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ABSTRACT

Many applications perform frequent scatter update operations to
large data structures. For example, in push-style graph algorithms,
processing each vertex requires updating the data of all its neigh-
bors. Neighbors are often scattered over the whole graph, so these
scatter updates have poor spatial and temporal locality. In cur-
rent systems, scatter updates suffer high synchronization costs and
high memory traffic. These drawbacks make push-style execution
unattractive, and, when algorithms allow it, programmers gravitate
towards pull-style implementations based on gather reads instead.

We present PHI, a push cache hierarchy that makes scatter up-
dates synchronization- and bandwidth-efficient. PHI adds support
for pushing sparse, commutative updates from cores towards main
memory. PHI adds simple compute logic at each cache level to buffer
and coalesce these commutative updates throughout the hierarchy.
This avoids synchronization, exploits temporal locality, and pro-
duces a load-balanced execution. Moreover, PHI exploits spatial
locality by selectively deferring updates with poor spatial locality,
batching them to achieve sequential main memory transfers.

PHI is the first system to leverage both the temporal and spatial
locality benefits of commutative scatter updates, some of which
do not apply to gather reads. As a result, PHI not only makes
push algorithms efficient, but makes them consistently faster than
pull ones. We evaluate PHI on graph algorithms and other sparse
applications processing large inputs. PHI improves performance by
4.7X on average (and by up to 11x), and reduces memory traffic by
2x (and by up to 5X).
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1 INTRODUCTION

Sparse algorithms such as graph analytics, sparse linear algebra,
and sparse neural networks are an increasingly important workload
domain [22, 30, 53]. Unfortunately, sparse algorithms work poorly
on existing memory systems, as they perform frequent, indirect
memory accesses to small chunks of data scattered over a large
footprint. For example, graph algorithms often process large graphs
with 10-100 GB footprints [16, 48], which do not fit on-chip. Graph
algorithms execute few instructions per edge, and processing each
edge requires accessing a small (e.g., 4- or 8-byte) object over the
whole graph, resulting in poor spatial and temporal locality.

Sparse algorithms are very diverse, but they can be broadly clas-
sified into two styles: push-based or pull-based execution. This
nomenclature stems from graph analytics, where most algorithms
proceed in iterations, and on each iteration the data of each ver-
tex is updated based on the data of neighboring vertices. In push
algorithms, source vertices (i.e., those whose values need to be
propagated) are processed one by one, and each vertex propagates
(pushes) its update to all its outgoing neighbors. Thus, in push
algorithms, indirect accesses are scatter updates. By contrast, in pull
algorithms, destination vertices are processed one by one, and each
vertex reads (pulls) updates from its incoming neighbors. Thus, in
pull algorithms, indirect accesses are gather reads.

While some algorithms admit both pull and push implementa-
tions, in many cases the algorithm requires or is asymptotically
more efficient with a push implementation. For example, many
algorithms such as PageRank Delta [36] process a small set of active
vertices each iteration, and only active vertices push updates to
neighbors; BFS is most efficient with a combination of push and
pull iterations [8]; and push (i.e., outer-product) sparse matrix mul-
tiplication has higher locality [46]. Therefore, it is important for
systems to support both styles of execution efficiently.

Unfortunately, in current systems, push algorithms suffer two
major drawbacks over pull ones: higher synchronization costs and
worse memory traffic. These drawbacks both happen because the in-
direct accesses in push algorithms are updates, whereas the indirect
accesses in pull algorithms are reads. In parallel pull algorithms,
different threads update disjoint vertices, and thus updating each
vertex requires no synchronization. By contrast, push algorithms
must support concurrent updates to the same vertex from multiple
threads. Typical implementations use atomic read-modify-writes
and incur significant serialization and cache line ping-ponging.
Additionally, because many scatter updates have no locality, each
such update requires fetching and writing back an entire line from
main memory—twice the traffic required for reads. Given these
drawbacks, the conventional wisdom is that pull algorithms are
inherently more efficient, and hence, when an algorithm admits
push and pull implementations, pull should be used [11, 18, 19, 66].
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In this paper, we disprove this conventional wisdom. We intro-
duce novel architectural support in the memory hierarchy to make
scatter updates efficient both in terms of synchronization and mem-
ory bandwidth. Surprisingly, we show that push algorithms can be
made more bandwidth-efficient than pull ones because updates can
be reordered in ways that reads cannot, uncovering more oppor-
tunities to exploit locality. This flexibility gives push algorithms a
fundamental advantage over pull ones, and enables small on-chip
hierarchies to incur close to minimal memory traffic.

We leverage the insight that many algorithms perform com-
mutative scatter updates, such as addition or logical operations.
Commutative updates produce the same result regardless of the
order they are applied in, which enables the system to reorder and
coalesce them to improve performance.

Prior work has used commutativity to partially address either
the synchronization or the bandwidth costs of scatter updates, but
has not tackled both, and these techniques also introduce draw-
backs. First, Remote Memory Operations (RMOs) [28, 49], Coup [62],
and CCache [6] add hardware support to reduce synchronization
overheads: RMOs push updates to shared caches, where they are
performed atomically, whereas Coup and CCache enable private
caches to buffer commutative updates. However, these techniques
still incur the main memory traffic blowup of scatter updates, and
also suffer from more on-chip traffic than required.

Second, update batching techniques like MILK [29] and Prop-
agation Blocking [10] first batch updates to cache-fitting graph
slices, then apply each batch. These techniques transform indirect
accesses into efficient streaming accesses, achieving great spatial
locality, but they sacrifice all temporal locality, causing much more
memory traffic than needed. This prior work also performs this
batching in software, which adds significant overheads.

To address these problems we propose PHI, a push cache hierar-
chy that makes commutative scatter updates efficient. PHI achieves
this through three key contributions:

(1) PHI extends caches to buffer and coalesce updates, acting as

large coalescing write buffers. Cores push updates towards main

memory through the cache hierarchy in a unidirectional fashion.

By coalescing updates, PHI exploits temporal locality.

PHI selectively employs update batching when evicting par-

tial updates from the last-level cache: it streams updates to

in-memory batches when there is little spatial locality, and ap-
plies updates in-place when there is significant spatial locality.

By batching updates, PHI exploits spatial locality. Coalescing

and selective batching work together to exploit both temporal

and spatial locality, achieving the benefits of prior techniques
like update batching while avoiding their drawbacks.

(3) PHI performs hierarchical buffering and coalescing: private and
shared caches both buffer and coalesce updates. This approach
avoids synchronization, reduces on-chip traffic, and balances
the load among shared cache banks.

Fig. 1 illustrates the benefits of PHI for the PageRank algorithm
on the uk-2005 web graph [15]. We compare PHI with conventional
Push and Pull implementations, and with a push implementation
that uses update batching (UB). Pull not only has lower memory
traffic than Push, but avoids frequent synchronization among cores.
Thus, it improves performance over Push by 3.3x. Although UB
has lower memory traffic than Pull, it is only slightly faster, as the
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Figure 1: Memory traffic and performance of PageRank on
uk-2005. The dotted line indicates compulsory traffic.

memory traffic reduction comes at the cost of extra instructions.
PHI further reduces memory traffic over UB by coalescing updates in
the cache hierarchy while also avoiding UB’s instruction overheads.
Thus, PHI improves performance over Push by 6.5x. PHI's memory
traffic is only 3.1x higher than the compulsory traffic, i.e., the traffic
incurred with unbounded caches (the dotted line in Fig. 1).

