

The fish body functions as an airfoil: surface pressures generate thrust during carangiform locomotion

Kelsey N. Lucas^{a,b,*}, George V. Lauder^a, and Eric D. Tytell^c

^a Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

^b Current address: School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA

^c Department of Biology, Tufts University, Medford, MA 02155, USA

*Corresponding author

E-mail: kelsey.n.lucas@gmail.com

Keywords: fish swimming, biomechanics, pressure, force, carangiform, thrust, airfoil

1 **Abstract**

2 The anterior body of many fishes is shaped like an airfoil turned on its side. With an
3 oscillating angle to the swimming direction, such an airfoil experiences negative pressure due to
4 both its shape and pitching movements. This negative pressure acts as thrust forces on the
5 anterior body. Here, we apply a high-resolution, pressure-based approach to describe how two
6 fishes, bluegill sunfish (*Lepomis macrochirus* Rafinesque) and brook trout (*Salvelinus fontinalis*
7 Mitchell), swimming in the carangiform mode, the most common fish swimming mode, generate
8 thrust on their anterior bodies using leading-edge suction mechanics, much like an airfoil. These
9 mechanics contrast with those previously reported in lampreys – anguilliform swimmers – which
10 produce thrust with negative pressure but do so through undulatory mechanics. The thrust
11 produced on the anterior body of these carangiform swimmers through negative pressure
12 comprises 28% of the total thrust produced over the body and caudal fin, substantially decreasing
13 the net drag on the anterior body. On the posterior region, subtle differences in body shape and
14 kinematics allow trout to produce more thrust than bluegill, suggesting that they may swim more
15 effectively. Despite the large phylogenetic distance between these species, and differences near
16 the tail, the pressure profiles around the anterior body are similar. We suggest that such airfoil-
17 like mechanics are highly efficient, because they require very little movement and therefore
18 relatively little active muscular energy, and may be used by a wide range of fishes since many
19 species have appropriately-shaped bodies.

20

21 **Significance Statement**

22 Many fishes have bodies shaped like a low-drag airfoil, with a rounded leading edge and
23 a smoothly tapered trailing region, and move like an airfoil pitching at a small angle. This shape
24 reduces drag but its significance for thrust production by fishes has not been investigated
25 experimentally. By quantifying body surface pressures and forces during swimming, we find that
26 the anterior body shape and movement allows fishes to produce thrust in the same way as an
27 oscillating airfoil. This work helps us to understand how the streamlined body shape of fishes
28 contributes, not only to reducing drag, but also directly to propulsion, and, by quantitatively
29 linking form and function, leads to a more complete understanding fish evolution and ecology.

31 **Introduction**

32 It has long been appreciated that the shape of many fishes resembles a streamlined body
 33 (1–4). In particular, the two-dimensional horizontal cross-section through many fishes is similar
 34 in shape to modern airfoil profiles designed to minimize drag (3). Because nearly all aspects of a
 35 fish's life depend on how well it swims, it has been suggested that this shape represents an
 36 evolutionary optimization to minimize drag for economical swimming (1). In general, swimming
 37 performance is linked to the evolution of fish body forms and movement patterns (5–10). For
 38 fishes that swim fast or migrate long distances, even small energy savings may be important.

39 However, along with reducing drag, an airfoil can directly generate propulsive forces by
 40 virtue of their shape and an effect called leading-edge suction. Due to its shape, an airfoil will
 41 generate a positive (above ambient) pressure stagnation point near its leading edge as flow
 42 divides to move along either side of the foil (3, 4, 11, 12). Then, the airfoil generates negative
 43 (below ambient) pressure over much of its length (Fig. 1B, and similar to the time-averaged
 44 pressure in Fig. 1A) (3, 4, 11–13). Since pressure produces a force perpendicular to the surface,
 45 negative pressure along the leading portion of the foil (~5 to 40% in Fig. 1A,B) will contribute to
 46 thrust because the surface there is angled forward (illustrated in Fig. 1B) (4, 11, 14). Airfoils also
 47 produce thrust on their anterior regions through leading-edge suction when they are at an angle
 48 to the flow (12, 15, 16). When the airfoil is angled, the stagnation point and region of positive
 49 pressure is not directly on the tip of the airfoil (Fig. 1A,C) (15, 16). When the positive pressure
 50 deflects to one side, negative pressure moves forward to act more anteriorly on the opposite side
 51 (compare Fig. 1B,C) (15, 16). This area of negative pressure, positioned alongside forward-
 52 facing surfaces near the airfoil's leading edge, acts as local forces with small thrust components
 53 in a mechanism called leading-edge suction (Fig. 1C) (11, 12, 14–16).

54 If a fish's body resembles an airfoil turned on its side, then we might expect that the
 55 anterior body might similarly produce thrust due to its shape and movements. Fishes that swim
 56 by primarily undulating the posterior half or less of their bodies in a range of patterns broadly
 57 classified as “carangiform” characteristically have airfoil-like bodies. But, while it has long been
 58 recognized that the airfoil-like shape of a carangiform swimmer is crucial for drag reduction (1,
 59 4, 14, 17, 18), particularly due to the tapered posterior body that helps to prevent separation (3,

60 11, 12, 19), the potential for thrust production on the anterior body of a swimming fish has not
61 been examined experimentally. Some previous researchers hypothesized that fish could benefit
62 from this effect, with local thrust greatly reducing the impact of the net drag expected on a
63 carangiform swimmer's anterior body (20). Indeed, in computational models, one can see areas
64 of negative pressure on the anterior body (21, 22), but this effect has never been studied
65 systematically or in living fishes. We therefore used a recent set of tools (23, 24) to quantify the
66 pressure and forces produced during swimming for two fish species that both have airfoil-shaped
67 anterior bodies, bluegill sunfish (*Lepomis macrochirus* Rafinesque) and brook trout (*Salvelinus*
68 *fontinalis* Mitchell), at high temporal and spatial resolution, the first such experimental test for
69 negative pressure thrust production in living carangiform swimmers.

70 It is known that some fishes can produce negative pressures during swimming.
71 Specifically, Gemmell et al. (25, 26) quantified the pressure distribution around larval lampreys
72 and found that they produce negative pressures along the anterior parts of their bodies, resulting
73 in thrust forces. In essence, larval lampreys suck themselves forward.

74 The negative pressures produced by larval lampreys are not due to airfoil-like mechanics.
75 Instead, they are likely due to the high amplitude movements of their bodies (26), a pattern called
76 "anguilliform" swimming, which is used primarily by a few eel-like elongate fish species (17,
77 27). Many anguilliform swimmers undulate a large fraction of their bodies at high amplitude,
78 which is different from the pattern seen in many other fishes, which use the carangiform mode
79 (17, 27). Moreover, larval lampreys use unusually high amplitudes when they swim, even
80 compared to adult lampreys (28). It is not known whether negative pressure thrust is a quirk of
81 their specific swimming mode, or whether such negative pressures can be produced by other fish
82 species and swimming modes, particularly the carangiform mode, the most common swimming
83 mode (27, 29).

84 We find that both bluegill sunfish and brook trout produce negative pressure thrust on
85 their anterior bodies, but they do it using a very different mechanism from larval lampreys: the
86 combination of their airfoil-shaped bodies and leading-edge suction. Our descriptions of pressure
87 and force along the body also enable us to begin to tease apart how subtle differences in shape
88 and movement affect swimming in a broader context. The carangiform swimming pattern belies
89 the subtler but substantial variation in forms, movements, and ecological roles that exists within
90 this mode (7, 20, 29, 30). For example, bluegill have a relatively deep trunk and shallow

91 peduncle when viewed laterally, undulate only the posterior third of their bodies at a large
92 amplitude (20), and are found in lakes, where they generally tend to hover or swim slowly (31,
93 32). In comparison, brook trout have a relatively shallower trunk and deeper peduncle, undulate
94 slightly more of their body at large amplitude (20), and live in running water where they swim
95 often and at high speeds (33, 34). These differences are sufficiently large that based on
96 undulation amplitude alone, sometimes these fishes are considered examples of the two different
97 carangiform subtypes – true carangiform (bluegill) and subcarangiform (trout) (30). These
98 species differ in body shape and swimming movements; we identify subtle features of the
99 swimming kinematics that lead to differences in their force production.

100 More broadly, our understanding of fish evolution and ecology is limited by the lack of
101 comprehensive descriptions of swimming force production. Such descriptions, such as those
102 presented here, will enable us to evaluate the strength of the relationships between body shape,
103 movements, and swimming abilities. By helping to identify specific selection pressures
104 underlying the diversity of modern fish forms, we can make predictions about the roles of
105 different fishes within a given assemblage – species co-occurring in the same water body (7, 14,
106 18, 20). This understanding of the links between form and function in fishes can offer potential
107 solutions for current underwater vehicle design challenges (35–37), such as producing animal-
108 like vehicles less disruptive to aquatic life, enhancing swimming efficiency of biomimetic
109 vehicles for longer-term deployments, or improving maneuvering capabilities for navigating
110 environments with complex physical structure.

111

112 **Results**

113 We measured fluid flow patterns in a horizontal plane around 5 bluegill sunfish (9.3-11.5
114 cm total length L) and 3 brook trout (10.0-11.0 cm total length) using standard digital particle
115 image velocimetry (38). Individual fishes swam in a flow tunnel at $2.5 L s^{-1}$, which corresponded
116 to Reynolds numbers ($Re = \rho u L / \mu$, where ρ is water density, u is flow velocity, L is fish body
117 length, and μ is water's dynamic viscosity) (17) of 20,000-30,000. Tailbeat frequencies were
118 4.9 ± 0.5 Hz for bluegill and 4.7 ± 1.0 Hz for trout, corresponding to Strouhal numbers ($St =$
119 $f A / u$, where f is tailbeat frequency and A is peak-to-peak tailbeat amplitude) (22) of 0.156-0.404
120 and reduced frequencies $f^* = f L / u$ (17) of 2.0 ± 0.2 for bluegill and 2.1 ± 0.4 for trout.

121

122 **The anterior body makes small movements**

123 For both species, the amplitude (the distance from the center line to maximum excursion
124 on one side or the other) was very small in the anterior body and increased in more posterior
125 segments (Fig. 2A,B). For both species, in segments 1-3 (0-40% L), the amplitude was less than
126 2% L , and only increased to 3% L in segment 4 of trout and segment 5 of bluegill, before
127 increasing to 6% L or more in the posterior-most segments (Fig. 2C,D). In comparison, the
128 body's maximum width was ~13% L for both species (Fig. 2A,B). Likewise, the body angle
129 made with the fish's trajectory was less than 5° in segments 1-3 and increased over the posterior
130 body to 30-40° (Fig. 2E,F).

131

132 **The anterior body generates negative pressures**

133 The body and tail motion swept fluid alongside the anterior body, like an airfoil, before
134 accelerating the fluid alongside the posterior body and entraining it into vortices that were shed
135 as the tail reached maximum excursion and changed direction (Movies S1, S2). This led to
136 pressure fields (Fig. 3A,B, Movies S3, S4) with a region of strong positive pressure upstream of
137 the snout, negative pressure along most of the anterior body, and oscillating positive and
138 negative pressure gradients along the posterior body and caudal fin.

