Leveraging Caches to Accelerate Hash Tables and Memoization

Guowei Zhang
zhanggw@csail.mit.edu
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT

Hash tables are widely used, but they are inefficient in current
systems: they use core resources poorly and suffer from limited
spatial locality in caches. To address these issues we propose HTA,
a technique that accelerates hash table operations via simple ISA ex-
tensions and hardware changes. HTA adopts an efficient hash table
format that leverages the characteristics of caches. HTA accelerates
most operations in hardware, and leaves rare cases to software.

We present two implementations of HTA, FLAT-HTA and Hi-
ERARCHICAL-HTA. FLAT-HTA adopts a simple, hierarchy-oblivious
layout and reduces runtime overheads with simple changes to cores.
HierarcHICAL-HTA is a more complex implementation that uses
a hierarchy-aware layout to improve spatial locality at intermedi-
ate cache levels. It requires some changes to caches and provides
modest benefits over FLaT-HTA.

We evaluate HTA on hash table-intensive benchmarks and use
it to accelerate memoization, a technique that caches and reuses the
outputs of repetitive computations. FLAT-HTA improves the perfor-
mance of the state-of-the-art hash table-intensive applications by
up to 2X, while HiIERARcHICAL-HTA outperforms FLaT-HTA by up
to 35%. FLAT-HTA also outperforms software memoization by 2x.

CCS CONCEPTS

+ Computer systems organization — Processors and mem-
ory architectures; Serial architectures; Parallel architectures.

KEYWORDS
hash table, memoization, cache, microarchitecture, specialization

ACM Reference Format:

Guowei Zhang and Daniel Sanchez. 2019. Leveraging Caches to Accelerate
Hash Tables and Memoization. In The 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-52), October 12-16, 2019, Columbus,
OH, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3352460.3358272

1 INTRODUCTION

The impending end of Moore’s Law is making transistors a scarce
resource. Therefore, it is crucial to investigate new abstractions
and mechanisms that span hardware and software to make better

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6938-1/19/10...$15.00
https://doi.org/10.1145/3352460.3358272

Daniel Sanchez
sanchez@csail. mit.edu
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

use of existing architectural components. In this work we focus on
providing architectural support to accelerate hash table operations.
Hash tables are widely used and consume the majority of cycles on
key applications in databases [22] and genomics [31]. While hash
tables have been extensively studied and optimized in software,
they leave significant performance on the table in current systems
due to an inexpressive hardware-software interface.

Specifically, we observe that hash tables suffer from two key
inefficiencies in conventional systems (Sec. 2):

(1) Poor core utilization: Each hash table operation consists of
along sequence of instructions to compute hash values, mem-
ory accesses to keys and values, and comparisons. These in-
structions include hard-to-predict, data-dependent branches
that add wasted cycles, and incur long-latency cache misses
that limit instruction-level parallelism.

(2) Poor spatial locality: To reduce mapping conflicts, hashing
spreads key-value pairs uniformly across the hash table’s
allocated memory. This causes poor spatial locality when
key-value pairs have mixed reuse, as the same-line neighbors
of a frequently accessed pair are rarely accessed. This wastes
a significant portion of cache capacity.

To address these problems we propose HTA, a technique that ac-
celerates hash table operations through a combination of expressive
ISA extensions and simple hardware changes (Sec. 3). HTA adopts
a hash table format that leverages the associative nature of caches.
HTA introduces new instructions to perform hash table lookups
and updates. These instructions are designed to leverage existing
core structures and prediction mechanisms. For example, hash table
lookups have branch semantics and thus leverage the core’s branch
predictors to avoid control-flow stalls. With a simple HTA function
unit, these instructions consume far fewer pipeline resources than
conventional hash table operations, allowing more instruction-level
and memory-level parallelism to be exploited. HTA accelerates most
hash table operations, leaving rare cases to a software path that
allows overflowing to conventional software hash tables.

We present two implementations of HTA, FLAT-HTA (Sec. 4)
and HIERARCHICAL-HTA (Sec. 5). Both implementations introduce
simple changes to cores to reduce runtime overheads. FLAT-HTA
adopts a simple, hierarchy-oblivious layout that works well for hash
tables with uniform reuse. HIERARCHICAL-HTA adopts a multi-level,
hierarchy-aware layout that lets fast caches hold more frequently
accessed key-value pairs, improving spatial locality when hash
tables have mixed reuse. HIERARCHICAL-HTA requires changing
cache controllers and provides modest benefits over FLAT-HTA.
These implementations do not reserve space in caches. Instead,
they dynamically share cache capacity with non-HTA data.

We evaluate HTA on hash table-intensive benchmarks and use
it to accelerate memoization, a technique that caches the results of
repetitive computations, allowing the program to skip them (Sec. 6).

MICRO-52, October 12-16, 2019, Columbus, OH, USA

FLAT-HTA accelerates hash table-intensive applications by up to
2%, while HiIERARCHICAL-HTA outperforms FLaT-HTA by up to
35%. Moreover, HTA outperforms software memoization by 2x
and achieves comparable performance to conventional hardware
memoization but without the need for specialized on-chip storage.

2 BACKGROUND

Hash tables are unordered associative containers. They hold key-
value pairs and support three operations: lookups to retrieve the data
associated with a particular key, and insertions and deletions to add
or remove key-value pairs. Hash tables perform these operations
with amortized constant-time complexity. They are heavily used
in many domains, like databases [22], key-value stores [23, 24, 25],
networking [37], genomics [31], and memoization [32, 38].

A hash table is typically implemented using an array to hold
key-value pairs, which is indexed by a hash of the key. A collision
happens when multiple key-value pairs map to the same array
index. Collisions become more common as array utilization grows.
To support high utilization, hash tables include a collision resolution
strategy, such as probing additional locations, and resize the table
when its utilization reaches a certain threshold.

Implementations vary in several aspects, like hash function se-
lection, collision resolution, and resizing mechanisms. Simple hash
functions such as XOR-folding and bit selection [20] are fast but
are prone to hotspots, while more complex hash functions such as
universal hashing [4] distribute key-value pairs more uniformly but
incur more overheads. Basic collision resolution strategies include
chaining and open addressing [28]. Upon a collision, chaining ap-
pends the new key-value pair to the existing ones, forming a linked
list, while open addressing probes other positions in the hash table.
Resizing can be performed all-at-once or incrementally.

There is a wide range of hash table implementations with differ-
ent algorithmic tradeoffs, e.g., trading space efficiency for lookup
efficiency [33]. For instance, Cuckoo hashing [33] improves space
efficiency and worst-case lookup performance at the cost of increas-
ing average-case lookup complexity. Its variants further focus on
either reducing the memory accesses per lookup [3] or improving
locality [16].

2.1 Hash table performance analysis

Despite the wide range of hash table implementations, we observe
that state-of-the-art designs suffer from two issues: poor core uti-
lization and poor spatial locality:

1. Poor core utilization adds overheads that limit the performance
of many hash table-intensive applications [22]. To analyze the
causes of high overheads, we evaluate three common hash table op-
erations under different hash table implementations using detailed
simulation (see Sec. 7 for methodology details). We use two state-of-
the-art software baselines, libstdc++’s C++11 unordered_map
and Google’s dense_hash_map, as well as FLaAT-HTA.

Fig. 1 compares the execution time (lower is better) of each
implementation under three cases: (a) lookups, (b) updates, and
(c) insertions. In (a) and (b), each hash table is initialized with 1
million randomly generated key-value pairs, and has a footprint of
about 64 MB. Then, the program performs back-to-back lookups
or updates to existing, randomly chosen keys. In (c), each hash

Guowei Zhang and Daniel Sanchez

1.0 1.0 1.0
$ I Main memory stall
[0
08 08 08 =1 LLC stall
506 0.6 0.6 [L2 stall
g 3 L1 stall
g 0.4 0.4 04 3 Function unit stall
502 0.2 0.2 [Fetch/Decode stall
z 3 Wrong path execution
OO D F T DFE “0GpF [lssued micro ops
(a) Lookup (b) update (c) insert

Figure 1: Execution time and cycle breakdown of three hash
table microbenchmarks using three hash table implemen-
tations: libstdc++’s C++11 Unordered map, Google’s Dense
hash map, and Flat-HTA.

table starts empty and 1 million distinct, randomly chosen key-
value pairs are inserted into it. Over time, the hash table grows to
accommodate the inserted pairs.

Fig. 1 breaks down execution time into the cycles cores spend
on different activities, following the CPI stack methodology [15].
Specifically, each bar shows the cycles cores spend (i) issuing com-
mitted instructions; (ii) executing wrong-path instructions due to a
branch misprediction; (iii) stalled (i.e., unable to issue) due to the
frontend (fetch or decode); and (iv) stalled due to different backend
events: functional units, L1 cache, L2 cache, LLC, or main memory.

Fig. 1 reveals two key sources of overhead in software hash tables:
hard-to-predict branches and underutilized backend parallelism.