We evaluate PHI using detailed microarchitectural simulation.
We focus our evaluation on graph algorithms, which are particularly
memory-intensive due to the large footprint of real-world graphs,
but PHI’s benefits apply to other sparse applications that use scatter
updates like sparse linear algebra and in-memory databases [7]. On
a 16-core system, PHI reduces main memory traffic by up to 5x
and by 2Xx on average over Push. On average, PHI incurs less than
2x the traffic of an ideal memory hierarchy. Consequently, PHI
improves performance by up to 11X and by 4.7 on average. While
we evaluate PHI on a general-purpose multicore, its techniques are
easily applicable to an FPGA or ASIC accelerator.

2 BACKGROUND AND MOTIVATION

2.1 Push versus pull execution

Sparse algorithms are those that operate on sparse data structures,
i.e, structures that efficiently encode collections of mostly zero val-
ues by representing only the nonzero values and their coordinates.
Sparse algorithms perform pull- or push-based indirect accesses on
sparse data structures.

For concreteness, we focus on graph analytics, where the sparse
structure is the adjacency matrix that encodes the edges among
vertices. Graphs are large and highly sparse, and graph algorithms
require little processing per edge, making these algorithms more
memory-intensive than other sparse ones (e.g., sparse tensor oper-
ations [30]). However, the techniques we develop apply to a wide
range of sparse algorithms beyond graphs, as we will see in Sec. 4.

In push-based execution, the graph encodes the outgoing edges
of each vertex, and each processed vertex (source) pushes updates
to its out-neighbors (destinations). In pull-based execution, the
graph format encodes the incoming edges to each vertex, and each
processed vertex (destination) pulls updates from its in-neighbors
(sources).

While many sparse algorithms admit push and pull implementa-
tions, there are often algorithmic reasons that force either approach.
For example, non-all-active graph algorithms [50] maintain a small
set of active vertices, and only these vertices update neighbors on
each iteration. Push versions of non-all-active algorithms are more
work-efficient because they only traverse the outgoing edges of
active vertices, whereas pull versions traverse the incoming edges
of all vertices. Direction-optimizing implementations of BFS [8] and
other algorithms [50] switch between push and pull modes across
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iterations to reduce work. And in other sparse algorithms, such as
degree counting, the push version is asymptotically more efficient
(Sec. 4). It is thus important for systems to support both types of
execution efficiently.

Unfortunately, in current systems, push implementations are
hampered by two main drawbacks: synchronization costs and mem-
ory traffic overheads.

First, in a push implementation, multiple source vertices scatter
updates to the same destination vertex concurrently. For example,
in Fig. 2, vertices 0 and 1 both update vertex 2. Thus, typical push
implementations use locks or atomic read-modify-writes, causing
heavy synchronization and cache-line ping-ponging. This does not
happen in pull implementations. For example, in Fig. 2, a single
thread would process vertex 2 by gathering the updates from ver-

tices 0 and 1.

Second, when graphs are large and do o
not fit in caches, many scatter updates o l
have no reuse and cause two memory ac- N
cesses per update: the line is first fetched ’.e
from memory, modified, and later writ- o ‘
ten back. For example, suppose that the o
graph in Fig. 2 was large and vertices 0
and 1 were processed far away in time, Figure 2: Example
so that the cache could not retain vertex ~ graph.

2’s cache line between the processing of vertices 0 and 1. In this
case, vertex 2 would be fetched from memory when updated by
vertex 0, written back, then fetched again by vertex 1, and finally
written back. By contrast, pull implementations suffer from poor
reuse on reads, but writes are sequential and thus have great local-
ity. In our example, updating vertex 2 would require reading the
lines for vertices 0 and 1, incurring nearly half the memory traffic.

Given these drawbacks, graph frameworks often prefer pull im-
plementations over push ones [11, 18, 19, 66]. But this choice stems
from architectural limitations, not algorithmic ones: push imple-
mentations are slower due to their mismatch with the pull nature
of existing memory hierarchies. PHI makes push mode efficient by
matching the algorithmic direction of information flow with that
of the memory hierarchy. PHI builds on insights from prior work,

which we review next. Table 1 gives a qualitative comparison with
prior proposals.

Scheme Synchronization Memory traffic
Push Very high Very high
Pull Low High
RMO Medium Very high
Coup Low Very high
Update batching Low Medium
PHI Low Low

Table 1: Comparison of PHI with prior techniques.

2.2 Hardware support for updates

Prior work has observed that updates to shared data are ineffi-
cient in conventional cache hierarchies, and has proposed several
techniques to make them efficient.

Remote memory operations (RMOs) send and perform update
operations at a fixed location. RMOs were first proposed in the
NYU Ultracomputer [17]. The Cray T3D [28], T3E [49], and SGI
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Origin [32] implemented RMOs at the memory controllers, while
recent GPUs [56] and the TilePro64 [23] implement RMOs in shared
caches. While RMOs avoid ping-ponging cache lines, they send
every update to a shared, fixed location. This causes global traffic
and hotspots. By contrast, PHI coalesces updates in a hierarchical
fashion to avoid hotspots. This is especially important for graph
analytics, where high-degree vertices cause significant imbalance.

Coup [62], CommTM [61], and CCache [6] perform commutative
updates in a distributed fashion. Coup modifies the coherence proto-
col to allow multiple private caches to hold update-only permission
to the same cache line. Private caches buffer and coalesce updates,
reducing update traffic. A read triggers a reduction of the private
copies in the shared cache, and the result is the sent to the request-
ing core. Coup supports a limited number of operations, whereas
CommTM and CCache add support for user-defined operations.

While these techniques avoid the synchronization overheads
of scatter updates, they do not improve their locality. Thus, when
the data being updated is too large to fit in the cache, these tech-
niques incur the same high memory traffic as conventional push
algorithms, as discussed in Sec. 2.1.

Like the above techniques, PHI exploits commutativity to buffer
scatter updates in private caches. Unlike the above techniques, PHI
also leverages the fact that scatter updates are applied in bulk to
avoid onerous coherence protocol changes and to reduce on-chip
traffic further.

2.3 Update batching

Prior work has proposed update batching techniques to improve
the spatial locality of push algorithms.! MILK’s DRAM-conscious
Clustering [29] and Propagation Blocking [10] improve locality
by translating indirect memory references into batches of efficient
sequential main memory accesses. While Propagation Blocking
was designed specifically for the PageRank algorithm, MILK is a
compiler that handles a broad set of commutative operations on
indirectly accessed data.

def PageRank(Graph G):
# Binning phase
for src in range(G.numVertices):
update = genUpdate(G.vertex_datal[src])
for dst in G.outNeighbors[src]:
binId = dst / neighborsPerBin
bins[binId].append({dst, update})

O 0NV WD =

# Accumulation phase

10 for bin in bins:

11 for dst, update in bin:

12 G.vertex_data[dst].newScore += update

Listing 1: Push PageRank using update batching.

