at time 0.

529

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

Lastly, let Li denote the ith epoch length given by

Li = Wi + Ti. (5)

In Fig. 2, we show an example sample path of how the AoI

may evolve during the ith epoch. From the figure, the area

under the AoI curve during the ith epoch, Qi, is given by

Qi = Yi−1Li +
1

2
L2
i . (6)

We are interested in minimizing the long term average AoI.

It is clear that such quantity depends on the choices of the

cutoff and waiting times that the scheduler makes. Let γi,j
denote the cutoff time after which the jth upload in the ith

epoch is preempted. In other words, given γi,j , the scheduler

preempts the jth upload in the ith epoch if Xi,j grows above

γi,j time units. Clearly,

γi,j ≥ c (7)

must hold ∀i, j in view of (2). The set {γi,j} now constitutes

a cutoff policy, while the set {Wi} denotes a waiting policy.

Let π denote a scheduling policy {Wi, γi,j}. The goal is to

solve the following problem:

min
π

lim sup
n→∞

∑n
i=1 E [Qi]

∑n
i=1 E [Li]

, (8)

where E [·] is the expectation operator.

III. STATIONARY DETERMINISTIC POLICIES

Observe that the optimal policy π∗ that solves problem (8)

may be such that the waiting and cutoff times of the ith epoch

depend on the history of events, e.g., AoI evolution, number

of preemptions, service time realizations, before, and during,

the ith epoch. To alleviate the difficulty of tracking all such

history, and motivated by the fact that service times are i.i.d.,

we focus on policies that are characterized by the following

two main features: 1) the waiting time Wi in the ith epoch is

given by a deterministic function of the starting AoI Yi−1,

Wi , w (Yi−1) , (9)

for some function w : R+ → R+; and 2) the cutoff times

{γi,j} in the ith epoch are given by deterministic functions of

the instantaneous AoI,

γi,j , γj (ai,j) , (10)

for some function γj : R+ → [c,∞], ∀j, with ai,j denoting

the AoI just before the jth upload occurs in the ith epoch.

Let Πs denote the set of policies that abide by the above

structure. Note that any π ∈ Πs induces stationary distribu-

tions Qi ∼ Q and Li ∼ L for all epochs. Therefore, under

Πs, problem (8) reduces to

min
π∈Πs

E [Q]

E [L]
. (11)

Problem (11) is an optimization problem over a single epoch.

In the sequel, we drop the index i for convenience. We now

have the following lemma:

Lemma 1 In the optimal solution of problem (11), all cutoff

functions are equivalent. That is,

γj (aj) ≡ γ (aj) , ∀j, (12)

for some γ : R+ → [c,∞].

Proof: Let the optimal cutoff function γ1(·) be given. Note

that the system is idle before the first upload. Thus, γ1(a1)
represents the optimal cutoff time for the AoI to evolve starting

from an idle state at age a1. Now assume that the first upload

is preempted after γ1(a1), whence the age becomes a2 = a1+
γ1(a1). Observe that the system becomes instantly idle right

before the second upload occurs. Since service times are i.i.d.,

therefore γ2(a2) should also represent the optimal cutoff time

for the AoI to evolve starting from an idle state at age a2. This

shows that γ2(a2) = γ1(a2) must hold, otherwise γ1(·) would

not be optimal. Similar arguments follow for γj(·), j ≥ 3.

Therefore, all cutoff functions are equivalent. �
In the sequel, we further focus on the case in which the

cutoff function γ(·) is a constant. That is, with a slight abuse

of notation,

γ (aj) = γ, ∀j, (13)

for some γ ≥ c. We call this the γ-cutoff policy. Considering

such policy is motivated by the fact that service times are i.i.d.;

it also sets a fixed maximum value of γ on the starting AoI

of each epoch.