First, Fig. 1 shows that hard-to-predict branches in hash ta-
ble probing add many cycles: up to 74% of cycles are spent on
wrong-path execution. This is because, in both unordered_map
and dense_hash_map, such branches direct the control flow to
either the end of an operation or another hash table probing. These
branches depend on data loaded from memory, so they take a long
time to resolve and are challenging for branch predictors.

Second, hash table operations make poor use of backend re-
sources to exploit instruction-level and memory-level parallelism.
Each hash table operation takes a sequence of instructions includ-
ing hash calculation, memory accesses, comparisons, and branches.
These instructions occupy tens to hundreds of micro-op (pop) slots,
comparable to the reorder buffer size. As shown in Fig. 1, this lim-
its memory-level parallelism significantly: most backend stalls are
spent waiting for main memory responses, and the reorder buffer
does not have enough resources to overlap multiple misses.

FLaT-HTA effectively reduces these overheads and improves
performance by up to 2.5X. First, its design avoids hard-to-predict
branches, reducing or even eliminating wrong-path execution. Sec-
ond, each hash table operation takes far fewer pop slots, improving
memory-level parallelism and reducing backend stalls by up to 5.6%.
2. Poor spatial locality is the other issue in software hash ta-
bles [3]. Hash tables spread key-value pairs uniformly across the
table’s allocated memory. This hinders spatial locality, as the neigh-
boring pairs of a frequently-accessed pair are usually not frequently
accessed. This wastes a significant portion of cache capacity.

To illustrate this, we design a microbenchmark similar to the
previous ones. First, we size the hash tables to occupy 256 MB and
pre-insert 1 million key-value pairs. By sizing the hash tables to
256 MB instead of their natural 64 MB, we keep hash table load
artificially low to reduce branch mispredictions in the software

Leveraging Caches to Accelerate Hash Tables and Memoization

versions (at this low load, the first probe almost always succeeds).
This is, however, space-inefficient. Then, the benchmark performs
a series of dependent lookups to a subset of 8 thousand keys.

Fig. 2 shows the ex-
ecution time and cycle 1.0

breakdown for the pre- & I Main memory stall
P 0 08 = LLC stall

vious hash table imple- Sos B L2 stall
mentations plus HIER- § 04 3 L1 stall
ARCHICAL-HTA. Since & I3 Function unit stall

. § 0.2 [Fetch/Decode stall
there are no branch mis- 2 [Wrong path execution

predictions and lookups 00555 F B [Issued micro ops
depend on each other,

the benchmark has lim- Figure 2: Execution time and cy-
ited parallelism. As are- cle breakdown of the mixed-reuse
sult, FLAT-HTA outper- microbenchmark for the previous
forms the best software hash tables and Hierarchical-HTA.
implementation by only

1%, as it spends 80% of cycles waiting for LLC responses.

By contrast, by adopting a multi-level hierarchy-aware hash table
layout, HIERARCHICAL-HTA densely packs frequently accessed key-
value pairs in lower-level caches, reducing misses. As shown in
Fig. 2, HIERARCHICAL-HTA serves most of the lookups from the L2
instead of the LLC, outperforming FLAT-HTA by 84%.

2.2 Prior work in accelerating hash tables

Prior work has introduced hardware support to reduce hash table
overheads. In databases, prior work [18, 22] leverages the inter-key
parallelism of database operators such as join to exploit data-level
parallelism. These techniques optimize the throughput but not the
latency of hash table accesses.

Near-memory [26] and near-storage acceleration [40, 46] bypass
the cache hierarchy entirely, and are a sensible choice when operat-
ing on large hash tables with no locality. They do avoid the spatial
locality problems of caching hash tables. However, they incur high
latency and work poorly when hash table accesses have locality.

Other hardware techniques introduce specialized hardware units
for hashing and comparisons instead of using the processor pipeline,
and allocate dedicated on-chip storage for hash tables. They are
typically specialized for applications such as PHP processing [17]
and distributed key-value stores [5, 25]. Like HTA, these techniques
do reduce the latency of hash table operations. Unlike HTA, these
techniques introduce large storage structures that rival or exceed
the area of the L1 cache. For example, Da Costa et al’s proposal
to accelerate memoization [11] consumes 98 KB. However, not all
applications can benefit from this storage. In these cases, this dedi-
cated storage not only wastes area that could otherwise be devoted
to caches, but also hurts energy consumption [7].

By contrast, HTA is general and optimizes both the throughput
and the latency of hash table operations. HTA avoids specialized
on-chip storage by storing hash tables in caches, so they share
scarce on-chip memory capacity with other program data.

2.3 Memoization

Memoization is a technique to improve performance and energy
efficiency. Memoization caches the results of repetitive computa-
tions, allowing the program to skip them. Memoized computations

MICRO-52, October 12-16, 2019, Columbus, OH, USA

must be pure and depend on few, repetitive inputs. Memoization is
the cornerstone of many important algorithms, such as dynamic
programming, and is widely used in many languages [29, 30], espe-
cially functional ones. It was first introduced by Michie in 1968 [32].
Since then, it has been implemented using software and hardware,
but both have significant drawbacks, which we address with HTA.

Software memoization relies on hash tables to memoize input-
output pairs. The high runtime overheads of hash tables hamper
software memoization significantly. As we later show, many memo-
izable functions are merely 20 to 150 instructions long, comparable
to or even cheaper than hash table lookups. Memoizing them is
harmful. For example, Citron and Feitelson [8] show that software
memoization incurs significant overheads on short functions: when
memoizing mathematical functions indiscriminately, software mem-
oization incurs a 7% performance loss, while a hardware approach
yields a 10% improvement. To avoid poor performance, software
schemes must apply memoization selectively, relying on a care-
ful cost-benefit analysis of memoizable regions, done by either
compilers [13, 38], profiling tools [12], or programmers [39].

Prior work has proposed hardware support to accelerate mem-
oization [8, 38, 42], and thus can unlock more memoization po-
tential. Much prior work on hardware memoization focuses on
automating the detection of memoizable regions at various gran-
ularities [11, 19, 36, 42], while others rely on ISA and program
changes to select memoizable regions [8, 9, 38]. However, all prior
hardware techniques require dedicated storage for memoization ta-
bles. Such tables require similar or even larger sizes than L1 caches.
Therefore, they incur significant area and energy overheads [7],
especially for programs that cannot exploit memoization.

Other prior work has proposed architectural [43] or runtime [34]
support to track implicit inputs/outputs of memoized functions,
enabling memoizing impure functions. This is orthogonal to the
acceleration of hash tables, which is the focus of our work. HTA
could be easily combined with them.

3 HTA HARDWARE/SOFTWARE INTERFACE

HTA is a Hash Table Acceleration technique. HTA handles most
hash table accesses in hardware, and leaves rare cases such as over-
flows and table resizing to a slow software path. HTA introduces
two key software-visible features to accelerate hash table operations
in hardware.

First, HTA adopts a format for hash tables that exploits the
characteristics of caches to make lookups and updates fast. HTA
stores hash tables in cacheable memory. This avoids the large costs
of specialized hardware caches used by prior hardware techniques.
HTA does not statically partition cache capacity between hash
table data and normal program data. Instead, both types of data are
managed by the unified cache replacement policy, and share cache
capacity dynamically based on access patterns.

Second, HTA introduces hash table instructions for lookups and
updates that are amenable to a fast and simple implementation.
Whereas software hash table lookups use multiple instructions
and hard-to-predict branches, HTA hash table lookups are done
through a single instruction with branch semantics. The outcome
of a lookup (resolved or not) can be predicted accurately by the
core’s existing branch predictors, avoiding most control-flow stalls.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

Key HTA | Overflow| Software

Table Hash
Table
In cacheable
memory

(a) FLaT-HTA

Key HTA Overflow| HTA |Overflow| Software
Stash Table Hash
Table

Pinned to L1 In cacheable

memory

(b) HIERARCHICAL-HTA
Figure 3: Overview of HTA implementations.

Fig. 3 gives an overview of how both HTA implementations,
FLAT-HTA and HierarcHicAL-HTA, use these features. FLAT-HTA
(Fig. 3a) stores key-value pairs across an HTA table and a software
hash table. The HTA table is stored in cacheable memory, and may
be spread across multiple caches or main memory. The HTA table
is sized to hold most key-value pairs, and the software hash table is
used as a victim cache, to hold pairs that overflow the HTA table.

HierarcHIcAL-HTA (Fig. 3b) extends FLAT-HTA by letting cache
levels retain individual key-value pairs rather than cache lines.
Specifically, they cache key-value pairs of the HTA table in small,
cache-level-specific regions called HTA stashes. A pair that over-
flows an HTA stash is handled by the next level. This improves
spatial locality at intermediate caches levels, as their lines fill up
with frequently-accessed pairs. However, HIERARCHICAL-HTA does
not improve spatial locality at the last-level cache (doing so would
complicate the interface with main memory), so its benefits over
FLAT-HTA are modest. Fig. 3b shows an example of HIERARCHICAL-
HTA with one HTA stash pinned to the L1.