Listing 1 shows pseudocode for a push version of PageRank?
using update batching (UB). UB splits execution into two phases,
binning and accumulation. In the binning phase, UB accesses the
graph edges sequentially to generate the updates to destination

!Though we adopt graph analytics terminology in this paper, we use the term update
batching instead of the more common Propagation Blocking to avoid confusion with
graph blocking/tiling, a different optimization [55, 60] (Sec. 5).

2There are more efficient PageRank variants that do not process all edges on each
iteration. We later evaluate PageRank Delta, which performs this optimization.
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vertices and writes them to bins. Each bin holds updates for a cache-
fitting fraction of vertices. In the accumulation phase, the updates
are read bin-by-bin and applied to destination vertices.

UB reduces traffic because it enjoys perfect spatial locality. The
binned updates are very large, so they are spilled to main memory,
but because each bin is written sequentially, scatter updates are
transformed into efficient streaming writes. These updates are then
fetched and applied, but because each bin contains updates for a
cache-fitting fraction of vertices, they enjoy great locality.

Fig. 3 illustrates UB with a small example, where a graph with
16 vertices (8 cache lines) is processed in a 4-line cache. Destina-
tion vertices are divided into two 4-line bins. Each source vertex
generates an update and scatters it to each of its neighbors. In this
example, all updates to vertices 0-7 are collected in the first bin
and those to vertices 8-15 are collected in the second bin. Each bin
holds (destination id, update) pairs in consecutive memory locations
(e.g., (0, A)... in bin 0). Once all the updates are collected in bins,
updates are applied bin by bin. When applying updates from bin 0,
only destination vertices 0-7 are fetched into the cache. Similarly,
when updates from bin 1 are being applied, destination vertices
0-7 are evicted while vertices 8-15 are fetched into the cache. Thus,
each slice of destination vertices is fetched into the cache only once,
incurring the minimal memory traffic.

+—— 1. Binning Phase +—2. Accumulation Phase —

Source Destination Cache line Destination
Vertices Ids —— Vertices
0
[OHS) —
[oo[7] [o[ATS["ATo[ B |-~[3[ D |mmmp |~
Bin 0 8l=
[o]| [8[123 Cache
. L ATS[ B [8[ D |-~[I2 D | mup [} fitting
Bin1 16, - slice

Figure 3: Example of update batching on a graph with 16
vertices and a 4-line cache that can hold 8 vertices (2 vertices
per cache line).

Because UB does not exploit graph structure, its memory traffic
is easy to analyze. Assume that caches are much smaller than the
processed graph, so that there is negligible opportunity for reuse
across iterations. In this case, there is some compulsory traffic that
every scheme must incur: the source vertices and adjacency ma-
trix must be read from memory at least once, and the destination
vertices must be written to once. A conventional push implemen-
tation achieves this minimum, compulsory traffic on reads, but is
hampered by the large overheads of scatter updates to destination
vertices. By contrast, UB also achieves the minimum amount of
traffic on scatter updates (one read and one writeback per line), but
at the cost of streaming all updates to memory. Consider a graph
with V vertices, E edges, and U bytes per update. Each logged up-
date requires I = log2(V)/8 bytes for the vertex id, so all the bins
consume a total of (I + U) - E bytes, and UB incurs an extra traffic
of 2- (I +U) - E bytes over compulsory to write and read updates.

Fig. 4a shows this tradeoff by analyzing the memory traffic of
PageRank on the uk-2005 graph (same experiment as Fig. 1). Each
bar shows a breakdown of memory accesses to the different data
structures (CSR is the adjacency matrix). In the Push implementa-
tion, scatter updates contribute 92% of memory traffic. In UB, scatter
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Figure 4: Memory traffic breakdown by data structure for
PageRank on (a) the uk-2005 graph, and (b) a preprocessed
version of the same graph.

updates take 29 less traffic—the minimum amount. However, 78%
of the traffic is now spent on batched updates. This is 1.9% better
than Push overall, but still a far cry from the compulsory traffic.

UB’s key limitation is its disregard for temporal locality. If a vertex
has thousands of incoming neighbors, spilling all its updates to main
memory is wasteful—it is far more efficient to coalesce the updates
to that vertex in the on-chip caches. PHI does just that by applying
UB selectively upon eviction, dramatically reducing batched update
traffic. Fig. 4a shows that PHI's update traffic is 2.3 smaller in this
case, and overall, memory traffic is 1.8 lower than UB.

2.4 Preprocessing algorithms

Prior work has proposed several preprocessing algorithms to reorder
sparse data structures to improve locality [20, 54, 59, 64, 65, 67].
For example, graph preprocessing techniques reorder vertices in
memory so that closely related vertices are stored nearby. In sparse
linear algebra, these are known as fill-reducing permutations.

Preprocessing algorithms improve locality, but they are expen-
sive, often taking many times longer than the algorithm itself. This
makes preprocessing algorithms impractical for many use cases,
e.g., on single-use graphs or simple algorithms [35, 39]. But if a
graph is reused many times, preprocessing can be beneficial, so
prior work has proposed to use preprocessing selectively [5].

Because PHI leverages temporal and spatial locality, it is comple-
mentary to preprocessing algorithms. Fig. 4b shows this tradeoff,
reporting memory traffic for the same experiment from Fig. 4a, but
where the graph is preprocessed by sorting vertices by incoming
degree [64]. Because UB does not exploit temporal locality, it incurs
the same memory traffic as with the non-preprocessed graph, and
is now worse than Push. By contrast, PHI achieves 2x lower traffic
on this graph, just 36% higher than compulsory traffic.

3 PHI DESIGN

PHI consists of three key techniques:

(1) In-cache update buffering and coalescing extends caches
to act as coalescing write buffers for partial updates. If the cache
receives an update for a non-cached line, it does not fetch the
line. Instead, it buffers the partial update. Moreover, caches
coalesce (i.e., merge) multiple updates to the same cache line.
This technique exploits temporal locality and enables PHI’s other
optimizations.

Selective update batching extends the last-level cache’s evic-
tion process to apply buffered updates adaptively. When a line
with partial updates is evicted, the cache first counts the number
of elements in the line holding updates. If few elements hold
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(b) In PHI, an update that misses allocates a buffered-updates line without fetching
the line from memory.

Figure 5: Update buffering and coalescing operation in the single-core system.

updates (i.e., there is poor spatial locality), the cache performs
update batching (Sec. 2.3), streaming them to memory sequen-
tially. But to avoid the overheads of update batching, if most
elements hold updates (i.e., there is high spatial locality), the
cache applies the updates in-place, fetching and writing back
the line. This technique achieves high spatial locality in all cases.
Hierarchical buffering and coalescing applies to multi-level
hierarchies. In this scenario, private caches act as buffers for the
shared cache, locally buffering and coalescing updates without
any per-line synchronization or coherence protocol changes.
This technique eliminates synchronization overheads, enables
update parallelism, and produces a load-balanced execution.
We now introduce these techniques progressively using two sce-
narios. First, we consider a single-core system with a single cache,
and introduce the first two techniques, whose goal is to reduce
memory traffic (Sec. 3.1). Then, we extend PHI to a parallel system
with private and shared caches, introducing the third technique,
whose goal is to eliminate synchronization overheads (Sec. 3.2).

