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Abstract

We present Chronos, a framework to build accelerators for
applications with speculative parallelism. These applications
consist of atomic tasks, sometimes with order constraints,
and need speculative execution to extract parallelism. Prior
work extended conventional multicores to support specu-
lative parallelism, but these prior architectures are a poor
match for accelerators because they rely on cache coherence
and add non-trivial hardware to detect conflicts among tasks.
Chronos instead relies on a novel execution model, Spa-
tially Located Ordered Tasks (SLOT), that uses order as the
only synchronization mechanism and limits task accesses
to a single read-write object. This simplification avoids the
need for cache coherence and makes speculative execution
cheap and distributed. Chronos abstracts the complexities of
speculative parallelism, making accelerator design easy.
We develop an FPGA implementation of Chronos and use it
to build accelerators for four challenging applications. When
run on commodity AWS FPGA instances, these accelerators
outperform state-of-the-art software versions running on a
higher-priced multicore instance by 3.5% to 15.3x.
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1 Introduction

The impending end of Moore’s Law is forcing architectures
to rely on application- or domain-specific accelerators to
improve performance. Accelerators require large amounts of
parallelism. Consequently, prior accelerators have focused
on domains where parallelism is easy to exploit, such as deep
learning [12, 13, 37], and rely on conventional parallelization
techniques, such as data-parallel or dataflow execution [48].
However, many applications do not have such easy-to-extract
parallelism, and have remained off-limits to accelerators.

In this paper, we focus on building accelerators for appli-
cations that need speculative execution to extract parallelism.
These applications consist of tasks that are created dynami-
cally and operate on shared data, and where operations on
shared data must happen in a certain order for execution to
be correct. Order constraints may arise from the need to pre-
serve atomicity (e.g., operations across tasks must be ordered
to not interleave with each other), or from the need to order
tasks due to application semantics (e.g., tasks dequeued from
a priority queue). Enforcing these order constraints a priori,
before running each task, is often too costly and/or limits
parallelism. Thus, it is preferable to run tasks speculatively
and check that they followed a correct order a posteriori.

For instance, consider discrete event simulation, which has
wide applicability in simulating digital circuits, networked
systems, and physical processes. Discrete event simulation
consists of dynamically created tasks that may operate on the
same simulated object and must run in the correct simulated
time order. Running these tasks non-speculatively requires
excessive synchronization and limits parallelism [10, 28].
Running tasks speculatively is far more profitable [32, 34].

To make speculation efficient, prior work has proposed
hardware support for speculation, including Thread-Level
Speculation [21, 34, 53, 55, 57], and Hardware Transactional
Memory [1, 6, 9, 20, 26, 29, 30, 46]. Unfortunately, prior spec-
ulative architectures are hard to apply to accelerators, be-
cause they all rely on coherent cache hierarchies to perform
speculative execution, modifying the coherence protocol to
detect conflicts among tasks. This is a natural match for mul-
ticores, which already have a coherence protocol. But such
a solution would be onerous and complex for an acceler-
ator: it would require implementing coherent caches and
speculation-tracking structures that, while a minor overhead
for general-purpose cores, are too expensive for small, spe-
cialized ones.



To address this challenge, in this paper we present a hard-
ware system that implements speculative execution without
using coherence. Instead, this system follows a data-centric ap-
proach, where shared data is mapped across the system; work
is divided into small tasks that access at most one shared
object each; and tasks are always sent to run at the place
where their data is mapped. To enforce atomicity across task
groups, or other order constraints, tasks are ordered through
timestamps (these are program-specified logical timestamps
completely decoupled from physical time).

We formalize these semantics through the Spatially Located
Ordered Tasks (SLOT) execution model. In SLOT, all work
happens through tasks that are ordered using timestamps. A
task may create children tasks ordered after them, and parent
tasks communicate input values to children directly. Each
task must operate on a single read-write object, which must
be declared when the task is created (besides this restriction,
tasks may access an arbitrary amount of read-only data).

We leverage SLOT to implement Chronos, a novel acceler-
ation framework for speculative algorithms. Each Chronos
instance consists of spatially distributed tiles. Each tile has
multiple processing elements (PEs) that execute tasks, and a
local cache. Each tile also implements hardware to queue
tasks, dispatch them to PEs, track their speculative state, and
abort or commit them in timestamp order. Chronos maps
read-write objects across tiles, and sends each newly created
task to the tile where its read-write object is mapped. This
enables completely distributed operation without a cache
coherence protocol.

Chronos provides a common framework to accelerate spec-
ulative algorithms, abstracting away the complexities of task
management and speculative execution. Developers need
only express their application as SLOT tasks coded against a
high-level APIL To achieve high performance, Chronos sup-
ports two types of customization. First, applications can cus-
tomize the PEs, which can be specified in RTL or described
using High-Level Synthesis (HLS). PEs can also be general-
purpose cores, so developers can start with a software im-
plementation and specialize tasks as needed to achieve high
performance. Second, Chronos lets applications turn off un-
needed features. For example, if the algorithm is naturally
resilient to out-of-order writes (e.g., if updates are monotonic),
applications can disable rollback on misspeculation.

We evaluate Chronos by implementing it on an FPGA and
use it to implement accelerators for several graph analytics
and simulation applications. We use four hard-to-parallelize
applications with speculative parallelism. We deploy these ac-
celerators on commodity AWS FPGA instances. We compare
these accelerators with state-of-the-art software implemen-
tations of these applications running on a higher-priced 40-
thread multicore instance. Chronos achieves speedups of up
to 15.3x and gmean 5.4X over the software versions. Chronos
outperforms the multicore baseline despite running at a 19x
slower frequency, because it exploits orders of magnitude

PrioQueue<Time, GateInput> eventQueue;

void simToggle(Time time, GateInput input) {
Gate gate = input.gate;
bool outToggled = gate.simulateToggle (input);
if (outToggled) {
// Toggle all inputs connected to this gate
for (GateInput i gate.connectedInputs()) {
Time nextTime = time + gate.delay(input, i);
eventQueue. enqueue (nextTime, i);
113

... // Enqueue initial events (input waveforms)
// Main loop

while (!eventQueue.empty()) {

(time, input) = eventQueue.dequeue();
simToggle(time, input);

Listing 1. Sequential implementation of des.

more parallelism. These results show that FPGAs are a prac-

tical and cost-effective way to accelerate applications with

speculative parallelism.
In summary, this paper contributes:

o SLOT, the first execution model that supports speculative
parallelism without cache coherence (Sec. 3).

o Chronos, a customizable framework that implements the
SLOT execution model and makes it easy to accelerate
applications with speculative parallelism (Sec. 4).

o A detailed evaluation of Chronos using commodity FPGAs
in the cloud that demonstrates significant speedups for sev-
eral challenging applications, analyzes system efficiency,
and quantifies the benefits of customization (Sec. 6).

Our Chronos implementation is open-source and available

at https://chronos-arch.csail.mit.edu.