Now let the following quantities be (re)defined for the epoch

in consideration: Y is the starting AoI; W = w
(

Y
)

is the

waiting time after it starts; T is the server’s busy period;

Xj is the jth upload service time; N is the total number

of uploads; and Y is the ending AoI. Observe that under a

γ-cutoff policy, given N = n, X1 = · · · = Xn−1 = γ and

Xn = Y ≤ γ a.s. Also observe that the function w(·) is

now restricted to the domain [0, γ], and that Y and Y are

i.i.d ∼ Y . To evaluate the distribution of the age Y , let us

define p , P (X ≤ γ), where P (·) is the probability measure.

Therefore the probability distribution function (PDF) of Y is

given by

fY (y) =

{

fX(y)
p

, c ≤ y ≤ γ

0, otherwise
, (14)

where fX(·) denotes the PDF of the service time X .3

We note that problem (11) is structurally different from the

setting considered in [3]. There, an epoch could only consist

of one packet in service until it finishes, and hence the AoI at

the end of the epoch relates to that packet’s acquisition time.

In our setting, owing to the preemption capability, there can be

multiple uploads in a single epoch, and hence the AoI at the

end of the epoch does not necessarily relate to the first upload

time. The optimal waiting policy derived in [3], therefore, does

not apply in our setting.

3We focus on continuous random variables, and assume that γ and the
distribution of X are such that p > 0.

530

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

Solving problem (11) is tantamount to characterizing the

optimal waiting function w∗ (·) and the optimal cutoff time

γ∗. In the next sections, we do so sequentially as follows: we

first characterize w∗ (·) for a fixed value of γ, and then we

determine γ∗ for specific service time distributions.

IV. THRESHOLD WAITING POLICY

In this section, we evaluate the optimal waiting policy

for fixed cutoff time γ. The main result is that the optimal

waiting policy exhibits a threshold structure, in which a new

upload occurs only if the AoI grows above a certain threshold

that depends on the service time distribution and the fixed

cutoff time. Toward showing that, we need to evaluate some

expressions first. We start with

P (N = n) = (1− p)n−1p, n ≥ 1, (15)

i.e., N is a geometric random variable with parameter p. It

is useful to note that E [N] = 1
p

and E
[

N2
]

= 2−p
p2 . Using

iterated expectations, we now have

E [T] =

∞
∑

n=1

P (N = n)E [X1 +X2 + · · ·+Xn]

=

∞
∑

n=1

P (N = n) ((n− 1)γ + E [Y])

=

(

1

p
− 1

)

γ + E [Y] . (16)

Thus, the expected epoch length is given by

E [L] = E
[

w
(

Y
)]

+ E [T] , (17)

with E [T] given by (16). Proceeding similarly, we have

E
[

T 2
]

=

∞
∑

n=1

P (N = n)E
[

(X1 +X2 + · · ·+Xn)
2
]

=

∞
∑

n=1

P (N = n)
(

(n− 1)2γ2 + 2(n− 1)γE [Y] + E
[

Y 2
])

=

(

2− p

p2
− 2

p
+ 1

)

γ2 + 2

(

1

p
− 1

)

γE [Y] + E
[

Y 2
]

.

(18)

We now have

E [Q] =E
[

Y
(

w
(

Y
)

+ T
)]

+
1

2
E

[

(

w
(

Y
)

+ T
)2
]

=E
[

Y w
(

Y
)]

+ E
[

Y
]

E [T] +
1

2
E
[

w2
(

Y
)]

+ E
[

w
(

Y
)]

E [T] +
1

2
E
[

T 2
]

, (19)

with E [T] and E
[

T 2
]

given by (16) and (18), respectively,

and the second equality follows by independence of Y and T .

