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Abstract. We prove that commutative algebras in braided tensor categories do not
admit faithful Hopf algebra actions unless they come from group actions. We also show
that a group action allows us to see the algebra as the regular algebra in the representation
category of the acting group.

1. Introduction

Hopf algebras are generalisations of group algebras and can be thought of as re-
alisations of “quantum symmetries” of algebraic objects. A question of Cohen [C]
asks if a commutative algebra can have “finite quantum symmetries”. More pre-
cisely, the question asks if it is possible for a finite dimensional non-cocommutative
semi-simple Hopf algebra to act faithfully on a commutative algebra. The complete
answer is unknown (see however [EW] for a recent progress, which in particular
settles in negative the case of inner faithful action).

In the present paper we look into a categorical analog of the Cohen’s question.
Namely we examine the ways a Hopf algebra can act faithfully on a separable
commutative algebra in a braided tensor category. We prove that such action
could only come from an action by automorphisms. In other words, separable
commutative algebras in braided tensor categories do not have interesting quantum
symmetries.

The language of braided tensor categories is proving itself very useful in de-
scribing important properties of certain physical systems (e.g. topological orders
in condensed matter physics) and goes through the stage of active development.
In particular algebras in braided tensor categories correspond to condensation pat-
terns of a topological order [K]. Other applications of braided tensor categories in
quantum field theory are through their relations with conformal nets and vertex
operator algebras.

In a recent preprint [DW] Dong and Wang showed that if a finite-dimensional
semi-simple Hopf algebra H acts on a vertex operator algebra V (inner) faithfully
then the actions comes from a group action. In the case when the vertex operator
subalgebra of invariants V H is rational this agrees with our result. Indeed, accord-
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ing to [HKL] (see also [CKM]) one can see the vertex operator algebra V as an
étale algebra in the braided tensor category Rep(V H) of V H -modules, while the
action of H on V translates into an action on that étale algebra. A similar result
has been obtained earlier in the framework of conformal nets in [B], which shows
that finite index depth two subnets are given by group fixed points, thus there are
no non-trivial faithful actions of finite-dimensional C∗-Hopf algebras besides the
one coming from group algebras.

We start by reviewing basic facts about separable algebras in braided tensor
categories with the emphasis on the their convolution algebras and hypergroups
(see [B] for more details). Then we define a bialgebra H action on an algebra
A in a tensor category and prove that such action gives a homomorphism from
the convolution algebra of A to the dual algebra H∗. This allows us to show
that a faithful bialgebra action on a commutative separable (étale) algebra must
be a group algebra action. We conclude by characterising étale algebras with
a maximal possible automorphism group (maximally symmetric étale algebras) in
terms of their dimensions. We also show that a maximally symmetric étale algebra
A in C gives rise to a braided tensor embedding F : Rep(G)→ C such that F maps
the function algebra k(G) into A. Here G = Autalg(A) is the automorphism group.

We denote by k a fixed algebraically closed field of characteristic zero. All our
categories will be k-linear. We denote the hom-space between objects X and Y of a
category C by C(X,Y ). By a tensor category we mean a k-linear abelian monoidal
category with k-linear tensor product. We denote the monoidal unit object by
I. We also assume that the unit object is simple, in particular C(I, I) ∼= k. By a
fusion category we mean a semi-simple spherical tensor category with finitely many
(up to isomorphism) simple objects. We use graphical presentation for morphisms
in our braided tensor categories. We read our string diagrams from top to bottom.

The authors would like to thank Chelsea Walton for useful remarks and the
referees for careful reading and helpful suggestions.

2. Étale algebras in braided tensor categories

Let C be a spherical tensor category. For an object X ∈ C denote by evX : X∗⊗
X → I and coevX : I → X ⊗X∗ the evaluation and the coevaluation morphisms.
Denote by sX : X → X∗∗ the spherical structure morphism.