2 Motivation and Background

In this section we first present a case for speculative paral-
lelism through a simple application, discrete event simulation
(des). We then review the types of parallelism exploited by
prior accelerators, and see that most do not exploit speculative
parallelism. Finally, we review prior speculative architectures,
and use des to identify a key simplification that these archi-
tectures have missed: support for task order avoids the need
for coherence-based conflict detection, motivating SLOT.

2.1 A case for speculative parallelism

We illustrate the utility of speculative parallelism through
des, a discrete event simulator for digital circuits [28]. List-
ing 1 shows code for a sequential implementation of des.
Each des task processes a gate input toggling at a particular
time. If this input toggle causes the gate’s output to toggle,
the task enqueues events for all inputs connected to that out-
put at the appropriate times. The sequential implementation
processes one task at a time in simulated time order, and
maintains the set of tasks to process in a priority queue.
Fig. 1a shows a circuit with input waveforms and prop-
agation delays, and Fig. 1b shows the task diagram of an
execution of des on this circuit. Arrows between tasks show
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Figure 1. Example execution of des: (a) Input circuit and (b)
Ordered tasks produced by the execution of des on this cir-
cuit. Tasks O1 and N2 correspond to inputs of the NAND and

OR gates; both tasks toggle their gates’ outputs, producing
tasks X3, X6 and A4, A5.

(a) Example circuit

parent-child dependences (e.g., task O1 creates tasks A4 and
X6). The x-axis shows task order, and the task’s location in
the y-axis represents the gate it operates on.

Parallelism exists despite order constraints because inde-
pendent tasks may run out of order. In our des example, only
tasks that operate on the same gate have a data dependence;
others (e.g., O1 and N2) may run out of order without violat-
ing correctness. But tasks and dependences are not known,
so running tasks out of order is not straightforward.

In des, each task operates on a single object (a gate), and
this object is known in advance. But this is not sufficient to
find which tasks are safe to run, because a task may have a
dependence with another task that comes earlier in program
order but does not yet exist. Suppose that task O1 is executed
first, producing task X6. At this point X6 is the earliest task
in the system that operates on the XOR gate. But executing
X6 would produce incorrect results, because X6 must follow
the earlier data-dependent task X3, which does not yet exist
(as N2 has not been run).

A natural way to parallelize des is to run tasks in paral-
lel, speculating that, for each task, no earlier data-dependent
tasks will exist. If speculation is correct, the task can commit
and the system has successfully elided order constraints; but
on an order violation, the misspeculating task and its descen-
dants need to be aborted and re-executed in the right order.

This execution strategy, known as Time Warp in the case
of des [31], shows that speculation arises from the need to
preserve order constraints, even though the data that each task
accesses is known in advance. As we will see later, advance
knowledge of task data accesses enables a simple implemen-
tation of speculative execution.

2.2 Types of parallelism in prior accelerators

We classify prior accelerators by the type of parallelism they
target. We can establish a taxonomy of parallelism types
based on two key questions. First, are tasks known in advance
or are they created dynamically? Second, if tasks operate
on shared data, how should they synchronize to respect the
algorithm’s data dependences and produce the right result?
Static parallelism: If tasks and their data dependences are
known in advance, scheduling can be done statically and

requires no or very simple runtime mechanisms. Static paral-
lelism arises when operating on regular data structures, such
as dense matrices. Most prior accelerators focus on static
parallelism, e.g., by building deep pipelines and data-parallel
hardware such as in DaDianNao [12] and Google’s TPU [37].
Dynamic parallelism with independent tasks: Some al-
gorithms, such as those that operate on trees or graphs, must
create tasks dynamically, as they find more work to do. In
the simplest case, tasks operate on disjoint data and need no
synchronization for shared data accesses. They fit the fork-
join model pioneered by NESL [5] and Cilk [16]. The Paral-
leIXL [11] and TAPAS [43] accelerators target this dynamic
parallelism. Their key ingredient is hardware support for task
creation and load-balancing, e.g., through work-stealing [16].
Non-speculative synchronization of dependent tasks:
Prior work has demonstrated accelerators where tasks oper-
ate on shared data, but most synchronize by stalling rather
than speculating. Graphicionado [23] and Li et al. [40] are
accelerators for graph algorithms that support atomic oper-
ations through pipelining: they stall a later dependent task
until the earlier task finishes its update.

Speculative synchronization of dependent tasks: Finally,
Ma et al. [42] build an accelerator for graph analytics appli-
cations on FPGA. They support atomic tasks. Each task can
access multiple addresses, and conflict detection is imple-
mented using a globally shared address-tracking structure,
similar to a coherence directory. This approach is thus analo-
gous to coherence-based conflict detection, which we review
next, and suffers from additional overheads (as all accesses,
instead of only cache misses, access the global directory). By
contrast, SLOT avoids the need for coherence by restricting
each task to operate on a single object, and supports ordered
tasks to enable multi-object atomicity.

2.3 Prior speculative architectures rely on cache
coherence

Prior architectures for speculative parallelization, such as
Thread-Level Speculation (TLS) [24, 34, 53, 55, 57, 65] and
Hardware Transactional Memory (HTM) [25, 26, 29, 46, 52],
extend a cache-coherent multicore. These systems reuse exist-
ing mechanisms to implement speculative execution. Specif-
ically, they adapt the cache coherence protocol for conflict
detection.

Coherence-based conflict detection works by leveraging in-
validation and downgrade messages to detect conflicts. Each
task runs in a single core. The core acquires coherence permis-
sions for each read and write as usual, but keeps permissions
for these lines throughout the execution of the task (either
by keeping the task’s data in the private cache [1, 9, 55], or
by tracking these permissions in the shared directory [34, 46,
64]). Thus, the core will receive an invalidation or downgrade
request on every possible conflict (i.e., if another task issues
aread to a line in the task’s write-set, or any access to a line
in the task’s read- or write- set).
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Figure 2. A categorization of the reasons for speculative
execution. Cache coherence is only required if read-write
sets are unknown or unrestricted. We will show that inter-
task order is sufficient for all aplications.

While relying on coherence is reasonable for multicores, it
would be expensive for accelerators. Accelerators in general
and reconfigurable hardware in particular do not have an
coherent cache hierarchy that supports invalidation-based
conflict detection [54]. Implementing coherence would add
complexity, latency, and significant on-chip SRAM to imple-
ment a directory that tracks sharers. Beyond coherence, per-
forming conflict detection on tasks with arbitrary read and
write sets would add further overheads, e.g., several kilobytes
per core worth of Bloom filters [34], which would be too oner-
ous for specialized processing cores.

Indeed, while there have been FPGA implementations of
cache coherence protocols [45, 63] and HTMs [38, 62], these
systems were not designed as accelerators and these features
added significant overheads.

2.4 Reasons for speculative execution

In general, speculation is needed when tasks have either un-
known read- and write- sets or inter-task order constraints.