139 To control for the difference in swimming speed among the fishes, we computed pressure
140 coefficients: $C_P = P/(0.5\rho u^2)$, where P is pressure. Fig. 4 shows the instantaneous pressure
141 coefficients along one side of the body, along with the time-averaged value.

142 The overall shapes of the pressure coefficient profiles had three important differences
143 across the species (Fig. 4). First, the region of positive pressure on the snout was smaller in trout,
144 resulting in negative pressure developing more anteriorly (see also Fig. 3A,B; Movies S3, S4).
145 Second, bluegill often had larger magnitude negative pressure coefficients in the midbody (10-
146 55% L) than trout, but trout had larger positive and negative pressure coefficients in the posterior
147 body (55-100% L). Finally, for both species, pressure shifted from negative in the midbody to
148 positive near the tail, but for trout, this shift at times occurred more anteriorly (particularly at
149 time $t = 80.0\%$ of the tailbeat cycle in Fig. 4).

150 The instantaneous pressure coefficients often differed greatly from the mean profiles
151 (Fig. 4). Notably, the location where pressure coefficient changes sign from negative to positive

152 shifted in the midbody region, and at times, a second area of negative pressure appeared on the
153 posterior body (e.g., time $t = 53.3\%$ of the tailbeat cycle, Fig. 4).

154

155 **Negative pressure produces thrust on the anterior body**

156 The shifting pressure gradients, combined with the body kinematics, led to complex
157 spatial and temporal patterns of axial forces (Figs 3C,D, 5; Movies S5, S6). Both positive and
158 negative pressure could produce thrust or drag, depending on the orientation of the body (see
159 Fig. 1B). Thus, there were four types of forces: thrust due to positive pressure, thrust due to
160 negative pressure, drag due to positive pressure, and drag due to negative pressure (Figs 3, 5).
161 For bluegill, mean thrust forces were 1.3 ± 0.5 mN. Trout produced a mean thrust of 1.5 ± 0.4 mN.
162 All values were on the same order of magnitude as previous estimates from wake analyses (39,
163 40).

164 Fig. 5 shows the spatial and temporal patterns of these four forces in the two species,
165 along with time-averaged values, on one side of the fishes' bodies. Again, to control for the
166 difference in body shape and swimming speed among species, forces were normalized to
167 coefficients: $C_F = F / (0.5\rho S u^2)$, where F is force and S is lateral surface area. Most of the mean
168 coefficients for axial force subtypes were significantly different between bluegill and trout (Fig.
169 5C,D). Traces showing mean force coefficients summed across both sides of the body, as well as
170 mean streamwise (total, rather than broken down by subtype) and lateral force coefficients on
171 each body segment, are available in the Supporting Information (Figs S1-S3).

172 Spatially, the anterior body's angle (Fig. 2E,F) combined with the negative pressures led
173 to thrust on the anterior body and the tail, while positive pressures contributed to thrust only in
174 posterior segments (Fig. 5). On the tip of the snout, positive pressure produced net drag (dark
175 orange), but slightly more posteriorly, the pressure became negative, producing negative pressure
176 thrust (light green). This shift occurred in segment 1 (0-10% L) for trout but in segment 2 (10-
177 20% L) for bluegill, and in both species, negative pressures in segment 2 (10-20% L) produced
178 thrust. Positive pressure thrust coefficients (dark green) occurred in segments 4-7 (40-100% L)
179 and increased from anterior to posterior. Negative pressure thrust (light green) also occurred in
180 the most posterior segments (segments 6-7, 70-100% L). Positive pressure drag (dark orange)
181 was only present in segments 1 (0-10% L) and 7 (85-100% L). Negative pressure drag (light
182 orange) was concentrated in the midbody (segments 3-5, 20-70% L).

183

184 **Trout produce positive pressure thrust more anteriorly than bluegill**

185 The pattern of axial force coefficients along the body was different among species,
 186 depending on whether force was a thrust or drag force, and whether the force came from positive
 187 or negative pressure (linear mixed model ANOVAs: significant four-way interaction among
 188 species, force type, pressure type, and body segment; numerator DF = 6, denominator DF = 610,
 189 F-value = 4.1312, p = 0.0004). Where the two species had significantly different force
 190 coefficients, trout had larger magnitudes than bluegill, except for negative pressure drag in
 191 segment 5 (55-70% L , Fig. 5).

192 Fig. 6 compares within a species the different force types in three posterior segments that
 193 are functionally important. For bluegill, segment 4 (40-55% L) had significantly more drag than
 194 thrust (Fig. 6A), but in trout these two forces were equal (Fig. 6B). In segment 5 (55-70% L), the
 195 pattern shifted; trout produced more thrust than drag (Fig. 6B), but in bluegill they were equal
 196 (Fig. 6A). Thus, bluegill produced net drag in segment 4 and no net force in segment 5, while
 197 trout produced no net force in segment 4 and thrust in segment 5 (Figs 6, S2). Moreover, trout
 198 produced the same amount of lateral force as bluegill in segment 5 (Fig. S3). The kinematics of
 199 these segments were different in the two species: trout had higher amplitudes and higher angle to
 200 the horizontal (Fig. 2).

201 We approximate hydrodynamic Froude efficiency η , the ratio of useful power to total
 202 power (17), as $\eta = \sum_i (\mathbf{F}_{T,i} \cdot \mathbf{v}_i) / \sum_i |\mathbf{F}_i \cdot \mathbf{v}_i|$, where $\mathbf{F}_{T,i}$ is the thrust force vector, \mathbf{F}_i is the total
 203 force vector, and \mathbf{v}_i is the total velocity relative to the flow (including both side to side motion
 204 and the flow velocity) each on segment i . Based on this estimate, trout swim with an efficiency
 205 of $29.5 \pm 1.9\%$, compared to $26.6 \pm 1.0\%$ in bluegill (mean \pm standard error; no significant
 206 difference across species; p = 0.142).

207

208 **Discussion**

209 Many mechanical explanations of fish swimming emphasize that fishes push fluid behind
 210 them as they swim, creating areas of positive pressure on the body that push the fish forward as
 211 thrust forces (17, 25, 37). Thus, the recent discovery that larval lampreys rely substantially on
 212 negative pressure for thrust production (25) pointed to the underappreciated role of negative

213 pressure in fish locomotion. Here, we present experimental data to show that the shape and
214 oscillation of the airfoil-like body, common to many species of fishes, results in negative
215 pressures that contribute significantly to thrust through a different mechanism than that used by
216 larval lampreys. Using recent techniques for temporally- and spatially-resolved pressure and
217 force measurements (23, 24), we find that, like in lampreys, negative pressure contributes
218 significantly to swimming forces along a carangiform swimmer's body (Fig. 5), producing 39%
219 of the total thrust over the whole body. Unlike lampreys, however, most of the negative pressure
220 thrust produced by carangiform swimmers arises not from high-amplitude swimming motions,
221 but rather from the airfoil-like mechanics of the anterior body. Negative pressure acting on the
222 anterior body produces 28% of total thrust. For comparison, the anterior body produces 36% of
223 the total thrust when positive and negative pressure contributions are combined.

224 In addition, the high spatial and temporal resolution of our methods allows us to
225 determine how small differences in kinematics among swimmers produced significant
226 differences in forces (Figs 2, 6). Specifically, small differences in the body amplitude and angle
227 of the posterior body, in combination with differences in lateral body depth profiles, allowed
228 trout to produce higher thrust forces without increasing lateral forces and so may allow them to
229 swim more effectively than bluegill. Thus, control of pressure gradients via both the airfoil-like
230 shape of the anterior body and the kinematics of the posterior body are important for the
231 effective development of swimming forces.

232

233 **Thrust on the posterior body comes from both positive and negative pressure**

234 About two-thirds of the thrust comes from a familiar undulatory mechanism, as predicted
235 by earlier studies (17, 20, 41, 42), relying on both positive and negative pressure in the posterior
236 body. Time-averaged pressure profiles were previously measured by Dubois et al. (42) and theirs
237 and ours both generally resembled the time-averaged pressure pattern on a pitching airfoil (Fig.
238 1A), especially on the anterior half of the body. Our profiles from the posterior body only look
239 like theirs when averaged over a tailbeat cycle (Fig. 4). In instantaneous pressure profiles,
240 pressure changes sign depending on location on the body and time within the tailbeat cycle (Fig.
241 4), resembling the distinct, alternating “pressure” (positive pressure) and “suction” (negative
242 pressure) regions alongside the posterior body posited by Müller et al. (41) and found on the
243 posterior bodies in computational models of carangiform swimmers (21, 22). This contrasts with

244 the uniformly negative pressure on the posterior portion of a pitching airfoil (Fig. 1A). In
245 particular, the caudal fin (segment 7, 85-100% L) experienced three forces: positive pressure
246 thrust on the leading side of the lateral motion, negative pressure thrust on the trailing side, and
247 positive pressure drag on the trailing side (Fig. 5). Together, these three forces produce a peak in
248 thrust every time the caudal fin travels between peak excursions and near-zero forces as the
249 caudal fin changes direction (Figs 5, S1). Dubois and colleagues (42–44) were not unaware of
250 these effects; they noted that pressures fluctuated on some parts of the fish’s body in rhythm with
251 the tailbeat, that there were negative pressures on the trailing side of the caudal fin, and that the
252 caudal fin produces some drag, observations that all agree with ours.

253 We suggest that the actions of all three of these forces are necessary to create the shape of
254 the characteristic double-peak pattern of thrust production over a tailbeat cycle (20, 29, 43–45).
255 The positive pressure acting on the leading side of the caudal fin (segment 7, 85-100% L) is the
256 primary source of thrust, leading to the magnitude of peak forces in the net force curves (Fig
257 5A,B, S1), since the magnitude of negative pressure thrust is equal to the magnitude of positive
258 pressure drag (Fig. 6). This, again, agrees with computational models of carangiform swimming,
259 where thrust was concentrated on the caudal region (21, 22). But, the timing of the peaks in
260 positive pressure thrust on the leading side of the caudal fin and in negative pressure thrust on
261 the trailing side differs (Fig. 5A,B, S1). And, the staggered timing of negative pressure thrust and
262 positive pressure drag on the caudal fin – with the thrust acting first and quickly, and the drag
263 acting second and slowly (Fig. 5A,B) – influences the timing of peak thrust and the shape of the
264 net force curve on the caudal fin. This influence is visible when comparing across bluegill and
265 trout; in trout, the negative pressure thrust peak occurs earlier, leading to net force curves with
266 different shapes across species (Figs 5A,B, S1).

267 The implication here is that a fish’s control of pressure gradients around its caudal fin
268 through adjustments to caudal fin shape or body kinematics may be vital for tuning thrust
269 production on the posterior body. This agrees with Müller et al.’s (41, 46) hypothesis that fish
270 can make small adjustments to their kinematics to control flow around the body and fine-tune
271 their swimming performance, and further, this points to specific features – caudal fin shape and
272 posterior body kinematics – that could have been influenced by selection on swimming abilities
273 over the course of fish evolution.

274 It is important to note that the patterns of force production we describe here only reflect
275 steady swimming. Presumably, timing, magnitude, and location of forces, in addition to the
276 relative role of positive and negative pressure, could all change during accelerations. For
277 example, many carangiform swimmers, including bluegill, have larger head and tail oscillation
278 amplitudes and larger tailbeat frequencies during accelerations (39, 47), leading to larger added
279 masses and larger total forces (39). Interestingly, in bluegill (39) but not trout (47), these
280 increases occur without substantially redirecting the net thrust forces relative to steady
281 swimming, suggesting that there are differences in the force production mechanics among
282 species and across behaviors like steady swimming and accelerations.