—
&)
=

3.1 Making scatter updates bandwidth-efficient

Consider the system on the left of Fig. 5a, with a single core and
cache. We first explain PHI in this simplified system to focus on
the memory bandwidth problem. As we saw in Sec. 2, prior work
incurs different kinds of memory traffic overheads. On the one hand,
the conventional push implementation suffers from poor spatial
locality, and each update that misses incurs a fetch and a writeback
to memory, doubling traffic over that of a pull implementation. On
the other hand, update batching achieves perfect spatial locality,
but sacrifices temporal locality, producing large streams of updates
that are spilled to main memory, then read back.

PHI combines the benefits of both approaches while avoiding
their drawbacks. PHI can be seen as an adaptive version of update
batching that exploits the significant temporal and spatial locality
available in updates to drastically reduce the number of updates
batched and streamed to memory.

3.1.1  Execution phases. Like in update batching, in PHI, algorithm
execution is divided into two phases. In the first phase, the core
pushes updates to the memory hierarchy, which has the option of
applying them directly (in-place) or batching them for the second
phase. Batching streams updates in bins, with each bin correspond-
ing to a cache-fitting fraction of vertices. In the second phase, the
core applies the batched updates bin-by-bin to achieve good locality.
We first explain how PHI’s techniques work on the first phase, then
describe the second phase, and finally present PHI's concrete APL

In-cache update buffering and coalescing: To reap the locality
of scatter updates, the first step is to let the cache buffer updates
without fetching the data being updated from memory, avoiding the
behavior shown in Fig. 5a. In other words, the cache should act as
a very large coalescing write buffer [26] for updates that miss in
the cache. Conventional write buffers alone cannot be used for this
purpose, as they have a small number of entries (8-16) and cannot
capture update reuse, which occurs over a longer timescale.

Enabling this behavior requires two
simple changes, shown in Fig. 6. First,
each line is extended with a buffered
updates bit that denotes whether the Tag Data
line holds buffered updates. Second, the array array
cache controller is extended with a re- ;
duction unit, a simple ALU that can per-
form the set of supported commutative
operations (e.g., integer and floating-
point additions, min/max, and bitwise
logical operations).

Fig. 5b shows how update buffering
and coalescing works. The core sends
updates to the cache. For each update,
the cache first performs a tag lookup
like in a conventional access. Then, if the access is a miss (e.g., the
first update in Fig. 5b), the cache inserts a new buffered-updates
line that contains the update at the right offset. If the access is a
hit (e.g., the second and third updates in Fig. 5b), the cache uses
the ALU to apply the update to the existing line, coalescing it. Note
that, on a hit, the existing line may or may not be a buffered-updates
line—operation is identical in both cases.

Unlike in conventional write buffers, caches need not track which
elements or words of a line hold updates. Instead, PHI leverages
that every commutative operation has an identity element (e.g., zero
for addition and XOR, all-ones for AND, etc.). Buffered-updates lines
are initialized with identity elements, as shown in Fig. 5b.

[l PHI additions

/ Reduction
Cache unit

Tag entry
E Coherence
Line address| ™ ¢tate
Buffered-updates bit

Figure 6: PHI hard-
ware additions.

controller

\,

Selective update batching: Cache lines with buffered updates
cannot be evicted like normal lines (i.e., they cannot be simply writ-
ten back). On an eviction, PHI either applies the buffered updates
in-place or performs update batching. Fig. 7 illustrates this process.

When a buffered-updates line is evicted, the cache controller
counts the number of elements with updates (by comparing with
the identity element). If this number exceeds a particular threshold,
PHI performs the updates in-place: it fetches the line from memory,
applies the updates using the ALU, and writes it back, as shown
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(a) A buffered-updates line with high spatial locality is applied in-place.

(b) Two buffered-updates lines without spatial locality are batched.

Figure 7: Selective update batching operation in the single-core system.

in Fig. 7a. If the number of updates is below the threshold, PHI
performs update batching, as shown in Fig. 7b.

Selective batching reduces memory traffic because it avoids the
overheads of update batching for lines with good spatial locality. In
the extreme, consider the overheads of applying update batching
to a line where all the elements have updates. An in-place update
requires reading and writing one line to memory, but update batch-
ing requires tagging each element with its vertex id, so it requires
writing all the elements in the line and their ids to an in-memory
buffer, then reading the elements back. Therefore, in the best case
(i.e., discounting all the potential vertex data misses incurred when
applying the updates in the second phase, as these misses may be
heavily amortized), update batching will incur extra traffic over-
head of (I + U)/U, where I and U are the sizes of the vertex id
and the updated value, respectively (e.g., with 32-bit vertex ids and
64-bit elements, this overhead is 12/8=1.5x). Conversely, update
batching is beneficial when the fraction of elements in the line that
have updates is below U/(I + U). PHI uses this as the threshold to
perform update batching.

PHI extends the cache controller with simple logic to perform
update batching. All the data required for batching (bin pointers
and partially filled bin cache lines) is kept in the cache array, in
normal lines. Fig. 7b shows how this process works on a single bin.
Initially, the cache has two buffered-updates lines with one update
each, both of which map to the same bin, and another line, 0x10,
that holds batched updates for that bin. First, buffered-updates line
0xA4 is evicted, and its single update is logged into the bin. This
modifies the bin’s tail cache line, which is now full with updates.
Then, buffered-updates line OxF8 is evicted, and its single update
is logged to the bin. This allocates a new line for the bin, 0x11,
which becomes partially filled. After some time, 0x10 is evicted
and written to memory. Note how this process incurs a cache line
write for every two updates, i.e., it has good spatial locality. (In
this example lines are short, so only two updates fit per line; real
systems with longer lines achieve larger savings.)

An alternative to making update batching decisions on a per-line
basis would be to let the programmer turn off update batching when
deemed beneficial (e.g., for small inputs and/or sparser iterations).
However, this static approach would increase programmer burden
and lose some locality benefits, as even for large footprints some
updates can be applied in-place.

Applying batched updates: In the second phase, the updates
batched to memory in the first phase are applied bin-by-bin. PHI
again uses the cache’s reduction unit for the second phase by chang-
ing the cache eviction process slightly.

For each bin, the core fetches the updates from memory using
conventional loads and pushes them to the memory hierarchy.
Similar to the first phase, the cache buffers and coalesces these
updates. Unlike in the first phase, the cache controller does not
perform further update batching on evictions: it always applies the
buffered updates in-place, fetching the original line and writing it
back (i.e., as shown in Fig. 7a). Since each bin holds updates to a
cache-fitting fraction of vertices, in the common case, there is only
one eviction per buffered-updates line in the second phase.

After the second phase finishes, all batched updates have been
applied. However, the cache may still have some buffered-updates
lines. To ensure correct behavior, if a line with buffered updates
receives a read request, the cache automatically applies the buffered
updates in-place: it fetches the line from main memory and merges
the buffered-updates line to produce the final values. This process
is almost the same as the one shown in Fig. 7a for evictions, except
that the line is not written back to memory at the end, but stays in
the cache.