By relying on coherence, prior speculative systems support
tasks with unknown read- and write-sets. Speculation allows
HTM systems to preserve atomicity among unordered tasks
(transactions), and TLS systems to enforce both atomicity and
order among tasks. But as we saw in Sec. 2.1, des needs spec-
ulation to elide order constraints among tasks even though
each task’s read/write-set is known in advance.

Fig. 2 presents systems according to their reasons for spec-
ulative execution. As we can see, prior architectures all sup-
port tasks with unknown read- and write-sets, which forces
complex conflict detection. In this paper, we focus on the
remaining quadrant: supporting inter-task order only, but
where tasks have known and restricted read- and write-sets.
This simplification is sufficient for des; in the next section,
we will see that inter-task order is in fact sufficient to support
unknown read- and write-sets, because inter-task order allows
breaking work into tasks with known read- and write-sets.

3 The SLOT Execution Model

We now present the Spatially Located Ordered Tasks (SLOT)
execution model. SLOT restricts each task to access a single

void simToggle(Time time, GateInput input) {
Gate gate = input.gate;
bool outToggled = gate.simulateToggle (input);
if (outToggled) {
// Toggle all inputs connected to this gate
for (GateInput i gate.connectedInputs()) {
Time nextTime = time + gate.delay(input, i);

slot::enqueue( simToggle, // task type
nextTime, // timestamp
i.gate.ID, // object id
i ); // args

11}
Listing 2. SLOT implementation of des task.

read-write object, which must be known when the task is
created (Sec. 3.1). Though this restriction may seem limiting,
inter-task order enables atomicity among computations that
access multiple objects and where objects are not known in
advance (Sec. 3.2).

3.1 Spatially Located Ordered Tasks

SLOT applications consist of ordered, dynamically created
tasks. Each task can be implemented in software or hard-
ware. We describe the execution model independently of the
implementation, and illustrate it using the software API.

Each task is given two attributes when it is created: a time-
stamp and an object id. Timestamps specify order constraints:
the system guarantees that tasks appear to execute in time-
stamp order. Tasks with equal timestamps may run in any
order, but are atomic (i.e., they do not interleave).

Object ids are integers that specify the data dependences
among tasks: two tasks are treated as data-dependent if and
only if they have the same object id. Object ids restrict each
task to accessing at most one read-write object in shared
memory. Note that this restriction only applies to read-write
data. A task may access any amount of read-only data.

A SLOT task can create children tasks as it finds more
work to do, by specifying the type of the child task, as well
as its timestamp, object id, and any input data values it may
need. Each child task may have any timestamp that is greater
than or equal to its parent’s.

In SLOT, parent-child relations are unidirectional: a parent
task can create and pass values to its children, but parents are
ordered before their children and thus appear to complete
before children execute. Child tasks cannot return values or
communicate with their parents. This is different from fork-
join execution models like Cilk [16], where parents wait for
their children to complete.

API: Listing 2 illustrates the SLOT software API by showing
the implementation of a des task. In software, each task is
implemented by a function. The implementation is almost the
same as the sequential one in Listing 1: each task simulates an
input toggle at a particular gate. Instead of enqueuing tasks
to a priority queue, this code creates new tasks by calling
slot: :enqueue, which specifies the child task’s type (its
function pointer since it’s a software task), timestamp, object
id, and any additional arguments (the gate input in this case).
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Figure 3. Example showing how to leverage order to imple-
ment atomic accesses to multiple read-write objects. Each
transaction is broken down to multiple tasks that access one
object each. Atomicity is maintained by assigning a disjoint
timestamp range to each transaction.

SLOT enables coherence-free conflict detection: By re-
stricting each task to access at most one read-write object,
implementations of SLOT can perform distributed conflict
detection without complex tracking structures. If the imple-
mentation maps object ids across cores or tiles, and sends
each task to where its object id is mapped, then finding con-
flicts becomes a local operation.

For example, if Fig. 1 was run on a four-core system, the
NAND, OR, XOR, and AND gates could be mapped to cores
1-4. Then, if task X3 arrives in core 3 after X6 has already
run, core 3 can determine X3’s conflicts (tasks for the same
gate and a higher timestamp, {X6} in this case) locally, by
comparing X3’s object id with those of still-speculative tasks.

3.2 Mapping multi-object computations to SLOT

While SLOT’s single-object restriction is natural for appli-
cations like des, many applications must perform atomic
accesses to multiple read-write objects, and may not know
all these objects in advance.

Nonetheless, SLOT’s support for order enables a trivial, sys-
tematic mapping of these computations to SLOT. Specifically,
multi-object transactions can be expressed as SLOT tasks by
breaking each transaction into multiple single-object tasks,
each accessing a single object, and giving each transaction a
disjoint range of timestamps. This way, tasks within a trans-
action do not overlap with those in other transactions.

For example, consider a banking application where trans-
actions transfer money between accounts. Each transaction
must atomically decrement the source account’s balance and
increment the destination account’s balance. To scale, each ac-
count should be a different object; but since account balances
are read-write data, a single task cannot access two accounts.

Fig. 3 shows how task order makes this possible. We im-
plement each transaction using two SLOT tasks, each of
which manipulates a single account: the first decrements
the source’s balance and creates a second task to increase the
destination’s balance. Each transaction has a disjoint range
of timestamps, so tasks from different transactions do not
interleave.

This technique generalizes to arbitrary combinations of
read-write operations. For example, our implementation of

maxflow (Sec. 5) uses it to perform complex atomic opera-
tions on the neighborhood of a graph vertex.

While breaking each transaction into many small tasks
could add significant overheads to a software runtime, small
tasks are a natural match for an accelerator, as hardware
performs task management and small tasks need simple pro-
cessing elements.

3.3 Discussion

Benefits of SLOT’s fine-grained tasks: SLOT’s key advan-
tage over prior work is to enable coherence-free conflict de-
tection. In addition, prior work [33, 59] has shown that, even
in systems that support tasks with arbitrary read/write-sets,
this division is often desirable, for three key reasons:

1. Increased parallelism: Breaking a long serial transaction
into short tasks allows these tasks to run in parallel.

2. Reduced impact of aborts: On misspeculation, only the
tasks that conflict are aborted, rather than the entire
transaction.

3. Increased data reuse: Rather than bringing shared data
across the system where the transaction is running, tasks
are sent to run close to their data, avoiding cache line
ping-ponging. Since each task message is much smaller
than a cache line, this reduces traffic; and tasks are sent
and executed asynchronously, so their latency is easier
to hide than that of synchronous memory accesses.

SLOT limitations: While breaking programs into short sin-
gle-object tasks is generally beneficial, there is one case where
coherence-based conflict detection would outperform SLOT:
if the application is dominated by rarely modified read-write
data that has substantial reuse, coherence-based conflict de-
tection would allow caching this data across the system, mak-
ing reads between the sporadic writes local, whereas SLOT
needs to isolate each access to these data in a separate task
and send them to a single place.