We now describe the ISA changes common to FLaT-HTA and
HIieErRARCHICAL-HTA, then describe their implementations.

3.1 HTA hash table format

The HTA table is stored in a contiguous, fixed-size region of mem-
ory, as shown in Fig. 4.

HTA uses a storage format designed to leverage the characteris-
tics of caches. Each cache line stores a fixed number of key-value
pairs. For example, Fig. 4 shows the format of a 64-byte cache line
for a hash table with 128-bit keys and 64-bit values. A given entry
can map to a single cache line, but can be stored in any position
within the line. A lookup thus requires hashing the input data to
produce a cache line index, fetching the line at that index (as shown
in Fig. 4), and comparing all keys in the line. This design requires
accessing a single cache line, but retains associativity within a line
to reduce collisions. To avoid the need for valid bits, HTA initializes
each line’s entries with invalid key values, which are simply keys
that hash to a different line.

HTA leaves collision resolution to software. Specifically, there
may be overflowed key-value pairs that cannot be stored in a line
due to capacity constraints. These overflowed pairs are handled by
the software path, which stores them in the software hash table.

Guowei Zhang and Daniel Sanchez

Key Memory
| RegO | Regl I
1128 2M cache lines
H
- |
128b 128b 64b 64b 128b
I Key O I Key 1 I Valuve O | Value 1 I Unused |

Figure 4: HTA table format.

3.2 HTA ISA extensions

HTA stores a small number of HTA table descriptors in architectural
registers. Each descriptor holds the table’s starting address and its
size. Our implementations support four HTA table descriptors. If
the program uses more than four hash tables, it should manage
their descriptors accordingly, loading them into registers before
operating on the hash table.

HTA adds four instructions to perform hash table operations:
hta_lookup, hta_update, hta_swap, and hta_delete. These in-
structions have branch semantics. Fig. 5 and Fig. 6 show sample
code that uses them to implement single-threaded lookups and
insertions. (Sec. 4.4 describes how these instructions are used to
implement thread-safe hash tables for multithreaded applications.)
1. hta_lookup performs a lookup in the HTA hash table whose
descriptor is specified by table_id. hta_lookup supports keys
with up to four integer or floating-point words and a single integer
or floating-point value, all stored in registers. As shown in Fig. 5,
hta_lookup stores the number of integer and floating-point key
registers, and the core decodes them to a fixed set of registers. We
choose the same register mappings as the ISA’s calling convention.
For instance, in x86-64, num_int_keys = 2 means that the 64-bit
values in registers rdi and rsi are used as a 128-bit key. Similarly,
the is_int_value indicates whether the value is integer or floating-
point. In x86-64, either rax or xmm@® will be used accordingly.

If the lookup is resolved, i.e., the key is found or the line is not
full, hta_lookup acts as a taken branch. It jumps to the target PC
encoded in the instruction (in PC-relative format), sets the overflow
flag to indicate whether the lookup succeeds, and also updates
the result register with the corresponding value. If the lookup is
not resolved, i.e., the key is not found and the line is full, hta_-
lookup acts as a non-taken branch, and continues to execute the
next instruction.

2. hta_update is used to update the HTA hash table. Like hta_-
lookup, hta_update encodes the key and value registers, and the
table id. If the key is found or the line is not full, hta_update
updates the pair in the cache line and jumps to the target PC.

of int keys is_int_value target
lookup: hta_lookup é, 1, g, 3, do%e
call swLookup I# of fp keys\lqble_id
done:

Figure 5: Example showing how hta_lookup is used to im-
plement a singled-threaded hash table lookup.

Leveraging Caches to Accelerate Hash Tables and Memoization

Otherwise, if the key is not found and the line is already full, hta_-
update does not modify anything and continues to execute the
next instruction.

3. hta_swap attempts to insert a pair more aggressively than hta_-
update. Similar to hta_update, hta_swap encodes the key and
value registers, and the table id. Upon a hta_swap, if the key is
found or the line is not full, hta_swap performs the same operations
as hta_update: it updates the pair in the cache line and jumps to
the target PC. However, if the key is not found and the line is
full, hta_swap selects a victim pair randomly to make space for
the update. The victim’s key and value are placed in registers and
hta_swap acts as a non-taken branch, letting the software path
finish the update, e.g., by inserting the victim pair to the software
hash table. Such distinction between hta_update and hta_swap
is useful for thread-safe hash tables (Sec. 4.4).

4. hta_delete removes a key-value pair with a matching key. Its
format is identical to hta_lookup. If the key is found, it is replaced
with a special deleted key, and the instruction acts as a taken branch.
Otherwise, hta_delete acts as a non-taken branch to take the
software path.

Deleted key values must be different from invalid key values,
as hta_lookup should not interpret a deleted key as empty space
(so that lookups do not miss pairs that overflowed to the software
table), but hta_update and hta_swap should interpret a deleted
key as empty space. In all, HTA uses four pre-specified key values:
it chooses two small key values that do not map to line 0 as line 0’s
invalid and deleted key values, and two small key values that map
to line 0 as the invalid and deleted key values for all other lines.
Single-threaded lookups: Fig. 5 shows the implementation of
a hash table lookup with HTA instructions. The lookup begins
with the hta_lookup instruction. A resolved hta_lookup jumps
to done and continues program execution. Otherwise, the program
goes through the software path to perform a lookup in the software
hash table. In this way, the HTA hash table behaves as an exclusive
cache of the conventional software hash table, allowing most of the
accesses to be handled quickly. The software path is rarely executed,
and therefore introduces little performance impact.
Single-threaded insertions: Similarly, Fig. 6 illustrates how to
implement an insertion with HTA (if a pair with the same key
already exists, an insertion updates its value). Either hta_swap or
hta_update can be used. A resolved hta_swap instruction jumps
to done, skipping the software path. An unresolved hta_swap runs
through the software path, which (i) inserts the victim pair to the
software hash table, and (ii) checks whether the software hash
table has a pair with the same key as the newly inserted pair, and
removes it if so, as this old, overflowed pair is now stale.

3.3 ISA design alternatives

We have designed the HTA ISA to integrate well in x86 processors:
HTA instructions are encoded in a compact format and are decoded
into multiple pops upon execution (Sec. 4.1). An alternative RISC-
style implementation is also possible, e.g., by exposing the different
pops as instructions. However, this design choice is not important:
as shown in Fig. 1 and Fig. 2, the time spent on frontend stalls and
issuing pops is negligible, so using CISC- vs. RISC-style instructions
would not significantly change the results. The key benefit of HTA
is to reduce wrong-path execution and backend stalls.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

insert: hta_swap ©, 1, ©, 3, done

call swHandlelInsert

done:

Figure 6: Example showing how hta_swap is used to imple-
ment a single-threaded hash table insertion.

4 FLAT-HTA IMPLEMENTATION

As shown in Fig. 3a, FLAT-HTA uses a single-level HTA table stored
in cacheable memory. FLAT-HTA substantially reduces overheads
over software hash tables, but still suffers from poor spatial locality.

4.1 Core pipeline changes

FLAT-HTA requires simple changes to cores, shown in Fig. 7. We
add a simple functional unit that executes lookup, update, swap,
and delete instructions. This unit is fed the values of key registers,
possibly over multiple cycles, as well as the table id.

For an hta_lookup instruction, the unit first hashes the input
values and table size to find the line index. We restrict the system
to use power-of-2 sizes for each HTA table. We use the x86 CRC32
instruction to compute the hash value; other ISAs could implement
CRC or a different cheap hash [20]. We find that CRC produces
good distributions in practice.

After hashing, the HTA functional unit loads the appropriate
cache line, compares all the keys, and outputs whether the the
software path can be skipped, whether there’s a match, as well
as the corresponding result if so. hta_update and hta_swap are
similar, but the functional unit also takes the value to update, and
stores the pair in the appropriate line. hta_delete is also similar,
but does not return a value.

HTA leverages existing core mechanisms to improve perfor-
mance. We integrate these instructions into an out-of-order, su-
perscalar x86-64 core similar to Intel’s Haswell (see Sec. 7). The
frontend treats HTA instructions as branches. This way, HTA in-
structions leverage the existing branch target buffer and branch
predictor to predict whether the code following each instruction
can be skipped. Thus, the core overlaps the execution of lookups
and updates with either the execution of the software path (if a
resolution is not predicted) or its continuation (if a resolution is
predicted). We find that this effectively hides the latency of HTA
instructions.