Let A = (A,m, ι) be an (associative, unital) algebra in a spherical tensor cat-
egory C, where m : A ⊗ A → A is the multiplication and ι : I → A is the unit
morphisms. We call the composite

A A⊗A⊗A∗ A⊗A∗ A∗∗ ⊗A∗ I
1⊗coevA // m⊗1 // sA⊗1 // evA∗ //

the canonical trace of A and denote it by ε : A→ I. We call the composite

A⊗A m // A
ε // I

the canonical pairing of A and denote it by b : A⊗A→ I.
We call an algebra A ∈ C separable if the canonical pairing is non-degenerate, i.e.
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there is a morphism κ : I → A⊗A such that the composite

A
1⊗κ // A⊗3

b⊗1 // A

is the identity. It also implies that the similar composite

A
κ⊗1 // A⊗3

1⊗b // A

is also the identity.

Remark 1. We prefer this way of defining separability since it make manifest that
separability is a property, rather than a structure.

We use the following graphical representation:

m =

A A

A

ι =

A

•◦
.

and

ε =

A

•◦ = .

Remark 2. According to our definition ε◦ ι = d(A)1I , where d(A) is the dimension
of A ∈ C:

•◦

•◦
= .

We call an algebra A ∈ C connected if C(I, A) = k.

Remark 3. Any morphism f : I → A into a connected separable algebra A can be
written as cι, where c = (ε ◦ f)d(A)−1 ∈ k :

f

=
f

•◦
d(A)−1

•◦
.

For a separable algebra A ∈ C we define the convolution algebra to be Q(A) =
C(A,A) as a vector space with the multiplication (the convolution product) x∗y =
m ◦ (x ⊗ y) ◦m∨ and the unit ι ◦ ε. Here m∨ : A → A ⊗ A is the dual morphism
to the multiplication. Graphically

x ∗ y = x y .



4 M. BISCHOFF AND A. DAVYDOV

Example 1. An algebra endomorphism g of A is an idempotent in the convolution
algebra Q(A), i.e. g ∗ g = g.

For an algebra A ∈ C we denote by CA the category of its right modules and by

ACA the category of its bimodules.
Define the map

φ : C(A,A) → ACA(A⊗2, A⊗2) (1)

into the space of A-bimodule endomorphisms of A⊗2 by

x 7→ x

.

We call the map (1) the Fourier transform [O].

Proposition 1. Let A be a separable algebra. Then the Fourier transform is in-
vertible with the inverse given by

a 7→ a

•◦

•◦ .

The Fourier transform has the property φ(x ∗ y) = φ(x) ◦ φ(y).

Proof. The invertibility is straightforward.
The property φ(x)◦φ(y) = φ(x∗y) has the following (also straightforward) graph-
ical verification

y

x

= yx = yx

.

Corollary 2. The convolution algebra Q(A) is semi-simple.

Proof. It is known that the category of bimodules over a separable algebra is semi-
simple [EGNO]. Now the semi-simplicity of endomorphism algebra ACA(A⊗2, A⊗2)
implies the desired result.

Let C be a ribbon tensor category.
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Proposition 3. Let A be a commutative separable algebra in a ribbon tensor cat-
egory C. Then the convolution algebra Q(A) is commutative.

Proof. Using naturality of the braiding and commutativity of A, we get

x y = y x = y x

.

It follows from Corollary 2 and Proposition 3 that the convolution algebra Q(A)
of a commutative separable algebra A is the algebra k(K) of functions on a finite
set K, the spectrum of Q(A) (which can be defined as the set of homomorphisms
Q(A)→ k, or equivalently as the set of minimal idempotents). The composition in
C(A,A) equips the convolution algebra with the second associative multiplication.
Its structure constants computed in the basis K

x ◦ y =
∑
z∈K

mz
x,yz , mz

x,y ∈ k

are invariants of the algebra A. We call the set K = K(A) together with the
collection {mz

x,y}x,y,z∈K the symmetry hypergroup of the commutative separable
algebra A (see [B]).

By an étale algebra in C we mean a commutative, separable algebra such that
C(I, A) = k. In particular, an étale algebra is indecomposable.

Proposition 4. Let A be an étale algebra and let g : A → A be an algebra auto-
morphism.
The assignment x 7→ trA(g◦x)d(A)−1 defines an algebra homomorphism χg : Q(A)→
k.
Moreover x ∗ g = χg−1(x)g, so that g is a minimal idempotent in Q(A).

Proof. Graphically

d(A)χg(x) = trA(g ◦ x) =
x

g

.