We do not find this behavior in the applications we target,
so we have not optimized SLOT for this case. A simple exten-
sion of SLOT could address this by letting tasks write into
addresses not covered by its object id. The system could then
treat rarely modified data as read-only and allow them to be
cached privately. Upon a write, which should be rare, a sim-
ple implementation could flush all caches and abort all future
tasks; more complex implementations may perform more
precise flushes and conflict detection. We leave a detailed
study of these implementation choices to future work.
Relationship with prior work: Spatial hints [33] and Espres-
so [35] also propose to tag tasks with an identifier similar to
an object id, but with different goals. Spatial hints are used to
distribute speculative tasks so that tasks likely to access the
same data run at the same place. But spatial hints are optional
and advisory, and the system must still use coherence-based
speculation. Espresso uses locales to additionally provide
mutual exclusion among non-speculative tasks. By contrast,
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SLOT requires all tasks to specify correct object ids, i.e., to
identify the read-write object they will access. This enables
using object ids to implement conflict detection among spec-
ulative tasks.

4 Chronos System

Chronos is an architectural framework that makes it easy to
design accelerators for applications with ordered parallelism.
Chronos achieves this by providing an architecture template
that implements the SLOT execution model efficiently. Ac-
celerators can then specialize this template by defining their
own task processing engines or configuring Chronos’s un-
core components. With this division, creating a Chronos ac-
celerator is as simple as specifying the processing engines;
the framework takes care of the intricacies of ordered task
management and speculative execution.

Fig. 4 shows Chronos’s organization. Chronos is a tiled de-
sign with fully distributed task management and speculation
mechanisms. Each tile has several Processing Elements (PEs)
that execute tasks, a local (non-coherent) cache, and a task
unit that queues, dispatches, and commits ordered tasks.

4.1 Design requirements and techniques

Chronos must run short ordered tasks efficiently. This re-
quires achieving high-throughput task management and a
large speculation window:
1. High-throughput task management: Short tasks place
high throughput demands on the system. For example, if each
task takes 20 cycles to execute, a Chronos system with 200
PEs must create, dispatch, conflict-check, and commit 10 tasks
per cycle to keep the PEs busy. This forces a design without
centralized components: all task management and speculation
mechanisms must be fully distributed. Chronos’s tiled de-
sign achieves this. Moreover, each tile’s task unit needs to
maintain a high throughput as well.
2. Large speculation window: To prevent order from lim-
iting parallelism, the system must be able to speculate far
ahead of the earliest unfinished task. More specifically, due
to order restrictions, tasks may stay speculative for a long
time before they can commit—far longer than the time they
take to execute. Therefore, the system should be able to track
many more speculative tasks than running tasks. For exam-
ple, as we will see in Sec. 6, some applications require about
10 speculative tasks per running task.

These requirements force fully distributed, deep out-of-
order execution. To achieve these requirements, several of

Dispatch /\ Finish

Running

Create

Finished

Figure 5. Task life cycle.

Chronos’s techniques are adapted from Swarm [34]. Specif-
ically, Chronos borrows Swarm’s task management and or-
dered commits techniques. However, Chronos implements
speculative execution differently, by leveraging the SLOT
execution model instead of relying on a coherent cache hier-
archy. We first describe how Chronos performs speculative
execution, then detail its task management structures.

4.2 Distributed ordered speculation

Chronos uses speculative execution to elide order constraints.
Chronos can run any task as soon as it is created, even if its
ancestors are still speculative. Fig. 5 shows the execution flow
of each task. Top horizontal arrows denote correct specula-
tion. When a task is created, it is sent to a tile where it stays
idle, queued until it is ready to dispatch. The tile dispatches
idle tasks to PEs in timestamp order. After a running task
finishes execution, it stays speculative (in the finished state)
until the system determines it is safe to commit.

Fig. 5 shows that tasks may be aborted at any point before
commit. Because tasks may run while their ancestors are still
speculative, aborting a task requires aborting and discarding
all its descendants. These cascading aborts are necessary to
uncover parallelism, and are selective: aborts undo the effects
of the aborting task, its descendants, and any data-dependent
tasks that come later in program order. As shown in Fig. 5,
if a task is aborted because its parent has aborted, then it is
discarded; otherwise, the abort is due to a data dependence,
then the task is requeued for execution.

Fig. 6 shows an example of speculative execution in Chronos.
Tasks are created and run out of order: in Fig. 6a, task 20 has
run and finished even though earlier tasks are still running;
in particular, task 0, 20’s parent, is still running. In Fig. 6b,
task 0 creates a child with timestamp 10, which conflicts with
task 15. This causes 15 to be aborted, along with its child
task 25. Though aborts may affect multiple tasks, they are
selective: independent tasks such as 20 are not aborted.
Task mapping and conflict detection: To perform spec-
ulative execution cheaply, Chronos uses the task mapping
and conflict detection strategy outlined in Sec. 3: Chronos
maps object ids across tiles, then sends each created task to
the tile where its object id is mapped. Our current Chronos
implementation uses a static object-to-tile mapping: the ob-
ject id is simply hashed to produce the tile id. We find this
achieves good load balance in our workloads; Chronos could
also adopt more sophisticated load balancing based on dy-
namic remapping of objects among tiles [33].
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Task dispatch: The task unit dispatches tasks to PEs in time-
stamp order to prioritize earlier tasks. To avoid conflicts, the
task unit serializes the execution of tasks with the same ob-
ject id. Therefore, conflicts among running tasks never arise;
only a task that arrives to a tile out of order can create a
conflict.

Speculative value management: Chronos adopts eager
version management: speculative writes update memory in-
place, and old values are written to a separate undo log. Com-
mits are fast, as the undo log is simply discarded; aborts
require restoring the old values from the undo log.

Eager version management facilitates running chains of

data-dependent tasks without waiting for them to commit: if
task A writes a value that is later read by (same-object) task
B, B will naturally use A’s value even when A has not yet
committed. This process, known as speculative forwarding, is
important for ordered speculation [35], but would be hard to
do with lazy version management.
High-throughput commits: To determine when a task can
commit, Chronos borrows the Global Virtual Time (GVT)
protocol from prior work [32, 34]. Tiles communicate peri-
odically (e.g., every 32 cycles) to find the timestamp of the
earliest unfinished task, then commit all earlier tasks. This
process leverages large commit queues to commit many tasks
at once, achieving commit throughput of multiple tasks per
cycle with little communication.

4.3 Task unit design

Chronos’s task unit consists of two main structures: a task
queue (TQ) holds all tasks in the tile and dispatches idle tasks
to PEs, and a commit queue (CQ) that holds the speculative
state of running or finished tasks, and commits or aborts them
as required. In addition, a small task send buffer (TSB) receives
newly created tasks from PEs and sends them to the right tile.
Fig. 7 details the microarchitecture of each tile and shows
these structures, which, together, are similar to a task-level
reorder buffer.
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Figure 7. Chronos tile microarchitecture.

