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Abstract—A source provides status updates to monitors
through a network with state defined by a continuous-time
finite Markov chain. An age of information (AoI) metric is
used to characterize timeliness by the vector of ages tracked
by the monitors. Based on a stochastic hybrid systems (SHS)
approach, first order linear differential equations are derived
for the temporal evolution of both the moments and the moment
generating function (MGF) of the age vector components. It is
shown that the existence of a non-negative fixed point for the first
moment is sufficient to guarantee convergence of all higher order
moments as well as a region of convergence for the stationary
MGF vector of the age. The stationary MGF vector is then
found for the age on a line network of preemptive memoryless
servers. From this MGF, it is found that the age at a node is
identical in distribution to the sum of independent exponential
service times. This observation is then generalized to linear status
sampling networks in which each node receives samples of the
update process at each preceding node according to a renewal
point process. For each node in the line, the age is shown to be
identical in distribution to a sum of independent renewal process
age random variables.

Index Terms—Age of information, queueing systems, commu-
nication networks, stochastic hybrid systems, status updating,
status sampling network

I. INTRODUCTION

With the emergence of cyberphysical systems, real-time

status updates have become an important and ubiquitous form

of communication. These updates include traffic reports, game

scores, security system reports from computers, homes, and

offices, video feedback from remote-controlled systems, and

even location updates from loved ones. These examples share

a common description: a source generates time-stamped status

update messages that are transmitted through a communication

system to one or more monitors.

The goal of real-time status updating is to ensure that the

status of interest is as timely as possible at each monitor.

Ideally, a monitor would receive a status update, typically

communicated as a data packet, at the very instant it was

generated at a source. If this were possible, a source would

simply generate status updates as fast as possible. However,

system capacity constraints dictate that the delivery of a status

message requires a nonzero and typically random time in the

system.
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From these observations, timeliness of status updates has

emerged as a new field of network research. It has been

shown in simple queueing systems that timely updating is

not the same as maximizing the utilization of the system that

delivers these updates, nor the same as ensuring that updates

are received with minimum delay [1]. While utilization is

maximized by sending updates as fast as possible, this strategy

will lead to the monitor receiving delayed updates that were

backlogged in the communication system. In this case, the

timeliness of status updates at the receiver can be improved

by reducing the update rate. On the other hand, throttling the

update rate will also lead to the monitor having unnecessarily

outdated status information because of a lack of updates.

This has led to the introduction of new performance metrics,

based on the Age of Information (AoI), that describe the time-

liness of one’s knowledge of an entity or process. Specifically,

an update packet with time-stamp u is said to have age t− u
at a time t ≥ u. When the monitor’s freshest1 received update

at time t has time-stamp u(t), the age is the random process

x(t) = t − u(t). Optimization based on AoI metrics of both

the network and the senders’ updating policies has yielded

new and even surprising results [2], [3].

Nevertheless, the analysis of the time-average AoI has

proven challenging, even when simple queues have been used

to model update delivery processes. The primary objective of

this work is to develop new tools for AoI analysis in networks.

Building on prior work [4] that introduced the stochastic

hybrid system (SHS) for AoI analysis, this paper employs

SHS to analyze the temporal convergence of higher order

AoI moments and the moment generating function (MGF)

of an AoI process. The MGF enables characterization of

the stationary distribution of the AoI in a class of status

sampling networks, a networking paradigm in which samples

of a node’s status update process are delivered as a point

process to neighbor nodes. This type of model may be useful

in a high speed network in which updates represent small

amounts of protocol information (requiring negligible time for

transmission) that are given priority over data traffic. While the

transmission of a single update may be negligible, the update

rates are limited so that protocol information in the aggregate

does not consume an excessive fraction of network resources.

A. AoI Background

An update is said to be fresh when its timestamp is the

current time t and its age is zero. As depicted in Fig-

ure 1(a), the canonical updating model has a source that

1One update is fresher than another if its age is less.
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Fig. 1. (a) Fresh updates from a source pass through the network to a
destination monitor. Monitor 1 (marked by •) sees fresh update packets at
the network access link. (b) Since Monitor 1 sees fresh updates as a point
process at times ti, its age process x1(t) is reset to zero at times ti. Since the
destination monitor sees updates that are delivered at times t′i after traveling
through the network, its age process x2(t) is reset to x2(t′i) = t′i− ti, which
is the age of update i when it is delivered.

submits fresh updates to a network that delivers those updates

to a destination monitor. In this work, there are additional

monitors/observers in the network that serve to track the ages

of updates in the network.

In the Figure 1(a) example, an additional monitor observes

the fresh updates as they enter the network. These fresh

updates are submitted at times t1, t2, . . . and this induces the

AoI process x1(t) shown in Figure 1(b). Specifically, x1(t)
is the age of the most recent update seen by a monitor at

the input to the network. Because the updates are fresh, x1(t)
is reset to zero at each ti. However, in the absence of a new

update, the age x1(t) grows at unit rate. If the source in Fig. 1

submits fresh updates as a renewal point process, the AoI x1(t)
is simply the age (also known as the backwards excess) [5],

[6] of the renewal process.

These updates pass through a network and are delivered

to the destination monitor at corresponding times t′1, t
′
2, . . ..

Consequently, the AoI process x2(t) at the destination monitor

is reset at time t′i to x2(t
′
i) = t′i − ti, which is the age of

the ith update when it is delivered. Once again, absent the

delivery of a newer update, x2(t) grows at unit rate. Hence the

age processes x1(t) and x2(t) have the characteristic sawtooth

patterns shown in Figure 1(b). Furthermore, any other monitor

in the network that sees updates arrive some time after they

are fresh, will have a sawtooth age process x(t) resembling

that of x2(t).

Initial work on age has focused on applying graphical

methods to sawtooth age waveforms x(t) to evaluate the

limiting time-average AoI

X = lim
T→∞

1

T

∫ T

0

x(t) dt. (1)

While the time average X is often referred as the AoI, this

work employs AoI and age as synonyms that refer to the

process x(t) and call X the average AoI or average age.2

B. Prior Work

AoI analysis of updating systems started with the analyses

of status age in single-source single-server first-come first-

served (FCFS) queues [1], the M/M/1 last-come first-served

(LCFS) queue with preemption in service [7], and the M/M/1

FCFS system with multiple sources [8]. Since these initial

efforts, there have been a large number of contributions to

AoI analysis.

To evaluate AoI for a single source sending updates through

a network cloud [9] or through an M/M/m server [10]–[12],

out-of-order packet delivery was the key analytical challenge.

A related (and generally more tractable) metric, peak age

of information (PAoI), was introduced in [13]. Properties of

PAoI were also studied for various M/M/1 queues that support

preemption of updates in service or discarding of updates that

find the server busy [14], [15] or have packet erasures at the

queue output [16]. In [13], [14], the authors analyzed AoI and

PAoI for queues that discard arriving updates if the system is

full and also for a third queue in which an arriving update

would preempt a waiting update.

For a single updating source, distributional properties of the

age process were analyzed for the D/G/1 queue under FCFS

[17], as well as for single server FCFS and LCFS queues [18].

Packet deadlines were found to improve AoI [19], [20] and

age-optimal preemption policies were identified for updates

with deterministic service times [21].

There have also been efforts to evaluate and optimize age

for multiple sources sharing a queue or simple network [4],

[22]–[30]. In [4], the SHS approach was introduced to extend

AoI results to preemptive queues with multiple sources. SHS

was also used to evaluate age in a CSMA system [31] as well

as NOMA and OMA [32] systems. With synchronized arrivals,

a maximum age first policy was shown to be optimal under

preemption in service and near-optimal for non-preemptive

service [33]. A similar maximum age matching approach was

analyzed for an orthogonal channel system [34]. Scheduling

based on the Whittle index was also shown to perform nearly

optimally [24], [35], [36]. AoI analysis of preemptive priority

service systems has also been explored [37]–[39]. Updates

through communication channels have also been studied, in-

cluding fading channels [40], [41], hybrid ARQ for channels

with bit erasures [42]–[46], and updates by energy harvesting

sources [47]–[54].

The first evaluation of the average AoI over multihop

network routes [55] employed a discrete-time version of

the status sampling network described here in Section V.

When multiple sources employ wireless networks subject

2In Section V, it will be necessary to distinguish between the AoI and the
age of a renewal process used for random sampling.
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to interference constraints, AoI has been analyzed under a

variety of link scheduling strategies [56]–[64]. Age bounds

were developed from graph connectivity properties [65] when

each node needs to update every other node. For DSRC-

based vehicular networks, update piggybacking strategies were

developed and evaluated [66].

When update transmission times over network links are

exponentially distributed, sample path arguments were used

[67]–[69] to show that a preemptive Last-Generated, First-

Served (LGFS) policy results in smaller age processes at all

nodes of the network than any other causal policy. Note that

[69] and this work can be viewed as complementary in that

[69] proves the age-optimality of LGFS policies and this work

provides analytic tools for the evaluation of those policies.

In addition to these queue/network analyses, AoI has also

appeared in various application areas, including timely up-

dates via replicated servers [70]–[73], timely source coding

[74]–[77], dissemination of channel state information [78]–

[81], differential encoding of temporally correlated updates

[82], correlated updates from multiple cameras [83], UAV

trajectory optimization [84], periodic updates from correlated

IoT sources [85], mobile cloud gaming [86], google scholar

updating [87], and game-theoretic approaches to network

resource allocation for updating sources [88]–[91].

C. Paper Overview

This work is based on the system depicted in Figure 1(a)

in which a source sends update packets through a network to

a destination monitor. This system may be a simple queue

or it may be a complex network in which updates follow

multihop routes to the monitor and the network carries other

network traffic that interferes with the updating process of

interest. This work focuses on a class of systems in which

the movements of updates in the network are described by a

finite-state continuous-time Markov chain q(t). To deal with

continuously-growing age processes under a finite number of

states, q(t) is embedded in a stochastic hybrid system (SHS)

[92] with hybrid state [q(t),x(t)] such that x(t), the age

vector or AoI process, is a real-valued non-negative vector

that describes the continuous-time evolution of a collection of

AoI processes.