To find the optimal w∗(·), we need to solve the following

functional optimization problem:

min
w(·)

E [Q]

E [L]

s.t. w(t) ≥ 0, c ≤ t ≤ γ. (20)

To solve the above problem, we follow Dinkelbach’s approach

[30] and introduce the following auxiliary problem for some

fixed parameter λ ≥ 0:

g(λ) , min
w(·)

E [Q]− λE [L]

s.t. w(t) ≥ 0, c ≤ t ≤ γ. (21)

One can show that g(λ) is decreasing in λ, and that the optimal

solution of problem (20) is given by λ∗ that solves g(λ∗) = 0
[30]. By monotonicity of g(·), λ∗ can be found by, e.g., a

bisection search. Focusing on problem (21), we introduce the

following Lagrangian [31]:

L = E [Q]− λE [L]−
∫ γ

c

w(τ)η(τ)dτ, (22)

where η(·) is a Lagrange multiplier. Substituting (17) and (19)

above, and after some rearrangements we get

L =

∫ γ

c

(

(τ + E [T]− λ)w(τ) +
1

2
w2(τ)

)

fY (τ)dτ

+ E
[

Y
]

E [T] +
1

2
E
[

T 2
]

− λE [T]−
∫ γ

c

w(τ)η(τ)dτ.

(23)

Now taking the (functional) derivative of L with respect to

w(t), c ≤ t ≤ γ, and equating to 0 we have

(t+ E [T]− λ+ w∗(t)) fY (t)− η(t) = 0. (24)

Rearranging the above, we get that

w∗(t) = λ− E [T]− t+
η(t)

fY (t)
. (25)

We note that there are different methods through which one

can conclude that the optimal waiting policy satisfies (25).

These are discussed in Appendix D for completeness. Now

using complementary slackness [31], (25) further gives

w∗(t) = [λ− E [T]− t]
+
, c ≤ t ≤ γ, (26)

where [·]+ , max(·, 0). This makes the AoI right after the

waiting period, when the first measurement in the epoch gets

uploaded, equal to

t+ w∗(t) = max{t, λ− E [T]}, (27)

which comes directly from the fact that w∗(t) > 0 if and

only if (iff) λ − E [T] > t. Observe that the value of t, the

realization of Y , represents the AoI at the beginning of the

epoch. Hence, one could interpret the optimal waiting policy

as a threshold policy, in which the first measurement in the

epoch gets uploaded only if the AoI grows above λ− E [T].
To have an operational significance, however, the threshold

λ− E [T] must be positive. The next lemma verifies that this

is indeed the case. The proof is in Appendix A.

Lemma 2 The optimal solution of problem (20), λ∗, satisfies

λ∗ > E [T].

Observe that while Lemma 2 shows that the threshold

531

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

c

λ− E[T]

λ− E[T]− c

w
∗(t)

t
γ1 γ2

Fig. 3. The optimal waiting policy versus time. We show two example choices
of γ in red. For γ1, we always wait before uploading a new measurement
following an update, while for γ2 it depends on the value of t. Lemma 4
shows that the situation of γ1 cannot be optimal.

is positive, a zero-wait policy can still be optimal if the

threshold’s value is no larger than c. The next lemma quantifies

this relationship. The proof is in Appendix B.

Lemma 3 A zero-wait policy, in which w∗(t) = 0, ∀t ∈ [c, γ],
is optimal for problem (20) iff

1
2

(

1
p
− 1

)

γ2 + 1
2E

[

Y 2
]

(

1
p
− 1

)

γ + E [Y]
≤ c. (28)

The optimal AoI under a zero-wait policy is directly given

by substituting w∗(t) = 0, ∀t in (17) and (19) to get

λ∗
zw =

E [Q]

E [L]

=
E
[

Y
]

E [T] + 1
2E

[

T 2
]

E [T]

= E [Y] +
1
2E

[

T 2
]

E [T]
, (29)

where the subscript zw stands for zero-wait.

Now that we established a necessary and sufficient condition

for the optimality of a zero-wait policy in Lemma 3, we

proceed by investigating the case in which the inequality

condition in (28) does not hold. First, an immediate corollary

follows in this case.

Corollary 1 The optimal solution of problem (20), λ∗, satis-

fies λ∗ > E [T] + c iff (28) does not hold.

Now observe that for γ < λ∗−E [T], one would always wait

before uploading a new measurement following an update, and

that for γ ≥ λ∗ − E [T], it depends on the realization of Y

(the value of t) as indicated in (26). We illustrate this behavior

in Fig. 3, and settle this issue in the next lemma by showing

that the situation of γ1 in Fig. 3 cannot be optimal.4 We note

that the result of the lemma holds regardless of whether (28)

holds or not. The proof is in Appendix C.