In our implementation, the backend executes hta_lookup using
multiple RISC pops. The decoder produces one or more pops that
feed each input register to the HTA functional unit, an HTA pop
that instructs the functional unit to start, a branch-resolution pop,

| Fetch H Decode |->| Issue Commit
I_ - -= 1
HTA 1 | Address Line !
additions | | Calculation Comparison :

Figure 7: HTA core pipeline changes.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

Circuit Address calculation Line comparison Total
Area(um?) 6,173 9,176 15,349
Area(%core) 0.022 0.033 0.055

Table 1: Area of the HTA functional unit on a 45 nm process.

and, if the lookup is predicted to be resolved, a pop to move the
lookup result into its destination register. The other instructions
use a similar implementation.

4.2 Hardware costs

We implement the HTA functional unit in RTL and synthesize it
using yosys [45] and the 45 nm FreePDK45 standard cell library [21].
The functional unit meets a target 3 GHz frequency. The address
calculation circuit mainly consists of a 64-bit adder, 64 AND gates,
and registers to store the four HTA table descriptors. The line
comparison circuit includes comparators to search for a given key
and an empty slot in parallel. Table 1 reports the area consumed
by these components. Overall, the functional unit takes just 0.055%
of the area of a Nehalem core [14], which was manufactured in a
45 nm process as well. Thus, HTA’s area overheads are negligible.

4.3 Software path

The software path performs lookups and updates to a conventional
software hash table. It handles the rare overflowed accesses to HTA.
Besides, the software path also resizes the HTA table dynamically.
The resizing algorithm HTA adopts is based on comparing the frac-
tion of HTA accesses that take the software path with a threshold
(e.g., 1%). If the fraction is above the threshold, the software path
doubles the size of the HTA table and reinserts all existing elements
in both the HTA table and the software hash table.

To keep track of this fraction, each HTA table is assigned a
counter that is stored in memory at one word above its starting
address. The counter is incremented rarely (every 100 HTA accesses
in our implementation), and hence approximately monitors the
number of HTA accesses of the table.

The software path also maintains a counter recording the number
of software path invocations. The software path uses these counters
to calculate the fraction of accesses that overflow, and decides
whether to resize the HTA table.

4.4 Parallel hash table implementation

With multiple threads, the simple hash table operations shown
in Fig. 5 and Fig. 6 need some refinement to be thread-safe. We
leverage that HTA instructions are atomic (cores already have the
machinery to ensure this for all instructions, such as line locking
or verification loads). This guarantees the atomicity of operations
that do not invoke the software path.

If the software path is invoked, a synchronization strategy is
needed to guarantee atomicity. We use fine-grain locks, each of
which protects a few lines (four in our implementation). However,
HTA is orthogonal to the synchronization technique used by the
software path, and can use other techniques. For example, it could
be combined with transactional memory.

Thread-safe lookups: Fig. 8 shows our thread-safe implementa-
tion of lookups. The software path involves acquiring the line’s lock;

Guowei Zhang and Daniel Sanchez

lookup: hta_lookup o, 1, o, 3, done
call swLockLine
hta_lookup 0, 1, 0, 3, release
call swLookup

release: call swUnlockLine

done:

Figure 8: Example showing how hta_lookup is used to im-
plement a thread-safe hash table lookup. The software path
uses fine-grain locks.

insert: hta_update e, 1, o, 3, done
call swLockLine
hta_swap 0, 1, 0, 3, release
call swHandlelInsert

release: call swUnlockLine

done:

Figure 9: Example showing how HTA instructions are used
to implement a thread-safe insert. The software path uses
fine-grain locks.

executing the hta_lookup instruction again; if needed, accessing
the software hash table; and finally releasing the lock. hta_lookup
must be invoked again after locking to avoid races with insertions.
Thread-safe insertions: Fig. 9 shows code for thread-safe updates.
This code shows why hta_update and hta_swap are both needed:
hta_update does not modify HTA table state if the software path
is invoked. This is important to avoid races: by using hta_swap
only after locking, all modifications are properly synchronized.

5 HIERARCHICAL-HTA IMPLEMENTATION

HierarcHIcAL-HTA extends FLAT-HTA to cache individual key-
value pairs of the HTA table in cache-specific regions called HTA
stashes (Fig. 3b). A stash’s lines can only be stored in a specific cache
level. Stashes do not reserve any capacity in their cache (i.e., they do
not partition the cache). Instead, similar to FLAT-HTA, each stash
shares capacity with normal program data, and the actual capacity
a stash consumes depends on the workload’s access pattern.

This hierarchy-aware layout improves spatial locality on inter-

mediate cache levels, improving cache utilization and reducing
misses. Whereas FLAT-HTA only requires changes to the core, Hi-
ERARCHICAL-HTA also modifies cache controllers so that they can
fetch and serve key-value pairs rather than cache lines. However,
HierarcHICAL-HTA does not improve spatial locality at the LLC,
as making the LLC manage key-value pairs rather than lines would
complicate the interface main memory (which is optimized for wide
transfers). Therefore, HIERARCHICAL-HTA yields only modest gains
over FLAT-HTA.
HTA table restrictions: For simplicity, we introduce some restric-
tions on the backing HTA table: it must be in a contiguous region
of physical memory, must be power-of-two sized, and must be size-
aligned. (FLAT-HTA tables live in pageable virtual memory so they
do not have these restrictions.) These restrictions let us operate
on physical addresses, avoiding the need for TLBs on caches, and
simplify addressing.

Leveraging Caches to Accelerate Hash Tables and Memoization

HTA Table

HTA Stash

©w N - o

Legend

I Frequently-accessed pair
I Infrequently-accessed pair 14
[|Empty slot 1

T
Cache line

Figure 10: HTA stash format.

HTA stash format: Fig. 10 shows an example layout of an HTA
stash and its corresponding HTA table. For simplicity, each HTA
stash uses a contiguous range of 2K cache lines. 2K can be greater
than the number of lines in the cache that the stash lives in. Suppose
the HTA table is 2M lines large. Then, given the HTA table address
of a particular key, its HTA stash address is computed by zeroing
the highest M — K bits of its offset within the HTA table. Key-value
pairs will map to line X in the HTA stash if they map to lines
X, X +2K X +2.2K x4+ (@M - 2M=K) jp the HTA table.

Cache controllers store some information about each of their
HTA stashes: the starting address and size of their corresponding
HTA table, and the key-value pair format. This limits the number
of HiErARCHICAL-HTA hash tables that each cache may hold (to
four hash tables in our implementation).

Per-pair management: Cache controllers are extended to manip-
ulate and communicate individual key-value pairs within each level:
they perform shared fetches (GETS), exclusive fetches (GETX), and
dirty writebacks (PUTX) on key-value pairs, analogous to the usual
requests for line fetches and evictions in conventional caches. Each
HTA operation checks the hash table’s HTA stashes in sequence,
and the next-level HTA stash (and eventually the HTA table) is
accessed only when the current stash cannot resolve the operation.

Fig. 11 illustrates HIERARCHICAL-HTA’s operation on a system
with a two-level cache hierarchy and an L1-pinned HTA stash. Sup-
pose the L1 starts empty. An hta_lookup triggers a GETS request
with the key and HTA table line from the L1, as shown in Fig. 11a.
The L2 accesses the right HTA table line (fetching it from memory
if needed), and responds with its associated value. The L1 allocates
space for the HTA stash line and installs the key-value pair there.

The HTA table is inclusive of HTA stashes. Updates are similar
to lookups but issue GETX (exclusive) requests. On an update, if
the HTA table does not have a pair with the same key, the pair is
first inserted into the HTA table.

Caches can evict HTA stash lines as shown in Fig. 11b. Individual
key-value pairs are written back if the line is marked as modified,
and are simply dropped if the line is clean.

Overflows: Overflows in an HTA stash are transparent to software:
the cache evicts a randomly-chosen pair to the next level to make
space for a new one. Overflows in the HTA table are treated the
same way as in FLAT-HTA, by invoking the software fallback path
for updates. Note that, since the HTA table is inclusive of HTA
stashes, overflows or evictions in HTA stashes never cause HTA
table overflows.

Coherence: Finally, we maintain coherence conservatively. Co-
herence is tracked at the shared last-level cache, for each line in
the HTA table. When an LLC line in the HTA table is evicted, or

MICRO-52, October 12-16, 2019, Columbus, OH, USA

| Legend Line with a pair (k, v) and an empty slot

l2 SR 1| iial state |12 KOOkl v
T [Tk2,v2
L1 L1[k0 x0|
P
o M
hta_lookup(k) % X k2,x2
X
w8 :iﬁ
L2 v | Final state | L2 k0, x0[K1, v1
I [Tx2
Sl -

(b) Eviction

(a) hta_lookup
Figure 11: Pair-grain memory ops in HIERARCHICAL-HTA.

when the line is shared and an exclusive request is received, all the
sharers of the line are sent invalidations. At smaller caches that
contain HTA stashes, an exclusive request (due to an update) that
falls on an HTA stash line with shared permission (due to lookups)
causes the pairs in the line to be dropped. These policies let us reuse
line-level coherence metadata, though they are less precise than if
we performed pair-by-pair coherence.