The SHS approach to age with hybrid state [q(t),x(t)] was

introduced in [4] where it was shown that age tracking can

be implemented as a simplified SHS with non-negative linear

reset maps in which the continuous state is a piecewise linear

process [93], [94], a special case of piecewise deterministic

processes [95], [96]. In [4], the SHS approach led to a system

of first order ordinary differential equations describing the tem-

poral evolution of the expected value of the age process. This

led to a set of age balance equations and simple conditions [4,

Theorem 4] under which the average age E[x(t)] converges

to a fixed point. In relation to [4], this work makes three

contributions:

• The SHS method introduced in [4] for the average age

is generalized to the analysis of higher order moments

and (through the MGF) distributional properties of age

processes.

• This extended SHS analysis of the MGF is employed to

characterize distributional properties of age processes in

a class of queueing networks with preemptive servers and

memoryless service times.

• The observations derived for the network of preemptive

servers are generalized, in the sense that memoryless

service times are supplanted by service times with general

distributions. These networks are shown to lend them-

selves a new description as “status sampling networks.”

Specifically, Section II presents Lemma 1, a system of first

order linear differential equations for the temporal evolution

of the higher-order age moments and a moment generating

function of the age vector. The differential equations of

Lemma 1 are the foundation for results in Sections III, IV,

and V. Section III shows how fixed points of these differential

equations describe stationary higher order moments and the

stationary MGF of the age process. In particular, it is shown

that a non-negative fixed point for the first moment guarantees

the existence of all moments of the age and a region of

convergence for the MGF.3

These results are first summarized in Theorem 1 in a form

convenient for hand calculation. The method of Theorem 1

is demonstrated in Section III-A with the analysis of the

age MGF of an M/M/1/1 queue that can abandon updates in

service. However, the proof of Theorem 1 requires a matrix

representation of the system of differential equations and

its fixed point. Specifically, proof of Theorem 2, the matrix

version of Theorem 1(a) for the age moments appears in

Section III-B and proof of Theorem 3, the matrix version of

Theorem 1(b) for the age MGF, is in Section III-C.

Section IV goes on to use Theorems 2 and 3 to derive

the moments, MGF, and stationary distribution of the age in

a line network with memoryless preemptive servers. From

the MGF, it is found that the age at a node has stationary

distribution identical to a sum of independent exponential

random variables. This generalizes a preliminary result for the

average age that was based on SHS analysis and the method

of fake updates [97].

In Section V, it is shown that the structural simplicity of

the AoI in the line network derives from the observation that

preemptive memoryless servers employing fake updates can

be viewed as a status sampling network in which samples of

the update process at a node i are delivered to a neighboring

node j as a point process. When this point process is a renewal

process, the AoI at node j is found to have a stationary

distribution given by the independent sum of the stationary

AoI at node i and the stationary age of the renewal process.

Note that Sections III, IV, and V follow from the differential

equations of Lemma 1. While Lemma 1 is derived from an

SHS model of age processes in a network, employing the

system of differential equations in Lemma 1 does not require

the reader to tackle the somewhat onerous SHS notation and

terminology. Hence the derivation of Lemma 1 is deferred to

Section VI where sawtooth age processes are modeled as a

stochastic hybrid system. From fundamental SHS properties,

3While the higher order moments can be derived from the MGF, there are
cases in which direct calculation of the moments is more straightforward.
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Dynkin’s formula is used to derive Lemma 1, the basis for all

subsequent results. The paper concludes in Section VII.

D. Notation

For integers m ≤ n, m :n = {m,m+ 1, . . . , n}; otherwise

m :n is an empty set. The Kronecker delta function δi,j equals

1 if i = j and otherwise equals 0. The vectors 0n and 1n de-

note the row vectors [0 · · · 0] and [1 · · · 1] in R
n. The

n×n identity matrix is In. With n unspecified, 0, 1, and I will

have dimensions that can be inferred from context. A vector

x ∈ R
n is a 1×n row vector. For vector x = [x1, · · · xn],

[x]j = xj denotes the jth element. The vector ei denotes the

ith Cartesian unit vector satisfying [ei]j = δi,j . A matrix B has

i, jth element [B]i,j and jth column [B]j . In some instances, it

will be convenient for vector/matrix indexing to start at j = 0
such that x = [x0 · · · xn] and B has upper left element

[B]00 and leftmost column [B]0. For a process x(t), ẋ and

ẋ(t) both denote the derivative dx(t)/dt. For a scalar function

g(·) and vector x ∈ R
n, g(x) = [g(x1) · · · g(xn)].

In particular, the vectors x
m = [xm1 xm2 · · · xmn ] and

esx = [esx1 · · · esxn ] appear frequently.

A random variable X has CDF FX(x) = P[X ≤ x] and a

pair of random variables X,Y has joint CDF FX,Y (x, y) =
P[X ≤ x, Y ≤ y]. Random variables X and Y having the

same distribution is denoted X ∼ Y . In addition, X ⊕ Y
denotes the sum X + Y under the product distribution

FX,Y (x, y) = FX(x)FY (y). When x is a random vector,

E[esx] is referred to as the MGF of x or the MGF vector.4

When x(t) is a random process such that the random variable

x(t) converges to a stationary distribution, X(t) denotes the

random process initialized with this stationary distribution.

II. A MODEL FOR UPDATES IN NETWORKS

This section describes a method for evaluating the moments

and MGF of an AoI process x(t) = [x1(t) · · · xn(t)] in

updating systems with discrete state given by a finite-state

continuous-time Markov chain q(t) ∈ Q = {0, . . . , qmax}. For

example, in the Section III-A age analysis of updates through

an M/M/1/1 queue with abandonment, q(t) ∈ {0, 1} will be

the queue size and x(t) = [x1(t) x2(t)] will describe the age

state at the queue and at the monitor. In the more general ex-

ample of Figure 1(a), fresh updates are submitted by a source

and pass through a network to a monitor; the movements of

update packets through the network are described by q(t).
In a graphical representation of the Markov chain q(t), each

state q ∈ Q is a node and nonzero transition probabilities

are enumerated by an index set L. Each l ∈ L corresponds

to a directed transition (ql, q
′
l) from state ql to q′l with fixed

transition rate λ(l) while q(t) = ql. Returning to the M/M/1/1

example, Figure 2 depicts the Markov chain q(t) with states

Q = {0, 1} and transition set L = {1, 2, 3}; transition l = 2,

corresponding to the directed edge (q2, q
′
2) = (1, 0), is a rate

λ(2) = µ transition from state q2 = 1 to state q′2 = 0.

4This is a restricted form of MGF that is insufficient for describing
dependency among the vector components, but will enable us to derive the
marginal distribution of each xi through E[esxi ].

The ages of the update packets, or equivalently the age

processes at various monitors in the network, are described

by the continuous state x(t).5 In this work, xj(t) is the

age process of a monitor that sees update packets that pass

through a “position” or “observation post” j in the system.

An observation post j may refer to a node j or link j in a

network, a position j in a queue, or a server j in a multiple

server system. In any case, xj(t) is the age process at monitor

j, or simply the age of monitor j. In the Figure 1(a) example,

x1(t) is the AoI of a monitor observing fresh updates on the

network access link of the source while x2(t) is the AoI at

the destination monitor node.

Each xj(t) grows at unit rate in the absence of a more

recent update passing through the observation post. Moreover,

xj(t) can make a discontinuous jump only in a transition of

q(t). Specifically, in the example of Figure 1, x1(t) is reset to

zero at time ti when a fresh update arrives at the network and

x2(t) is reset to x2(t
′
i) = t′i−ti at time t′i when the ith update

is delivered to the monitor. In general, xj(t) has a downward

jump when a discrete state transition causes an update to pass

observation post j.
The coupled evolution of the discrete state q(t) and the

continuous state x(t) is described by a particularly simple

instance of a stochastic hybrid system with the following rules:

• As long as the discrete state q(t) is unchanged,

ẋ(t) = 1. (2)

That is, in each discrete state, the age at each monitor

grows at unit rate.

• When the discrete state q(t) undergoes a transition, a

component xj(t) of the continuous state x(t) will make

a downward jump if a fresher update is observed by

monitor j.

These two rules yield sawtooth age processes at each monitor.

The next step is to describe a model for the downward

jumps in the age processes. For each discrete-state transition

l ∈ L, the downward jumps in the the continuous state x are

described by a transition reset map which is a linear mapping

of the form x
′ = xAl. That is, transition l causes the system

to jump from discrete state ql to q′l and resets the continuous

state from x to x
′ = xAl.

For tracking of AoI processes, each Al is a binary matrix

that has no more than a single 1 in a column. Such an Al will

be called an age assignment matrix. The set of age assignments

{Al} will depend on the specific queue discipline at each

node, the network routing function, and the indexing scheme

for updates in the system.

Column j of Al determines how x′j is set when transition

l takes place. In particular, if [Al]i,j = 1, then transition l
resets the age xj at monitor j to x′j = xi. This corresponds

to monitor j observing the current update of monitor i. For

example, in an FCFS queue in which each queue position

has a monitor, this occurs when an update changes its queue

5For a given system, the specification of the continuous state x(t) is not
unique. In [4], these components were explicitly associated with ages of
update packets in a system. In general, when x(t) ∈ R

n, one component
of x(t) is needed to track the age at the monitor and the other components
enable tracking of the ages of up to n− 1 update packets in the system.
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position from i to j = i − 1 with the service completion of

the head-of-line update.

Another important case is a transition l in which a monitor

j observes a fresh update. In this transition, x′j = 0 because

the update is fresh. This requires [Al]j , the jth column of

A, to be an all-zero column. In all cases, the age assignment

Al encodes age reductions at those monitors that observe the

deliveries of fresher updates.

To summarize, this work considers networks in which the

age process evolves as ẋ(t) = 1 in each discrete state

q ∈ Q and the transitions l are described by the tuples

al = (ql, q
′
l, λ

(l),Al). Denoting the set of transitions as

A = {al : l ∈ L}, the tuple (Q,1,A) defines these AoI

processes.