4We note that Fig. 3 is only explanatory and that in reality the choice of
γ also affects the values of λ∗ and E [T].

Lemma 4 The optimal solution of problem (20), λ∗, satisfies

γ ≥ λ∗ − E [T].

In summary, to find the optimal AoI for fixed γ one should

start by examining (28). If it holds, then λ∗ = λ∗
zw in (29).

Else, using Corollary 1 and Lemma 4, one has the following

bounds on the optimal AoI:

E [T] + c < λ∗ ≤ E [T] + γ, (30)

which facilitates evaluating λ∗ that solves g(λ∗) = 0 using a

bisection search in the interval (E [T] + c,E [T] + γ].

Now it remains to choose the best γ that minimizes λ∗. We

discuss this in the next section.

V. OPTIMAL γ-CUTOFF POLICY

It is not direct to get a closed-form expression of the optimal

λ∗ in terms of γ for general service time distributions. In

fact, even for specific distributions this can also be a difficult

task. In this section, our goal is to provide some insight on

how the service time distribution can affect the choice of the

optimal cutoff γ∗. To avoid confusion, let the optimal AoI as a

function of the cutoff value, derived in Section IV, be denoted

by λ∗ (γ), and define λ∗∗ , λ∗ (γ∗). Our approach will be as

follows: we will first fix γ ≥ c and evaluate λ∗ (γ) as discussed

toward the end of Section IV; and then we will evaluate γ∗

that minimizes λ∗ (γ), i.e., achieves λ∗∗, numerically.

We will consider an exponential service time distribution

with c = 0 along with its shifted version with c > 0. Clearly,

the zero-wait policy is not optimal for distributions with c = 0,

as inferred from the inequality (28). In this case, λ∗ (γ) can be

evaluated by a bisection search using the bounds in (30). On

the other hand, for c > 0, λ∗ (γ) is given in closed-form by

λ∗
zw in (29) for values of γ that satisfy (28), and is evaluated

by a bisection search using the bounds in (30) otherwise. As

we will see, in some situations evaluating γ∗ will be a direct

consequence of evaluating the bounds in (30).

A. Standard Exponential

Let X ∼ exp(1).5 Since c = 0, we aim at evaluating the

bounds in (30). Toward that, one can directly compute the

following quantities:

p =1− e−γ , (31)

E [Y] =
1− (1 + γ) e−γ

1− e−γ
. (32)

This directly gives E [T] = 1, and hence

1 < λ∗ (γ) ≤ 1 + γ, (33)

upon which one can see that γ∗ is infinitesimal. As mentioned

before, this is one instance where evaluating the bounds in (30)

directly gives γ∗. Therefore, in this case, λ∗∗ can be made

arbitrarily close to 1 by choosing γ∗ arbitrarily close to 0.

5One can always choose a time unit such that the service rate is unity.

532

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

B. Shifted Exponential

We now focus on the shifted version of the above, in which

fX(x) = e−(x−c), x ≥ c > 0. (34)

Based on this, for γ ≥ c, one can directly compute

p =1− e−(γ−c), (35)

E [Y] =
1 + c− (1 + γ) e−(γ−c)

1− e−(γ−c)
, (36)

E
[

Y 2
]

=
2 + 2c+ c2 −

(

2 + 2γ + γ2
)

e−(γ−c)

1− e−(γ−c)
. (37)

Upon substituting all the above in (28) and simplifying, we

get that the zero-wait policy is optimal iff

1− 1

2
c2 ≤ (1 + γ − c) e−(γ−c). (38)

Observe that the above is satisfied for all values of γ ≥ c if

c ≥
√
2. Next, note that (1 + γ − c) e−(γ−c) is decreasing in

γ, and has a maximum value of 1 when γ = c. This shows

that there exists a unique γ̄(c) > c that satisfies the above

inequality with equality if c <
√
2. Thus, the inequality is

satisfied for c <
√
2 iff γ ≤ γ̄(c). Based on the above, the

zero-wait policy is optimal in the following cases: 1) c ≥
√
2,

or 2) c <
√
2 and γ ≤ γ̄(c). On the other hand the zero-wait

policy is not optimal if c <
√
2 and γ > γ̄(c).