The homomorphism property χg(x ∗ y) = χg(x)χg(y) has the following graphical
justification:
using homomorphism property of g and commutativity of the multiplication we
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have

yx

g

=
yx

gg
=

=
yx

gg
=

x

g

y

g

and the last diagram coincides with (by Remark 3)

d(A)−1
x

g

y

g

.

The identity x ∗ g = χg−1(x)g is proved as follows

x ∗ g = x g =

x

g−1

g

=

x

g−1

g

= d(A)−1

x

g−1

g

.

Proposition 4 says that the automorphism group Autalg(A) is a subset of its
symmetry hypergroup K(A) and that the structure constants of Autalg(A) are
given by the group operation, i.e. that the automorphism group Autalg(A) is a
sub-hypergroup of K(A).
We call an étale algebra AGalois if Autalg(A) = K(A), i.e. if C(A,A) = k[Autalg(A)].
In Section 4 we give a convenient criterion for being Galois.
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3. Bialgebra actions on étale algebras

Let A be an algebra in a tensor category C. Let H be a bialgebra in the
category of vector spaces Vect, which we consider as the tensor subcategory of
(the symmetric centre of the monoidal centre of) C. An action of a bialgebra H
on A is a morphism a : H ⊗A→ A such that the diagrams

H ⊗H ⊗A a⊗1 //

mH⊗1
��

H ⊗A

a

��
H ⊗A a // A

A

ιH1

��
H ⊗A a // A

H ⊗A⊗A 1⊗mA //

δ⊗1
��

H ⊗A a // A

H ⊗H ⊗A⊗A 1⊗c⊗1// H ⊗A⊗H ⊗A a⊗a // A⊗A

mA

OO H
1ι //

ε

��

H ⊗A

a

��
I

ι // A

commute. Here ιH : k → H is the unit of H, c : H ⊗A→ A⊗H is the braiding of
a vector space H with an object A ∈ C, and δ : H → H ⊗H is the coproduct of
H.

Remark 4. Note that the first diagram says that A is an H-module. The sec-
ond diagram makes this H-module unital. The last two diagrams say that the
multiplication and the unit morphisms of A are homomorphisms of H-modules.

Graphically the third condition has the form

h

=
∑

(h)

h(0) h(1)

.

Here we use Sweedler’s notation for the comultiplication δ(h) =
∑

(h) h(0)⊗h(1).
Note that an action of H can be rewritten as a linear map H → C(A,A), which
in particular is a homomorphism of algebras (with respect to the composition on
C(A,A)).
We say that an action is faithful if the corresponding map H → C(A,A) is an
embedding.

Example 2. Let G ⊂ Autalg(A) be a subgroup. Then by linear extension we get
a Hopf action of the group algebra k[G] on A.

Denote by H∗ the dual Hopf algebra of H. The multiplication on H∗ is given
by

(l ·m)(h) =
∑
(h)

l(h(0))m(h(1)) h ∈ H , l,m ∈ H∗ .

Proposition 5. Let A ∈ C be a separable connected algebra, and H a Hopf al-
gebra faithfully acting on A. Then there is an epimorphism γ : Q(A) → H∗. In
particular, H∗ is a quotient of Q(A).
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Proof. Define the pairing η : C(A,A) × C(A,A) → k by η(a, b) = trA(b ◦ a). Note
that this pairing is defined for any object A ∈ C and that it is the direct sum of
pairings for isotypical components of A. On each isotypical component, i.e. on a
direct sum of a simple object X in C, the pairing is proportional to the canonical
pairing on a matrix algebra (with the proportionality coefficient being d(X)). Thus
the pairing η is non-degenerate.
Graphically

trA(b ◦ a) =
a

b

.

Define a surjective k-linear map γ : Q(A)→ H∗ by

γ(a)(h) = d(A)−1η(a, h), a ∈ Q(A), h ∈ H .

By the definition of the multiplication on H∗, the homomorphism property
γ(a ∗ b) = γ(a) · γ(b) is equivalent to

η(a ∗ b, h) = d(A)−1
∑
(h)

η(a, h(0))η(b, h(1)) .