283

284 **Trout may produce swimming forces more effectively than bluegill**

285 From their lifestyles, we might hypothesize that bluegill, which generally hover or swim
286 slowly in still water or slowly-flowing streams (20, 31, 32), do not produce thrust as effectively
287 as trout, which spend much of their lives swimming (20, 33, 34), even though both swim in a
288 similar way. If this hypothesis is correct, then what aspects of kinematics or body morphology in
289 trout lead to more effective swimming? Answering questions like these, both within and across
290 swimming modes, would allow us to evaluate the strength of relationships between swimming
291 abilities, morphology, and kinematics, and further, identify specific selection pressures that may
292 have led to modern fish forms. Our pressure measurements allow us to approximate
293 hydrodynamic Froude efficiency, the ratio of useful and total power. We find that the Froude
294 efficiency is 2.9% higher in trout than bluegill. Earlier predictions likewise suggest that trout
295 may have higher Froude efficiencies than bluegill (20). The difference we observe in efficiency,
296 while not significant ($p = 0.142$), may point toward functional differences in thrust production
297 between trout and bluegill. Froude efficiency is only a mechanical efficiency, and does not
298 account for potential differences in metabolic rates (1), but even such small differences in
299 efficiency could lead to significant energy savings over the long bouts of continuous swimming
300 typical of a trout's lifestyle (20, 33, 34).

301 Indeed, we hypothesize that the subtle differences in kinematics and body shape among
302 the species are functionally meaningful. The midbody (segments 4-5, 40-70% L), where forces
303 transition from drag to thrust, is the most functionally relevant. In bluegill, the transition from
304 drag to thrust occurred on body segment 5 (55-70% L), where the net force coefficient was near

305 zero (Figs 6A, S2). In contrast, in trout, this transition occurred more anteriorly in segment 4 (40-
306 55% L), with segment 5 (55-70% L) clearly producing thrust (Figs 6B, S2).

307 These differences seem to reflect kinematic differences among the species: trout are
308 sometimes classified as “subcarangiform” swimmers, which have higher amplitude undulations
309 more anteriorly on their body than “true-carangiform” swimmers like bluegill (Fig. 2A-C) (20).
310 First, the more anterior transition to undulatory motion in trout means that the development of
311 thrust-producing positive pressure gradients occurs more anteriorly, too (Fig. 4, time $t = 53.3$ and
312 80% of the tailbeat cycle). Second, in trout, these more posterior segments make a larger angle to
313 the swimming trajectory (Fig. 2E,F), directing the forces more toward thrust than lateral forces.
314 Indeed, the ratio of axial to lateral force coefficients is much larger in this segment in trout than
315 in bluegill (0.33 in trout and 0.06 in bluegill) (Figs 5, S2, S3).

316 As a whole, our results suggest that trout are producing swimming force more effectively
317 than bluegill. This is because they produce higher thrust forces than bluegill and use more of
318 their body to produce thrust. But, although trout are undulating at larger amplitudes, the lateral
319 forces they produce are no different from or are less than (segment 4, 40-55% L) those of bluegill
320 (Fig. S3). Since lateral forces are wasted effort (part of the denominator in Froude efficiency),
321 these larger body undulations do not appear to be incurring additional costs for the trout. We
322 suggest that this is due to trout’s shallower body depth profile. While a full analysis of
323 morphology, lateral forces, and swimming efficiency is beyond the scope of this study, these
324 findings suggest that an examination of subtle differences across carangiform swimmers is a
325 promising direction for future work linking form and function in fishes.

326

327 **The anterior body produces thrust due to airfoil-like mechanics**

328 Despite the differences in force distribution in posterior segments, the overall pattern of
329 pressure and forces in the anterior body is quite similar across bluegill and trout and much like
330 that over an airfoil. The reduced frequency of oscillation is fairly large (~2 for both species),
331 suggesting that oscillatory mechanics might be more important than airfoil-like mechanics.
332 However, we find that the pressure distribution on the anterior body is very similar to an airfoil
333 at a constant angle of attack (reduced frequency of 0) (48) or a pitching airfoil at a much lower
334 reduced frequency (0.2 in Fig. 1A) (13).

335 For both fishes, the cross-sectional shape of the anterior body is close to that of a NACA
336 airfoil (Figs 1A, 2A,B) (2, 3), leading it to develop negative pressure along most of its length
337 (Figs 3, 4), like an airfoil (Fig. 1A) (4, 11). In both fish species, as in airfoils with an angle of
338 attack to the flow (Fig. 1A,C) (11, 12, 14–16), the region of positive pressure is not directly on
339 the tip of the snout (Fig. 4; Movies S3, S4). Instead, it oscillates to either side (Figs 1A, 4;
340 Movies S3, S4), and the rest of the anterior body (segments 2-3, 10-40% L) solely experiences
341 negative pressure (Figs 3, 4). This process is similar to leading-edge suction mechanics on
342 airfoils at moderate angles of attack (Fig. 1C) (11, 12, 14–16). Our observations of negative
343 pressure also match measurements by Dubois et al. (42, 44), who implanted pressure cannulae
344 under the skin of bluefish and found that negative pressure dominated much of the bluefish’s
345 length, leading to mean pressure profiles shaped similarly to those in Fig. 4 and suction-based
346 thrust forces on the anterior body. Likewise, we find that negative pressure – arising from the
347 airfoil-like shape, and placed far forward on the anterior body due to leading-edge suction
348 mechanics – is positioned alongside forward-facing body surfaces and leads to small but
349 significant, continuous thrust in segment 2 (10-20% L) (Figs 3, 5A,B).

350 Similar pressure distributions have also been found in 3D computational fluid dynamics
351 models of carangiform swimmers. Borazjani and Sotiropoulos (21) and Liu et al. (22) both
352 documented negative pressure regions along the anterior bodies in simulations of mackerel and
353 crevalle jack, respectively, but they did not highlight the role of these negative pressures in thrust
354 production. Even so, the presence of these mechanics across five phylogenetically-distant species
355 points to the ubiquity of airfoil-like thrust generation among carangiform swimmers.

356 This thrust production mechanism means that the anterior body produces less drag than it
357 might otherwise, but it is still net drag producing. Dubois et al. (42–44), Anderson et al. (19),
358 Borazjani and Sotiropoulos (21), and Liu et al. (22) all find that the anterior body produces net
359 drag forces. Our work does not contradict these findings; indeed, we find that, on the anterior
360 body, the magnitude of the negative pressure thrust forces is smaller than the sum of drag forces
361 (positive pressure drag on the tip of the snout, segment 1, 0-10% L , and negative pressure drag
362 on the midbody, segment 3, 20-40% L) (Figs 5, S2). However, the negative pressure thrust on
363 the anterior body (segments 1-4, 0-55% L) balances out a large fraction (45%) of this drag,
364 causing the anterior body to produce much less net drag. Thus, we point to a more nuanced role

365 for the anterior body during carangiform locomotion, as anterior-body thrust forces make up a
366 substantial portion of the total thrust.

367 These thrust forces arise from very small movements of the anterior body (Fig. 2A-D),
368 and likely require little muscle activity. At low speeds, like in this study, trout do not activate red
369 muscle anterior to 50% L (49), and neither do largemouth bass, a species closely related to
370 bluegill sunfish (50). Thus, the small, mostly passive movement in the anterior body may allow
371 this airfoil-like thrust production to be highly efficient.

372 This airfoil-like mechanism is different from the mechanism Gemmell et al. (25, 26)
373 identified in larval lampreys, which also produce thrust due to negative pressure (Fig. 7). Larval
374 lampreys swim in the anguilliform mode, which is characterized by large-amplitude undulations
375 in the anterior regions of the body (Fig. 7) (17, 25, 27). Even among anguilliform swimmers, the
376 larval lampreys studied by Gemmell et al. (25, 26) have particularly large anterior body
377 movements (28). These undulations rotate the body surface, which accelerate the adjacent fluid,
378 strengthen the fluid's vorticity, and generate large regions of negative pressure (Fig. 7A) (26, 51,
379 52). This negative pressure leads to suction-like thrust forces, which act continuously along
380 much of the length of the body (Fig. 7A) (25, 26, 51, 52). In contrast, bluegill and trout, which
381 are carangiform swimmers, produce negative pressure locally on their anterior bodies due to their
382 cross-sectional shape and small motions (Fig. 7B).

383 A growing body of work points to how different swimming modes and body shapes most
384 likely confer different functional advantages (5–10). Detailed comparisons of force production
385 by specific parts of the fish body like those performed here will allow us to finally test these
386 hypotheses, and ultimately, arrive at a more complete understanding fish evolution and ecology.
387 For example, we have long hypothesized that streamlined bodies like those of a tuna enable the
388 fast, efficient swimming required of Pacific migrations. Here, we show that this body
389 streamlining may contribute to the efficiency of thrust production. These fishes not only produce
390 low drag but can also take advantage of the airfoil-like cross-section of their body and recoiling
391 movements to produce thrust. Because the streamlined body cross-section and small anterior-
392 body oscillations are very common in fishes, we suggest that this mechanism of producing thrust
393 might be a general feature of swimming in many fish species.

394

395 **Materials and Methods**

396 Full details of the methods can be found as SI Materials and Methods.

397

398 **Experimental procedures**

399 Individual bluegill and brook trout swam at 2.5 L s^{-1} in a recirculating flume seeded with
400 near-neutrally buoyant particles illuminated by horizontal laser light sheets from two sides.
401 Fishes were filmed using two high-speed cameras (Photron Fastcam Mini AX50, 1024 x 1024
402 pixel resolution, $20 \mu\text{m}$ pixel size), which captured synchronized ventral and lateral view footage
403 at 1000 and 100 frames per second, respectively. Only sequences where the fish used steady,
404 body-caudal fin swimming motions for at least 1.5 tailbeats cycles within the light sheet were
405 processed. Video of 3 replicate swimming trials was collected for each individual. Experiments
406 were approved by the Harvard University Institutional Animal Care and Use Committee under
407 protocol 20-03 (GVL).

408

409 **Data processing**

410 Water velocity was calculated using particle image velocimetry (PIV) in DaVis 8.2.2
411 (LaVision GmbH, Goettingen, GER), with interrogation window sizes 32×32 pix and 16×16
412 pix, 50% overlap, and two passes at each window size (38).

413 Following our previously-validated protocol (24), ventral outlines of the fish were
414 manually digitized in ImageJ (NIH, Bethesda, MD, USA). Midlines were extracted automatically
415 from these outlines using a custom Matlab 2015b (Mathworks, Inc., Natick, MA, USA) script.
416 Midline kinematics (e.g., tailbeat period, frequency, lateral amplitude, and body angle) were
417 calculated using a custom script in Python (version 2.7.11, Python Software Foundation;
418 <https://www.python.org>) following Videler (29). We use the mathematical amplitude, the
419 distance between the center line and maximum lateral excursion, which is half of the peak-to-
420 peak lateral excursion, often referred to as “amplitude” in older works (1, 53). To facilitate
421 comparisons across different parts of the fishes’ bodies, fishes were divided into seven body
422 segments which grouped together portions of the body with similar kinematics, body shape, and
423 pressure gradients. Pressure and forces calculated below were averaged within segments.