In Fig. 4, we plot the optimal cutoff γ∗ and the correspond-

ing AoI λ∗ versus c. We also show γ̄(c) on the figure to

indicate whether zero-wait is optimal for c <
√
2. We see

from the figure that the zero-wait policy is not optimal for

all values of c <
√
2 since γ∗ > γ̄(c); it is only optimal for

c ≥
√
2. Note that γ̄(c) is not defined (and not needed) for

c ≥
√
2, and is therefore not shown on the figure.

In Fig. 5, we compare the optimal policy derived in this

paper to other benchmarks. The first is the vanilla version of

status updating, denoted no cutoff & zero-wait, in which an

upload is never preempted, and a new upload takes place once

an update is received. The second is also a zero-wait policy

yet with optimizing the cutoff value, denoted optimal cutoff &

zero-wait. The third is that of [3], denoted no cutoff & optimal

wait, in which the waiting time is optimized and uploads are

never preempted. We see that our policy beats all benchmarks,

especially for small values of c. Another interesting note is

that for for c / 0.25, optimizing the cutoff turns out to be

better, age-wise, than optimizing the waiting time. Indeed, the

optimal cutoff & zero-wait policy beats the no cutoff & optimal

wait policy of [3] for c / 0.25.

VI. CONCLUSION

A cloud computing status updating system has been con-

sidered, in which computations are carried out on raw data

measurements uploaded to a cloud server, and then returned

in the form of updates to a monitor. Using an AoI metric, it

has been shown that preemption of late updates, whose service

times exceed a certain cutoff time, and replacing them by

fresher measurements can enhance the overall AoI. Further, it

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

7

8

Fig. 4. Optimal AoI and cutoff values versus c for exponential service

times. The vertical line denotes the critical value of c =
√
2, after which the

zero-wait policy is optimal.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 5. Comparing the optimal policy to other bench marks versus c for
exponential service times.

has been shown that it is optimal to upload a new measurement

to the server following an update only if the AoI grows above a

certain threshold. Implications of such preemption and waiting

policies have been discussed for exponential service time

distributions, along with comparison with other benchmarks.

APPENDIX

A. Proof of Lemma 2

We show this by contradiction. Assume that λ∗ ≤ E [T].
Then this would necessarily mean that w∗(t) = 0, ∀t, and

hence (cf. (29))

λ∗ =
E
[

Y
]

E [T] + 1
2E

[

T 2
]

E [T]

= E [T]−
(

1

p
− 1

)

γ +
1
2E

[

T 2
]

E [T]
, (39)

where (39) follows by (16). Now for λ∗ to be no larger than

E [T], it must hold that

1
2E

[

T 2
]

E [T]
≤

(

1

p
− 1

)

γ. (40)

533

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

Using (16) and (18), the above is tantamount to having

1

2

(

2− p

p2
− 2

p
+ 1

)

γ2 +

(

1

p
− 1

)

γE [Y] +
1

2
E
[

Y 2
]

≤
(

1

p
− 1

)2

γ2 +

(

1

p
− 1

)

γE [Y] , (41)

which, upon some direct algebraic rearrangements, is equiva-

lent to having

1

2

(

1

p
− 1

)

γ2 +
1

2
E
[

Y 2
]

≤ 0, (42)

which is a clear contradiction.

B. Proof of Lemma 3

In view of (26), a zero-wait policy is optimal iff λ∗ ≤
E [T] + c. Proceeding as in Appendix A, this is tantamount to

adding c to the right hand side (RHS) of (40), or equivalently

adding cE [T] to the RHSs of (41) and (42). Thus, a zero-wait

policy is optimal iff

1
2

(

1
p
− 1

)

γ2 + 1
2E

[

Y 2
]

E [T]
≤ c. (43)

Substituting (16) above directly gives (28).