Definition 1: An age-of-information (AoI) SHS (Q,1,A)
is an SHS in which the discrete state q(t) ∈ Q is a continuous-

time Markov chain with transitions l ∈ L from state ql to

q′l at rate λ(l) and the continuous state evolves according to

ẋ(t) = 1 in each discrete state q ∈ Q and is subject to the

age assignment map x
′ = xAl in transition l.

The analysis of the moments and MGF of the age process in

an AoI SHS requires an analytical model that enables tracking

of the evolution of the mth moment E
[

xmj (t)
]

and moment

generating function E
[

esxj(t)
]

for all age components xj(t).
This is done with a bookkeeping system for the continuous

state that employs the discrete state for partitioning. Recalling

that δi,j is the Kronecker delta function, this bookkeeping

system defines

v
(m)
q̄,j (t) = E

[

xmj (t)δq̄,q(t)
]

, (3a)

v
(s)
q̄,j (t) = E

[

esxj(t)δq̄,q(t)
]

(3b)

for all states q̄ ∈ Q and age processes xj(t). These expected

value processes are then gathered in the vector functions

v
(m)
q̄ (t) = [v

(m)
q̄,1 (t) · · · v

(m)
q̄,n (t)] = E

[

x
m(t)δq̄,q(t)

]

, (4a)

v
(s)
q̄ (t) = [v

(s)
q̄,,1(t) · · · v

(m)
q̄,n (t)] = E

[

esx(t)δq̄,q(t)
]

. (4b)

Note that v
(m)
q̄ (t) and v

(s)
q̄ (t) use the dummy parameter names

m and s to distinguish between classes of test functions. While

this is generally undesirable, it will highlight the parallelism in

formulations. This abuse of notation can create ambiguity; v
(2)
q̄,j

may refer to v
(m)
q̄,j |m=2 or to v

(s)
q̄,j |s=2. Hence the convention

that v
(i)
q̄,j(t) for any integer i ≥ 1 refers to v

(m)
q̄,j (t) at m = i

is maintained.

Conveniently, at m = 0 or s = 0, this abuse of notation is

consistent in yielding the discrete-state indicator

v
(m)
q̄,j (t)

∣

∣

∣

m=0
= v

(s)
q̄,j (t)

∣

∣

∣

s=0
= E

[

δq̄,q(t)
]

= P[q(t) = q̄]. (5)

Since the index j in (5) has become redundant, (4) implies

v
(0)
q̄ (t) = v

(m)
q̄ (t)

∣

∣

∣

m=0
= v

(s)
q̄ (t)

∣

∣

∣

s=0
= 1n P[q(t) = q̄] (6)

is a vector of identical copies of P[q(t) = q̄]. This vectorized

redundancy will simplify some subsequent matrix algebra.

Since δq̄,q(t) = 0 for q(t) 6= q̄, it follows from (4) and the

law of total expectation that for all q̄ ∈ Q,

v
(m)
q̄ (t) = E[xm(t)|q(t) = q̄] P[q(t) = q̄], (7a)

v
(s)
q̄ (t) = E

[

esx(t)|q(t) = q̄
]

P[q(t) = q̄], (7b)

In (7), v
(m)
q̄ (t) and v

(s)
q̄ (t) can be interpreted as conditional

expectations of xm(t) and esx(t) given q(t) = q̄, weighted by

the state probability P[q(t) = q̄]. Furthermore, since

x
m(t) =

∑

q̄∈Q

x
m(t)δq̄,q(t), (8)

summing the weighted conditional moments v
(m)
q̄ (t) yields

the vector of mth moments:

E[xm(t)] =
∑

q̄∈Q

E
[

x
m(t)δq̄,q(t)

]

=
∑

q̄∈Q

v
(m)
q̄ (t). (9a)

Similarly, summing the v
(s)
q̄ (t) yields the MGF vector

E
[

esx(t)
]

=
∑

q̄∈Q

E
[

esx(t)δq̄,q(t)
]

=
∑

q̄∈Q

v
(s)
q̄ (t). (9b)

This decomposition of the moments E[xm(t)] and the MGF

E
[

esx(t)
]

will be useful because the discrete-state probabilities

v
(0)
q̄ (t) and the weighted conditional expectations v

(m)
q̄ (t), and

v
(s)
q̄ (t) are deterministic functions of time t that obey a system

of first-order ordinary differential equations. However, some

definitions are still needed to write these equations. Recalling

that a transition l ∈ L is from state ql to state q′l, let

Lq̄ = {l ∈ L : ql = q̄}, (10a)

L′
q̄ = {l ∈ L : q′l = q̄} (10b)

denote the respective sets of outgoing and incoming transitions

for state q̄ ∈ Q. In addition, for each transition mapping Al,

define a diagonal companion matrix Âl such that

[Âl]i,j =

{

1 i = j, [Al]j = 0
⊤,

0 otherwise.
(11)

The nonzero entries of Âl mark the zero columns of Al. These

definitions enable the following lemma.

Lemma 1: For state q̄ ∈ Q in an AoI SHS (Q,1,A),

v̇
(0)
q̄ (t) =

∑

l∈L′

q̄

λ(l)v(0)
ql

(t)− v
(0)
q̄ (t)

∑

l∈Lq̄

λ(l), (12a)

v̇
(m)
q̄ (t) = mv

(m−1)
q̄ (t) +

∑

l∈L′

q̄

λ(l)v(m)
ql

(t)Al

− v
(m)
q̄ (t)

∑

l∈Lq̄

λ(l), (12b)

v̇
(s)
q̄ (t) = sv

(s)
q̄ (t) +

∑

l∈L′

q̄

λ(l)
[

v
(s)
ql

(t)Al + v
(0)
ql

(t)Âl

]

− v
(s)
q̄ (t)

∑

l∈Lq̄

λ(l). (12c)

The derivation of Lemma 1 is deferred to Section VI. From

a given initial condition at time t = 0, (12a) computes the

temporal evolution of the state probabilities v
(0)
q̄ (t). Given

v
(0)
q̄ (t), (12b) computes the conditional first moments v

(1)
q̄ (t).
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Moreover, repeating this process for m = 2, 3, . . . enables

the successive calculation of the conditional moments v
(m)
q̄ (t)

from v
(m−1)
q̄ (t) to whatever order m is desired. Each step

of this process must solve a system of first order linear

differential equations with n|Q| variables. In the transform

domain, the situation in (12c) is even simpler; given v
(0)
q̄ (t),

a single set of n|Q| differential equations defines v
(s)
q̄ (t).

Note that Lemma 1 is the foundation for the rest of

this paper. In Section III, the fixed points of the Lemma 1

differential equations, are used to find the stationary moments

and the stationary MGF of the AoI. Section IV then derives the

stationary moments and MGF for a line network of preemptive

servers. Next, Section V generalizes these results to networks

in which nodes “sample” the age processes of their neighbors.

III. STATIONARY MOMENTS AND THE STATIONARY MGF

While using Lemma 1 to calculate age moment trajec-

tories may be of interest, the primary value of the lemma

is in deriving stationary moments of the AoI. However, the

stationary age moments are meaningful only if the Markov

chain q(t) is ergodic. Under this ergodicity assumption, the

state probabilities v
(0)
q̄ (t) in (12a) always converge to unique

stationary probabilities v̄
(0)
q satisfying

v̄
(0)
q̄

∑

l∈Lq̄

λ(l) =
∑

l∈L′

q̄

λ(l)v̄(0)
ql
,

∑

q̄∈Q

v̄
(0)
q̄ = 1. (13)

Notably, (12a) in Lemma 1 shows that this convergence of

state probabilities is disconnected from the evolution of the

age process. This is as expected since the age process x(t) is

a measurements process that does not influence the evolution

of the discrete state of the network.

Going forward, it is assumed that the Markov chain q(t)

is ergodic and that the state probabilities v
(0)
q̄ (t) are given by

the stationary probabilities v̄
(0)
q̄ . Under these ergodicity and

stationarity assumptions, (12b) in Lemma 1 reduces for m = 1
to the system of first order differential equations

v̇
(1)
q̄ (t) = v̄

(0)
q̄ +

∑

l∈L
′

q̄

λ(l)v(1)
ql

(t)Al − v
(1)
q̄ (t)

∑

l∈Lq̄

λ(l) (14)

in the vectors {v
(1)
q̄ (t) : q̄ ∈ Q}. While the differential

equations (14) hold for any set of reset maps {Al}, the system

of equations may or may not be stable. Stability depends on

the specific collection of reset maps.6 When (14) is stable,

each v̇
(1)
q̄ (t) → 0 and v

(1)
q̄ (t) → v̄

(1)
q̄ as t→ ∞, such that

v̄
(1)
q̄

∑

l∈Lq̄

λ(l) = v̄
(0)
q̄ +

∑

l∈L
′

q̄

λ(l)v̄(1)
ql

Al, q̄ ∈ Q. (15)

In this stable case, it follows from (8) that the average age is

E[x] = lim
t→∞

E[x(t)]

= lim
t→∞

∑

q̄∈Q

E
[

x(t)δq̄,q(t)
]

=
∑

q̄∈Q

v̄
(1)
q̄ . (16)

6For example, if each Al maps x′

1 = x1, then x1(t) = t simply tracks

the passage of time and v
(m)
q1 (t) grows without bound for all states q.

This approach can be extended to higher order age moments

and the age MGF by setting the derivatives v̇
(m)
q̄ (t) and v̇

(s)
q̄ (t)

in Lemma 1 to zero and solving for the limiting values v̄
(m)
q̄

and v̄
(s)
q̄ . This leads to the following result.