The last identity has the following graphical verification:

ba

h

=
∑

(h)

ba

h(1)h(0)

=
∑

(h)

a

h(0)

b

h(1)

coincides with (by Remark 3)

d(A)−1
∑

(h)

a

h(0)

b

h(1)

.

This implies that étale algebras have no “quantum symmetries” in the sense of
Etingof-Walton [EW].

Corollary 6. Let C be a braided tensor category, and A ∈ C be an étale algebra.
Assume that H is a Hopf algebra faithfully acting on A. Then H is the group
algebra k[G] for some subgroup G ⊂ Autalg(A).

Proof. Proposition 5 and 3 imply that H∗ is a quotient of the commutative algebra
Q(A) and therefore commutative. Thus H is co-commutative, which implies that
H = k[G] for some finite group G. Under this identification, restricting the action
of k[G] to G we obtain a group action of G on A, and since the action is faithful,
an embedding G→ Autalg(A).
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4. Maximally symmetric étale algebras in pseudo-unitary braided
fusion categories

Let now C be a braided pseudo-unitary fusion category. Denote by Irr(C) the
set of (isomorphism classes of) simple objects of C and let dC(X) be the (pseudo-
unitary) dimension of X ∈ C.

Lemma 7. Let A be an étale algebra. Then

dim(C(X,A)) ≤ d(X) .

Proof. This follows from the chain of (in)equalities

dim(C(X,A)) = dim(C(I,X∗ ⊗A)) = dim(CA(A,X∗ ⊗A)) ≤

≤ dCA(X∗ ⊗A) = dC(X
∗) = dC(X) .

The inequality is just the fact that multiplicity dim(D(I, Y )) of the unit object
in another object Y of a fusion category D(= CA) is bounded from above by the
dimension dD(Y ).

It follows from Lemma 7 that dim(C(A,A)) ≤ d(A) for any étale algebra A.
We call an étale algebra A maximally symmetric if the above bound is saturated,
i.e. if

dim(C(A,A)) = d(A) .

Lemma 8. Let A be a maximally symmetric étale algebra. Then dim(C(X,A)) =
d(X) for any X ∈ Irr(C) such that C(X,A) 6= 0.

Proof. Write A =
⊕

X∈Irr(C) C(X,A)⊗X. Then

∑
X∈Irr(C)

dim(C(X,A))2 = dim(C(A,A)) = d(A) =
∑

X∈Irr(C)

dim(C(X,A))d(X) .

Then Lemma 7 implies the desired.

Denote by Rep(G) the Tannakian (symmetric) category of finite dimensional
representations of a group G.

Theorem 9. Let A be a maximally symmetric étale algebra. Let G = Autalg(A)
be the group of its algebra automorphisms. Then there is a full braided embedding
Rep(G) ⊂ C such that A is isomorphic to the function algebra k(G) considered as
an algebra in Rep(G) ⊂ C.

Proof. Consider the full subcategory E ⊂ C additively generated by X ∈ Irr(C)
such that C(X,A) 6= 0. In other words, E is the support category of A in C, i.e. the
smallest full subcategory containing A. By Lemma 8 the subcategory E coincides
with the full subcategory

E = {X ∈ C | evX : CA(A,X ⊗A)⊗A '−→ X ⊗A}
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of those X for which the canonical (evaluation) morphism of right A-modules
evX : CA(A,X ⊗ A) ⊗ A → X ⊗ A is an isomorphism. The following property of
evaluation maps shows that E is a (braided) tensor subcategory. For any X,Y ∈ C
the diagram

(CA(A,X ⊗A)⊗A)⊗A (CA(A, Y ⊗A)⊗A)
evX ⊗A evY // (X ⊗A)⊗A (Y ⊗A)

X ⊗ Y ⊗A

CA(A,X ⊗A)⊗ CA(A, Y ⊗A)⊗A // CA(A,X ⊗ Y ⊗A)⊗A

evX⊗Y

OO

commutes. Since the tensor product of morphisms CA(A,X⊗A)⊗CA(A, Y ⊗A)→
CA(A,X ⊗ Y ⊗ A) is an injective linear map, the above diagram implies that the
evaluation evX⊗Y must be an isomorphism if eX and eY are.
Now define a functor F : E → Vect by F (X) = CA(A,X ⊗ A) = C(X∗, A). This
functor is clearly faithful (since A is self-dual as an object of C). It is also tensor,
with the tensor structure