C. Proof of Lemma 4

First, if (28) holds, then by Corollary 1 λ∗ ≤ E [T] + c ≤
E [T] + γ.

We now show the result of the lemma when (28) does not

hold. We show this by contradiction. Assume that γ < λ∗ −
E [T]. Under that assumption, it holds by (26) that

w∗(t) = λ− E [T]− t, c ≤ t ≤ γ, (44)

i.e., w∗(t) > 0, ∀t ∈ [c, γ]. Therefore,

E
[

w
(

Y
)]

=

∫ γ

c

(λ− E [T]− τ) fY (τ)dτ

=λ− E [T]− E
[

Y
]

. (45)

Our goal now is to evaluate the value of λ∗ by solving

g(λ∗) = 0, and show that it cannot be larger than E [T] +
γ, thereby reaching a contradiction. Toward that, we start by

using the above to evaluate

E [L] = E
[

w
(

Y
)]

+ E [T] = λ− E
[

Y
]

. (46)

Since E [L] ≥ 0, it must hold that the optimal λ∗ satisfies

λ∗ ≥ E
[

Y
]

. (47)

This simple observation will prove to be useful later on.

Next, we have

E
[

Y w
(

Y
)]

=

∫ γ

c

τ (λ− E [T]− τ)
fY (τ)

p
dτ

=(λ− E [T])E
[

Y
]

− E

[

Y
2
]

, (48)

and

E
[

w2
(

Y
)]

=

∫ γ

c

(λ− E [T]− τ)
2 fY (τ)

p
dτ

=(λ− E [T])
2 − 2 (λ− E [T])E

[

Y
]

+ E

[

Y
2
]

.

(49)

Substituting (45), (48) and (49) in (19) we get

E [Q] = (λ− E [T])E
[

Y
]

− E

[

Y
2
]

+ E
[

Y
]

E [T]

+
1

2
(λ− E [T])

2 − (λ− E [T])E
[

Y
]

+
1

2
E

[

Y
2
]

+
(

λ− E [T]− E
[

Y
])

E [T] +
1

2
E
[

T 2
]

=− 1

2
E

[

Y
2
]

+
1

2
(λ− E [T])

2

+ (λ− E [T])E [T] +
1

2
E
[

T 2
]

=
1

2
λ2 +

1

2
E
[

T 2
]

− 1

2
(E [T])

2 − 1

2
E

[

Y
2
]

. (50)

The above can be further simplified by noting that using (16)

and (18) we have

E
[

T 2
]

− (E [T])
2

=

(

2

p
− 1

)(

1

p
− 1

)

γ2 + 2

(

1

p
− 1

)

γE
[

Y
]

+ E

[

Y
2
]

−
(

1

p
− 1

)2

γ2 − 2

(

1

p
− 1

)

γE
[

Y
]

−
(

E
[

Y
])2

=
1

p

(

1

p
− 1

)

γ2 + E

[

Y
2
]

−
(

E
[

Y
])2

=
1− p

p2
γ2 + E

[

Y
2
]

−
(

E
[

Y
])2

, (51)

which, upon substituting in (50) finally gives

E [Q] =
1

2
λ2 +

1− p

2p2
γ2 − 1

2

(

E
[

Y
])2

. (52)

Now using (46) and (52) we have

g(λ) =E [Q]− λE [L]

=− 1

2
λ2 +

1− p

2p2
γ2 − 1

2

(

E
[

Y
])2

+ λE
[

Y
]

. (53)

Thus, solving g(λ∗) = 0 is equivalent to solving

(λ∗)
2 − 2E

[

Y
]

λ∗ +
(

E
[

Y
])2 − 1− p

p2
γ2 = 0. (54)

The above equation has two solutions, but only one of them

is valid due to the inequality in (47). This is given by

λ∗ = E
[

Y
]

+

√
1− p

p
γ. (55)

It now remains to check whether γ < λ∗ − E [T] holds.