Theorem 1: If the discrete-state Markov chain q(t) is er-

godic with stationary distribution v̄
(0)
q̄ > 0 for all q̄ ∈ Q and

(15) has a non-negative solution {v̄
(1)
q̄ : q̄ ∈ Q}, then:

(a) For all q̄ ∈ Q, v
(m)
q̄ (t) converges to v̄

(m)
q̄ satisfying

v̄
(m)
q̄

∑

l∈Lq̄

λ(l) = mv̄
(m−1)
q̄ +

∑

l∈L′

q̄

λ(l)v̄(m)
ql

Al, (17a)

and E[xm(t)] converges to the stationary mth moment

age vector

E[xm] =
∑

q̄∈Q

v̄
(m)
q̄ . (17b)

(b) There exists s0 > 0 such that for all s < s0, v
(s)
q̄ (t),

q̄ ∈ Q, converges to v̄
(s)
q̄ satisfying

v̄
(s)
q̄

∑

l∈Lq̄

λ(l)=sv̄
(s)
q̄ +

∑

l∈L′

q̄

λ(l)
[

v̄
(s)
ql

Al + v̄
(0)
ql

Âl

]

(18a)

and the MGF E
[

esx(t)
]

converges to the stationary vector

E
[

esx
]

=
∑

q̄∈Q

v̄
(s)
q̄ . (18b)

Theorem 1 is demonstrated now with an example.

A. Example: The M/M/1/1 queue with abandonment

This section analyzes the AoI at the output of an M/M/1/1

queue in which updates arrive at rate λ, are served at rate µ,

and an update-in-service is abandoned (i.e. discarded without

completing service) at rate α. Furthermore, when there is an

update in service, new arrivals are blocked and cleared. The

discrete state q(t) ∈ Q = {0, 1} is the queue occupancy. A

Markov chain7 for q(t) is shown in Figure 2 with transitions

labeled by the index l. Each transition l is described in Table I.

The continuous state is x(t) = [x1(t) x2(t)], where x1(t) is

the age of a monitor that sees updates that go into service and

x2(t) is the age of the destination monitor that sees updates

that complete service.

The goal here is to find the limiting MGF E[esx2 ] =
limt→∞ E

[

esx2(t)
]

. The first step is to use (13) to derive

the equations v̄
(0)
0 λ = v̄

(0)
1 (µ + α) and v̄

(0)
0 + v̄

(0)
1 = 1

for the Markov chain stationary probabilities. This yields the

stationary probabilities

v̄
(0)
0 =

µ+ α

λ+ µ+ α
1, v̄

(0)
1 =

λ

λ+ µ+ α
1. (19)

Now (18a) is used to write

v̄
(s)
0 λ = sv̄

(s)
0 + µv̄

(s)
1 A2 + αv̄

(s)
1 A3, (20a)

7In an SHS Markov chain, there may be multiple transitions l and l′ from
state i to state j; the transitions have different maps Al and Al′ . Furthermore,
the SHS can include self-transitions in which the discrete state is unchanged
but a reset occurs in the continuous state.
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TABLE I
TABLE OF TRANSITIONS FOR THE SHS MARKOV CHAIN IN FIGURE 2.

l λ(l) ql → q′l xAl Al Âl

1 λ 0 → 1 [ 0 x2] [ 0 0
0 1 ] [

1 0
0 0 ]

2 µ 1 → 0 [x1 x1] [ 1 1
0 0 ] [

0 0
0 0 ]

3 α 1 → 0 [x1 x2] [ 1 0
0 1 ] [

0 0
0 0 ]

0 1

1

2

3

Fig. 2. The SHS Markov chain for the M/M/1/1 queue with abandonment.
The transition rates and reset maps for links l ∈ {1, 2, 3} are shown in Table I.

v̄
(s)
1 (µ+ α) = sv̄

(s)
1 + λ

(

v̄
(s)
0 A1 + v̄

(0)
0 Â1

)

. (20b)

From Table I, these equations simplify to

v̄
(s)
0 (λ− s) = v̄

(s)
1

[

µ+ α µ
0 α

]

, (21a)

v̄
(s)
1 (µ+ α− s) = v̄

(s)
0

[

0 0
0 λ

]

+ v̄
(0)
0

[

λ 0
0 0

]

. (21b)

For compactness of notation, let β = µ + α and let γ =
λ+ µ+ α. With some algebra, (21) implies

v̄
(s)
0 =

λβ

(λ− s)(β − s)γ

[

β
µ[λβ − γs+ s2]

λµ− γs+ s2

]

, (22a)

v̄
(s)
1 =

λβ

(β − s)γ

[

1
λµ

λµ− γs+ s2

]

. (22b)

By Theorem 1(b), the MGF E
[

esx(t)
]

converges to the sta-

tionary vector

E[esx] = v̄
(s)
0 + v̄

(s)
1

=

λβ

[

γ − s
µ[λγ − (λ+ γ)s+ s2]

λµ− γs+ s2

]

γ(λ− s)(β − s)
. (23)

The average age at the destination monitor is

E[x2] =
d E[esx2 ]

ds

∣

∣

∣

∣

s=0

=
1

λ
+

1

µ
+

λ

(µ+ α)(λ+ µ+ α)
+

α

λµ
. (24)

Note that it follows from (24) that a nonzero abandonment rate

α will reduce average AoI when λ/µ is sufficiently large.8

B. Matrix Formulation of the Age Moments

Lemma 1 and Theorem 1 show how the “probability

balance” in (13) for the Markov chain is similar to the

“age balance” in (15). This makes Theorem 1 convenient for

deriving the age moments of systems with a small number of

states, such as in the M/M/1/1 example of the previous section.

8This observation is analogous to the conclusion in [20] that using deadlines
to discard updates-in-service also can reduce average AoI.

However, the proof of Theorem 1, as well as computational

methods for larger problems, require a matrix representation

of the systems of differential equations and their fixed points

in terms of the long row vectors

v
(m)(t) = [v

(m)
0 (t) · · · v

(m)
qmax

(t)], (25a)

v
(s)(t) = [v

(s)
0 (t) · · · v

(s)
qmax

(t)]. (25b)

These definitions enable the development and proof of The-

orem 2, the matrix version of Theorem 1(a) for the age

moments, and Theorem 3, the matrix version of Theorem 1(b)

for the age MGF.

Starting with the differential equations (12), define the

departure rate from state q̄ as

dq̄ =
∑

l∈Lq̄

λ(l) (26)

and the n|Q| × n|Q| diagonal matrix

D = diag[d0In, . . . , dqmax
In]. (27)

Defining

Li,j = {l ∈ L : ql = i, q′l = j}, i, j ∈ Q, (28)

as the set of SHS transitions from state i to state j, let R and

R̂ denote block matrices such that for i, j ∈ Q, blocks i, j of

R and R̂ are given by

Ri,j =
∑

l∈Li,j

λ(l)Al, (29a)

R̂i,j =
∑

l∈Li,j

λ(l)Âl. (29b)

With the observation that the set of transitions into state q̄
is L′

q̄ = ∪iLi,q̄ , (12b) becomes, for all q̄ ∈ Q,

v̇
(m)
q̄ (t) = mv

(m−1)
q̄ (t)

+
∑

i

∑

l∈Li,q̄

λ(l)v(m)
ql

(t)Al − dq̄v
(m)
q̄ (t). (30)

With the substitution q̄ = j and the observation that ql = i for

all l ∈ Li,j , it follows from (29a) and (30) that for all j ∈ Q,

v̇
(m)
j (t) = mv

(m−1)
j (t)+

∑

i

v
(m)
i (t)

∑

l∈Li,j

λ(l)Al − djv
(m)
j (t)

= mv
(m−1)
j (t)+

∑

i

v
(m)
i (t)Ri,j − djv

(m)
j (t). (31)

It follows from (25a) and (27) that (31) can be written in

vector form as

v̇
(m)(t) = mv

(m−1)(t) + v
(m)(t)(R−D). (32)

By stationarity of q(t), v(0)(t) = v̄
(0) and thus for m = 1,

v̇
(1)(t) = v̄

(0) + v
(1)(t)(R−D). (33)

Furthermore, setting v̇
(1)(t) = 0 and solving for v(1)(t) =

v̄
(1) yields

v̄
(1)

D = v̄
(0) + v̄

(1)
R. (34)

Note that (33) and (34) are just restatements of (14) and
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(15), but in a matrix form that provides a straightforward

characterization of the fixed points of (33).

Lemma 2: If v̄
(0) > 0 and there exists a non-negative

solution v̄
(1) for (34), then all eigenvalues of R − D have

strictly negative real parts.

Lemma 2 is a minor variation on the Perron-Frobenius theo-

rem; the proof in the Appendix follows from non-negativity of

D and R. Lemma 2 says that the existence of a non-negative

solution v̄
(1) for (34) implies that the differential equation (33)

for v(1)(t) is stable and that limt→∞ v
(1)(t) = v̄

(1) such that

v̄
(1) = v̄

(0)(D−R)−1. (35)

In the following, v̄(1) is called the stationary first moment of

the age process. Similarly, v̄(m) will denote the stationary mth

moment. Note that Lemma 2 requires the finite state Markov

chain q(t) to have no transient states; all components of the

stationary probability vector v̄(0) must be strictly positive. This

condition is carried forward in the next theorem.

Theorem 2: If the discrete-state Markov chain q(t) is er-

godic with stationary distribution v̄
(0) > 0 and (34) has a

non-negative solution v̄
(1), then v

(m)(t) converges to

v̄
(m) = [v̄

(m)
0 · · · v̄

(m)
qmax

] = m! v̄(0)
[

(D−R)−1
]m
, (36a)

and E[xm(t)] converges to the stationary mth moment

E[xm] =

qmax
∑

q=0

v̄
(m)
q . (36b)

Proof by induction appears in the Appendix. The proof follows

almost directly from Lemma 2. Note that Theorem 2 is just a

restatement of Theorem 1(a) in a matrix form that enables an

explicit closed form solution for v̄
(m). Also note for m = 1

that Theorem 2 is a restatement of [4, Theorem 4] using matrix

notation.