6 HTA-ACCELERATED MEMOIZATION

Memoization improves performance and saves energy by caching
and reusing the outputs of repetitive computations. As discussed
in Sec. 2.3, prior software and hardware memoization techniques
have significant drawbacks. Software memoization suffers from
high runtime overheads, and is thus limited to long computations.
Prior hardware techniques achieve low overheads and can memoize
short functions, but they rely on large, special-purpose memoization
caches that waste significant area and energy.

We leverage HTA to accelerate memoization cheaply, match-
ing the performance of prior hardware memoization techniques
without dedicated on-chip storage.

Memoization tables are allocated for memoizable functions. Each
memoization table is a hash table that stores arguments as the key
and return values as the value. Since memoization tables are small,
we use FLAT-HTA to implement them. These FLAT-HTA tables do
not have conventional software paths that manipulate software hash
tables. Instead, on an HTA table miss the software path simply calls
the memoizable function. This is a good tradeoff: executing the
short function is cheaper than a software hash table lookup.

Memoization operations are implemented using HTA instruc-
tions. Fig. 12 shows example code that leverages HTA instructions
to memoize a single-argument, single-result function (exp). We

memo_exp: ; hta_lookup ©, 1, @, 3, done
call exp
hta_swap e, 1, ©, 3, done

done:

Figure 12: Example showing how HTA instructions are used
to memoize the exp() function.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

place an hta_lookup before the call to the memoized function. If
the key is found, then the corresponding value is returned in the
return value register and the function call is skipped. Otherwise, the
function is executed and its result is memoized using hta_swap.
Since memoization tables do not grow to accommodate extra
items, insertions simply replace one of the line’s entries. As a result,
there is no software path for hta_swap (i.e., target equals next
PC), because the victim pair is simply dropped. This does not affect
the correctness of the program. This is the right tradeoff when
memoizing short functions; longer functions could use a full-blown
HTA-accelerated hash table.
Exploiting memoizable regions: We have developed a pintool [27]
to identify memoizable (i.e., pure) functions [48]. A function is de-
fined as memoizable if it satisfies two conditions. First, its memory
reads are either to read-only data or to its stack. Second, its memory
writes are restricted to its own stack. Then, we manually added
hta_lookup and hta_swap instructions to these functions’ call-
sites. Due to its low overheads, HTA does not need to perform
selective memoization based on cost-benefit analysis as in soft-
ware techniques. Therefore, we memoize every function that our
tool identifies as memoizable. We memoize both application and
standard-library functions.

7 METHODOLOGY

We perform microarchitectural, execution-driven simulation using
zsim [35]. We evaluate 1-core and 16-core chips with parameters
shown in Table 2. These systems use out-of-order cores modeled
after Haswell, and a 3-level cache hierarchy with a shared, inclusive
LLC that has 2 MB per core.

Our HTA implementation includes registers for four HTA ta-
ble descriptors. HTA instructions incur the cost of a cache-line
load/store (in two 256-bit accesses), plus one cycle to perform key
comparisons. We model an L1 that supports wide accesses (256
bits per cycle), which is common due to SIMD instructions (e.g.,
256-bit AVX). We encode hta_lookup, hta_update, hta_swap,
and hta_delete using x86-64 no-ops that are never emitted by
the compiler.

We evaluate HTA using two sets of workloads: one set uses
hash tables as a key part of their implementation, and the other
set leverages memoization to improve performance. To achieve
statistically significant results, we introduce small amounts of non-
determinism [1], and perform enough runs to achieve 95% confi-
dence intervals < 1% on all results.

7.1 Hash table workloads

We analyze four applications that use hash tables heavily:

e bfcounter [31] is a memory-efficient software to count k-
mers in DNA sequence data, which is essential for many
methods in bioinformatics, including genome and transcrip-
tome assembly. bfcounter uses a heavily-updated hash
table to hold k-mers. We use a DNA sequence from EN-
CODE [41] as the input.

e 1zw is a text compression benchmark based on the LZW al-
gorithm [44], a widely-used lossless data compression tech-
nique. A hash table is used to hold the dictionary. We use
the Bible as the input text file.

Guowei Zhang and Daniel Sanchez

x86-64 ISA, 3.0 GHz, Haswell-like OOO: 16B-wide ifetch, 2-level
Core bpred with 2 KXx18-bit BHSRs + 4 KX2-bit PHT, 4+1+1+1 decoders,
6 execution ports, 4-wide commit

L1cache 32KB, 4-way set-associative, 3-cycle latency, split D/I
L2 cache 256 KB, 8-way set-associative, 7-cycle latency, inclusive
L3 cache 2MB per core, 16-way set-associative, 15-cycle latency, inclusive

Main mem DDR3-1600, 4 channels (16 cores) or 1 channel (1 core)

Table 2: Configuration of the simulated system.

#of hta_
Baseline # of hta_ swaps &
Input set hash table lookups updates
bfcounter ENCSR687ZCM fastq [41] C++11 0 26960049
lzw the Bible unordered_map 4364173 765632
hashioin —r-5ize=16777216 —s-size 268435456 23335399
J =268435456 —skew=1.5 Google
ycsb-read -20.6 -r1.0 -w0.0 dense_hash_map 95998531 0
yesb-write -20.6 -r0.0 -w1.0 0 95998531

Table 3: Hash table benchmark characteristics.

e hashjoin [2] is a single-threaded implementation of the
hash join algorithm. hashjoin joins two synthetic tables.
There are two phases in the program: in the first phase, the
inner table is scanned to build a hash table; and then in the
second phase, the outer table is scanned while the hash table
is probed to produce output tuples.

e ycsb [10] is an implementation of Yahoo! Cloud Serving
Benchmark that runs on DBx1000 [47]. Hash tables are used
for hash indexes. We evaluate ycsb with two configurations:
100% read queries and 100% write queries.

Table 3 details these applications and their characteristics.

We modify each application to support multiple hash table im-
plementations (using template metaprogramming to do so without
runtime overheads). We compare the following implementations:

¢ Baseline: Because no single hash table design works best
for all applications, we use the best of 1ibstdc++’s C++11
unordered_map and Google’s dense_hash_map as the base-
line implementation. The best of both either matches or
outperforms the application’s existing hash tables.

e FLAT-HTA and HierarcHICAL-HTA: To evaluate HTA,
we use a hash table implementation with HTA hash tables ac-
cessed through hta_lookup/update/swap/delete instruc-
tions. The HTA hash table starts empty and is resized as
elements are inserted. Specifically, if the fraction of software
path invocations over total HTA accesses is above 1%, the
size of HTA table is doubled. This involves allocating a new
HTA table that is twice as large, then inserting all the pairs
in both the previous HTA table and the software hash table
into the new HTA table. For each application, HTA uses the
same software hash table as the baseline. Since HTA rarely
uses the software hash table, its performance is insensitive
to the choice of software hash table.

e HTA-SW: To further analyze HTA and illustrate where per-
formance differences comes from, we implement a software
scheme, HTA-SW, that implements the same algorithm as
HTA but without any hardware support. HTA-SW uses the
same table format, the same software hash tables, and the
same resizing algorithm. HTA-SW does not rely on any hard-
ware support: all the steps in hash table operations, including

Leveraging Caches to Accelerate Hash Tables and Memoization

Memoization

Benchmark Input Memoizable table per

Lang. suite Set functions function
bwaves Fortran ~ SPECCPU2006 ref slowpow, pow 32KB

halfulp, exp1
bscholes C++ PARSEC native CDNEF, exp, logf 32KB
equake C SPECOMP2001 ref phio, phil, phi2 4KB
water C SPLASH2 1061208 exp 32KB
semphy C++ BioParallel 220 suﬂSte;)tGlobalHom— 4KB
os::get

nab C SPECOMP2012 ref exp, slowexp_avx 2KB

Table 4: Memoization benchmark characteristics.

hashing, key comparison, memory accesses, and branches,
are implemented purely in software. HTA-SW stores the keys
within a cache line in a contiguous format, so that compar-
isons can be implemented with SIMD load and comparison
instructions [49]. Specifically, we use Intel AVX vector load,
compare, and mask instructions to exploit the parallelism in
key lookups.

We fast-forward each application to skip initialization (e.g., data

loading in ycsb) and simulate them to completion.

7.2 Memoization workloads

We analyze programs from six benchmark suites and choose one ap-
plication with high memoization potential from each suite. Table 4
details these applications and their characteristics. For each appli-
cation, we use the same memoization table size for all memoized
functions. We report the table size that yields the best performance.
Sec. 8.5 provides more insight on the effect of table size.

We fast-forward each application for 50 billion instructions. We
instrument each program with heartbeats that report application-
level progress (e.g., when each timestep or transaction finishes),
and run it for as many heartbeats as the baseline system (without
memoization) completes in 5 billion instructions. This lets us com-
pare the same amount of work across schemes, since memoization
changes the instructions executed.