F (X)⊗ F (Y ) = CA(A,X ⊗A)⊗ CA(A, Y ⊗A)→ CA(A,X ⊗ Y ⊗A) = F (X ⊗ Y )

given again by the tensor product of morphisms in CA. Moreover this functor is
braided, which makes the category E symmetric. The Tannaka-Krein reconstruc-
tion with respect to F provides the equivalence Rep(G)→ E , with G = Aut⊗(F ).
Finally, note that the group homomorphism Autalg(A) → Aut⊗(F ), sending g to
the automorphism C(X∗, g) of C(X∗, A) is an isomorphism.

Corollary 10. An étale algebra is Galois if and only if it is maximally symmetric.

Proof. Let A ∈ C be a Galois étale algebra and let G = Autalg(A). The functor
F : Rep(G)→ C defined by F (U) = U ⊗k[G] A is fully faithful. Indeed,

C(U ⊗k[G] A, V ⊗k[G] A) ' Rep(G)(U, C(A, V ⊗k[G] A)) '

' Rep(G)(U, V ⊗k[G] C(A,A)) ' Rep(G)(U, V ⊗k[G] k[G]) ' Rep(G)(U, V ) .

Since F (k(G)) ' A and since k(G) is a maximally symmetric algebra in Rep(G),
we get that A is maximally symmetric.
Conversely since k(G) is a Galois algebra in Rep(G), the embedding Rep(G) ⊂ C
associated with a maximally symmetric algebra A ∈ C makes A Galois.

For a simple complex Lie algebra g and a level k ∈ Z>0 denote by gk the vertex
operator algebra structure on the simple vacuum module over the affinisation ĝ at
level k [FZ]. Denote the tensor product of gk and hl by gkhl. Denote by C(g, k)
the ribbon fusion category of modules of gk, i.e. the category of representations of
ĝ at level k.
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Example 3. Consider an embedding of vertex operator algebras (i.e. a conformal
embedding) of the form sl(3)3sl(3)3 ⊂ e8,1(see e.g. [BB, SW]). A conformal
embedding sl(3)3sl(3)3 ⊂ e8,1 corresponds to an étale algebra L ∈ C(sl(3), 3)�2.
Denote by I = X1, X2, X3 the 1-dimensional objects of C(sl(3), 3) and by X the
only 3-dimensional object of C(sl(3), 3). It is not hard to see that the decomposition
of L into simple objects is

L = (X1 ⊕X2 ⊕X3) � (X1 ⊕X2 ⊕X3) ⊕ 3(X �X) . (2)

The algebra L is not maximally symmetric and hence is not Galois.
The algebra L has an étale subalgebra B = X1 � X1 ⊕ X2 � X2 ⊕ X3 � X3,

giving rise to a simple current extension sl(3)3sl(3)3 ⊂ ˜sl(3)3sl(3)3 of index 3. The

category of modules over the vertex operator algebra ˜sl(3)3sl(3)3 coincides with the
category (C(sl(3), 3)�2)locB of local B-modules in C(sl(3), 3)�2 (see [HKL, CKM]).
The extension B ⊂ L gives rise to an étale algebra L in (C(sl(3), 3)�2)locB . Its
not hard to show that there are 4 such algebras with decompositions into simple
objects

Li = Y1 ⊕ Y2 ⊕ Y3 ⊕ 3Zi, L = Y1 ⊕ Y2 ⊕ Y3 ⊕ Z1 ⊕ Z2 ⊕ Z3 , (3)

where Yi are the 1-dimensional simple B-modules induced from Xi � Xi and Zi
are the 3-dimensional simple submodules of the B-modules induced from X �X.
Note that these algebras considered as algebra in C(sl(3), 3)�2 all have the same
underlying object (2).
The first type algebra Li is maximally symmetric and is Galois in (C(sl(3), 3)�2)locB .
The decomposition (3) shows that the automorphism group Autalg(Li) is the
alternating group A4. Thus we have shown that the simple current extension

˜sl(3)3sl(3)3 is the vertex operator subalgebra of invariants under an A4-action:

(e8,1)A4 = ˜sl(3)3sl(3)3 .
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