424 Pressure distributions were calculated following Dabiri et al. (23) in Matlab using
425 velocity data and outlines of the fishes’ bodies. We estimated forces using the procedure detailed

426 in Lucas et al. (24). In brief, force magnitude was calculated as the product of pressure and
427 surface area at a point in a calculation boundary drawn around the fish, where the area was the
428 product of the distance between points in the horizontal plane and the fish's body depth at those
429 points. Force vectors were directed inward or outward based on the sign of the surrounding
430 pressure. Our previous validations (24) indicate that, for fish-like swimmers, pressure effects
431 dominate shear effects (e.g., skin friction), and that this 2D approach is robust to the out-of-plane
432 flows around a fish, e.g., Liu et al. (22), allowing for accurate estimation of forces through these
433 procedures.

434

435 **Statistics**

436 Linear mixed effects models were developed following the standard practice outlined by
437 Zuur et al. (54). For axial forces (C_{Fx}), two models were developed. The first compared the mean
438 magnitudes of axial force subtypes and included four fixed effects, each with multiple levels:
439 force type (thrust, drag), pressure type (positive, negative), species (bluegill, trout), and segment
440 (1-7), and all interactions between these effects. The second model examined the means of total
441 axial forces. Both this model and the model for mean lateral forces (C_{Fy}) included two fixed
442 effects: species and segment, and their interaction. The model for efficiency included one fixed
443 effect: species. In all models, individual was included as a random effect, and in force models,
444 variance specifications accounted for heterogeneity (54, 55). ANOVA tests and post-hoc
445 pairwise comparisons were conducted to determine which effects significantly affected force
446 coefficients. A false discovery rate correction was applied to all post-hoc results (56).

447 All statistics were performed in R (version 3.5.1, R Foundation for Statistical Computing,
448 Vienna, Austria; <https://www.r-project.org/>) using the nlme package (version 3.1-137,
449 <https://CRAN.R-project.org/package=nlme>), and marginal means were estimated for pairwise
450 comparisons using the emmeans package (version 1.2.3, <https://CRAN.R-project.org/package=emmeans>).
451

452

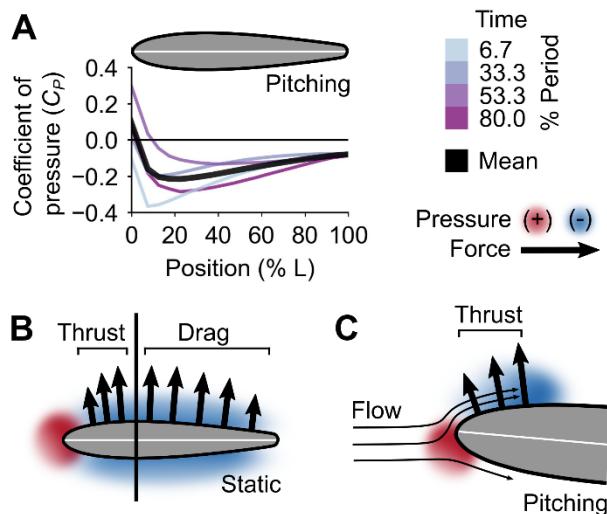
453 **Data availability**

454 Raw data, scripts, and extended statistical reports are available to reviewers here
455 <https://tufts.box.com/s/sl67axppjkwxb6vcvsjohnmftk668ajp>.

456 Data will be made available to the public upon manuscript acceptance to an accessioned
457 database, e.g., Harvard Dataverse (<https://dataverse.harvard.edu/>). All scripts used for data
458 analysis will be made available at <https://github.com/kelseynlucas>.

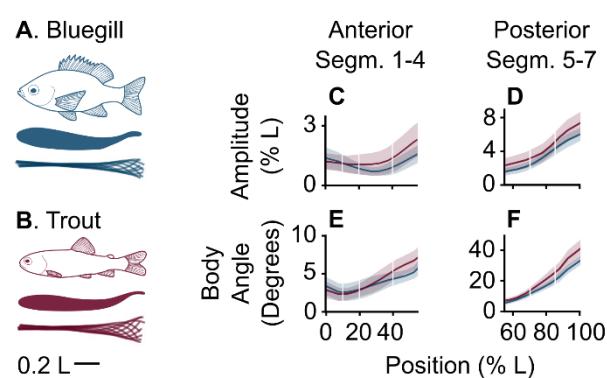
459

460

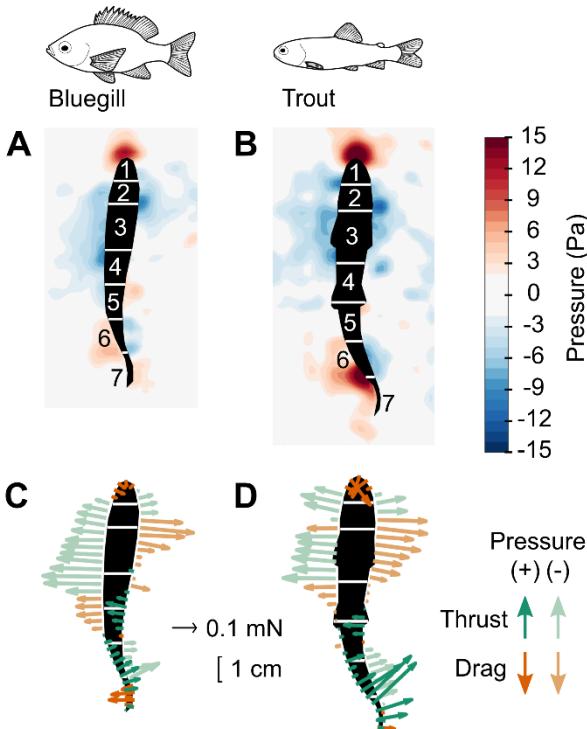

461 **Acknowledgements**

462 Thanks to Mariel Rosic for assistance with data collection; members of the Lauder Lab for fish
463 care; John Dabiri, Brad Gemmell, and Gary Lucas for technical assistance; Tyler Wise for
464 sample data used to develop code; Steve Worthington and Kara Feilich for statistical advice;
465 Paul Webb, Sean Colin, Elena Kramer, Pete Girguis, and members of the Girguis and Tytell labs
466 for helpful discussions; Karthik Menon and Rajat Mittal for airfoil surface pressure data; and the
467 anonymous reviewers whose feedback greatly improved the manuscript. This work was
468 supported by a National Science Foundation Graduate Research Fellowship under grant DGE-
469 1745303 to KNL and by NSF IOS 1652582 to EDT, and by the Office of Naval Research Multi-
470 University Research Initiative Grant N000141410533 monitored by Dr. Bob Brizzolara to GVL.
471 The funders had no role in study design, data collection and analysis, decision to publish, or
472 preparation of the manuscript. No competing interests declared.

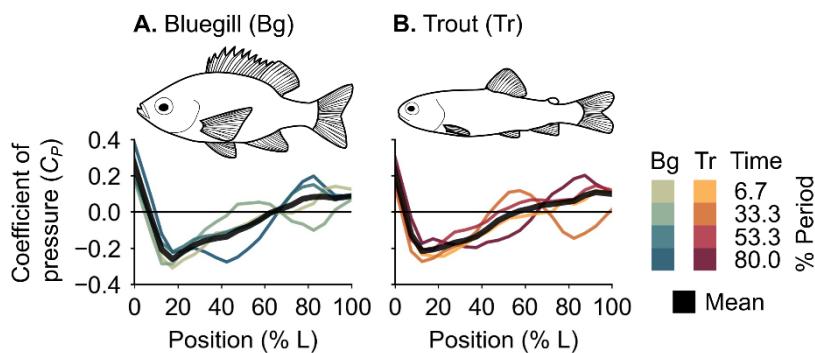
473


474 Figures

475


476

477 **Fig. 1. Physical mechanics of airfoils.** (A) Coefficient of pressure (C_P) along one side of a
478 NACA 0015 airfoil with a rounded trailing edge pitching at reduced frequency 0.2, about 0°
479 mean angle of attack, with an amplitude of $\pm 5^\circ$ (13). Colors indicate instantaneous pressure
480 profiles, while the thick black line represents the time-averaged mean. (B) Pressure gradients
481 around an airfoil (here, static at 0° angle of attack) act perpendicularly to the surface and can
482 contribute to thrust or drag forces based on the orientation of the surface. (C) Leading-edge
483 suction occurs when pitching movements of the airfoil shift the stagnation point and positive
484 pressure to one side, allowing negative pressure to act more anteriorly on the opposite side (11,
485 12, 14–16). For clarity, in (B) and (C), only negative pressure forces on one side of the airfoil are
486 shown.
487


488

489 **Fig. 2. Bluegill and trout are carangiform swimmers.** Overall midline kinematics for bluegill
490 (A) and trout (B) swimming at $2.5 L s^{-1}$ indicate they are carangiform swimmers. Subtle
491 differences between carangiform subtypes are visible through comparison of amplitude (C, D)
492 and body angle (E, F) for anterior (C, E) and posterior (D, F) segments (Segm.), where segments
493 are defined as in Fig. 3.
494

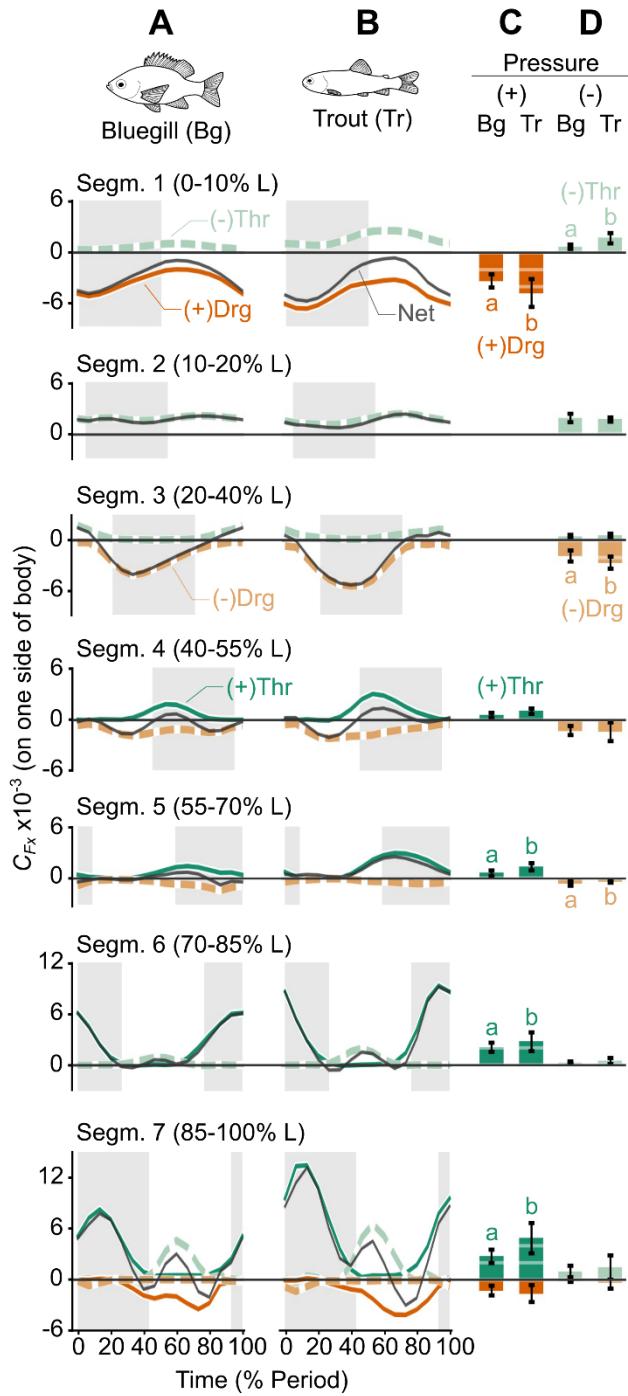
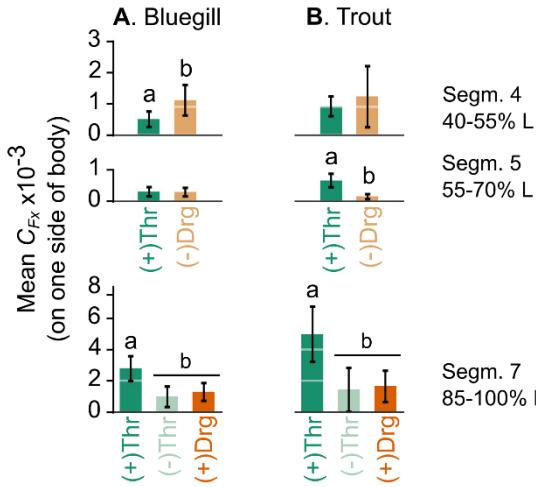