PHI exploits temporal and spatial locality: In summary, PHI’s
combination of coalescing and selective update batching avoids
the pitfalls of conventional update batching (UB). As we saw in
Sec. 2, UB (i) does not exploit temporal locality; and (ii) by stream-
ing updates to memory, it incurs far more traffic than needed on
small graphs, preprocessed graphs, or on algorithms that process a
small, cache-fitting region of the graph per iteration. By contrast,
(i) PHI coalesces updates on-chip to exploit temporal locality, and
exploits spatial locality through update batching when profitable;
and (ii) PHI does not incur traffic for the lines of the graph that the
cache can retain, so smaller or structured graphs enjoy intra- and
inter-iteration reuse, unlike in UB.

3.1.2  Programming interface. Listing 2 illustrates PHI’s API by
showing the single-thread implementation of the PageRank algo-
rithm. This code is similar to that of the UB implementation in
Listing 1, with two phases. We now describe the interface only;
Sec. 3.3 explains our specific implementation of PHI’s primitives.
We show this code for illustration purposes, but do not expect ap-
plication programmers to change their code, as graph processing
frameworks (Sec. 4.1) and sparse compilers [29, 30] can be easily
changed to leverage PHIL

The algorithm begins by configuring PHI through the phi_-
configure() call. This specifies two pieces of information:
(1) The type of commutative operation (e.g., 32-bit addition).
(2) The number of bins and their starting addresses.
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Figure 8: Hierarchical buffering and coalescing in a multicore system.

1 def PageRank(Graph G):

2 phi_configure(...)

3 phi_enable_batching ()

4 for src in range(G.numVertices):

5 update = genUpdate(G.vertex_data[src])

6 for dst in G.outNeighbors[src]:

7 phi_push_update(G.vertex_data[dst], update)
8

9 phi_disable_batching ()

10 for bin in bins:

11 for dst, update in bin:

12 phi_push_update(G.vertex_data[dst], update)

Listing 2: Serial PageRank implementation using PHI.

The algorithm then starts the first phase (lines 3-7). It first calls
phi_enable_batching(), which enables selective update batch-
ing on cache evictions. Then, the algorithm traverses the graph
edges and pushes updates using phi_push_update().

Finally, the algorithm performs the second phase (lines 9-12).
It calls phi_disable_batching() to disable update batching on
cache evictions. Then, the algorithm fetches the updates that were
batched to memory in the first phase, bin-by-bin, and applies them
using phi_push_update().

3.2 Making parallel scatter updates
synchronization-efficient

We now extend PHI to parallel sys- ‘
tems. Consider the system in Fig. 9,

where each core has a private cache
and all cores share a banked last-level

cache. PHI’s third technique, hierar- Cache ... Cache
chical buffering and coalescing, ad-

dresses the synchronization and scala-

bility challenges of scatter updates in Figure 9: Example
this system. multicore system.

Memory ‘

’ Shared Cache ‘

3.2.1 Mechanisms and execution. PHI leverages private and shared
caches to buffer and coalesce updates at multiple levels of the cache
hierarchy, without synchronization among cache levels and without
changing the coherence protocol. Fig. 8 shows hierarchical buffering
and coalescing in action, in a system with two cores, each with its
own private cache. Each core pushes updates to its private cache.
If the private cache does not have write permission to the line, it
allocates a buffered-updates line to hold the update. For example, in
Fig. 8, both private caches allocate a buffered-updates line for OxF®,
without any communication with the shared cache. The private
caches can then locally coalesce other updates to the same line, just
like before. When a private cache needs to evict a buffered-updates

line, it simply sends its contents as an update message to the shared
cache bank. The shared cache allocates a buffered-updates line if
needed (as shown in Fig. 8, middle), or coalesces the updates with
existing ones (as shown in Fig. 8, right).

PHI’s parallel operation is nearly identical as before: the algo-
rithm goes through two phases, and selective update batching is
enabled only on the first phase. Only shared cache banks perform se-
lective update batching; on evictions, private caches simply update
the shared cache.

(In-)coherence and flushing: For simplicity, PHI leverages that
scatter updates happen in bulk to avoid changing the coherence
protocol. Buffered-updates lines are not tracked by the coherence
protocol, so private caches may have updates for lines that do not
exist in the shared cache or directory. This approach simplifies the
design, as the coherence protocol does not require any changes,
and avoids coherence traffic, as private caches need not request any
coherence permissions for buffered-updates lines. Note that private
caches are still kept coherent for data beyond buffered updates.
The drawback of this design decision is that, when the algorithm
finishes, updates buffered in private caches must be flushed to ensure
correct behavior. Specifically, at the end of the second phase, all
private caches traverse their tag arrays and flush every buffered-
updates line to its corresponding shared cache bank. This process
can be done in parallel and is fast because private caches are small.
Though adding an explicit flush step to ensure correctness may
seem limiting, note that these algorithms perform updates in bulk,
without any intervening reads. In fact, updated data should not be
read before updates are fully applied even without private caches,
since a line may have batched updates somewhere else in memory.

Consistency: PHI requires some changes to the consistency model.
Commutative updates by different threads are not ordered by syn-
chronization and hence constitute a data race. These data races are
harmful under the data-race-free (DRF) consistency model adopted
in modern languages such as Java and C++.

Fortunately, prior work has already shown how to address this
issue: Sinclair et al. [51] propose the DRFrlx (DRF-relaxed) model,
which extends DRF to provide SC-centric semantics for the common
use cases of relaxed atomics. Specifically, PHI can use the semantics
of commutative relaxed atomic operations in the DRFrlx model. In
DRFrlx, commutative update operations need to be explicitly anno-
tated to use relaxed atomic semantics, and a fence is needed before
any read to updated data. PHI achieves both of these conditions
by (i) performing these updates through a different instruction
(phi_update), and (ii) requiring software to perform an explicit
flush step (called phi_sync, Sec. 3.2.2) after updates are applied
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and before any reads. Thus, to ensure that data races do not occur,
it is sufficient for the explicit flush step to have full fence semantics
(so that no accesses following the flush can be reordered before all
updates are visible).

Much like weak consistency models offer no guarantees for data
read or written without adequate fences, PHI offers no guarantees
if programs do not follow the above requirements, e.g., if a read
to updated data is performed before phi_sync, or if the program
mixes conventional atomics with phi_updates. Thus, PHI requires
some discipline from programmers.

Beyond these changes to incorporate relaxed-atomic semantics,
PHI does not affect the consistency model for other loads and stores
that do not touch updated data.

Comparison with prior work: PHI’s hierarchical buffering and
coalescing shares some of the same objectives as Coup, CommTM,
and CCache, which perform commutative updates in multiple pri-
vate caches and reduce synchronization (Sec. 2.2). However, PHI's
implementation is simpler than these techniques. These prior tech-
niques modify the coherence protocol, adding complexity, and need
private caches to request and acquire update-only permissions to
the line before applying any updates locally, adding traffic, serial-
ization, and shared cache pollution when there is little reuse.