Using (16), we have

λ∗ − E [T] =

√
1− p

p
γ − 1− p

p
γ, (56)

which is clearly no larger than γ since the quantity√
1−p−(1−p)

p
is no larger than 1 for all values of p. This gives

a contradiction and concludes the proof.

534

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

D. Different Methods for Deriving (25)

The method included in the main text to derive (25) involves

a calculus of variations approach mainly through leverag-

ing the Euler-Lagrange equation and equating the functional

derivative to 0 [32]. In this appendix we discuss two alternate

methods to derive (25).

The first method, and quite the simplest one, is by complet-

ing the square in the Lagrangian in (23). Specifically, (23) can

be rewritten equivalently as

L =

∫ γ

c

1

2

(

w(τ) + τ + E [T]− λ− η(τ)

fY (τ)

)2

fY (τ)dτ

−
∫ γ

c

1

2

(

τ + E [T]− λ− η(τ)

fY (τ)

)2

fY (τ)dτ

+ E
[

Y
]

E [T] +
1

2
E
[

T 2
]

− λE [T] , (57)

which is minimized iff the first integrand is set to 0 ∀τ , which

exactly gives (25).

The second method is by using the result in [32, Ch. 7

Th. 1] to conclude that L (w) is minimized at w∗ only if

∂

∂α
L (w∗ + αh)

∣

∣

∣

∣

α=0

= 0, (58)

for any h(·) : R+ → R+. Taking h(τ) , δ(τ − t), for some

t ∈ [c, γ], where δ(·) is the Dirac delta function, we get that

for fixed α

L(w + αh)=

∫ γ

c

(

(τ + E [T]− λ)w(τ) +
1

2
w2(τ)

)

fY (τ)dτ

+ α (t+ E [T]− λ) fY (t)

∫ γ

c

δ(τ − t)dτ

+
1

2

∫ γ

c

(w(τ) + αδ(τ − t))
2
fY (τ)dτ

+ E
[

Y
]

E [T] +
1

2
E
[

T 2
]

− λE [T]

−
∫ γ

c

w(τ)η(τ)dτ − αη(t)

∫ γ

c

δ(τ − t)dτ.

(59)

Therefore, upon using
∫ γ

c
δ(τ − t)dτ = 1, we have

∂L (w + αh)

∂α
=(t+ E [T]− λ) fY (t)− η(t)

+

∫ γ

c

(w(τ) + αδ(τ − t)) δ(τ − t)fY (τ)dτ.

(60)

Setting α = 0 in the above and using (58), (25) is directly

reached after rearranging.

REFERENCES

[1] S. K. Kaul, R. D. Yates, and M. Gruteser. Real-time status: How often
should one update? In Proc. IEEE Infocom, March 2012.

[2] C. Kam, S. Kompella, and A. Ephremides. Age of information under
random updates. In Proc. IEEE ISIT, July 2013.

[3] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff.
Update or wait: How to keep your data fresh. IEEE Trans. Inf. Theory,
63(11):7492–7508, November 2017.

[4] R. Talak, S. Karaman, and E. Modiano. Optimizing information
freshness in wireless networks under general interference constraints.
In Proc. MobiHoc, June 2018.

[5] B. Zhou and W. Saad. Optimal sampling and updating for minimizing
age of information in the internet of things. In Proc. IEEE Globecom,
December 2018.

[6] M. Zhang, A. Arafa, J. Huang, and H. V. Poor. How to price fresh data.
In Proc. WiOpt, June 2019.

[7] M. Bastopcu and S. Ulukus. Minimizing age of information with soft
updates. J. Commun. Netw., 21(3):233–243, June 2019.

[8] B. Buyukates, A. Soysal, and S. Ulukus. Age of information in multihop
multicast networks. J. Commun. Netw., 21(3):256–267, June 2019.