8 EVALUATION

8.1 Flat-HTA on single-threaded applications
Fig. 13 compares the performance of the baseline, HTA-SW, and

FLaT-HTA. FLAT-HTA outperforms the baseline by 24% on bfcounter,

70% on lzw, 2.0x on hashjoin, 23% on ycsb-read, and 69% on
ycsb-write. Fig. 14 shows the breakdown of core cycles following
the same format as Sec. 2.1, and shows the same trends. bfcounter
and 1zw benefit mainly from reduced mispredicted branches, while
hashjoin and ycsb gain mostly from better backend parallelism.
Fig. 13 also shows that FLaT-HTA outperforms HTA-SW sub-
stantially, by 6.3% on bfcounter, 7.4% on lzw, 2.1X on hashjoin,
28% on ycsb-read, and 73% on ycsb-write. Fig. 14 shows these
benefits stem from reduced wrong-path execution and backend
stalls. Specifically, though FLAT-HTA incurs the same cache misses
as HTA-SW, applications with abundant operation-level parallelism,
like hashjoin and ycsb, benefit from HTA significantly by using
the reorder buffer better: since each hash table operation uses far
fewer pops, more operations are overlapped, reducing backend
stalls. ycsb-write benefits more than ycsb-read because FLAT-
HTA improves updates more than lookups (as Sec. 2.1 showed).

MICRO-52, October 12-16, 2019, Columbus, OH, USA

[0 Baseline [HTA-SW [Flat-HTA

1.4 1.8 2.0 14 1.8

1.2 1.6 1.2 1.6

1.4 1.4

g_1.0 1o 1.5 1.0 12

5 0.8 1.0 0.8 1.0
D 1.0

206 0.8 0.6 0.8

n 0.4 0.6 0.4 0.6

0.4 0.5 0.4

02 02 02 0.2

0.0 0.0 0.0 0.0 0.0

(a) bf (b) 1zw (c)hj (d) ycsb-rd (e) ycsb-wr

Figure 13: Speedups of FLAT-HTA and HTA-SW over the
software baseline on single-threaded applications.
I LLC stall

[Issued micro ops I Function unit stall

[Wrong path execution [L1 stall I Main memory stall

[Fetch/Decode stall I L2 stall
1.0 1.0 1.2 1.2 12

Bos 08 1.0 1.0 1.0

-§0.6 06 0.8 0.8 0.8

Q 0.6 0.6 0.6

[04 04 04 04 04

E’ 0.2 0.2 0.2 0.2 0.2
05sF “OBsF “PBsF %ssrF “YBsF

(a) bf (b) 1zw (c)hj (d) ycsb-rd (e) ycsb-wr

Figure 14: Cycle breakdowns for the Baseline, HTA-SW, and
Flat-HTA.

Moreover, HTA-SW does not consistently improve performance.
HTA-SW outperforms the baseline substantially on bfcounter and
1zw, by 17% and 58% respectively, showing that the HTA design
can sometimes outperform state-of-the-art hash tables even when
implemented entirely in software. However, HTA-SW causes small
performance degradations (up to 6%) onhashjoin, ycsb-read and
ycsb-write. On these applications, the performance improvement
of FLAT-HTA comes from hardware acceleration.

Beyond performance, space efficiency is an important consid-
eration for hash tables. Table 5 reports the memory consumption
of the different implementations. HTA-SW uses the same memory
layout as FLaT-HTA, and hence has exactly the same memory con-
sumption. Overall, results show that HTA does not cause undue
storage overheads—there are differences of 2x in all cases, but note
that hash tables grow exponentially over time and small differences
in resizing thresholds can cause 2 size differences. On bfcounter
and 1zw, which use unordered_map as the baseline, the FLaT-HTA
table is 2x larger than the baseline’s. On hashjoin and ycsb, which
use dense_hash_map as the baseline, the FLAT-HTA table is 2x
smaller than the baseline’s.

Baseline FrLar-HTA and HTA-SW
Type Table | HTA table Software path
bfcounter | unordered 275MB 512 MB 2MB
lzw _map 8 MB 16 MB 117KB
hashjoin dense 512MB 256 MB 512B
yesb-read _hash 512MB 256 MB 0B
yesb-write _map 512MB 256 MB 0B

Table 5: Memory usage of the baseline and FLaT-HTA.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

8.2 Flat-HTA on multithreaded applications

We now evaluate FLAT-HTA on multithreaded applications.
Since bfcounter, 1zw, and

hashjoin are single-thread- Flat-HTA - - Baseline
ed, we use the multithreaded }g 12
implementations of ycsb- %}(2) > 1%
read and ycsb-write. 38 o 8

As shown by Fig. 15, at & 3 Ve g
16 cores, FLAT-HTA out- g - g -

. 1 16 1 16

performs the baseline by Cores Cores

33% on ycsb-read and
by 3.5X on ycsb-write.
These speedups are higher Figure 15: Speedups of Frar-
than in the serial version HTA and the baseline on ycsb
(23% and 69%) because most \hen scaling from 1 to 16 cores.
HTA operations are per- gpeedups are relative to the

formed without acquiring gjngle-threaded baseline.
locks.

(a) ycsb-read (b) ycsb-write

8.3 HTA with hierarchy-aware layout

We now compare the performance of FLAT-HTA and HIERARCHICAL-
HTA. In this experiment, HIERARCHICAL-HTA uses a 32 KB HTA
stash pinned to the L1 cache, followed by a 256 KB HTA stash
pinned to the L2 cache. The HTA table is cached in the LLC.

Fig. 16 compares the performance of both schemes. On ycsb-
read and ycsb-write, where key-value pairs have mixed reuse,
HierAarRcHICAL-HTA reduces L2 misses by 4.1X and 3.9%, respec-
tively. This happens because HIERARCHICAL-HTA lets the L1 and L2
hold densely-packed pairs. This miss reduction translates to a 35%
performance improvement for ycsb-read. However, ycsb-write
attains the same performance because FLAT-HTA completely hides
the latency of updates by exploiting memory-level parallelism (as
we saw in Sec. 2.1). Finally, the other three applications do not
exhibit mixed reuse, so HIERARCHICAL-HTA does not significantly
improve performance over FLAT-HTA.

8.4 HTA on multiprogrammed workloads

We evaluate FLAT-HTA’s impact on co-running applications by
running and 8-thread ycsb and an 8-thread SPEC OMP2012 ap-
plication simultaneously on the 16-core system. Threads of both
applications are pinned to cores.

[Flat-HTA [Hierarchical-HTA
12 1.2 1.2 1.4 1.2
1.0 1.0 1.0 12 1.0
208 0.8 08 1.0 08
3 08
@ 0.6 0.6 0.6 0.6
Q 0.6
0 0.4 0.4 0.4 04 0.4
0.2 0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0 0.0
(a) bf (b) 1zw (c)hj (d) ycsb-rd (e) ycsb-wr

Figure 16: Speedups of HIiErRarRcHIcAL-HTA over Frart-
HTA.

Guowei Zhang and Daniel Sanchez

[Baseline [Flat-HTA
14 18
ol2 35
> 1.0 30
0.6 i
o
w04 1[5)
0.2 05
0.0 0.0

spec ycsb spec ycsb spec ycsb spec ycsb spec ycsb spec ycsb

kdtree md others kdtree md others
(a) With ycsb-read (b) With ycsb-write

Figure 17: Speedups of HTA and the baseline when running
a SPEC OMP2012 app and ycsb simultaneously.

Fig. 17 summarizes the perfor- =3 Baseline [Flat-HTA
mance impact of FLaT-HTA. The 40 35
performance of all SPEC OMP2012 a0 Zg
applications except kdtree and ¥ 20
md is not affected by replacing 5 20 15
the baseline hash table with FLAT- 10 10
HTA (as shown in the others bar 0 g
groups). kdtree, the most cache- kdiree ycsb kdtree ycsb
sensitive application, shows that (a) w/-read (b) w/-urite

HTA causes less interference than
the default hash table.

First, when co-running with
ycsb-read, using FLAT-HTA causes
kdtree’s performance to improve by 11%, even though FLaT-HTA
accelerates ycsb-read by 20%, which is thus performing hash ta-
ble operations faster. Fig. 18a gives more insight into this result by
reporting the changes in L3 misses per kiloinstruction (MPKI) for
both ycsb and kdtree without and with FLAT-HTA. Despite the
higher rate of operations in ycsb-read, its MPKI is lower, which
leaves more L3 capacity and memory bandwidth for kdtree.

Second, when co-running with ycsb-write, using FLAT-HTA
causes kdtree’s performance to drop by 15% due to increased cache
capacity contention. However, note that ycsbh-write is 4.2x faster
with FLAT-HTA, so it performs hash table operations much faster
than the baseline. Fig. 18b shows that both ycsb-write versions
incur a similar L3 MPKI. Overall, these results show that HTA does
not introduce undue L3 and main memory memory pressure.