However, these prior techniques are more general than PHI,
as they transparently satisfy reads to data receiving commutative
updates: the coherence protocol is used to gather and merge all
partial updates in response to a read. PHI does not do this, requiring
an explicit flush step instead. We deem this is a good tradeoft, as
the bulk scatter updates that PHI targets do not need this behavior
as explained above.

While PHI moves complexity from the coherence protocol to
software, only the framework code needs to interact with PHI,
not the programmer. This is similar to how, with relaxed memory
models, software libraries are in charge of fences in practice, and
programmers mainly use higher-level primitives.

PHI avoids synchronization and achieves load balance: Over-
all, hierarchical buffering and coalescing design gives three key
benefits. First, it increases the coalescing throughput of the system,
since multiple private caches can coalesce updates to the same line
in parallel. Moreover, this happens without any synchronization
between caches.

Second, most cache accesses happen at smaller, energy-efficient
lower cache levels due to hierarchical reuse patterns of real-world
inputs. Without hierarchical coalescing, each update would require
accessing a large cache.

Third, hierarchical coalescing balances traffic across shared cache
banks, because private caches are especially effective at coalescing
frequent updates to the same data. This is important for graph
analytics, where graphs often have very few vertices that account
for a large fraction of edges. Without hierarchical coalescing, these
high-degree vertices can create uneven traffic among banks, as we
will see in Sec. 4.4. With hierarchical coalescing, these frequent
updates are all coalesced in private caches, avoiding imbalance.

3.2.2  Programming interface. We add small extensions to PHI's
serial API described in Sec. 3.1.2. First, we extend phi_configure()
to specify bin information for each shared cache bank, so shared
banks can batch updates without synchronization. Second, we add a
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phi_sync () primitive to flush buffered-updates lines from private
caches at the end of the second phase.

The parallel PHI implementation is very similar to the serial one
from Listing 2. We exploit the trivial parallelism available in both
phases by changing the for loops in lines 4 and 11 into parallel
for loops; and phi_sync() is called at the end to ensure no updates
remain in private caches.

3.3 PHI implementation details

ISA: PHI adds only one instruction, push_update. push_update
is similar to a store; it has two source operands that specify the
address and value of the update. Configuration through phi_-
configure(), phi_enable_batching() etc., is infrequent and
happens using memory-mapped registers (e.g., the same way a DMA
engine is configured).

Virtual memory and index computation: Updated data occu-
pies a contiguous range of virtual memory, but caches are physically
addressed. This introduces some subtleties for update batching. For
simplicity, when batching updates, we would like to derive each
update’s index (e.g., vertex id) and bin from its cache line address.
Our implementation achieves this by allocating update data in a
contiguous physical memory region. (OSes already support allo-
cating contiguous physical memory, e.g., for DMA buffers [41].)
This way, computing an update’s index requires subtracting the re-
gion’s starting physical address from the update’s physical address.

This approach needs some care when paging out update data:
the OS must disable update batching before paging it out. A more
complex alternative would be to add reverse TLBs to LLC banks,
then compute indexes using virtual addresses.

Update batching: To perform update batching, the shared cache
tracks two types of information for each bin: a pointer to the next
address where updates will be written and a partially filled cache
line at that address. Both are stored in normal, cacheable memory.

Because selective update batching is done at the last-level cache,
it uses physical addresses to avoid having an in-cache TLB. Each
bin is initially given a contiguous chunk of physical memory (e.g.,
256 KB per bin). Bins need not be contiguous: when the cache ex-
hausts a bin, it raises an interrupt to request another chunk (and
disables batching in the interim). Coalescing makes these interrupts
extremely rare.

When the last-level cache has multiple banks, each bank per-
forms batching autonomously. To avoid communication among
cache banks, we ensure that both the pointers and the bin cache
lines accessed by any given bank are mapped to the bank itself.
Since most systems interleave cache lines across banks, this simply
results in a striped layout. Specifically, in a system with B banks,
the bin pointers array is B times larger, and each bank uses one out
of B cache lines for pointers. Then, each bank fills only the 1/B lines
of the bin that map to itself. Each time the current line for the bin is
exhausted, the bank bumps the pointer by B cache lines. This strip-
ing results in completely local operation, and thanks to coalescing,
banks fill bins at about the same rate, achieving near-perfect space
utilization.

Overhead analysis: PHI hardware adds small costs. The main
overhead is the per-line buffered updates bit. With 64-byte lines,
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Cores 16 cores, x86-64 ISA, 2.2 GHz, Haswell-like OO0 [47]

L1caches 32KB per core, 8-way set-associative, split D/I, 3-cycle latency
L2 cache 256 KB, core-private, 8-way set-associative, 6-cycle latency

32 MB, shared, 16 banks, 16-way hashed set-associative,

inclusive, 24-cycle bank latency, DRRIP replacement

4x4 mesh, 128-bit flits and links, X-Y routing, 1-cycle

pipelined routers, 1-cycle links

L3 cache

Global NoC

Coherence MESI, 64B lines, in-cache directory, no silent drops

Memory 4 controllers, FR-FCFS, DDR4 1600 (12.8 GB/s per controller)

Table 2: Configuration of the simulated system.

this costs 0.17% additional storage in caches (e.g., 64 KB for the
32 MB LLC we use).

The reduction unit is small because it uses simple operations.
We implement RTL for a reduction unit with 64-bit floating-point
and integer additions and logical operations. We synthesize it using
yosys [57] and the FreePDK45 [24] cell library, with a 1 GHz target
frequency (higher ones are possible). Each reduction unit takes
0.09mm? (i.e., about 0.008mm? in 14 nm). In our 16-core system,
reduction units take about 0.06% of chip area.

4 EVALUATION
4.1 Methodology

We now present our evaluation methodology, including the simu-
lated system, applications and datasets we use.

Simulation infrastructure: We perform microarchitectural, ex-
ecution-driven simulation using zsim [47]. We simulate a 16-core
system with parameters given in Table 2. The system uses out-of-
order cores modeled after and validated against Intel Haswell cores.
Each core has private L1 and L2 caches, and all cores share a banked
32 MB last-level cache. The system has 4 memory controllers, like
Haswell-EP systems [21]. We use McPAT [33] to derive the energy
of chip components at 22 nm, and Micron DDR3L datasheets [37] to
compute main memory energy.

Applications: We evaluate PHI on six sparse applications, listed
in Table 3. All applications use objects that are much smaller than
a cache line (64 B).

First, we use four graph algorithms from the widely used Ligra [50]
framework. These include both all-active and non-all-active algo-
rithms. All-active algorithms are ones in which each vertex and edge
is processed in each iteration. PageRank computes the relative im-
portance of vertices in a graph, and was originally used to rank web-
pages [45]. PageRank Delta is a variant of PageRank in which ver-
tices are active in an iteration only if they have accumulated enough
change in their PageRank score [36]. Connected Components divides
a graph’s vertices into disjoint subsets (or components) such that
there is no path between vertices belonging to different subsets [13].
Radii Estimation
is a heuristic al-
gorithm to esti-
mate the radius
of each vertex by
performing mul-
tiple parallel BFS’s
from a small sam-
ple of vertices [34].