4.3.1 Task queue

The task queue consists of two main structures: a task array
and an order queue. The task array is a simple memory that
stores the task descriptor of every task in the tile. Each task
descriptor contains all data needed to run the task: its type,
timestamp, object id, and arguments. The order queue holds
idle tasks and dispatches them to PEs in timestamp order.
Tasks allocate entries in the task array and order queue
when they arrive to the tile. They hold their order queue
entry until they are dispatched to a PE, but hold their task
array entry throughout their lifetime (i.e., until they commit
or are discarded). This is so that, if the task is aborted, the
task array has the information needed to reexecute it. When
a task needs to reexecute, it is reinserted into the order queue.
Task spilling: Task queues have limited capacity, but SLOT
programs may create an unbounded number of tasks. Chronos
provides the illusion of unbounded task queues by spilling
tasks to main memory when a task queue is nearly full.

4.3.2 Commit queue

The commit queue holds the speculative state of all tasks that
are either running or finished. In Chronos, this speculative
state consists of the task’s undo log, which allows rolling back
the task’s memory writes, and child pointers, which allow
aborting the task’s descendants.

Each child pointer tracks the tile and task array entry id
of a child task. When a child is created, it is sent to the tile
specified by its object id. When the receiving tile queues it,
it replies with the child task’s pointer.

Aborts: Every abort event needs to abort the current task and
its data-dependent tasks, and discard all their descendants.
Chronos handles all data dependences by aborting the task
and all the same-object tasks that come later in program
order. Chronos rolls back this sequence of tasks by applying
their undo logs in reverse execution order and sending abort
notifications to all child tasks, which initiate their own aborts.
Commits: Chronos implements the GVT protocol to per-
form high-throughput commits, as noted above. Periodically
(e.g., every 32 cycles), each tile finds the timestamp of its earli-
est unfinished task, called the local virtual time (this is simply
the minimum of the timestamps in the order queue, PEs, and



TSB). Tiles send their local virtual times to an arbiter, which
finds the minimum, i.e., the timestamp of the earliest unfin-
ished task in the system, called the global virtual time (GVT).
Finally, the arbiter broadcasts the GVT. The commit queue
in each tile scans its entries in the background, and frees (i.e.,
commits) those whose timestamp is lower than the GVT.
Deadlock avoidance: Chronos prevents deadlock by never
blocking the lowest-timestamp task. By induction, this strat-
egy ensures that all tasks ultimately commit. If the lowest-
timestamp (i.e, earliest) task cannot be dispatched because
the commit queue is full, the commit queue aborts one of
its entries (the highest-timestamp entry) and lets the earliest
task proceed. To prevent the earliest task from being stalled
because the TSB is full, the TSB reserves one of its entries
for the earliest task.

Commit entry implementation: Since SLOT tasks are
short, the commit queue implements a simple storage format
with a fixed number of child pointers and undo log entries.
These values are configurable per application. We find that
having eight child pointers per task (as in prior work [34])
and eight address-value pairs per undo log suffices for all
tasks. Tasks that exceed these limits could be split to use
multiple commit queue entries [58]. Alternatively, more so-
phisticated implementations could support variable entry
sizes, or unbounded sizes by spilling to memory [46].

4.3.3 Task send buffer

The task send buffer (TSB) buffers child tasks created by PEs
and sends them to their destination tiles. Each entry stays in
the buffer until the destination tile acknowledges its receipt.
The TSB decouples PEs from task enqueue latency: it lets PEs
continue execution and even move to other tasks before the
current task’s child enqueues have been acknowledged.

4.3.4 Processing Element interface

The PEs within a tile execute the
functionality of each task. If the ap-
plication program consist of more
than one task type, the PEs could
either be homogeneous (any PE can
execute any task) or heterogeneous Figure 8. PE interface.
(a different PE for each task type).
Chronos admits multiple styles of PE, from programmable
cores to fully specialized engines, and only requires that they
implement a simple interface.

Fig. 8 details the PE interface, which consists of five ports.
All ports use a simple valid/ready handshake mechanism

Memory Access

and support pipelining. The PE signals it can accept new
tasks and receives them through the Deq Task port. It sends
children to the TSB through the Enq Child port, and issues
memory accesses through the Memory Access port. The task
unit may abort a running task through the Abort Task port.
Finally, when the PE finishes or aborts a task, it outputs its
undo log through the Undo Log port.

Enforcing SLOT restrictions: If a SLOT task tries to access
a different read-write object than the task’s object id provided
at task creation time, the expected behavior is undefined. To
ease debugging, Chronos can be configured with a debug aid
that detects all memory accesses whose task has an incorrect
object id, and stops execution on any such violation.

4.4 Chronos customization

Chronos is fully customizable, including the number of tiles,
number and type of PEs, and cache geometry. Moreover,
Chronos can relax its operational features to take advantage
of application characteristics. Some applications can be made
resilient to out-of-order writes (e.g., applications that per-
form directed graph searches, as we will see in Sec. 6). In this
case, Chronos can be configured to not perform rollback on
aborts. This simplification removes the undo log and commit
queue. As we will see in Sec. 6, this saves about 30% of area,
enabling designs with more tiles and thus more parallelism.

Even with no-rollback execution, respecting task order
is still important. The algorithm may be resilient to order
violations, but frequent violations make these algorithms
work-inefficient. Therefore, task queues still dispatch tasks
speculatively in timestamp order.

Finally, Chronos can also be used for non-speculative ap-
plications. In this case, in addition to disabling rollback, the
task queue dispatches tasks in FIFO order, removing the order
queue and further reducing area.

5 Methodology

Chronos FPGA implementation: We implement the Chro-
nos framework in SystemVerilog. We use a pipelined heap [4]
to implement the order queue, and a TCAM adapted from [41]
to find conflicting tasks in the commit queue.

Our FPGA implementation is fully configurable in terms
of number of tiles, number of cores and their types, and task
and commit queue sizes. We use the Amazon AWS FPGA
framework [3], and develop Chronos as a CL (Custom Logic)
module. This CL module interacts with the AWS Shell, which
provides I/O services such as memory and PCI controllers.

We synthesize our CL module using Vivado 2018.1. We
target AWS f1.2xlarge instances, which have the Xilinx Ul-
traScale+ VU9P FPGA. This FPGA is fairly large, featuring
1.2M LUTs, 76 Mb of Block RAM, and 270Mb of Ultra RAM.
We use URAM for the caches and BRAM for the task queues.
These resources were sufficient to fit systems of up to 16 tiles
while meeting a target frequency of 125 MHz. Table 1 details
the Chronos configurations used, and Fig. 9 shows the layout
of a 16-tile Chronos system on FPGA.

Applications: We build Chronos accelerators for four chal-
lenging applications. We compare their performance against
highly optimized software-parallel implementations:

1.des performs gate-level simulation of logic circuits. We
use the CMB implementation in Galois [50] as our baseline.



4096-entry task-array

8192-entry order queue

128 entries default; 256 for maxflow
16 entries

2 MB/tile default; 1 MB for sssp;
Cache 4-way set associative, 64B cache
lines, 5-cycle hit latency from a PE
32-bit timestamp and object id

125 MHz

Task Queue

Commit Queue
Task Send Buffer

Data Widths
Clock Frequency

Table 1. Chronos tile configuration parameters used.