C. Matrix Formulation of the Age MGF

This section follows similar steps for the MGF to construct

a matrix version of Theorem 1(b). Recalling L′
q̄ = ∪iLi,q̄ is

the set of transitions into state q̄, (12c) becomes

v̇
(s)
q̄ (t) = sv

(s)
q̄ (t) +

∑

i

∑

l∈Li,q̄

λ(l)
[

v
(s)
ql

(t)Al + v
(0)
ql

(t)Âl

]

− dq̄v
(s)
q̄ (t). (37)

With the substitution q̄ = j and the observation that ql = i for

all l ∈ Li,j , (29) and (37) imply that

v̇
(s)
j (t) = sv

(s)
j (t) +

∑

i

[

v
(s)
i (t)Ri,j + v

(0)
i (t)R̂i,j

]

− djv
(s)
j (t). (38)

It follows from (25b), (27) and (29) that (38) can be written

in vector form as

v̇
(s)(t) = v

(s)(t)[R−D+ sI] + v
(0)(t)R̂. (39)

Under the stationarity assumption, the state probability vector

is v
(0)(t) = v̄

(0). Moreover, if there exists a non-negative

solution v̄
(1) for (34), then the eigenvalues of R − D have

strictly negative real parts. This implies there exists s0 > 0
such that for all s < s0 the eigenvalues of R − D + sI
have strictly negative real parts and v

(s)(t) will converge to

the fixed point given by v̇
(s)(t) = 0. This observation is

formalized in the following claim, which is a restatement of

Theorem 1(b) in matrix form.

Theorem 3: If the discrete-state Markov chain q(t) is er-

godic with stationary distribution v̄
(0) > 0 and there exists a

stationary first moment v̄
(1) ≥ 0 satisfying (34), then there

exists s0 > 0 such that for all s < s0, v(s)(t) converges to

the stationary MGF vector

v̄
(s) = [v̄

(s)
0 · · · v̄

(s)
qmax

] = v̄
(0)

R̂(D−R− sI)−1 (40a)

and the MGF E
[

esx(t)
]

converges to the stationary vector

E[esx] =

qmax
∑

q=0

v̄
(s)
q . (40b)

As one would expect, the stationary MGF is sufficient to

rederive the stationary moments found in Theorem 2. For

example, rewriting (40a) yields v̄
(s)(D −R − sI) = v̄

(0)
R̂.

Taking the derivative of both sides yields

dv̄(s)

ds
(D−R− sI)− v̄

(s) = 0. (41)

Evaluating at s = 0 yields the Theorem 2 claim

dv̄(s)

ds

∣

∣

∣

∣

s=0

= v̄
(0)(D−R)−1 = v̄

(m)
∣

∣

∣

m=1
. (42)

In the same way, successive derivatives of (41) will yield v̄
(m)

for m > 1 and the corresponding higher order moments E[xm]
in (36).

While the age moments of Theorem 1(a) and Theorem 2

are indeed a simple consequence of the MGF, it is worth re-

emphasizing the pivotal role of the first moment v̄(1) of the

age. The existence of the first moment, i.e. the average age,

guarantees the existence of, and convergence to, the stationary

MGF vector of the age process.

IV. PREEMPTIVE LINE NETWORKS

One can now apply Theorem 3 to the last-come-first-served

preemptive line network depicted in Figure 3. In this system,

source node 0 generates fresh updates as a rate µ0 Poisson

process. These updates pass through nodes 1, 2, . . . , n − 1 to

sink node n such that each node i, i < n, is a rate µi ·/M/1/1

server supporting preemption in service. An update departing

node i − 1 immediately goes into service at node i and any

preempted update at node i is discarded. Thus there is no

queueing and each node i is either idle or serving an update.

Nevertheless, the process of delivering timely updates to the

sink is complex for the following reasons:

• The line network is lossy as updates are discarded when

they are preempted; the departure process at each node

i > 0 is not memoryless.

• Updates arriving at nodes i > 1 are not fresh; instead they

are aged by their passage through prior nodes. The age

of an arriving update may be correlated with its service
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Source
0

x1 x2 xn
µ0 µ1 µ2 µn−1

Fig. 3. In this n-node line network, xi is the age of a monitor that sees
updates that go into service at node i. This figure admits two models: (1)
Each node i is s rate µi ·/M/1/1 queue. supporting preemption in service. An
update departing node i− 1 immediately goes into service at node i and any
preempted update at node i is discarded. (2) Node i forwards its current state
update as a rate µi Poisson process to node i+ 1.

times at preceding nodes. That is, the interarrival time of

an update may be correlated with its age.

• The line network has 2n states, since a network state must

indicate whether each node is idle or busy.

• Updates that reach the monitor benefit from a survivor

bias; each was lucky enough in its service times to avoid

being preempted.

Despite these issues, an initial SHS analysis [97] showed

that the average age is additive from hop to hop. Specifically,

the expected age E[xn(t)] at monitor n was shown to converge

to the stationary expected value9

E[Xn] =
1

µ0
+

1

µ1
+ · · ·+

1

µn−1
. (43)

This analysis avoided a combinatorial explosion in the SHS

analysis associated with tracking the idle/busy state of each

node by employing the method of “fake updates” [4].

To describe SHS with fake updates, let x(t) =
[x1(t) · · · xn(t)], where xi(t) is the age of a monitor that

sees updates arriving at node i, denote the continuous state.

When an update departs node i at time t, a “fake update” is

created and put into service at node i, with the same timestamp

(and age xi(t)) as the update that just departed. If a new update

from node i− 1 arrives at node i, it preempts the fake update

and the fake update causes no delay to the arriving update.

If the fake update does complete service at node i, it will go

into service at node i+1, but it will have the same age as the

update (whether real or fake) that it will preempt. Hence the

evolution of age vector x(t) is the same as it would be with

just real updates.10

Under the fake update model, each node is perpetually busy

serving updates at rate µi for delivery to the next node. Hence,

there is no need to track the idle/busy at each node. Moreover,

each node i can be viewed as offering its current update as

a rate µi process to node i + 1; this represents a second

interpretation of the network in Figure 3. In this alternate

model, a node i represents a monitor that forwards its current

update to node i+1 as a rate µi Poisson point process in which

the transmission/delivery of an update occurs instantaneously.

This idealized network will have the same age process x(t)
as the actual M/M/1/1 line network with update packets that

9A discrete-time version of this result was first recognized in [55, Theo-
rem 1].

10Note that the method of fake updates depends on preemptive service. For
example, fake updates fail in a line network of the ·/M/1/1 servers supporting
abandonment of service analyzed in Section III-A. In such a network, the
idle/busy state of each server must be tracked to determine whether an arriving
update goes into service or is discarded.

TABLE II
TABLE OF TRANSITIONS FOR THE SHS MARKOV CHAIN IN FIGURE 4.

l λ(l) xAl

0 µ0 [ 0 x2 x3 · · · xn−1 xn]
1 µ1 [x1 x1 x3 · · · xn−1 xn]
2 µ2 [x1 x2 x2 · · · xn−1 xn]
...

...
...

n− 1 µn−1 [x1 x2 x3 · · · xn−1 xn−1]

0 n− 1

2

0

1 . . .

Fig. 4. The SHS Markov chain for the line network with n nodes. The
transition rates and transition/reset maps for links l = 0, . . . , n are shown in
Table II.

are preempted and servers that go idle.

A. Age Moments on the Line Network

In this section, Theorem 2 is applied to the idealized line

network to enable evaluation of the age moments. The SHS

has the trivial discrete state space Q = {0} and stationary

probabilities v̄
(0) = v̄

(0)
0 = 1. From (9a), the mth moment of

the age at time t is

v
(m)(t) = v

(m)
0 (t) = E[xm(t)]. (44)

The state transitions are shown in Table II. Note that:

• Transition l = 0 marks the arrival of a fresh update at

node 1. In the continuous state x, this transition sets x′1 =
0 but all other components of x are unchanged.

• In a transition l ∈ {1, . . . , n− 1}, an update is sent from

node l to node l + 1. At node l + 1, the age is reset to

x′l+1 = xl. At all other nodes, the age is unchanged.

All transitions are trivially 0 → 0 self transitions and the total

rate of transitions out of state 0 is d0 =
∑n−1

i=0 µi. Thus

D = d0I (45)

in (27). From Table II, the n×n transition matrices Al can be

inferred and R = R00 given in (29a) can be constructed. By

following these steps and applying Theorem 2, the following

claim is verified in the Appendix.

Theorem 4: The n-node line network has stationary mth

moment age vector

v̄
(m) = lim

t→∞

[

E[xm1 (t)] E[xm2 (t)] · · · E[xmn (t)]
]

= m!1











1
µ0

1
µ0

· · · 1
µ0

1
µ1

. . . 1
µ1

. . .
...
1

µn−1











m

. (46)
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B. Age MGF on the Line Network

For the line network, using Theorem 3 to find the age MGF

vector requires D in (45) and R = R00 in (91) from the

derivation of Theorem 4, in order to construct R̂ as specified

by (29b). Since Q = {0}, it follows from (9b) that the MGF

vector is

E
[

esx(t)
]

= v
(s)(t) = v

(s)
0 (t). (47)

By applying Theorem 3, the following claim is verified in the

Appendix.

Theorem 5: The n-node line network has stationary MGF

v̄
(s) = lim

t→∞

[

E
[

esx1(t)
]

E
[

esx2(t)
]

· · · E
[

esxn(t)
]]

=

[

µ0

µ0 − s

1
∏

i=0

µi

µi − s
· · ·

n−1
∏

i=0

µi

µi − s

]

. (48)

The interpretation of Theorem 5 is that Xk, the stationary age

at node k has distribution

Xk ∼ Z0 ⊕ · · · ⊕ Zk−1, (49)

where the Zi are independent exponential (µi) random vari-

ables. Note that Theorem 5 generalizes the sum result (43) for

the average age originally derived in [97].

V. SAMPLING STATIONARY AGE PROCESSES

This section examines age in networks (described by an AoI

SHS) which have been running for a sufficiently long time to

ensure that the Markov chain q(t) has stationary probabilities

and that the MGF vector v
(s)(t) has converged to the fixed

point v̄(s). In the following definition, a network that meets

these conditions is said to have a stationary age process.

Definition 2: The AoI SHS (Q,1,A) is a stationary age

process if the Markov chain q(t) has stationary probabilities

v̄
(0) > 0, there exists non-negative first moment v̄(1) satisfy-

ing (34), and v
(s)(t) = v̄

(s).