Update Reduction All-
Application Size Operator Active?

PageRank (PR) 8B double add Yes
PageRank Delta (PRD) 8B  doubleadd No
Conn. Components (CC) 4B integer min No
Radii Estimation (RE) 8B  bitwise or  No
Degree Counting (DC) 4B  integer add Yes

SpMV (SP) 8B doubleadd Yes

Table 3: Applications.
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To avoid framework overheads, we tune the original Ligra code [50],
incorporating several optimizations in the scheduling code like
careful loop unrolling that yield significant speedups: our imple-
mentations outperform Ligra by up to 2.5%. We then change the
framework’s code to use PHI. Note that these optimizations affect
only the baseline Push and Pull implementations and are agnostic
to PHL

Our approach lets us start with an optimized software baseline,
which is important since it affects qualitative tradeoffs. In particu-
lar, well-optimized implementations are more memory-bound and
saturate bandwidth more quickly.

Degree Counting computes the incoming degree for each vertex
from an unordered list of graph edges and is often used in graph
construction [9]. Whereas the other algorithms admit Pull and Push
implementations, Degree Counting requires push-style execution.

Finally, Sparse Matrix-Vector Multiplication (SpMV) is an impor-
tant sparse linear algebra primitive. The sparse matrix is stored
in compressed sparse row (CSR) format. In the Pull version, the
matrix is scanned row by row and values are gathered from the
corresponding elements in the input vector. In the Push version,
the matrix is scanned column by column and each column scatters
partial sums to the result vector.

For update batching, we use the optimized implementation ob-
tained from the authors of Propagation Blocking [10]. We modify
the simulator to model non-temporal stores, which are crucial to
reduce memory traffic of update batching.

Datasets: We evaluate
the four graph algorithms ~Graph Vertices Edges
and Degree Counting on ™)

five large web and so- atb 22 640
ukl 39 936

Source

arabic-2005 [15]
uk-2005 [15]

cial graphs shown in Ta-

bl grap twi 41 1468 Twitter followers [31]
e 4. For SpMV, we use sk 51 1949 sk-2005 [15]

a sparse matrix represen- web 118 1020  webbase-2001 [15]

tative of structured opti-
mization problems.

With the object sizes
listed in Table 3, the ver-
tex data footprint is much larger than the last-level cache. We
represent graphs in memory in CSR format.

Graph algorithms are generally executed for several iterations
until a convergence condition is reached. To avoid long simulation
times, we use iteration sampling: we perform detailed simulation
only for every 5th iteration and fast-forward through the other
iterations (after skipping initialization). This yields accurate re-
sults since the execution characteristics of all algorithms change
slowly over consecutive iterations. Even with iteration sampling,
we simulate over 100 billion instructions for the largest graph.

nlp 27 760 nlpkkt240 [15]
Table 4: Real-world datasets.

4.2 PHI improves runtime, traffic, and energy

Performance: Fig. 10 summarizes the performance of different
schemes. Each bar shows the speedup over the Push implemen-
tation (higher is better). Each group of bars reports results for a
single application; the right-most group shows the gmean across
applications. Most applications use multiple inputs, so each bar
shows the gmean speedup across inputs (we will analyze per-input
results later).
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Figure 10: PHI achieves substantial speedups.

We compare PHI with conventional Push and Pull implementa-
tions, update batching (UB), and Push-RMO, a variant of Push that
uses hardware support to perform remote memory operations at
LLC banks. DC does not have a Pull version.

PHI improves performance significantly and is the fastest scheme
across all applications. PHI improves performance over Push by
4.7 on average and by up to 8.3x (DC). Moreover, no other scheme
uniformly dominates the others across applications, and most have
poor performance on some cases.

PHI substantially outperforms Push-RMO, the second-best scheme,

thanks to its lower memory traffic. While Push-RMO has the same
memory traffic as Push, it avoids synchronization overheads and
achieves a 2.6X gmean speedup. On average, Pull and UB improve
performance by 67% and 23%, respectively. Although we do not
compare with Coup [62], we expect it would achieve the same per-
formance as Push-RMO because Push-RMO is limited by memory
bandwidth, not on-chip traffic or synchronization.

PHI’s speedups are larger for all-active applications like PR and
DC, since they are much more memory-bound. PRD is non-all-active
but has many iterations where most of the graph is active. Thus, it
has similarly high speedups.

Non-all-active applications CC and RE process a small fraction of
the graph on each iteration, so Push achieves a moderately high
cache hit ratio. For these applications, Pull and UB perform extra
work, which causes poor performance even though they have no
synchronization overheads.

For SP, the input has a regular structure with good locality and
Push already achieves relatively low memory traffic. Pull, Push-
RMO, and PHI improve performance by avoiding synchronization.
By contrast, UB performs extra work and hurts performance slightly.

Memory traffic: Fig. 11 shows the average memory traffic across
inputs for all applications (lower is better). Push-RMO’s traffic is
identical to Push, so it is not shown.

PHI substantially reduces memory traffic for all applications
except SP, by up to 4x for DC and 2x on average. PHI achieves
the lowest memory traffic among all schemes by exploiting both
temporal and spatial locality.

For all-active algorithms like PR and DC, Push and Pull achieve
similar memory traffic while UB reduces memory traffic consider-
ably, by up to 2x for DC.

For CC and RE, Pull and UB both increase memory traffic. First,
Pull processes each incoming edge of all vertices rather than the
outgoing edges of only the active vertices as in Push. Thus, Pull
accesses more edge data which increases memory traffic. Second,
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Figure 11: PHI reduces memory traffic significantly.
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Figure 12: Energy breakdown normalized to Push. S:Push,
L:Pull, U:UB, ®:PHIL

baseline Push already has good hit ratio and the extra update traffic
of UB is not a good tradeoff.

Finally, SP’s input is a structured matrix, so Push, Pull, and PHI
achieve good locality and similar traffic. But UB’s traffic is 5.5%
worse, because UB does not take advantage of structure and streams
many updates to memory.

Energy: Fig. 12 shows the energy breakdown for various schemes.
For the software-only schemes (Push, Pull, UB), most of the energy
comes from core and main memory, and the fraction of energy from
cores depends on how compute-bound the application is.

PHI reduces core energy over Push because it offloads both
update processing and update batching to specialized hardware,
reducing instruction count on general-purpose cores significantly.
PHI reduces core energy by up to 3.1x (on SP). In contrast, UB in-
creases core energy over Push as it adds instructions to log updates
to memory. PHI's reduction in memory traffic causes proportional
reductions in memory energy. Overall, PHI reduces energy by up
to 3% (on SP).

4.3 PHI performs best across inputs

Beyond its raw performance benefits, PHI stands out for its consis-
tency: whereas other techniques have weak spots, PHI uniformly
performs best. We have seen this across applications; we now show
PHI’s consistency extends to inputs.