Application Baseline  Input N. Tasks
des Galois [50] csa32 [50] 3.1M
maxflow Galois[50] rmf-wide[2] 7.8M
SSSsp Galois[50]  USA-roads [15] 58.0M
astar In-house germany-roads [22], 4.1M
color [27] com-youtube [39] 5.8M

Table 2. Applications accelerated using Chronos, their base-
lines, inputs, and total number of tasks executed.

16 Tiles

AWS Shell

Figure 9. FPGA layout of the 16-tile Chronos sssp accelerator.
Each Chronos tile is shown in a different color.

We do not compare against the software speculative version
of the algorithm (TimeWarp) since software speculation adds
thousands of cycles per task [7, 28], a huge overhead since
each des task takes tens of cycles.

2. maxflow finds the maximum amount of flow that can
be pushed from a source to a destination node through a
network. We use the Galois [50] implementation of the push-
relabel algorithm as our baseline. In the baseline, each task
operates on a vertex’s neighborhood, involving atomic ac-
cesses to both the vertex and its neighbors. Our Chronos
implementation uses more fine-grained tasks where each
neighbor access is a separate task and the atomicity of the
original task is preserved using order, as described in Sec. 3.2.

3.sssp finds the shortest distance between a given source
node and all other nodes in a directed graph. This benchmark
admits the no-rollback optimization since the Dijkstra’s algo-
rithm can be made resilient to order violations by allowing a
node’s distance to be set to a non-final value. We compare
sssp with the Galois implementation, which uses Delta Step-
ping [44]. We pre-tune Delta to the graph used to put the
software version in the best possible light.

4. astar performs a heuristic-directed search to find the
least cost path towards a goal node. We evaluate astar using
a road graph, where the distance function is the great-circle
distance between two points given their (latitude, longitude)
coordinates. Like sssp, astar admits the no-rollback op-
timization. We could not find a high-performance parallel
implementation of astar. Therefore, we implement our own,
using Galois and its obim scheduler, and use it as the baseline.

color: We also implement a non-speculative graph coloring
algorithm to show that Chronos can be used with non-spec-
ulative tasks. color assigns a color to all graph nodes such
that no two adjacent nodes share the same color. We use the
Jones-Plassmann [36] algorithm with the largest-degree-first
heuristic. We compare against a baseline implementation
from Hasenplaugh et al. [27]. All color tasks are unordered,
and rely on object ids to serialize tasks for the same node.
Table 2 details the baselines, input sets used, and the num-
ber of tasks executed for these applications.
Baseline system: We run the software baselines on a 20-
core/40-thread m4.10xlarge AWS instance. These instances
use a 2.4 GHz Intel Xeon E5-2676v3 (Haswell) CPU. We chose
this instance specifically because its price is comparable with
the FPGA one ($2/hour vs. $1.6/hour for the FPGA instance),
which we believe is a fair metric when comparing application
performance on different hardware substrates.

5.1 PE implementations

Specialized PEs: We write specialized PEs for each appli-
cation in SystemVerilog. Our PEs are pipelined, with 4-30
pipeline stages per PE. Each stage performs some compu-
tation and may issue a single memory access. Pipelining is
flexible: tasks stalled on a memory access do not block other
tasks, which can overtake them and proceed to later stages.
Each PE has sufficient storage for 32 in-flight tasks. How-
ever, we find that a single PE often saturates task and cache
bandwidth with fewer in-flight tasks.

PEs can also be generated from a C-like description us-
ing High-Level Synthesis (HLS). Specifically, astar, which
has trigonometric computations that are tedious to write in
SystemVerilog, uses HLS to generate most of the pipeline.
RISC-V cores: In addition to application-specific cores, we
also built a Chronos version with RISC-V cores. We use the
Spinal HDL RISC-V core generator [56] to generate a 32-bit
core that has a performance of 1.2 DMIPS/MHz. We extend
these cores to implement Chronos enqueue and dequeue
operations, and use the interrupt logic to abort running tasks.

We write SLOT C implementations of des, maxflow, sssp
and color, compile them to the RISC-V ISA, and run them on
a 48-core Chronos system (4 tiles with 12 cores each). We later
compare this system with those using application-specific
cores to quantify the benefits of PE specialization.

For all timing measurements, we ignore the benchmark
setup time, including data transfer time between the host CPU



and FPGA, and only consider the runtime of the algorithm.
This is reasonable since the time spent transferring data can
be amortized over multiple queries on the same graph. We
instrument the FPGA design to count cycles, profile efficiency,
and measure detailed component utilization.

6 Evaluation

We first compare the performance and scalability of the Chronos
FPGA accelerators with application-specific PEs against the
software-parallel versions on the Xeon CPU.

Fig. 10 shows the speedup of each of the four applications
as the number of threads or tiles grows until they fill each sys-
tem. Because each design has different numbers of tiles, the
x-axis is percentage of system utilization. For the software-
parallel versions, we sweep the number of threads from 1 to
40. For FPGA versions, 100% system utilization corresponds
for the maximum system size we can fit on the FPGA (6-16
tiles, depending on the application). Table 3 reports this max-
imum size. To obtain results at lower utilization, we first dis-
able tiles, and then disable the number of concurrent tasks on
a single-tiled system. sssp and astar admits the no-rollback
optimization. Table 3 also summarizes the performance of the
FPGA and baseline implementations at the best-performing
system sizes.

For all four ordered applications, Chronos performs better
than the best CPU baseline, achieving a gmean speedup of
5.4X. Chronos is 15.3% faster than the CPU version on des.

Table 3 also shows the progression of speedups relative to
a serial CPU implementation as the FPGA system is scaled
from a single concurrent task, a single tile, and the full system.

Note that the FPGA runs at a 19x slower frequency than
the CPU. Hence, except in des, the FPGA version with a
single concurrent task is substantially slower than the serial
CPU version. This slowdown is typically 1.7-9X, better than
the 19x difference in frequencies, because the FPGA PEs are
customized to each application.

Nonetheless, Chronos more than makes up for this handi-
cap by scaling to many concurrent tasks: Chronos accelerators
all scale well, sometimes beyond 100X, because they exploit
abundant parallelism that is not available to CPU versions.

6.1 Application analysis

We now look at each application in detail.

des: Even when running a single task at a time on one PE,
Chronos is actually 2.45x faster than the baseline (left column
of Table 3). This happens even though Chronos is running at
a 19x lower frequency. This is primarily because the baseline
maintains a priority queue in software, whereas the Chronos
framework provides a much higher throughput implemen-
tation in hardware. As the number of concurrent tasks in-
creases, the Chronos implementation scales to a self-relative
speedup of 44.9x at 8 tiles, corresponding to a 15.3X speedup
over the best CPU implementation.
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Figure 10. Scalability of Baseline CPU and Chronos imple-

mentations of the ordered algorithms. For CPU, 40 threads =

100% system. For Chronos, 100% corresponds to the number

of tiles in Table 3. Speedups are normalized to the serial CPU

version.