Convergence to a stationary MGF vector in Theorem 3

indicates that each component xj(t) of the age vector x(t) has

converged to a stationary distribution FXj
(·). These conditions

hold by initializing the system with v
(s)(0) = v̄

(s). Practically,

this is a weak assumption since Theorem 3 tells us that

the existence of the first moment v̄
(1) implies exponential

convergence of v(s)(t) to the fixed point v̄(s).

For the stationary age process x(t) of the line network in

Section IV, it follows from (49) that the distribution of the

age Xi+1 at node i is described by11

Xi+1 ∼ Xi ⊕ Zi, (50)

where Zi is an exponential (µi) random variable independent

of Xi. From the original perspective of update packets and

preemptive queues, this is a counterintuitive observation as the

preemption and discarding of packets along the line network

is a complex process with memory. However, this result will

prove less surprising when Xi+1 is viewed as the age of

a monitor positioned at node i + 1. In particular, there is

11Recall that ∼ denotes equality in distribution and that ⊕ is the sum of
random variables under the product distribution.

a rate µi Poisson point process of updates being conveyed

instantaneously from the monitor at node i to the monitor at

node i+ 1. An arrival of this process at time t resets xi+1(t)
to xi(t). Between arrivals of these updates, the age process at

node i + 1 grows at unit rate. In fact, this is an example of

the more general situation in this definition:

Definition 3: Node j is sampling the update process at node

i if

(a) xi(t) is an age process for a monitor at node i that

maintains a current update, i.e. a copy of its freshest

received update.

(b) There is a point process that marks the time instances

that the current update at node i is delivered to node j.
(c) When node i delivers an update to j at time t′, the age

xj(t
′) is reset to x′j(t

′) = xi(t
′), the age of the just-

received update.

(d) In the absence of an update from node i, the age at node

j grows at unit rate.

Node j is said to be sampling the status update process at

node i because node j receives a subsequence of those state

samples delivered to node i. While this sampling is defined in

terms of the state updates sent from i to j, it is also convenient

from the perspective of age analysis to say node j is sampling

the age process at node i.
In the case of the Figure 3 line network, each node j =

i + 1 is sampling the node i status update process as a rate

µi Poisson process. The inter-update times of this sampling

process are iid exponential (µi) random variables. The Poisson

sampling on the line network can be generalized to sampling

through a renewal process in which the renewal points mark

the time instances that updates from i are delivered to j.

A. Status Sampling Renewal Processes

To analyze the status-sampling renewal process, suppose

at time t that the most recent update delivery from node i
occurred at time t−Z(t). Because the updates are forwarded

as a renewal process, Z(t) is the time since the most recent

renewal. That is, Z(t) is the age (aka the backwards excess)

of the renewal process. In particular, Z(t) will have a sample

path like that of x1(t) shown in Figure 1(b). When this renewal

process is in equilibrium and has inter-update times that are iid

continuous random variables identical to Y , Z(t) is stationary

and has PDF [6, Theorem 5.7.4]

fZ(z) =
P[Y > z]

E[Y ]
, z ≥ 0. (51)

When the status sampling process is a rate µ Poisson process,

Y is an exponential (µ) random variable and it follows from

(51) that Z is also exponential (µ). Moreover, conditions (c)

and (d) in Definition 3 imply that the age at node j is

Xj(t) = Xi(t− Z(t)) + Z(t). (52)

The next claim follows from (52).

Theorem 6: If node j is sampling a stationary age process

Xi(t) at node i according to an equilibrium renewal process

with inter-update times identical to Y and stationary renewal

process age Z distributed according to (51), then the age Xj(t)
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Source
0

x1 x2 xn
Y0 Y1 Y2 Yn−1

Fig. 5. The linear status sampling network with n nodes. Node i+1 samples
the update process at node i at time instances that form a renewal process
with renewal times identical to Yi.

at node j is a stationary process identical in distribution to

Xj ∼ Xi ⊕ Z. (53)

Proof: (Theorem 6) It follows from (52) and the definition

of the MGF that

E
[

esXj(t)|Z(t) = z
]

= E
[

es(Xi(t−z)+z)|Z(t) = z
]

(54a)

= esz E
[

esXi(t−z)|Z(t) = z
]

(54b)

= esz E
[

esXi(t−z)
]

(54c)

= esz E
[

esXi(t)
]

. (54d)

Note that (54c) follows from independence of the Xi(t) and

Z(t) processes, and (54d) holds because Xi(t) is stationary.

Thus E
[

esXj(t)|Z(t)
]

= esZ(t) E
[

esXi(t)
]

and averaging over

Z(t) yields

E
[

esXj(t)
]

= EZ(t)

[

esXj(t)|Z(t)
]

= EZ(t)

[

esZ(t)esXi(t)
]

= E
[

esZ(t)
]

E
[

esXi(t)
]

. (55)

Since Xi(t) and Z(t) are stationary processes, they are iden-

tical to Xi and Z in distribution and thus (50) holds.

For the line network in Figure 3, the derivation of the sta-

tionary age distribution in (50) relied on the age process x(t)
being generated by an AoI SHS. However, this assumption is

not required in the steps of (54) and (55). All that is needed

is that Xi(t) is a stationary age process that is independent of

the equilibrium renewal process that controls the sampling.

This notion of sampling an update process offers a gener-

alization of the Figure 3 line network. Instead of memoryless

updating, node i+ 1 now samples the update process at node

i according to a renewal process with inter-renewal times

identical to random variable Yi. This network is depicted in

Figure 5. When each Yi has an exponential (µi) distribution,

the age at each network node is identical to the age in

Theorems 4 and 5 for the line network of preemptive servers in

Figure 3. In general however, the network in Figure 5 should

not be mistaken for a queueing network as there are no easily

defined customer service times. Instead, it is an example of

a status sampling network in which each node samples the

updating process of each preceding node in the line.

In this network, status sampling at node i is an equilibrium

renewal process with stationary age Zi with PDF in the form

of (51) and moments

E[Zi] =
E
[

Y 2
i

]

2E[Yi]
, E

[

Z2
i

]

=
E
[

Y 3
i

]

3E[Yi]
. (56)

The age at source node 0 is always zero and is trivially

stationary. By Theorem 6, Xi+1 ∼ Xi ⊕ Zi and stationarity

of Xi(t) implies stationarity of Xi+1(t). It follows that the
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Fig. 6. Sample paths of age processes x1(t), x2(t) and x3(t); the markers ∗,
+ and × mark when node i samples the update process at the preceding node.
For each node, status sampling times are chosen according to an independent
renewal process. Node 1 receives fresh updates, the age process x1(t) is reset
to zero when an update is received.

stationary age at node k has distribution

Xk ∼ Z0 ⊕ · · · ⊕ Zk−1. (57)

This behavior can be demonstrated with a simulation of

the status sampling network shown in Figure 5 in which

each sampling renewal time Yi is a continuous uniform (0, b)
random variable Y and each Zi has PDF given by (51).

Starting at time 0 with the age vector x(0) = 0, status samples

forwarded by node i are used to generate the age process

Xi+1(t) at node i+1. Specifically, at node i, the iid sequence

Yi,1, Yi,2, . . . , Yi,m of uniform (0, b) update interarrival times

is generated. At each time Ti,j =
∑j

k=1 Yi,k, the age sample

Xi(Ti,j) is forwarded to node i+1. This sequence of samples

yields the Z(t) function in (52) with j = i+1, and this enables

construction of the age process Xi+1(t). This age sample path

construction process is successively repeated at each node and

is depicted graphically in Figure 6.12

At each node i, samples of the age process Xi(t) are used

to form the normalized histograms shown in Figure 7. From

(57), the PDF of each Xk is the k-fold convolution of the

PDF of Z. In particular, when the inter-update time Y has a

uniform (0, b) PDF, (51) implies

fX1
(x) =

{

2
b

(

1− x
b

)

0 ≤ x ≤ b,

0 otherwise,
(58)

and

fX2
(x) =















4x
b2

(

1− x
b
+ x2

6b2

)

0 ≤ x ≤ b,

2
3b

(

2− x
b

)3
b ≤ x ≤ 2b,

0 otherwise.

(59)

In Figure 7(a), histograms from sample paths of X1(t) and

X2(t) are shown to be in correspondence with the PDFs

fX1
(x) and fX2

(x).
In addition, it follows from (56) that each Zi has mo-

ments E[Z] = b/3 and E
[

Z2
]

= b2/6. Under stationarity,

each Xk(t) has expected value E[Xk] = kb/3 and variance

12In discrete time, this same sample path construction has previously
appeared in [55].
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Fig. 7. Sample frequency histograms from sample paths of Xn(t) for
n ∈ {1, . . . , 5}. Each Xn(t) is a stationary process with E[Xn] = 2n
and σ2

Xn
= 2n. (a) For n = 1, 2, normalized histgrams are shown to match

the corresponding PDFs fX1
(x) and fX2

(x). (b) For n = 3, 4, 5, each
histogram is compared with the approximating Gaussian PDF of the same
mean and variance.

Var[Xk] = kVar[Z] = kb2/18. As n becomes large, the

central limit theorem will take effect. To examine this conver-

gence, Figure 7(b) compares the sample histograms against

the Gaussian PDFs of the same mean and variance as Xn

for n = 3, 4, 5. Even for small n, it can be seen that the

Gaussian approximation is a reasonable fit. The distribution of

Xn is skewed leftward relative to the corresponding Gaussian;

but this is not surprising inasmuch as the uniform PDF of Y
implies the PDF of each Z is skewed to the left.

VI. STOCHASTIC HYBRID SYSTEMS FOR AOI ANALYSIS

This section casts the AoI-tracking SHS introduced in

Section II in the general formalism of SHS. While there

are many SHS variations [98], this work follows the model

and notation in [92]. Here it is shown that the age-tracking

SHS of Definition 1 is a special special case of the general

SHS model in [92]. Formulating age-tracking in this general

model does pay a price in terms of cumbersome notation,

but it avoids reinventing the wheel. The direct application of

Dynkin’s formula to the age tracking SHS will yield Lemma 1,

which is the basis for Theorems 1, 2, and 3. Furthermore, this

development may open a door to extensions of the age-tracking

SHS model.