Figure 18: L3 MPKI when
running kdtree and ycsb.

8.5 HTA on memoization

We leverage HTA for memoization, and compare its performance
with the baseline implementation and both conventional hardware
and software memoization techniques.

HTA vs. baseline: Fig. 19 compares the performance of HTA-
based memoization over the baseline benchmarks, which do not
perform memoization. HTA improves performance substantially,
by 16X on bwaves, 7.5X on bscholes, 56% on equake, 27% on
water, 17% on semphy, and 4% on nab.

Table 6 provides more details into these results by reporting
per-function statistics. For example, in bwaves, memoizing the
pow function provides most of the benefits. pow takes thousands of
instructions to calculate x¥ if x is close to 1 and y is around 0.75,
which is common in bwaves. Memoizing pow contributes to 99.9%
of the instruction reduction in bwaves.

Leveraging Caches to Accelerate Hash Tables and Memoization

[0 Baseline [HTA
2.0 2.0 2.0 2.0
1.5 1.5 1.5 1.5
1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5
0.0 0.0 0.0 0.0
(a) bwaves (b) bschls (c) equake (d)water (e)semphy (f)nab

Figure 19: Speedups of HTA-based memoization over the
baseline benchmarks, which do not use memoization.

3 Baseline [HTA

é) 2.0

=}

1

L1 misses
relative to base

L1 accesses
relative to baseline
o
o

o o

o » o o

0.0 = I I
S

Wau%10“0\695'@;,‘«%3\@58‘“9\\! e e so“o\eé-wav&wa\e‘semgw el

(a) L1 data cache accesses (b) L1 data cache misses
Figure 20: L1 data cache accesses and misses of HTA-based
memoization relative to those of the baseline (without mem-
oization).

Beyond reducing execution time, HTA reduces the number of
L1 cache accesses significantly, as shown in Fig. 20a: L1 access
reductions range from 9% on nab to 97% on bwaves. This happens
because the L1 accesses saved through memoization hits exceed
the additional L1 accesses incurred by memoization operations.
Moreover, HTA does not incur much extra capacity contentionin L1
caches. Fig. 20b shows that HTA increases L1 data cache misses by
less than 5% overall. One exception is bscholes, which incurs 84%
more L1 misses on HTA. However, this is not significant, because
the baseline’s L1 miss rate is only 0.2%. In fact, such misses bring
in valuable memoization data that in the end improve performance
by 7.5X. On equake, HTA even reduces L1 data misses by 30%, as
the functions it memoizes have a larger data footprint than their
memoization tables.

. Instrs per #of .
Function func call hta_lookups Hit rate
slowpow 485160 579 48.0%
bwaves pow 12947 371813 96.3%
halfulp 77 301 1.3%
expl 28 14443 21.7%
CDNF 193 15547145 99.6%
bscholes exp 115 7840164 100.0%
logf 56 7773573 100.0%
phi0 119 7953687 100.0%
equake phil 123 7953687 100.0%
phi2 118 7953687 100.0%
water exp 116 7806240 100.0%
semphy get 19 67123200 94.6%
nab exp 81 29150496 49.6%
slowexp_avx 14756 0 N/A

Table 6: Per-function breakdown of hta_lookups.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

[HTA B Dedicated Hardware Buffer
2.0 2.0 2.0 2.0
1.5 1.5 1.5 15
8 1.0 1.0 1.0 1.0
6
4 0.5 0.5 0.5 0.5
2
0 <o Yoy 0.0 —<©o% 0.0 —<©o% 0.0 —<©o% 0.0 —<t©O
-0 —© —© —© —©
(a) bwaves (b) bschls (c) equake (d) water (e) semphy (f) nab

Figure 21: Per-application speedups of HTA and con-
ventional hardware memoization with different dedicated
buffer sizes (in KB).

HTA vs. conventional hardware memoization: We implement
a conventional hardware memoization technique that leverages
HTA’s ISA and pipeline changes, but uses a dedicated storage buffer
like prior work [6, 42] instead of using the memory system to store
memoization tables. Beyond its large hardware cost, the key prob-
lem of conventional hardware memoization is its lack of flexibility:
a too-large memoization buffer wastes area and energy, while a
too-small memoization buffer sacrifices memoization potential.

Fig. 21 quantifies this problem by showing the performance of
hardware memoization across a range of memoization buffer sizes:
1, 4, 16, and 64 KB. The buffer is associative, and entries are dy-
namically shared among all memoized functions. We optimistically
model a 1-cycle buffer access latency.

Fig. 21 shows that applications are quite sensitive to memoization
buffer size: 1 KB is sufficient for equake and nab, while water and
semphy prefer at least 4 KB, and bwaves and bscholes prefer at
least 64 KB. Smaller buffers than needed by the application result in
increased memoization misses and sacrifice much of the speedup
of memoization.

Finally, Fig. 21 shows that HTA matches hardware memoization
with a dedicated storage size of 64 KB on all applications. This is
achieved even though HTA does not require any dedicated storage,
saving significant area and energy. The tradeoff is that storing
memoization tables in memory causes longer lookup latencies than
using a dedicated buffer. However, these lookup latencies are small,
as they mostly hit on the L1 or L2, and branch prediction effectively
hides this latency most of the time.

HTA vs. software memoization: We implement software mem-
oization using function wrappers similar to Suresh et al. [39]. Per-
function memoization tables are implemented as fixed-size, direct-

[HTA [EE Software Memoization
8] 2.0 2.0 2.0
16
14 15 1.5 1.5
o 12
g 10 1.0 1.0 1.0
e n
n 6
4 05 05 05
2
0 0.0 0.0 0.0
(a) bwaves (b)bschls (c) equake (d)water (e) semphy (f)nab

Figure 22: Per-application speedups of HTA and software
memoization with per-function direct-mapped hash tables.

MICRO-52, October 12-16, 2019, Columbus, OH, USA

mapped hash tables, accessed before calling the function and up-
dated after a memoization miss.

Fig. 22 compares the performance of HTA and software memoiza-
tion. HTA outperforms software memoization by 85% on bscholes,
14% on equake, 7% on water, 2X on semphy, and 34% on nab. HTA
outperforms software memoization due to its low overheads. For
example, semphy’s memoizable function runs for 19 instructions on
average, too short for software memoization. As a result, software
memoization is 41% slower than the baseline. This explains why
software memoization needs a careful cost-benefit analysis to avoid
performance degradation. By contrast, HTA improves performance
by 17% on semphy, outperforming software memoization by 2x.
Similarly, software memoization makes nab 23% slower, while HTA
improves performance by 4%.

9 CONCLUSION

We have introduced HTA, a technique that leverages caches to
accelerate hash tables. HTA introduces simple ISA extensions and
hardware changes to address the high runtime overheads and the
poor spatial locality of conventional hash table implementations.
HTA adopts a hash table format that exploits the characteristics
of caches. HTA uses new instructions that leverage existing core
structures to accelerate hash table lookups and updates.

We have presented two implementations of HTA: FLaT-HTA
and HiErRARCHICAL-HTA. FLAT-HTA adopts a simple, hierarchy-
oblivious memory layout and reduces runtime overheads through
simple changes to cores. HIERARCHICAL-HTA uses a multi-level
hierarchy-aware layout and requires modifications in caches to
further improve spatial locality.

As a result, FLAT-HTA outperforms state-of-the-art implementa-
tions of hash-table-intensive applications by up to 2Xx, while HIER-
ARcHICAL-HTA outperforms FLaT-HTA by up to 35%. Finally, we
have shown that HTA can be leveraged to accelerate memoization.
HTA bridges the gap between hardware and software memoization:
FLaT-HTA outperforms software memoization by up to 2x, and
matches the performance of conventional hardware techniques, but
avoids the overheads of large dedicated buffers.

ACKNOWLEDGMENTS

We sincerely thank Maleen Abeydeera, Joel Emer, Mark Jeffrey,
Anurag Mukkara, Quan Nguyen, Hyun Ryong Lee, Suvinay Subra-
manian, Po-An Tsai, Victor Ying, Xiangyao Yu, and the anonymous
reviewers for their helpful feedback. This work was supported in
part by NSF grant CAREER-1452994 and by DARPA SDH under
contract HR0011-18-3-0007. This research was, in part, funded by
the U.S. Government. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the U.S. Government.

Guowei Zhang and Daniel Sanchez

REFERENCES

[1] Alaa R Alameldeen and David A Wood. 2006. IPC considered harmful for multi-
processor workloads. IEEE Micro 26, 4 (2006).

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Ozsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware.
In Proceedings of the 29th IEEE International Conference on Data Engineering
(ICDE-29).

Alex D Breslow, Dong Ping Zhang, Joseph L Greathouse, Nuwan Jayasena, and
Dean M Tullsen. 2016. Horton Tables: Fast Hash Tables for In-Memory Data-
Intensive Computing.. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC).