. FPGA vs serial CPU CPU Overall
App Tiles 1 . . .
1task™ 1tile all tiles | scaling speedup
des 8 2.45% 26.8X 109.9% 7.2X 15.3%
maxflow 8 0.11x 0.7%x 4.3% 1.0x 4.3%
SSSp 16 0.24Xx 3.8X  48.4x | 13.3X% 3.6X
astar 6 0.58X 16.9x 744X | 21.2X 3.5%

1A single concurrent task running on a single PE.

Table 3. Performance and scalability of Chronos accelerators
with specialized PEs vs. the best CPU performance.

maxflow: The Chronos instance that runs a single task at
a time is 9% slower than CPU (2.1X faster after accounting
for the frequency difference), mainly because the baseline
maxflow does not use priority queues and hence is not as
hampered as in des. However, in the baseline implementa-
tion, the tasks are large and therefore parallelism is scarce,
achieving a maximum speedup of 3% at 6 threads, before
crashing down to a 3.7X slowdown at 40 threads, due to over-
whelming synchronization costs at higher thread counts.
The Chronos implementation uses more fine grained tasks,
which uncovers huge parallelism, with a self-relative scala-
bility of 39.9%, resulting in an absolute speedup of 4.3X.
maxflow thus shows the benefits of dividing large unord-
ered transactions into small ordered tasks, as Sec. 3.3 outlined.
sssp: Similar to des, baseline sssp also uses a priority queue
to schedule tasks, which Chronos provides in hardware. Hence,
performance with a single concurrent task is 4.5x larger than



the frequency-adjusted 0.05X. But unlike des, sssp tasks are
resilient to order violations. The baseline uses this insight
to obtain a 13.3X speedup at 40 threads. However, Chronos
scales even further, upto a 202X self-relative speedup, to give
a 3.6x performance advantage over the baseline.

astar: astar follows a similar pattern to sssp. The perfor-
mance with a single concurrent task is 1.7x slower than the
CPU, and both CPU and FPGA versions scale near linearly.
But the FPGA can fit significantly more concurrent tasks than
the CPU, achieving a speedup of 3.5%.

In conclusion, Chronos FPGA accelerators uncover signifi-
cantly more parallelism than their baseline CPU implemen-
tations, enough to consistently outperform the CPU despite
their much lower frequency. Thus, we expect that high-fre-
quency ASIC versions would achieve even higher speedups.
Comparison with Swarm: We do not compare against
Swarm because Swarm was evaluated only in simulation and
no actual hardware exists. However, the self-relative scalabil-
ities reported in Swarm papers [33, 34, 59] are similar to the
ones we report here. Therefore, given a similar sized Swarm
system for each application as in Table 1 and Table 3, we
would expect performance to be similar.

6.2 Chronos on non-speculative algorithms

Fig. 11 shows the scalability of 10
non-speculative color. Chronos
achieves a self-relative scalabil-
ity of 45%. But the baseline also
scales to 9.1X. Though Chronos
uncovers more parallelism, it is
not sufficient to make up for
the 19X penalty in frequency, so % 20 40 60 80
the FPGA version is 2.9 slower % System used
than the CPU overall. This result Figure 11. Scalability of
shows that Chronos is not neces- unordered color.

sarily profitable when the software version has easy paral-
lelism (i.e., simple synchronization and sufficient scalability).
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6.3 Analysis of system efficiency

To analyze the efficiency of speculative execution, we look
at how each PE spends its cycles for the four speculative

applications. Fig. 12 breaks down PE cycles into those spent
running (i) tasks that are ultimately committed or (ii) tasks
that later aborted or, for the no-rollback applications, tasks
that performed useless work; and cycles where the PE was
stalled due to (iii) a full commit queue or (iv) the task queue
not having any task to dispatch.

Fig. 12 reveals two insights. First Chronos spends most
cycles on tasks that ultimately commit. Only 11% of cycles
are spent on aborted or useless work overall. Second, the
commit queue size, i.e., the number of tasks that can be spec-
ulated ahead, moderately limits performance on applications
without the no-rollback optimization.

Impact of the no-rollback optimization: We have also
generated Chronos accelerators for sssp and astar without
the no-rollback optimization. Due to the higher area require-
ment of enforcing rollback (Sec. 4.4), we were only able to fit
8 tiles for sssp (compared to 16). As a result, the performance
of with-rollback versions are 2.3X slower for sssp and 4.1x
slower for astar. The slowdown for astar is because astar
with rollback suffers from large commit queue stalls.
Queue utilization: Fig. 13 shows the average number of
task and commit queue entries used across the system by
each speculative application. Each tile has a 4K-entry task
queue, with the number of tiles specified in Table 3. Large
task queues are important for sssp and astar, which use
more than 4K entries on average.

Fig. 13 also shows the commit queue utilization. Since
sssp and astar no-rollback versions do not use the com-
mit queue, this graph shows the results for versions with
rollback. All applications use 700-1500 commit queue slots
across all tiles on average, showing that applications need a
large window of speculation to uncover enough parallelism.
Benefits of specialization: Fig. 14 quantifies the benefits
of using application-specific PEs over general-purpose RISC-
V soft-cores. Overall, these results show that application-
specific PEs have a 4-11x performance advantage.
Estimated ASIC performance: Finally, we use our FPGA
prototype to evaluate the benefits of an ASIC Chronos im-
plementation. We estimate that an ASIC RISC-V Chronos
implementation could run at 2 GHz, a 16X higher frequency
than the FPGA prototype’s 125 MHz. To emulate this higher
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Table 4. Per-tile FPGA resource consumption for each of the
framework components and application-specific PEs

frequency, we throttle DDR memory bandwidth by 1/16th,
since off-chip bandwidth would not change with frequency.

We find all applications except color are not bandwidth-
bound and the 2 GHz ASIC achieves a 16X performance im-
provement over the 125 MHz FPGA (the FPGA prototype has
a memory bandwidth of about 50 GB/s). For color, the im-
provement is limited to 13.7X. Thus, compared to the CPU
baseline, an ASIC RISC-V Chronos would achieve speedups
ranging from 4.7x (color) to 244.8x (des). Compared to
having specialized PEs on an FPGA, speedups would range
from 1.5 (sssp) to 3.7x (color).

6.4 Analysis of implementation costs

Lines of code: Chronos makes it simple to design custom
accelerators to extract speculative parallelism. The Chronos
framework components take over 20000 lines of SystemVer-
ilog. By contrast, each application is much simpler: sssp
takes just 100 lines, des, maxflow, and color around 300
lines, and astar is around 600 lines.

FPGA utilization: Table 4 shows the FPGA resource con-
sumption of each framework component and PE. Overall,
we observe that, while the framework components consume
substantial resources, they are comparable to those of PEs,
which are very simple.