As noted in Section II, the SHS state is partitioned into

a discrete component q(t) ∈ Q = {0, 1, . . . , qmax} that

evolves as a point process and a continuous component x(t) =
[x1(t) · · · xn(t)] ∈ R

n. Given the discrete set Q and the

k-vector z(t) of independent Brownian motion processes, an

SHS is defined by a stochastic differential equation

ẋ = f(q,x, t) + g(q,x, t)ż (60)

for mappings f : Q× R
n × [0,∞) → R

n and g : Q× R
n ×

[0,∞) → R
n×k, and a set of transitions L such that each

l ∈ L defines a discrete transition/reset map

(q′,x′) = φl(q,x, t), φl :Q×R
n×[0,∞) → Q×R

n, (61a)

with transition intensity

λ(l)(q,x, t), λ(l) :Q×R
n×[0,∞) → [0,∞). (61b)

When the system is in discrete state q, x(t) evolves according

to (60); but in a discrete transition from q to q′, the continuous

state can make a discontinuous jump from x to x
′, as specified

by (61a). Associated with each transition l is a counting pro-

cess Nl(t) that counts the number of occurrences of transition

l in the interval [0, t]. The probability that Nl jumps in the

interval (t, t+ dt] is λ(l)(q(t),x(t), t) dt.

A. AoI tracking as an SHS

In terms of the general SHS model given by (60) and (61),

the AoI tracking system introduced in Section II is a simple

time invariant SHS in which

f(q,x, t) = 1, (62a)

g(q,x, t) = 0, (62b)

λ(l)(q,x, t) = λ(l)δql,q, (62c)

φl(q,x, t) = (q′l,xAl). (62d)

Applying the conditions of (62) to the general SHS frame-

work in (61) yields the age-tracking SHS of Definition 1.

In particular, note that q in (62) represents a sample value

of the discrete state q(t). Thus, (62a) and (62b) imply that

the continuous state evolution (60) in each discrete state

q(t) = q is simply ẋ(t) = 1, as specified in (2). In (62c),

the Kronecker delta function δql,q ensures that transition l
occurs only if q(t) = q = ql. Thus, q(t) is a continuous-

time finite-state Markov chain such that each transition l is

a directed edge (ql, q
′
l) with fixed transition rate λ(l) while

q(t) = ql. Furthermore, for each transition l, (62d) ensures

that the transition reset map is the linear mapping x
′ = xAl.

B. SHS test functions

Because of the generality and power of the SHS model,

characterization of the q(t) and x(t) processes can be

complicated and often intractable. The approach in [92] is

to define test functions ψ(q,x, t) whose expected values

E[ψ(q(t),x(t), t)] are performance measures of interest that

can be evaluated as functions of time; see [92], [99], and the

survey [98] for additional background.

Since the simplified SHS defined in (62) is time invariant,

this work will employ time invariant test functions ψ(q,x).
Specifically, for each age process xj(t), the mth moment
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E
[

xmj (t)
]

and the MGF E
[

esxj(t)
]

are tracked in each state

q̄ ∈ Q using the families of test functions {ψ
(m)
q̄,j (q,x) : q̄ ∈

Q, j ∈ 1 :n} and {ψ
(s)
q̄,j (q,x) : q̄ ∈ Q, j ∈ 1 :n} such that

ψ
(m)
q̄,j (q,x) = xmj δq̄,q, m = 0, 1, 2, . . . , (63a)

and

ψ
(s)
q̄,j (q,x) = esxjδq̄,q. (63b)

These test functions have expected values

E
[

ψ
(m)
q̄,j (q(t),x(t))

]

= E
[

xmj (t)δq̄,q(t)
]

= v
(m)
q̄,j (t), (64a)

E
[

ψ
(s)
q̄,j (q(t),x(t))

]

= E
[

esxj(t)δq̄,q(t)
]

= v
(s)
q̄,j (t) (64b)

that are the weighted conditional expectations defined in

Equation (3).

The objective here is to use the SHS framework to derive

the system of differential equations in Lemma 1 for v
(m)
q̄ (t)

and v
(s)
q̄ (t) defined in (4). To do so, the SHS mapping

ψ → Lψ known as the extended generator is applied to

every test function ψ(q,x), from either family {ψ
(m)
q̄,j (q,x)} or

{ψ
(s)
q̄,j (q,x)}, The extended generator Lψ is simply a function

whose expected value is the expected rate of change of the

test function ψ. Specifically, a test function ψ(q(t),x(t)) has

an extended generator (Lψ)(q(t),x(t)) that satisfies Dynkin’s

formula

d E[ψ(q(t),x(t))]

dt
= E[(Lψ)(q(t),x(t))]. (65)

For each test function ψ(q,x), (65) yields a differential

equation for E[ψ(q(t),x(t))].
From [92, Theorem 1], it follows from the conditions (62)

and the time invariance of either version of ψ(q,x) in (63)

that the extended generator of a piecewise linear SHS is given

by

(Lψ)(q,x) =
∂ψ(q,x)

∂x
1
⊤

+
∑

l∈L

[ψ(φl(q, x))− ψ(q, x)]λ(l)(q), (66)

where the row vector ∂ψ(q,x)/∂x denotes the gradient. When

ψ(q,x) = ψ
(m)
q̄,j (q,x),

∂ψ
(m)
q̄,j (q,x)

∂x
= mxm−1

j δq̄,qej = mψ
(m−1)
q̄,j (q,x)ej (67a)

and when ψ(q,x) = ψ
(s)
q̄,j (q,x),

∂ψ
(s)
q̄,j (q,x)

∂x
= sesxjδq̄,qej = sψ

(s)
q̄,j (q,x)ej . (67b)

With the definitions of L′
q̄ , Lq̄ and Âl in (10) and (11),

applying (66) and (67) to (65), yields Lemma 1, the system of

first order ordinary differential equations for v
(0)
q̄ (t), v

(m)
q̄ (t),

and v
(s)
q̄ (t). The algebraic steps, i.e. the proof of Lemma 1,

appear in the Appendix.

VII. CONCLUSION

This work has employed an age of information metric to

analyze the timeliness of a source delivering status updates

through a network to a monitor. For any network described

by a finite-state continuous-time Markov chain, a stochastic

hybrid system was employed to identify a system of ordinary

linear differential equations that describe the temporal evo-

lution of the moments and MGF of an age process vector.

Solving for the fixed point of these differential equations

enables evaluation of all stationary moments of the age as

well as the MGF of the age. To the best of my knowledge,

the MGF vector results are the first explicit age distribution

results for updates traversing multihop routes in networks.

In the example of the line network with preemptive memo-

ryless servers, a generalization of the prior SHS analysis [97]

showed that the age at a node is distributed according to a sum

of independent renewal process age random variables. In the

case of preemptive memoryless servers, these renewal process

age random variables were also exponentially distributed.

However, this observation was generalized in Section V

by showing it holds for all equilibrium renewal processes

with continuous inter-update distributions and stationary age

processes. The key to this generalization is the concept of

sampling an update process.

The insights from these simple observations suggest there

is still considerable progress to be made in characterizing age

of information in systems and networks.

APPENDIX

Proof: (Lemma 1) In the following, m is a strictly positive

integer. Equations (66) and (67) enable calculation of Lψ
(0)
q̄,j ,

Lψ
(m)
q̄,j and Lψ

(s)
q̄,j for each j ∈ 1 :n and q̄ ∈ Q:

Lψ
(0)
q̄,j (q,x) = Λ

(0)
q̄,j(q,x), (68a)

Lψ
(m)
q̄,j (q,x) = mψ

(m−1)
q̄,j (q,x) + Λ

(m)
q̄,j (q,x), (68b)

Lψ
(s)
q̄,j (q,x) = sψ

(s)
q̄,j (q,x) + Λ

(s)
q̄,j(q,x), (68c)

where

Λ
(0)
q̄,j(q,x) =

∑

l∈L

[

ψ
(0)
q̄,j (φl(q,x))− ψ

(0)
q̄,j (q,x)

]

λ(l)(q), (69a)

Λ
(m)
q̄,j (q,x) =

∑

l∈L

[

ψ
(m)
q̄,j (φl(q,x))− ψ

(m)
q̄,j (q,x)

]

λ(l)(q), (69b)

Λ
(s)
q̄,j(q,x) =

∑

l∈L

[

ψ
(s)
q̄,j (φl(q,x))− ψ

(s)
q̄,j (q,x)

]

λ(l)(q). (69c)

When φl(q,x) = (q′l,xAl),

ψ
(0)
q̄,j (φl(q,x)) = ψ

(0)
q̄,j (q

′
l,xAl) = δq̄,q′

l
, (70a)

ψ
(m)
q̄,j (φl(q,x)) = ψ

(m)
q̄,j (q′l,xAl)

= [xAl]
m
j δq̄,q′l = [xm

Al]jδq̄,q′
l
, (70b)

ψ
(s)
q̄,j (φl(q,x)) = ψ

(s)
q̄,j (q

′
l,xAl) = es[xAl]jδq̄,q′

l
. (70c)

In (70b), [xAl]
m
j = [xm

Al]j because Al is a binary matrix

such that each column has no more than one nonzero entry.