[9] X. Wu, J. Yang, and J. Wu. Optimal status update for age of information
minimization with an energy harvesting source. IEEE Trans. Green

Commun. Netw., 2(1):193–204, March 2018.
[10] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor. Age-minimal transmission

for energy harvesting sensors with finite batteries: Online policies. IEEE

Trans. Inf. Theory. To appear. Available Online: arXiv:1806.07271.
[11] B. T. Bacinoglu, Y. Sun, E. Uysal-Biyikoglu, and V. Mutlu. Achieving

the age-energy tradeoff with a finite-battery energy harvesting source.
In Proc. IEEE ISIT, June 2018.

[12] T. Z. Ornee and Y. Sun. Sampling for remote estimation through queues:
Age of information and beyond. In Proc. WiOpt, June 2019.

[13] R. D. Yates, E. Najm, E. Soljanin, and J. Zhong. Timely updates over
an erasure channel. In Proc. IEEE ISIT, June 2017.

[14] A. Arafa, K. Banawan, K. Seddik, and H. V. Poor. On timely channel
coding with hybrid ARQ. In Proc. IEEE Globecom, December 2019.
Available Online: arXiv:1905.03238.

[15] S. K. Kaul, R. D. Yates, and M. Gruteser. Status updates through queues.
In Proc. CISS, March 2012.

[16] M. Costa, M. Codreanu, and A. Ephremides. On the age of information
in status update systems with packet management. IEEE Trans. Inf.

Theory, 62(4):1897–1910, April 2016.
[17] K. Chen and L. Huang. Age-of-information in the presence of error. In

Proc. IEEE ISIT, June 2016.
[18] R. D. Yates and S. K. Kaul. The age of information: Real-time status

updating by multiple sources. IEEE Trans. Inf. Theory, 65(3):1807–
1827, March 2019.

[19] E. Najm and E. Telatar. Status updates in a multi-stream M/G/1/1
preemptive queue. In Proc. IEEE Infocom, April 2018.

[20] A. Soysal and S. Ulukus. Age of information in G/G/1/1 systems: Age
expressions, bounds, special cases, and optimization. Available Online:
arXiv:1905.13743.

[21] S. Farazi, A. G. Klein, and D. R. Brown III. Age of information in
energy harvesting status update systems: When to preempt in service?
In Proc. IEEE ISIT, June 2018.

[22] V. Kavitha abd E. Altman and I. Saha. Controlling packet drops to
improve freshness of information. Available Online: arXiv:1807.09325.

[23] B. Wang, S. Feng, and J. Yang. When to preempt? age of information
minimization under link capacity constraint. J. Commun. Netw., 2019.
To appear.

[24] C. Xu, H. H. Yang, X. Wang, and T. Q. S. Quek. On peak age of
information in data preprocessing enabled IoT networks. In Proc. IEEE

WCNC, April 2019.
[25] Q. Kuang, J. Gong, X. Chen, and X. Ma. Age-of-information for

computation-intensive messages in mobile edge computing. Available
Online: arXiv:1901.01854.

[26] J. Gong, Q. Kuang, X. Chen, and X. Ma. Reducing age-of-information
for computation-intensive messages via packet replacement. Available
Online: arXiv:1901.04654.

[27] P. Zou, O. Ozel, and S. Subramaniam. Trading off computa-
tion with transmission in status update systems. Available Online:
arXiv:1907.00928.

[28] X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang. Age based task
scheduling and computation offloading in mobile-edge computing sys-
tems. Available Online: arXiv:1905.11570.

[29] R. D. Yates, M. Tavan, Y. Hu, and D. Raychaudhuri. Timely cloud
gaming. In Proc. IEEE Infocom, May 2017.

[30] W. Dinkelbach. On nonlinear fractional programming. Management

Science, 13(7):492–498, 1967.
[31] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.
[32] D. G. Luenberger. Optimization by Vector Space Methods. John Wiley

& Sons, 1997.

535

Authorized licensed use limited to: Rutgers University. Downloaded on May 29,2020 at 13:19:52 UTC from IEEE Xplore. Restrictions apply.