495
496
497
498
499
500
501

Fig. 3. Undulatory swimming motions produce spatially and temporally complex patterns of pressure and forces. Panels show pressure fields (A, B) and estimated force vectors (C, D) for bluegill sunfish and trout swimming steadily at $2.5 L s^{-1}$. Numbering for body segments used throughout are given in (A, B), and the white lines indicate segment boundaries. For clarity only every third force vector is plotted in C and D.

502
503
504
505
506
507

Fig. 4. Profiles of pressure coefficient along the body vary over the tailbeat period. Colored traces show instantaneous profiles for bluegill (A) and trout (B) along the one side of the body, while thick black traces show the time-averaged mean.

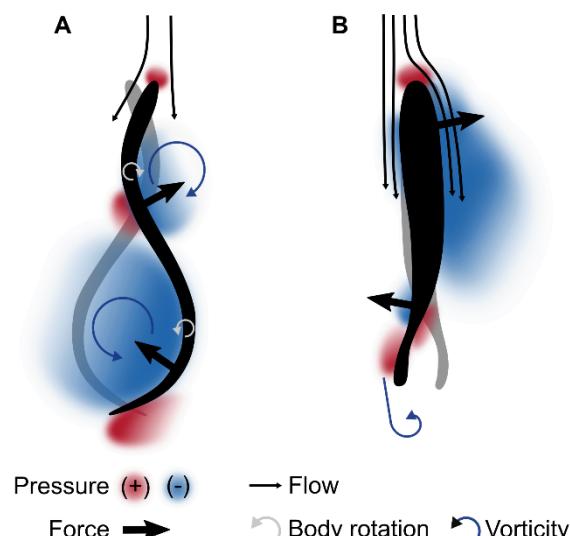


508

509 **Fig. 5. Thrust and drag arise from both positive and negative pressure in time- and space-
510 dependent patterns.** Panels A and B compare phase-resolved forces for bluegill (A) and trout
511 (B) for seven segments (Segm.) along one side of the body. Letters indicate where significant
512 differences in force magnitude were detected across species ($p < 0.05$). The shaded region in the
513 background indicates the times when the body segment moved from left to right, from peak
514 amplitude to peak amplitude. Panels C and D compare mean thrust (Thr) and drag (Drg) forces
515 arising from positive (C, (+)) or negative (D, (-)) pressure. When lines or bars are not shown, it

means that both species' mean force coefficients were effectively zero ($C_{Fx} < 5\%$ total C_{Fx} for that force type).

518


519

520 **Fig. 6. Bluegill and trout use their bodies differently to produce swimming forces.**

521 Comparison of thrust (Thr) and drag (Drg) forces from positive (+) and negative (-) pressure on
522 one side of the body at posterior body segments (Segm.) for bluegill (A) and trout (B). Letters
523 indicate significant differences between force types within a species ($p < 0.05$).

524

525

526

527 **Fig. 7. Anterior body thrust for anguilliform and carangiform swimmers is based on**
528 **different mechanics.** Gray and black silhouettes show the motion of the body, and color
529 indicates pressure. Anguilliform swimmers (A) produce negative pressure thrust along the whole
530 body using an undulatory pump mechanism, in which high amplitude body movements suck
531 fluid along the body. Anguilliform kinematics adapted from (57). In contrast, carangiform

532 swimmers (B) produce thrust on the anterior body through airfoil-like mechanics. For clarity,
533 only negative pressure thrust forces are shown.

534

535

536

537 **References**

- 539 1. Webb PW (1975) Hydrodynamic and energetics of fish propulsion. *Bull Fish Res Board*
540 *Canada* (190):1–159.
- 541 2. Cayley G (1933) *Aeronautical and miscellaneous note-book (ca. 1799–1826) of Sir*
542 *George Cayley; with an appendix comprising a list of Cayley papers* ed Hodgson EJ (W.
543 Heffer & Sons, Cambridge).
- 544 3. Von Kármán T (1954) *Aerodynamics: Selected Topics in the Light of Their Historical*
545 *Development* (Cornell University Press, Ithaca, NY).
- 546 4. Vogel S (1994) *Life in Moving Fluids: the Physical Biology of Flow* (Princeton University
547 Press, Princeton). 2nd Ed.
- 548 5. Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. *Am Zool*
549 24(1):107–120.
- 550 6. Fulton CJ, Bellwood DR (2005) Wave-induced water motion and the functional
551 implications for coral reef fish assemblages. *Limnol Oceanogr* 50(1):255–264.
- 552 7. Domenici P, Kapoor BG (2010) *Fish locomotion. An eco-ethological perspective* (CRC
553 Press, Boca Raton, FL).
- 554 8. Astudillo-Clavijo V, Arbour JH, López-Fernández H (2015) Selection towards different
555 adaptive optima drove the early diversification of locomotor phenotypes in the radiation of
556 Neotropical geophagine cichlids. *BMC Evol Biol* 15(1):77.
- 557 9. Haas TC, Heins DC, Blum MJ (2015) Predictors of body shape among populations of a
558 stream fish (*Cyprinella venusta*, Cypriniformes: Cyprinidae). *Biol J Linn Soc* 115(4):842–
559 858.
- 560 10. Feilich KL (2016) Correlated evolution of body and fin morphology in the cichlid fishes.
561 *Evolution (N Y)* 70(10):2247–2267.
- 562 11. Pritchard PJ (2011) *Fox and McDonald's Introduction to Fluid Mechanics* (John Wiley &
563 Sons, Inc., Hoboken, NJ). 8th Ed.
- 564 12. Batchelor GK (2000) *An Introduction to Fluid Dynamics* (Cambridge University Press,
565 Cambridge).

566 13. Menon K, Mittal R (2019) Flow physics and dynamics of flow-induced pitch oscillations
567 of an airfoil. *J Fluid Mech* 877:582–613.

568 14. Yates GT (1983) Hydromechanics of body and caudal fin propulsion. *Fish Biomechanics*,
569 eds Webb PW, Weihs D (Praeger Publishers, New York), pp 177–213.

570 15. Narsipur S, Hosangadi P, Gopalarathnam A, Edwards JR (2016) Variation of leading-edge
571 suction at stall for steady and unsteady airfoil motions. *54th AIAA Aerosp Sci Meet*
572 (January). doi:10.2514/6.2016-1354.

573 16. Sane SP (2003) The aerodynamics of insect flight. *J Exp Biol* 206(23):4191–4208.

574 17. Lighthill J (1975) *Mathematical Biofluidynamics* (Society for Industrial and Applied
575 Mathematics, Philadelphia, PA).

576 18. Weihs D, Webb PW (1983) Optimization of locomotion. *Fish Biomechanics*, eds Webb
577 PW, Weihs D (Praeger Publishers, New York), pp 339–371.

578 19. Anderson EJ, McGillis WR, Grosenbaugh MA (2001) The boundary layer of swimming
579 fish. *J Exp Biol* 204(Pt 1):81–102.

580 20. Tytell ED (2007) Do trout swim better than eels? Challenges for estimating performance
581 based on the wake of self-propelled bodies. *Exp Fluids* 43(5):701–712.

582 21. Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of
583 carangiform swimming in the transitional and inertial flow regimes. *J Exp Biol*
584 211(10):1541–1558.

585 22. Liu G, et al. (2017) Computational analysis of vortex dynamics and performance
586 enhancement due to body–fin and fin–fin interactions in fish-like locomotion. *J Fluid
587 Mech* 829:65–88.

588 23. Dabiri JO, Bose S, Gemmell BJ, Colin SP, Costello JH (2014) An algorithm to estimate
589 unsteady and quasi-steady pressure fields from velocity field measurements. *J Exp Biol*
590 217:331–336.

591 24. Lucas KN, Dabiri JO, Lauder G V. (2017) A pressure-based force and torque prediction
592 technique for the study of fish-like swimming. *PLoS One* 12(12):e0189225.

593 25. Gemmell BJ, Colin SP, Costello JH, Dabiri JO (2015) Suction-based propulsion as a basis
594 for efficient animal swimming. *Nat Commun* 6:8790.

595 26. Gemmell BJ, et al. (2016) How the bending kinematics of swimming lampreys build
596 negative pressure fields for suction thrust. *J Exp Biol* 219(24):3884–3895.

597 27. Breder CM (1926) The locomotion of fishes. *Zoologica* 4:159–297.

598 28. McClellan AD, Pale T, Messina JA, Buso S, Shebib A (2016) Similarities and Differences

599 for Swimming in Larval and Adult Lampreys. *Physiol Biochem Zool* 89(4):294–312.

600 29. Videler JJ (1993) *Fish Swimming* (Springer Netherlands, Dordrecht) doi:10.1007/978-94-
601 011-1580-3.

602 30. Lauder G V., Tytell ED (2006) Hydrodynamics of undulatory propulsion. *Fish
603 Physiology*, eds Shadwick RE, Lauder G V. (Elsevier, Amsterdam), pp 425–468. 1st Ed.

604 31. Ehlinger TJ, Wilson DS (1988) Complex foraging polymorphism in bluegill sunfish. *Proc
605 Natl Acad Sci* 85(6):1878–1882.

606 32. Ellerby DJ, et al. (2018) Assessing the ecological relevance of swimming performance
607 traits: a case study of bluegill sunfish (*Lepomis macrochirus*). *Aquat Ecol* 52(4):311–322.

608 33. Fausch KD, White RJ (1981) Competition between brook trout (*Salvelinus fontinalis*) and
609 brown trout (*Salmo trutta*) for positions in a Michigan stream. *Can J Fish Aquat Sci*
610 38(9586):1220–1227.