Memory traffic breakdown: Fig. 13 shows the main memory
traffic breakdown of PageRank for each graph input. All schemes
are normalized to Push. Both Push and Pull cause random, irregular
accesses to neighbor vertices, which contribute a large fraction
of the overall main memory traffic. For graphs with symmetric
structure (twi, web), Push has higher overall traffic than Pull due
to extra writeback traffic. For some non-symmetric graphs like sk,
the graph’s structure causes better locality for Push.
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Figure 14: Per-input memory traffic (top) and performance (bottom) of the five graph applications, normalized to Push.
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Figure 13: Breakdown of main memory traffic of PageRank
by data structure. S:Push, L:Pull, U:UB, ®:PHI.

UB incurs almost a constant amount of memory traffic irrespec-
tive of the graph structure. A large fraction of UB’s memory traffic
is caused by logging updates to main memory. As explained in
Sec. 3.1, PHI exploits the locality caused by the graph’s structure by
coalescing updates in the cache hierarchy and reduces update traffic.
Fig. 13 shows that these benefits hold across all graphs: while the
best scheme among Push, Pull, or UB changes across graphs, PHI
consistently outperforms other schemes. Due to selective update
batching, PHI increases destination vertex traffic slightly in return
for lower update traffic. Moreover, PHI’s memory traffic is only 2x
the compulsory traffic.

Performance across inputs: Fig. 14 shows the per-input memory
traffic and performance for the four graph applications and DC.
These graphs shows that the per-input results we have seen extend
across applications: PHI achieves the highest performance and the
lowest traffic on all inputs and applications, whereas others work
poorly on some inputs. PHI improves performance by up to 11x (PR
and DC on sk) and reduces traffic by up to 5% (DC on ukl and twi).

Performance across graph sizes and connectivities: To further
analyze the effect of graph features on performance, we run PageR-
ank on a wide range of synthetic R-MAT [12] graphs. R-MAT graphs
mimic the properties of real-world social network graphs.

Fig. 15 shows the memory traffic and performance on R-MAT [12]
graphs of different sizes and a fixed average degree of 16. PHI
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Figure 15: R-MAT graphs with different vertex counts and a
fixed average degree.

consistently incurs the lowest memory traffic across all sizes. In
small graphs, Pull and Push achieve good locality, whereas UB is
the worst due to its high update traffic. As the graph grows in size,
UB becomes desirable over Push and Pull, and Push has the highest
traffic, which increases at twice the rate as Pull’s.

For both Pull and PHI, performance correlates well with memory
traffic. For Push and UB, performance changes only slightly across
graphs since they are bottlenecked by synchronization and cores
respectively.

We also studied memory traffic by fixing the vertex count and
varying the average degree from 4 to 32. PHI works best across all
average degrees.

4.4 Sensitivity studies

Impact of preprocessing: Fig. 16 shows how graph preprocessing
changes memory traffic and performance. We show results with
non-preprocessed graphs (None), an inexpensive (DegreeSort [64])
and an expensive (GOrder [54]) preprocessing algorithm. Prepro-
cessing improves temporal locality and reduces memory traffic of
all schemes except UB. Moreover, PHI with preprocessing gets very
close to the compulsory traffic, indicated by the dotted line.

In terms of performance, Push is bottlenecked by synchroniza-
tion so preprocessing barely helps. Pull and PHI show consistent per-
formance improvements with preprocessing. Preprocessing hurts
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Figure 16: Impact of preprocessing. The dotted line indicates
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Figure 17: Sensitivity to LLC configuration.

UB’s performance since it causes load imbalance (few bins account
for a large fraction of edges).

Cache size: Fig. 17a shows the average memory traffic for each
scheme at various cache sizes. PHI consistently outperforms other
schemes at all cache sizes. With just a 8 MB cache, PHI achieves
the same traffic as Push with a 128 MB cache. Moreover, whereas
UB barely exploits caches beyond 16 MB, PHI continues to reduce
misses throughout the range.

Cache replacement policy: Fig. 17b compares memory traffic
with the LRU and DRRIP [25] replacement policies (other experi-
ments use DRRIP). A high-performance policy like DRRIP better
exploits temporal locality in the update stream. Thus, PHI with
DRRIP coalesces more updates in the cache hierarchy and reduces
memory traffic over PHI with LRU. Other schemes benefit similarly
from a better replacement policy.

Hierarchical coalescing: We measure imbalance in traffic to LLC
banks on graphs preprocessed with degree-sorting. Without hierar-
chical coalescing, there is up to 2.1x imbalance across banks, while
with hierarchical coalescing, the imbalance is limited to 20% and is
often negligible.

5 ADDITIONAL RELATED WORK

Accelerators for sparse algorithms: Recent work has proposed
specialized accelerators for graph processing for both FPGAs [14,
42, 43] and ASICs [2, 20, 40, 44, 52, 63]. While we evaluated PHI on
a general-purpose multicore, its techniques are general and can be
applied to accelerators too.

Graphicionado [20] employs graph tiling (also called blocking or
slicing) to reduce memory traffic. Tiling is effective for graphs that

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

are moderately (about 10x) larger than on-chip storage, but increas-
ing the number of tiles adds work, and tiling eventually becomes
unattractive [10, 39]. To avoid this, Graphicionado needs a large
eDRAM that can fit a substantial part of the graph. Unlike tiling,
update batching does not perform more work on larger graphs [10].
Thus, PHI does not lose efficiency with graph size and approaches
the compulsory memory traffic with small on-chip caches.

GraFBoost [27] is a Flash-based accelerator for external (i.e.,
out-of-core) graph analytics. Similar to update batching, it logs
updates to Flash before applying them in DRAM. It uses hardware-
accelerated external sorting with interleaved reduction functions to
reduce I/O traffic. PHI uses caches to perform coalescing, reducing
traffic without sorting.

OMEGA [1] proposes a hybrid cache subsystem where a scratch-
pad holds the most popular vertices (identified by degree-sorting
the graph) and a conventional cache hierarchy serves requests
for other data structures. A specialized unit near each scratchpad
performs atomic updates on vertex data.

HATS [38] adds a specialized hardware unit near each core to
perform locality-aware graph traversals. HATS and PHI are comple-
mentary: HATS improves locality similar to preprocessing, and as
we have seen PHI benefits from preprocessing.

Indirect prefetchers: Conventional stream or strided prefetchers
are ineffective on the indirect memory accesses of sparse algorithms.
Prior work [3, 4, 58] has proposed indirect prefetchers to handle
such accesses. While these designs improve performance by hiding
memory access latency, they quickly saturate memory bandwidth
and become bandwidth-bound. By contrast, PHI reduces memory
traffic, making better use of limited off-chip bandwidth. Moreover,
PHI works well with stream prefetchers and, since updates do not
fetch data, would not benefit from indirect prefetchers.

6 CONCLUSION

We have presented PHI, a push cache hierarchy that adds support
for pushing commutative updates from cores towards main memory.
PHI adds simple logic at each cache bank to buffer and coalesce up-
dates throughout the hierarchy, performs selective update batching
to exploit spatial locality, and avoids synchronization overheads.

PHI is the first system to exploit the temporal and spatial locality
benefits of commutative scatter updates, On a set of demanding
algorithms, PHI improves performance by 4.7x gmean and by up
to 11x. Moreover, PHI consistently outperforms pull algorithms,
showing for the first time that push algorithms have inherent lo-
cality advantages that can be exploited with the proper hardware
support.
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