Since λ(l)(q) = λ(l)δql,q , it follows from (69) and (70) that

Λ
(0)
q̄,j(q,x) =

∑

l∈L

λ(l)
[

δq̄,q′
l
− δq̄,q

]

δql,q, (71a)
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Λ
(m)
q̄,j (q,x) =

∑

l∈L

λ(l)
[

[xm
Al]jδq̄,q′

l
− xmj δq̄,q

]

δql,q, (71b)

Λ
(s)
q̄,j(q,x) =

∑

l∈L

λ(l)
[

es[xAl]jδq̄,q′
l
− esxjδq̄,q

]

δql,q. (71c)

Note that

δq̄,q′
l
δql,q =

{

δql,q l ∈ L′
q̄,

0 otherwise,
(72a)

δq̄,qδql,q =

{

δq̄,q l ∈ Lq̄,

0 otherwise.
(72b)

It follows from (10), (71) and (72) that

Λ
(0)
q̄,j(q,x) =

∑

l∈L′

q̄

λ(l)δql,q − δq̄,q
∑

l∈Lq̄

λ(l), (73a)

Λ
(m)
q̄,j (q,x) =

∑

l∈L′

q̄

λ(l)[xm
Al]jδql,q − xmj δq̄,q

∑

l∈Lq̄

λ(l), (73b)

Λ
(s)
q̄,j(q,x) =

∑

l∈L′

q̄

λ(l)es[xAl]jδql,q − esxjδq̄,q
∑

l∈Lq̄

λ(l). (73c)

With ψ(q,x) = ψ
(0)
q̄,j (q,x), (3a) at m = 0, (65), (68a) and

(73a) imply for all q̄ ∈ Q that

v̇
(0)
q̄,j (t) = E

[

Lψ
(0)
q̄,j (q(t),x(t))

]

= E
[

Λ
(0)
q̄,j(q(t),x(t))

]

= E
[

∑

l∈L′

q̄

λ(l)δql,q(t) − δq̄,q(t)
∑

l∈Lq̄

λ(l)
]

=
∑

l∈L′

q̄

λ(l)v(0)ql
(t)− v

(0)
q̄ (t)

∑

l∈Lq̄

λ(l). (74)

Gathering the equations in (74), and rewriting in terms of the

vector of duplicated state probabilities v
(0)
q̄ (t), yields (12a) in

Lemma 1.

For j ∈ 1 :n with ψ(q,x) = ψ
(m)
q̄,j (q,x), (3), (65) and (68b)

imply

v̇
(m)
q̄,j (t) = E

[

Lψ
(m)
q̄,j (q(t),x(t))

]

= E
[

mψ
(m−1)
q̄,j (q(t),x(t))

]

+ E
[

Λ
(m)
q̄,j (q(t),x(t))

]

= mv
(m−1)
q̄,j (t) + E

[

Λ
(m)
q̄,j (q(t),x(t))

]

. (75)

From (73b), it follows that

E
[

Λ
(m)
q̄,j (q(t),x(t))

]

=
∑

l∈L′

q̄

λ(l)
[

E
[

x
m(t)δql,q(t)

]

Al

]

j
− E

[

xmj (t)δq̄,q(t)
]

∑

l∈Lq̄

λ(l)

=
∑

l∈L′

q̄

λ(l)
[

v
(m)
ql

(t)Al

]

j
− v

(m)
q̄,j (t)

∑

l∈Lq̄

λ(l). (76)

It then follows from (75) and (76) that

v̇
(m)
q̄,j (t) = mv

(m−1)
q̄,j (t) +

∑

l∈L′

q̄

λ(l)
[

v
(m)
ql

(t)Al

]

j

− v
(m)
q̄,j (t)

∑

l∈Lq̄

λ(l). (77)

Gathering the equations in (77) for j ∈ 1 :n, and rewriting as

row vectors, yields (12b) in Lemma 1.

For j ∈ 1 :n with ψ(q,x) = ψ
(s)
q̄,j (q,x), (3), (65) and (68c)

imply

v̇
(s)
q̄,j (t) = E

[

Lψ
(s)
q̄,j (q(t),x(t))

]

= E
[

sψ
(s)
q̄,j (q(t),x(t))

]

+ E
[

Λ
(s)
q̄,j(q(t),x(t))

]

= sv
(s)
q̄,j (t) + E

[

Λ
(s)
q̄,j(q(t),x(t))

]

. (78)

From (73c),

E
[

Λ
(s)
q̄,j(q(t),x(t))

]

=
∑

l∈L′

q̄

λ(l) E
[

es[x(t)Al]jδql,q(t)
]

− E
[

esxj(t)δq̄,q(t)
]

∑

l∈Lq̄

λ(l)

=
∑

l∈L′

q̄

λ(l) E
[

es[x(t)Al]jδql,q(t)
]

− v
(s)
q̄,j (t)

∑

l∈Lq̄

λ(l). (79)

Similarly, if [Al]j = e
⊤
k , then [xAl]j = xk and

E
[

es[x(t)Al]jδql,q(t)
]

= E
[

esxk(t)δql,q(t)
]

= v
(s)
qlk

(t) = [v(s)
ql

(t)Al]j . (80a)

However, if [Al]j = 0
⊤, then

E
[

es[x(t)Al]jδql,q(t)
]

= E
[

δql,q(t)
]

= v(0)ql
(t). (80b)

With the definition of Âl in (11), the two cases in (80) can

be written in the combination form

E
[

es[x(t)Al]jδql,q(t)
]

= [v(s)
ql

(t)Al + v
(0)
ql

(t)Âl]j (81)

because either [Al]j = 0
⊤ or [Âl]j = 0

⊤. It then follows

from (78), (79) and (81) that

v̇
(s)
q̄,j (t) = sv

(s)
q̄,j (t) +

∑

l∈L′

q̄

λ(l)[v(s)
ql

(t)Al + v
(0)
ql

(t)Âl]j

− v
(s)
q̄,j (t)

∑

l∈Lq̄

λ(l). (82)

To complete the proof, gathering the equations (82) for all j
and rewriting as row vectors yields (12c) in Lemma 1.

Proof: (Lemma 2) Let σ = 1 + maxi di, then σI − D

is a strictly positive diagonal matrix. Adding v̄
(1)(σI−D) to

both sides of (34) yields

σv̄(1) = v̄
(0) + v̄

(1)(σI+R−D). (83)

Because the reset maps Al are binary, R is non-negative and

thus σI+R−D is also non-negative. It follows that σI+R−D

has a dominant real eigenvalue r(σ) ≥ 0 with an associated

non-negative non-zero right eigenvector u
⊤ such that |ǫ| ≤

r(σ) for any other eigenvalue ǫ [100, Exercise 1.12]13. Right

multiplying (83) by u
⊤ produces

σv̄(1)
u
⊤ = v̄

(0)
u
⊤ + r(σ)v̄(1)

u
⊤, (84)

which simplifies to

[σ − r(σ)]v̄(1)
u
⊤ = v̄

(0)
u
⊤. (85)

Since v̄
(0) is strictly positive and u

⊤ is non-negative and non-

13This is a weak form of the Perron-Frobenius theorem that does not require
irreducibility of the non-negative matrix.
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zero, v̄(0)
u
⊤ > 0. Non-negativity of v̄(1) implies v̄

(1)
u
⊤ ≥ 0

and it follows that σ − r(σ) > 0. If ǫ is an eigenvalue of

σI+R−D then ǫ− σ is an eigenvalue of R−D with real

part Re(ǫ− σ) = Re(ǫ)− σ ≤ |ǫ| − σ ≤ r(σ)− σ < 0.

Proof: (Theorem 2) Proof is by induction. For m = 1, it

follows from Lemma 2 that the existence of the fixed point

v
(1) implies that R − D has stable eigenvalues and that the

differential equation (33) converges to limt→∞ v
(1)(t) = v̄

(1).

By the induction hypothesis,

lim
t→∞

v
(m−1)(t) = v̄

(m−1)

= (m− 1)!v̄(0)[(D−R)−1]m−1. (86)

Since R−D has stable eigenvalues, it follows from (32) that

v̇
(m)(t) → 0 and v

(m)(t) → v̄
(m) satisfying

0 = mv̄
(m−1) + v̄

(m)(R−D). (87)

Thus,

v̄
(m) = mv̄

(m−1)(D−R)−1 = m!v̄(0)[(D−R)−1]m. (88)

To complete the proof, note that

E[xm] = lim
t→∞

∑

q̄∈Q

E
[

x
m(t)δq̄,q(t)

]

=
∑

q̄∈Q

v̄
(m)
q̄ . (89)

Proof: (Theorem 4) Table II yields the n dimensional

transition matrices Al; for example,

A0 = diag[0, 1, . . . , 1], (90a)

A1 =















1 1
0 0

1
. . .

1















, (90b)

and

An−1 =















1
1

. . .

1 1
0 0















. (90c)

With the shorthand notation βj = d0 − µj , (29a) can be used

to construct

R = R00 =
n−1
∑

l=0

µlAl =

















β0 µ1

β1 µ2

β2
. . .

. . . µn−1

βn−1

















. (91)

It then follows from (45) that

D−R =













µ0 −µ1

µ1
. . .

. . . −µn−1

µn−1













(92)

and

(D−R)−1 =











1
µ0

1
µ0

· · · 1
µ0

1
µ1

. . . 1
µ1

. . .
...
1

µn−1











. (93)

The claim follows from Theorem 2.

Proof: (Theorem 5) From Table II, the transition matrices

Al are given in (90). Similarly, R and D − R are given in

(91) and (92). Since Ai has no all-zero columns for i ≥ 1, it

follows from (29b) and (90a) that

R̂ = R̂00 = µ0Â0 = diag[µ0, 0, · · · , 0]. (94)

Defining µ̄i = µi − s, i ∈ 0 : n− 1, it follows from (92) that

D−R− sI =

















µ̄0 −µ1

µ̄1 −µ2

µ̄2
. . .

. . . −µn−1

µ̄n−1

















. (95)

This implies

(D−R− sI)−1=

















1
µ̄0

µ1

µ̄0µ̄1

µ1µ2

µ̄0µ̄1µ̄2

· · · 1
µ̄0

∏n

i=1
µi

µ̄i
1
µ̄1

µ2

µ̄1µ̄2

. . . 1
µ̄1

∏n

i=2
µi

µ̄i
1
µ̄2

· · · 1
µ̄2

∏n

i=3
µi

µ̄i

. . .
...
1

µ̄n−1

















. (96)

Recalling that v̄(0) = 1, (94) and Theorem 3 imply

v̄
(s) = v̄

(0)
R̂(D−R− sI)−1

=
[

µ0

µ̄0

µ0µ1

µ̄0µ̄1

µ0µ1µ2

µ̄0µ̄1µ̄2

· · ·
∏n−1

i=0
µi

µ̄i

]

. (97)

The claim follows from the definition of µ̄i.
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