611 34. Petty JT, Hansbarger JL, Huntsman BM, Mazik PM (2012) Brook trout movement in
612 response to temperature, flow, and thermal refugia within a complex Appalachian
613 riverscape. *Trans Am Fish Soc* 141(4):1060–1073.

614 35. Raj A, Thakur A (2016) Fish-inspired robots: design, sensing, actuation, and autonomy—
615 a review of research. *Bioinspir Biomim* 11(3):031001.

616 36. Blake RW (2004) Fish functional design and swimming performance. *J Fish Biol*
617 65(5):1193–1222.

618 37. Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic
619 locomotion. *IEEE J Ocean Eng* 24(2):237–252.

620 38. Raffel M, et al. (2018) *Particle Image Velocimetry* (Springer International Publishing,
621 Cham) doi:10.1007/978-3-319-68852-7.

622 39. Wise TN, Schwalbe MAB, Tytell ED (2018) Hydrodynamics of linear acceleration in
623 bluegill sunfish, *Lepomis macrochirus*. *J Exp Biol* 221(23):jeb190892.

624 40. Drucker EG, Lauder G V. (1999) Locomotor forces on a swimming fish: three-
625 dimensional vortex wake dynamics quantified using digital particle image velocimetry. *J
626 Exp Biol* 202(Pt 18):2393–2412.

627 41. Müller UK, Van den Heuvel BLE, Stadhuis EJ, Videler JJ (1997) Fish footprints:
628 morphology and energetics of the wake behind a continuously swimming mullet (*Chelon
629 labrosus* Risso). *J Exp Biol* 200(22):2893–2906.

630 42. Dubois AB, Cavagna GA, Fox RS (1974) Pressure distribution on the body surface of
631 swimming fish. *J Exp Biol* 60(3):581–591.

632 43. Dubois AB, Ogilvy CS (1978) Forces on the tail surface of swimming fish: thrust, drag
633 and acceleration in bluefish (*Pomatomus saltatrix*). *J Exp Biol* 77:225–241.

634 44. Dubois AB, Cavagna GA, Fox RS (1976) Locomotion of bluefish. *J Exp Zool* 195:223–
635 235.

636 45. Blight AR (1977) The muscular control of vertebrate swimming movements. *Biol Rev*
637 52:181–218.

638 46. Müller UK, Smit J, Stamhuis EJ, Videler JJ (2001) How the body contributes to the wake
639 in undulatory fish swimming: flow fields of a swimming eel (*Anguilla anguilla*). *J Exp*
640 *Biol* 204(16):2751–2762.

641 47. Akanyeti O, et al. (2017) Accelerating fishes increase propulsive efficiency by modulating
642 vortex ring geometry. *Proc Natl Acad Sci* 114(52):13828–13833.

643 48. Kim DH, Chang JW, Chung J (2011) Low-reynolds-number effect on aerodynamic
644 characteristics of a NACA 0012 airfoil. *J Aircr* 48(4):1212–1215.

645 49. Liao JC (2004) Neuromuscular control of trout swimming in a vortex street: implications
646 for energy economy during the Karman gait. *J Exp Biol* 207(Pt 20):3495–3506.

647 50. Jayne BC, Lauder G V (1995) Red muscle motor patterns during steady swimming in
648 largemouth bass: effects of speed and correlations with axial kinematics. *J Exp Biol*
649 198:1575–87.

650 51. Borazjani I, Sotiropoulos F (2009) Numerical investigation of the hydrodynamics of
651 anguilliform swimming in the transitional and inertial flow regimes. *J Exp Biol* 212(Pt
652 4):576–592.

653 52. Kern S, Koumoutsakos P (2006) Simulations of optimized anguilliform swimming. *J Exp*
654 *Biol* 209(Pt 24):4841–57.

655 53. Bainbridge R (1957) The speed of swimming of fish as related to size and the frequency
656 and amplitude of the tail beat. *J Exp Biol* 35(1937):109–133.

657 54. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) *Mixed effects models and*
658 *extensions in ecology with R* (Springer New York, New York, NY) doi:10.1007/978-0-
659 387-87458-6.

660 55. Harrison XA, et al. (2018) A brief introduction to mixed effects modelling and multi-
661 model inference in ecology. *PeerJ* 6:e4794.

662 56. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and
663 powerful approach to multiple testing. *J R Stat Soc B* 57(1):289–300.

664 57. Ayali A, Gelman S, Tytell ED, Cohen AH (2009) Lateral-line activity during undulatory
665 body motions suggests a feedback link in closed-loop control of sea lamprey swimming.

666 *Can J Zool* 87(8):671–683.

667

1 Supporting Information

2
3 The fish body functions as an airfoil: surface pressures generate thrust during carangiform
4 locomotion

5
6 Kelsey N. Lucas, George V. Lauder, and Eric D. Tytell

7
8
9 **SI Materials and Methods**

10
11 **Fishes**

12 Bluegill were captured by beach seine from White Pond, Concord, MA, USA, and were
13 housed individually in 38 L tanks kept at 20°C. Bluegill were fed a combination of live worms
14 and pellets. Brook trout were purchased from Blue Stream Aquaculture, West Barnstable, MA,
15 USA, and were maintained in a 1500 L recirculating tank kept at 16°C. Trout were fed 3.5 mm
16 high protein pellets daily (Keystone Hatcheries, Richmond, IL, USA). Fishes were kept on a 12-
17 hour light: 12-hour dark photoperiod. All fish care and experimental protocols were approved by
18 the Harvard University Institutional Animal Care and Use Committee under protocol 20-03 (G.
19 Lauder).

20
21 **Experimental setup and video collection**

22 Experiments were performed in a 600 L recirculating flume with a 28 x 28 x 80 cm
23 working area. Fish were blocked from drifting downstream outside the test area by a baffle and
24 were encouraged to hold position in the center of the tank by the presence of vertical black strips
25 of plastic clamped to the walls of the tank. Intake and outflow pipes from a chiller unit were
26 positioned downstream of the test section. Water was chilled to 16°C during trout testing but
27 was maintained at room temperature (20°C) for bluegill. Flow rates in the flume were controlled
28 using a custom LabVIEW program (National Instruments Corp., Austin, TX, USA).

29 The flume was seeded with near-neutrally buoyant (density 1060 kg m⁻³) VESTOSINT
30 1164 white nylon 12 particles with an average diameter of 50 µm (Degussa Corporation,

31 Piscataway, NJ, USA; now Evonik Industries AG, Essen, GER), and flow was pulsed to high
32 speeds periodically throughout testing to resuspend particles. Tracer particles were illuminated
33 by two light sheets, one entering from either side of the tank and aligned to within 1 mm of each
34 other, so as to eliminate shadows around the fish's body. Light sheets were produced by
35 spreading the beams from two continuous wave 532 nm solid-state lasers (MGL-N-532A,
36 OptoEngine, Midvale, UT, USA).

37 Before transfer to the test tank, each fish was measured for total length and then
38 transferred to a small, rectangular container and photographed in lateral view with a scale bar. In
39 the test tank, fish were given an acclimation window of 20 minutes to 12 hours prior to data
40 collection, depending on the species, individual stress responses to handling, and response to the
41 laser lights.

42 Individual swimming fish were filmed from two perspectives using two Photron Fastcam
43 Mini AX50 (1024 x 1024 pixel resolution, 20 μ m pixel size) high-speed video cameras. The first
44 camera captured ventral view footage of the fish and surrounding flow off of a 45° mirror below
45 the tank at 1000 frames per second (fps), and it was positioned to capture flow in the central
46 region of the tank away from the walls, leading to images capturing a 26 x 26 cm space. The
47 second camera was positioned adjacent to one of the lasers and aimed diagonally upstream. This
48 camera filmed at 100 fps in sync with the ventral view camera and provided nearly-lateral view
49 images of the fish, which were used to confirm that the fish was vertically centered in the laser
50 light sheet during swimming trials selected for further processing. To ensure visibility of the
51 fish, a red-pass filter (Schott Color Glass Filter, CG-OG-530-2.00-2.5, CVI Laser Corp.,
52 Albuquerque, NM, USA) was used on the lateral-view camera to reduce glare from the light
53 sheet. Cameras ran continuously, and an end trigger was used to keep the last 12 seconds of
54 video in memory for review and saving when the fish swam in the light sheet.

55 The criteria we used to select videos for processing are as follows. First, we required
56 sequences where the fish used steady, body-caudal fin swimming motions for 1.5 tailbeat cycles.
57 Although data would only be extracted from the duration of 1 tailbeat cycle during analysis, the
58 extra 0.5 cycles were included to allow for a time buffer at the start and end of the sequence. We
59 defined steady, body-caudal fin motion as the fish staying within 5 mm of its starting position
60 (with one exception, where a 7 mm drift was permitted in order to maintain balanced
61 experimental design) and not using pectoral fin beats. For each individual, footage of 3 replicate

62 swimming trials was collected. Both fishes swam at 2.5 body lengths per second ($L\ s^{-1}$). Only
63 sequences where the whole body remained in the light sheet for the duration of a tailbeat were
64 selected for further processing.

65 Calibration images were produced each time the cameras were moved by placing a plate
66 with crosses marked on a 1 cm square grid in the test section at the depth of the laser sheet and
67 taking photographs with the camera positioned beneath the tank.

68

69 **Particle image velocimetry**

70 Particle image velocimetry (PIV) analysis was conducted in DaVis 8.2.2 (LaVision
71 GmbH, Goettingen, GER) (1–3). Cross-correlation was conducted with decreasing interrogation
72 window sizes (32 x 32 and 16 x 16) and 50% overlap. Two passes were made at each window
73 size. During postprocessing, vectors were deleted if their correlation value was <0.8, and the
74 empty spaces were filled by interpolation. This resulted in a 128 x 128 grid of velocity vectors.
75 Due to the difficulty in automatically tracking fish fins, which appeared translucent and often in
76 poor contrast to the background, fish were not masked during vector calculation, so vectors were
77 calculated over the whole image, including inside of the fish's body. These internal vectors did
78 not represent real flows. Smoothing regimes such as those used by Lucas et al. (4) consider the
79 average flow among a vector's nearest neighbors (3). Because the fishes were not masked
80 during processing, no smoothing regime was applied to prevent erroneous vectors calculated
81 inside the fish's body from influencing real flow data.

82

83 **Digitization for kinematics, body depth, and lateral area**

84 Although ventral view videos were collected at 1000 fps for PIV analysis, our previous
85 validations (4) indicated that major trends in forces on a swimming body are captured when
86 pressure and force are calculated from velocity fields at 100 fps. For this reason, ventral outlines
87 of the fish were manually digitized in ImageJ (NIH, Bethesda, MD, USA) in every tenth frame
88 of ventral view video. In each outline, the first point was always placed on the anterior-most tip
89 of the fish, and digitization thereafter proceeded clockwise, leading to outlines of 20-30 points.
90 In addition to the kinematics tracking described below, ventral view outlines were also used in
91 the calculation of pressure and forces.