J Lawrence Carter and Mark N Wegman. 1979. Universal classes of hash functions.
J. Comput. System Sci. 18, 2 (1979).

[5] Sai Rahul Chalamalasetti, Kevin Lim, Mitch Wright, Alvin AuYoung,
Parthasarathy Ranganathan, and Martin Margala. 2013. An FPGA memcached
appliance. In Proceedings of the 21st ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA-21).

[6] Peng Chen, Krishna Kavi, and Robert Akl. 2006. Performance enhancement by
eliminating redundant function execution. In ANSS-39.

[7] Byung-Soo Choi and Jun-Dong Cho. 2008. Partial resolution for redundant
operation table. Microprocessors and Microsystems 32, 2 (2008).

[8] Daniel Citron and Dror G. Feitelson. 2000. Hardware Memoization of Mathemat-
ical and Trigonometric Functions. Technical Report. The Hebrew University of
Jerusalem.

[9] Daniel Connors and Wen-Mei Hwu. 1999. Compiler-directed dynamic com-
putation reuse: rationale and initial results. In Proceedings of the 32nd annual
IEEE/ACM international symposium on Microarchitecture (MICRO-32).

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC-1).

Amarildo T Da Costa, Felipe M. G. Franga, and E. M. C. Filho. 2000. The dy-
namic trace memoization reuse technique. In Proceedings of the 9th International
Conference on Parallel Architectures and Compilation Techniques (PACT-9).

Luca Della Toffola, Michael Pradel, and Thomas R Gross. 2015. Performance
problems you can fix: A dynamic analysis of memoization opportunities. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

Yonghua Ding and Zhiyuan Li. 2004. A compiler scheme for reusing intermediate
computation results. In Proceedings of the 2nd IEEE/ACM International Symposium
on Code Generation and Optimization (CGO).

[14] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Pro-
ceedings of the 38th annual International Symposium on Computer Architecture
(ISCA-38).

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith. 2006.
A performance counter architecture for computing accurate CPI components.
In Proceedings of the 12th international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XII).

Bin Fan, David G Andersen, and Michael Kaminsky. 2013. MemC3: Compact
and Concurrent MemCache with Dumber Caching and Smarter Hashing.. In
Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

Dibakar Gope, David J Schlais, and Mikko H Lipasti. 2017. Architectural Support
for Server-Side PHP Processing. In Proceedings of the 44th annual International
Symposium on Computer Architecture (ISCA-44).

Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal, and Mateo Valero.
2012. Vector extensions for decision support dbms acceleration. In Proceedings of
the 45th annual IEEE/ACM international symposium on Microarchitecture (MICRO-
45).

[19] Jian Huang and David J Lilja. 1999. Exploiting basic block value locality with
block reuse. In Proceedings of the 5th IEEE international symposium on High
Performance Computer Architecture (HPCA-5).

Raj Jain. 1992. A comparison of hashing schemes for address lookup in computer
networks. IEEE Transactions on Communications 40, 10 (1992).

[21] Jesper Knudsen. 2008. Nangate 45nm open cell library. CDNLive, EMEA (2008).
[22] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the walkers: Accelerating index tra-
versals for in-memory databases. In Proceedings of the 46th annual IEEE/ACM
international symposium on Microarchitecture (MICRO-46).

Maysam Lavasani, Hari Angepat, and Derek Chiou. 2014. An fpga-based in-line
accelerator for memcached. IEEE Computer Architecture Letters 13, 2 (2014).
Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia, Michael
Kaminsky, David G Andersen, O Seongil, Sukhan Lee, and Pradeep Dubey. 2015.
Architecting to achieve a billion requests per second throughput on a single
key-value store server platform. In Proceedings of the 42nd annual International
Symposium on Computer Architecture (ISCA-42).

[2

[3

[4

[11

[12

[13

=
i)

[16

[17

(18

[20

[23

S
=)

Leveraging Caches to Accelerate Hash Tables and Memoization MICRO-52, October 12-16, 2019, Columbus, OH, USA

[25] Kevin Lim, David Meisner, Ali G Saidi, Parthasarathy Ranganathan, and Thomas F
Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for [38

In Proceedings of the ACM SIGCOMM Conference (SSIGCOMM).
Arjun Suresh, Erven Rohou, and André Seznec. 2017. Compile-Time Function

memcached. In Proceedings of the 40th annual International Symposium on Com-
puter Architecture (ISCA-40).

Scott Lloyd and Maya Gokhale. 2017. Near Memory Key/Value Lookup Acceleration.
Technical Report. Lawrence Livermore National Lab (LLNL).

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building customized program analysis tools with dynamic instrumentation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

Ward Douglas Maurer and Theodore Gyle Lewis. 1975. Hash table methods.
ACM Computing Surveys (CSUR) 7, 1 (1975).

James Mayfield, Tim Finin, and Marty Hall. 1995. Using automatic memoization
as a software engineering tool in real-world Al systems. In Proceedings the 11th
Conference on Artificial Intelligence for Applications (CAIA’95).

Paul McNamee and Marty Hall. 1998. Developing a tool for memoizing functions
in C++. ACM SIGPLAN Notices 33, 8 (1998).

Pall Melsted and Jonathan K Pritchard. 2011. Efficient counting of k-mers in
DNA sequences using a bloom filter. BMC bioinformatics 12, 1 (2011).

Donald Michie. 1968. Memo functions and machine learning. Nature 218, 5136
(1968).

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004).

Hugo Rito and Joao Cachopo. 2010. Memoization of methods using software
transactional memory to track internal state dependencies. In Proceedings of the
8th international conference on the Principles and Practice of Programming in Java
(PPPY-8).

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. In Proceedings of the 40th annual
International Symposium on Computer Architecture (ISCA-40).

Avinash Sodani and Gurindar S Sohi. 1997. Dynamic instruction reuse. In Pro-
ceedings of the 24th annual International Symposium on Computer Architecture
(ISCA-24).

Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lockwood. 2005.
Fast hash table lookup using extended bloom filter: an aid to network processing.

Memoization. In Proceedings of the 26th international conference on Compiler
Construction (CC-26).

Arjun Suresh, Bharath Narasimha Swamy, Erven Rohou, and André Seznec.
2015. Intercepting functions for memoization: a case study using transcendental
functions. ACM TACO 12, 2 (2015).

Shingo Tanaka and Christos Kozyrakis. 2014. High performance hardware-
accelerated flash key-value store. In The 2014 Non-volatile Memories Workshop
(NVMW).

The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA
elements in the human genome. Nature 489, 7414 (2012).

Tomoaki Tsumura, Ikuma Suzuki, Yasuki Ikeuchi, Hiroshi Matsuo, Hiroshi
Nakashima, and Yasuhiko Nakashima. 2007. Design and evaluation of an auto-
memoization processor. In Proceedings of the 25th conference Parallel and Dis-
tributed Computing and Networks (PDCN).

[43] James Tuck, Wonsun Ahn, Luis Ceze, and Josep Torrellas. 2008. SoftSig: software-

exposed hardware signatures for code analysis and optimization. In Proceedings
of the 13th international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XIII).

Terry A. Welch. 1984. A technique for high-performance data compression.
Computer 6, 17 (1984).

Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys-a free Verilog
synthesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip).

Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, and Arvind.
2016. BlueCache: A scalable distributed flash-based key-value store. Proceedings
of the VLDB Endowment 10, 4 (2016).

Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the abyss: An evaluation of concurrency control
with one thousand cores. Proceedings of the VLDB Endowment 8, 3 (2014).
Guowei Zhang and Daniel Sanchez. 2018. Leveraging Hardware Caches for
Memoization. Computer Architecture Letters (CAL) 17, 1 (2018).

[49] Jingren Zhou and Kenneth A Ross. 2002. Implementing database operations

using SIMD instructions. In Proceedings of the 2002 ACM SIGMOD international
conference on management of data (SIGMOD).

	Abstract
	1 Introduction
	2 Background
	2.1 Hash table performance analysis
	2.2 Prior work in accelerating hash tables
	2.3 Memoization

	3 HTA Hardware/Software Interface
	3.1 HTA hash table format
	3.2 HTA ISA extensions
	3.3 ISA design alternatives

	4 FLAT-HTA Implementation
	4.1 Core pipeline changes
	4.2 Hardware costs
	4.3 Software path
	4.4 Parallel hash table implementation

	5 HIERARCHICAL-HTA Implementation
	6 HTA-Accelerated Memoization
	7 Methodology
	7.1 Hash table workloads
	7.2 Memoization workloads

	8 Evaluation
	8.1 Flat-HTA on single-threaded applications
	8.2 Flat-HTA on multithreaded applications
	8.3 HTA with hierarchy-aware layout
	8.4 HTA on multiprogrammed workloads
	8.5 HTA on memoization

	9 Conclusion
	References