92 Fish midlines were extracted automatically in a custom Matlab 2015b (Mathworks, Inc.,
93 Natick, MA, USA) script from manually-digitized ventral outlines. To do this, 20 points were
94 initialized inside the fish outline, evenly spaced on the x-axis between the manually-digitized
95 anterior-most point, and an automatically identified tail tip. The tail tip was extracted based on
96 curvature of the outline near points with the maximum x-coordinates, as fish always swam
97 toward the left side of the screen. This initial straight line of 20 points was adjusted into a
98 midline using a custom snake algorithm (5), which iteratively moved the 18 internal points in
99 small steps in a direction chosen based on the weight of three tendencies: a tendency to move
100 away from the edges of the fish outline, a tendency to stay near other points, and a tendency not
101 to make a sharp angle with neighboring points. An arc-length interpolation was then used to
102 generate a midline with 100 equally-spaced points.

103 Midlines kinematics were then calculated using a custom script in Python (version 2.7.11,
104 Python Software Foundation; <https://www.python.org>). To do this, the midline was first
105 smoothed using a quintic least-squares spline. Tailbeat period and frequency were then extracted
106 from midline motion by tracking inflection points (positions of zero curvature) in the kinematic
107 waveform traveling along the posterior half of the body following the methods described in
108 Videler (6). Lateral amplitude of the kinematic waveform was calculated as the mean of peak
109 lateral excursion of the midline, and the body angle – the angle the body made with the fish’s
110 trajectory – was calculated as the tangential angle at each point on the midline.

111 In addition to the ventral outlines, a lateral view outline of each fish was manually
112 digitized in ImageJ from the lateral view photographs taken before fishes were transferred into
113 the test tank. The lateral area of a fish’s body was measured as the area enclosed by its
114 manually-digitized lateral outline. Using the same initialization and snake algorithm process
115 applied to make ventral view midlines above, lateral view midlines were generated. Body depth
116 could then be automatically measured along lines drawn perpendicularly to the lateral view
117 midline. This was accomplished by finding the distance between the points where the
118 perpendicular lines intersected the dorsal and ventral outlines of the fish. On the caudal fin
119 lobes, the body depth was the sum of distances between the dorsal and ventral outlines on each
120 lobe. A body depth was calculated for each ventral view midline point, using the distance-along-
121 body measure to relate the ventral and lateral view images.

122

123 **Pressure and force calculation**

124 Ultimately, velocity fields generated from PIV were used to calculate pressure
125 distributions in the water around the fish's body using the Dabiri et al. (7) algorithm. The Dabiri
126 et al. (7) algorithm has been validated against computational simulations of flow around a square
127 cylinder and an anguilliform swimmer and in both cases, captures the major pressure gradients
128 around these bodies. These pressure fields were then used to calculate forces acting on the fish's
129 body following our previously-described protocols (4). Our earlier work (4) also details the
130 validations of these pressure-based force calculation methods and shows that for fish-like
131 swimming, the effects of shear forces as small enough that a pressure-based calculation provides
132 an accurate estimate of swimming forces. Further, 3D bodies in flow will create flows that are
133 inherently 3D, as illustrated for fish in Liu et al. (8). These flows include tip vortices and may
134 not be captured with 2D quantification techniques for bodies with the aspect ratio of a fish (9,
135 10). Our validations also examine the influence of these effects for fish-like swimmers, and we
136 find that this 2D approach is able to accurately reproduce the shape, timing, and magnitude of
137 force-vs-time curves of fish-like swimmers (4).

138 The following paragraphs describe the pressure and force calculation process in more
139 detail. Prior to these calculations, two more pieces of information were needed: specifications of
140 where the fish's body was in the images and of where in space pressures should be extracted for
141 force calculation.

142 First, the manually-digitized ventral outlines were used to create masks for use with the
143 Dabiri et al. (7) pressure field calculator. These masks would blank out velocity vectors inside
144 the fish's body and indicated to the algorithm the presence of a solid body (4, 7). To ensure that
145 velocity vectors were enclosed in the narrow rostrum and caudal regions so that pressures would
146 not be calculated through the fish's body, digitized outlines were adjusted – extending the
147 rostrum by 0.5 mm and widening the caudal fin by 1.5 mm (0.75 mm on either side) (4) in
148 Matlab 2015b.

149 Following the processing sequence detailed in Lucas et al. (4), we then generated
150 boundaries which specified where around the fish's body we were interested in pressure
151 magnitudes. These boundaries were set in Matlab 2015b as 198-point loops encircling the fish
152 within 2.5 boundary-layer-widths of its surface, where pressure was defined and forces could be
153 calculated (4, 7). For each frame of video that would be processed, the boundary was generated

154 in three steps. First, pelvic fins were removed from the body outline, as well as pectoral fins for
155 trout (bluegill pectoral fins were held alongside the body). Paired fin outlines were required in
156 the masks, as no flow information was available where these fins blocked the view of the laser
157 light sheet, but for this same reason, forces could not be calculated directly on the portions of the
158 body blocked from view by these fins. Then, an arc-length interpolation converted the remaining
159 manually-digitized outline into an outline with 198 evenly-spaced points. Finally, this 198-point
160 outline was expanded outward from the fish using another custom snake algorithm (5), which
161 pushed the outline away from the fish while keeping boundary points relatively evenly spaced
162 and the outline smooth.

163 We chose to calculate pressure in an 18 x 18 cm domain surrounding the fish, based on
164 the following convergence analysis. Dabiri et al. (7) described in their supplemental material the
165 need for care in choosing a domain size (length and width of the velocity field) because their
166 algorithm calculates pressure along integration paths through the velocity field from the outer
167 edge toward the center. Thus, domain size must compromise between keeping integration paths
168 short to avoid accumulating error during pressure calculations and keeping the domain large
169 enough so that the assumption that the pressure is zero on the edges of the domain was still valid.
170 Following the protocol suggested by Dabiri et al. (7) to ensure the velocity field here met both of
171 these criteria, a small sample of velocity fields were cropped to several dimensions (26, 22, 20,
172 18, 16, and 14 cm square fields and a rectangular 8 x 14 cm field cropped close to the fish's
173 body). Then, the masks and these cropped velocity vector fields were then loaded into the Dabiri
174 et al. (7) pressure algorithm to generate pressure fields. Pressure magnitudes on the calculation
175 boundary and were plotted versus calculation boundary point to visualize fluctuations in the
176 calculated pressure values induced by the changes in domain size. The 16, 18, and 20 cm square
177 domains converged to similar calculated pressures around fish bodies – indicating minimal error
178 induced by too large or too small domains – and so velocity fields were cropped to 18 x 18 cm
179 windows centered around the fish during final pressure and force calculation.

180 After calculating pressure in this domain, we then estimated forces on the body. Force
181 magnitudes were calculated at each point as the product of pressure and an area term, following
182 the equations and procedure described in Lucas et al. (4). Pressures at force calculation
183 boundary points located inside of paired fin outlines were estimated by linearly interpolating
184 between pressures on either side of the fins. The area term for each calculation boundary point

185 was the area of a rectangle whose width was the distance between calculation boundary points,
186 and whose length was the depth of the fish's body at the calculation boundary point. Body depth
187 for a calculation boundary point was assumed to be the body depth at the nearest ventral view
188 midline point. Pressure-based forces always act perpendicularly to a surface, so force vectors
189 were always parallel with the normal vector at the corresponding calculation boundary points.
190 Force vectors were directed inward or outward based on the sign of the surrounding pressure –
191 positive pressure pushes on the body surface and directs force inward, while negative pressure
192 pulls and directs force outward.

193 To enable comparison across swimming speeds and species, pressure and force were both
194 normalized to non-dimensional pressure and force coefficients (C_p and C_F) as

$$195 C_p = \frac{p}{\frac{1}{2}\rho u^2} \quad (1)$$

$$196 C_F = \frac{F}{\frac{1}{2}\rho A u^2} \quad (2)$$

197 where C_p is pressure coefficient, p is pressure (Pa), C_F is force coefficient, F is force (N), ρ is the
198 density of fresh water (1000 kg m^{-3}), u is the swimming speed (m s^{-1}), and A is the lateral area of
199 the fish's body (m^2).

200 Because fish entered the light sheet and swam continuously starting at different points in
201 a tailbeat cycle, all data were synchronized for comparisons based on the movement of the tip of
202 the caudal fin. All time-series were reordered so that at time $t = 0 \text{ s}$ the tail tip was positioned at
203 its maximum excursion to the right side of the body (as viewed in the videos). To allow for
204 averaging across trials, all data were downsampled to 15 time points evenly distributed across
205 the tail beat period. The shortest tailbeat period observed was 0.15 s. In addition, the right and
206 left sides of the body experienced the same pressures and forces, but mirrored and at a lag of half
207 of tailbeat cycle. Thus, data from the left side was mirrored and synchronized with data from the
208 right side, leading to 2 time-series from every replicate tailbeat cycle which were averaged
209 together. Reported pressure and force data therefore reflect what happens on one side of the
210 body, unless otherwise indicated.

211 To facilitate comparisons across different parts of the fishes' bodies, fishes were divided
212 into seven body segments. These segments were defined so as to keep lengths of segments as
213 even as possible while grouping together portions of the body with similar kinematics, body
214 shape, and pressure gradients.

215 All kinematic, mean pressure, and net force information were aggregated and
216 synchronized for data reporting and statistical tests using a custom Python script.
217

218 **Hydrodynamic efficiency**

219 We approximate hydrodynamic Froude efficiency η , the ratio of useful power to total
220 power (11), as $\eta = \sum_i (\mathbf{F}_{T,i} \cdot \mathbf{v}_i) / \sum_i |\mathbf{F}_i \cdot \mathbf{v}_i|$, where $\mathbf{F}_{T,i}$ is the thrust force vector, \mathbf{F}_i is the total
221 force vector, and \mathbf{v}_i is the total velocity relative to the flow (including both side to side motion
222 and the flow velocity) each on segment i .
223

224 **Statistics**

225 Statistical models were developed to quantify how pressure and force differs along the
226 body among the two species. This led to the use of linear mixed effects models relating mean
227 magnitude of axial force coefficient (C_{Fx}) subtypes to four effects, each with multiple levels:
228 force type (thrust, drag), pressure type (positive, negative), species (bluegill, trout), and segment
229 (1-7), and all interactions between these effects. Individual was included as a random effect to
230 account for natural variation between individual fishes (12, 13). Because an examination of the
231 residuals indicated that C_{Fx} data were heterogeneous, weights were applied to the model to allow
232 for unequal variances among the grouping effects. Because all effects were categorical
233 variables, unequal variance structures would allow for variance to differ between levels of one or
234 more effects (12, 14). Appropriate variance structures were selected for each model by
235 examining the variance and residuals at each level of each effect and constructing possible
236 variance structures that described the unequal variance observed. The lowest Akaike
237 Information Criterion score was used to select between models (12). After model selection,
238 residuals were reexamined to verify that heterogeneity was no longer visible. This procedure
239 follows the standard practice outlined by Zuur et al. (12). This led to a model allowing for
240 variances to differ between all combinations of levels of species and body segment.

241 Fewer effects were of interest for comparisons of mean total axial force, as well as mean
242 lateral force (C_{Fy}), coefficients leading to linear mixed effects models relating each of these to
243 to species, segment, and their interaction. As before, individual was included as a random effect
244 (12, 13), and heterogeneity of variances were handled by introducing weight structures chosen
245 through AIC scoring (12, 14). For total C_{Fx} , variance was allowed to differ between

246 combinations of species and segment. For C_{Fy} , variance was allowed to differ between body
247 segments.

248 Efficiency models only had one fixed effect: species. Again, individual was included as a
249 random effect (12, 13), but since variances were equal across species, no weight structure was
250 needed.

251 Once appropriate models had been fit, ANOVA tests and post-hoc pairwise comparisons
252 could be conducted to determine which effects significantly affected force coefficients. A false
253 discovery rate correction was applied to all post-hoc results to correct for the likelihood that
254 random, false significant differences would be detected (15).

255 All statistics were performed in R (version 3.5.1, R Foundation for Statistical Computing,
256 Vienna, Austria; <https://www.r-project.org/>) using the nlme package (version 3.1-137,
257 <https://CRAN.R-project.org/package=nlme>), and marginal means were estimated for pairwise
258 comparisons using the emmeans package (version 1.2.3, [https://CRAN.R-
259 project.org/package=emmeans](https://CRAN.R-project.org/package=emmeans)).

260

261 **Data availability**

262 Raw data, scripts, and extended statistical reports are available to reviewers here
263 <https://tufts.box.com/s/sl67axppjkwxb6vcvsjohnmftk668ajp>.

264 Data will be made available to the public upon manuscript acceptance to an accessioned
265 database, e.g., Harvard Dataverse (<https://dataverse.harvard.edu/>). All scripts used for data
266 analysis will be made available at <https://github.com/kelseynlucas>.

267

268

269 **SI References**

- 270 1. Willert CE, Gharib M (1991) Digital particle image velocimetry. *Exp Fluids* 10(4):181–
271 193.
- 272 2. Stamhuis EJ, Videler JJ (1995) Quantitative flow analysis around aquatic animals using
273 laser sheet particle image velocimetry. *J Exp Biol* 294:283–294.
- 274 3. Raffel M, et al. (2018) *Particle Image Velocimetry* (Springer International Publishing,
275 Cham) doi:10.1007/978-3-319-68852-7.

276 4. Lucas KN, Dabiri JO, Lauder G V. (2017) A pressure-based force and torque prediction
277 technique for the study of fish-like swimming. *PLoS One* 12(12):e0189225.

278 5. Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. *Int J Comput
279 Vis* 1(4):321–331.

280 6. Videler JJ (1993) *Fish Swimming* (Springer Netherlands, Dordrecht) doi:10.1007/978-94-
281 011-1580-3.

282 7. Dabiri JO, Bose S, Gemmell BJ, Colin SP, Costello JH (2014) An algorithm to estimate
283 unsteady and quasi-steady pressure fields from velocity field measurements. *J Exp Biol*
284 217:331–336.

285 8. Liu G, et al. (2017) Computational analysis of vortex dynamics and performance
286 enhancement due to body–fin and fin–fin interactions in fish-like locomotion. *J Fluid
287 Mech* 829:65–88.

288 9. Raspa V, Ramananarivo S, Thiria B, Godoy-Diana R (2014) Vortex-induced drag and the
289 role of aspect ratio in undulatory swimmers. *Phys Fluids* 26(4). doi:10.1063/1.4870254.

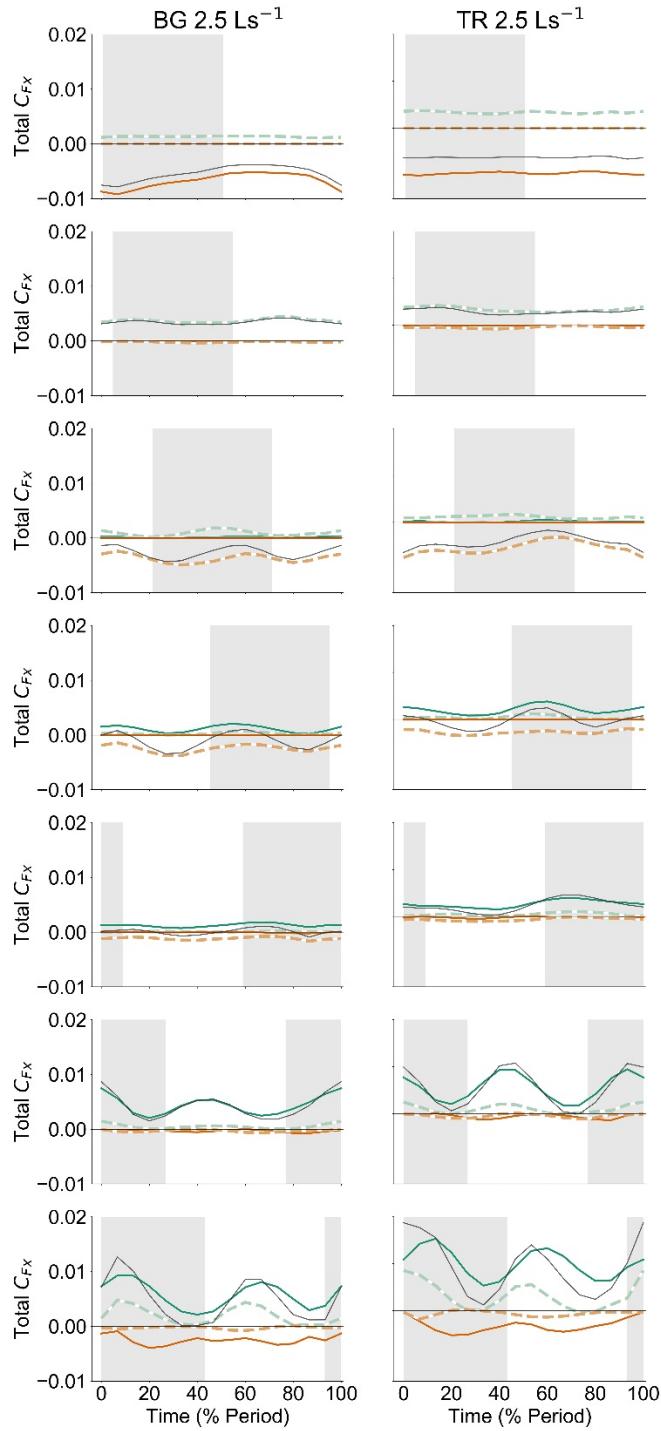
290 10. Yeh PD, Alexeev A (2016) Effect of aspect ratio in free-swimming plunging flexible
291 plates. *Comput Fluids* 124:220–225.

292 11. Lighthill J (1975) *Mathematical Biofluidynamics* (Society for Industrial and Applied
293 Mathematics, Philadelphia, PA).

294 12. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) *Mixed effects models and
295 extensions in ecology with R* (Springer New York, New York, NY) doi:10.1007/978-0-
296 387-87458-6.

297 13. Harrison XA, et al. (2018) A brief introduction to mixed effects modelling and multi-
298 model inference in ecology. *PeerJ* 6:e4794.

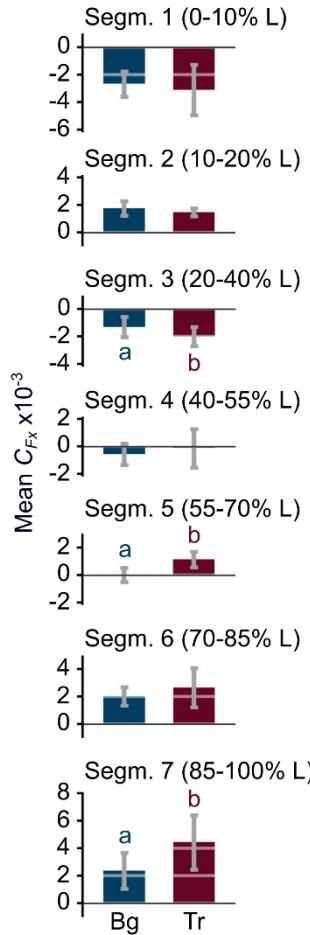
299 14. Pinheiro JC, Bates DM (2000) *Mixed-Effects Models in S and S-PLUS* (Springer-Verlag,
300 New York) doi:10.1007/b98882.

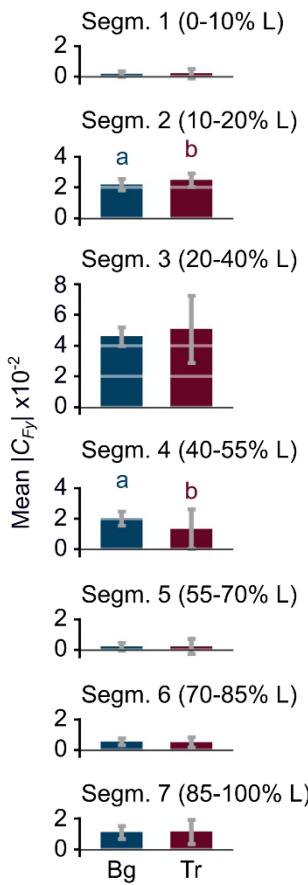

301 15. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and
302 powerful approach to multiple testing. *J R Stat Soc B* 57(1):289–300.

303

304

305


306 **SI Figures**


307

308 **Fig. S1. Thrust and drag arise from both positive and negative pressure in time- and space-
309 dependent patterns.** Differences in timing of positive and negative pressure thrust forces on the
310 caudal fin (segment 7, bottom row) control the timing of the peak in net thrust. The left column
311 shows the total instantaneous force coefficients acting on the body (contrast with force
312 coefficients from one side of the body in the main text) acting on bluegill (left column) and trout

313 (right column). Rows represent different body segments (see main text). The shaded region in
 314 the background indicates the times when the body segment moved from left to right, from peak
 315 amplitude to peak amplitude. Forces are colored by force type (green – thrust, orange – drag,
 316 grey – lateral component only) and pressure type (dark colors, solid lines – positive pressure,
 317 light colors, dashed lines – negative pressure), matching colors in the main text.
 318

319
 320 **Fig. S2. Mean streamwise force coefficients in bluegill (Bg) and trout (Tr).** Bars represent
 321 time-averaged mean forces on each body segment (Segm.) acting on one side of the body. Forces
 322 marked with different letters are significantly different from one another ($p < 0.05$). Transition
 323 from net drag to net thrust production occurs on the midbody, but in different segments for each
 324 species. The anterior body is net drag-producing, but thrust forces in Segm. 2 greatly reduce the
 325 impact of anterior-body drag.
 326

327
328
329
330
331
332
333

Fig. S3. Mean lateral force coefficients are similar between bluegill (Bg) and trout (Tr).
The biggest difference occurs in segment 4, where trout have much lower lateral forces than bluegill. Rows represent different body segments (Segm., see main text). Forces marked with different letters are significantly different from one another ($p < 0.05$).

334 **SI Movie Captions**

335

336 **Movie S1. Bluegill velocity field.**

337

338

339 **Movie S2. Trout velocity field.**

340

341

342 **Movie S3. Pressure distribution around bluegill.**

343

344

345 **Movie S4. Pressure distribution around trout.**

346

347

348 **Movie S5. Forces acting on the body of a freely-swimming bluegill.** Forces are colored by
349 force type (green – thrust, orange – drag, grey – lateral component only) and pressure type (dark
350 colors – positive pressure, light colors – negative pressure), matching colors in the main text.

351

352

353 **Movie S6. Forces acting on the body of a freely-swimming bluegill.** Forces are colored by
354 force type (green – thrust, orange – drag, grey – lateral component only) and pressure type (dark
355 colors – positive pressure, light colors – negative pressure), matching colors in the main text.

356