7 Additional Related Work

Transactional memory on accelerators: Prior work has
demonstrated HTM systems on FPGAs [8, 47]. However, they
do not target application acceleration using FPGAs, and in-
stead focus on implementing a prototype with soft cores where
conflict detection is achieved by augmenting a coherence pro-
tocol. Unfortunately, for high-throughput FPGA accelerators,
the overheads of a coherence protocol are not desirable.

Ma et al. [42] is the only system that targets FPGA ac-
celeration using TM. However, they do not use an on-chip
cache, and hence suffers from reduced performance. Further,
while they use priority scheduling to reduce useless work,
they do not support strict order constraints among tasks, only
unordered transactions.

Kilo TM [18, 19] proposes to implement HTM on GPUs
without using cache coherence. Instead, it uses value-based
conflict detection, relying on a post-completion validation
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phase where read values are re-read to detect conflicts. This
technique is expensive (e.g., requiring logging of read val-
ues) and is restricted to lazy version management, which
makes it hard to support speculative forwarding, a key fea-
ture for Chronos.

Accelerators for graph algorithms: Numerous other work
have also proposed accelerators for graph algorithms, both
for FPGA [14, 40] and ASIC [23, 49]. However, none of them
support strict task ordering, and as a result resort to less
work-efficient algorithms like Bellman-Ford for sssp.
Simulation accelerators: Prior work in parallel discrete
event simulation has proposed accelerators for different as-
pects of the Time Warp protocol. The Rollback chip [17] ac-
celerates the speculative versioning and rollback process, but
leaves other aspects such as conflict detection to software.
Rahman et al. [51] implement a discrete event simulation
accelerator on an FPGA. This uses a centralized design that
shows why Chronos’s distributed, high-throughput approach
is crucial: its single event queue saturates around 0.15 events
per cycle, a 50X lower task throughput than a 16-tile Chronos
system. Moreover, Rahman et al. evaluated their design using
a microbenchmark with long tasks and do not explore how
to accelerate actual applications. Hence, they do not consider
subtle issues that arise when doing so, such as dealing with
limited on-chip queue capacity.

FPGAs have also been used to accelerate architectural sim-
ulation. RAMP [60, 61] simulates multicore systems, and
FireSim [38] simulates large, scale-out clusters. These sys-
tems use non-speculative CMB-style simulation, which may
limit parallelism, and could benefit from Chronos’s techniques.

8 Conclusion

We have presented Chronos, the first framework to build
accelerators for applications with ordered speculative par-
allelism. Chronos makes speculative execution cheap by re-
lying on SLOT, a new execution model that limits tasks to
access a single read-write object, avoiding the need for cache
coherence.

We implement Chronos on an FPGA and use it to acceler-
ate several challenging applications in graph analytics and
simulation. We deploy these accelerators on commodity AWS
FPGAs, where we demonstrate 5.4X gmean speedup for the
same applications over their software-parallel versions.
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A Artifact Appendix
A.1 Abstract

Our artifact consists of the source code for the Chronos FPGA
acceleration framework; pre-compiled FPGA images for our
evaluated configurations (to facilitate a quick evaluation);
and scripts to set up the development environment, compile
the images from source code, run the experiments in the
paper, and regenerate the graphs.

This appendix describes how to use Chronos to reproduce
the paper’s results, and explains how to set up and run other
Chronos configurations and experiments. All experiments
are run on the Amazon AWS f1.2xlarge instance, configured
using the Amazon-provided FPGA Developer AML

A.2 Artifact check-list (meta-information)

e Compilation: Xilinx Vivado, GNU RISC-V embedded GCC com-

piler.

Run-time environment: Amazon AWS FPGA instance.

Hardware: Xilinx UltraScale VU9P.

How much disk space required (approximately)?: 2GB.

How much time is needed to prepare workflow (approxi-

mately)?: Approx. 1 hour.

e How much time is needed to complete experiments (ap-
proximately)?: 2 weeks to reproduce the full results from scratch,
or 2 hours if using the precompiled images. The tutorials (Sec. A.7)
take about 2 days each, or 2 hours if using precompiled images.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: GPL v2.

e Archived (provide DOI)?: 10.5281/zenodo0.3558760

A.3 Description
A.3.1 How delivered

Our artifact can be downloaded from https://doi.org/10.5281/
zenodo.3558760 as a .zip file.

A.3.2 Hardware dependencies

Chronos is designed to run on an Amazon AWS f1.2xlarge
instance configured with the Amazon FPGA Developer AML

A.3.3 Software dependencies

The main dependence is Xilinx Vivado 2018.2, which comes
with the FPGA Developer AML The RISC-V Chronos variant
relies on the GNU RISC-V embedded GCC compiler.

A.3.4 Data sets

For small, testing runs, we include scripts to generate syn-
thetic datasets. The experiments in the paper use large, pub-
licly available datasets from other projects. Since datasets are
large and publicly available, they are not included directly
in the artifact code. Instead, the artifact includes scripts to
download these datasets. These datasets are also archived,
with the DOI 10.5281/zenodo.3563178.
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A.4 Installation

1. Launch an AWS f1.2xlarge instance using the Amazon
FPGA Developer AMI. Log into the instance.

2. Extract the Chronos artifact .zip file, and navigate to its
base directory.

3. Run source install.sh. This will clone the Amazon
FPGA SDK repository and install the necessary drivers.

4. Run aws configure to set up the instance with your
AWS credentials.

5. (Optional) Install the GNU RISC-V embedded GCC com-
piler within the instance (https://xpack.github.io/riscv-
none-embed-gcc/). This step is optional because the dis-
tribution already includes pre-compiled RISC-V binaries
necessary for the workflow.

A.5 Experiment workflow

We provide an automated workflow to validate the main re-
sults in the paper from scratch. Note that this process involves
synthesizing multiple Chronos instances for each application,
a process that takes about two weeks to complete.

To facilitate a quick evaluation, we also provide precom-
piled FPGA images of the Chronos instances; when using
these images, reproducing the results takes about two hours.

The c1_chronos/validation/scripts/ directory contains
the necessary scripts to validate the results from the paper.
The full process is explained in comments in the master script
run_validation.py.

To run all experiments from scratch, run:

python run_validation.py

To run all experiments with precompiled images, run:

python run_validation.py --precompiled

This will download a list of precompiled image IDs from a
shared S3 bucket and run the rest of the workflow.

Sec. A.7 includes two smaller tutorials using Chronos,
which can be completed in about 2 hours.

A.6 Evaluation and expected result

Running run_validation.py would generate all evaluation
plots (Figures 10-14).

A.7 Experiment customization

This section provides two smaller tutorials on using Chronos.
First, we illustrate the SLOT programming model using a
sample application running on a Chronos instance with RISC-
V soft cores. Second, we describe how to generate Chronos
instances with specialized cores.

Before starting either tutorial, run source aws_setup.shto
configure the necessary environment variables and to define
the $CL_DIR environment variable to point to the c1_chronos
subdirectory. Please see README . txt here for more detailed
information, including topics not covered in this workflow,
such as how to simulate Chronos RTL and how to debug
Chronos.



A.7.1 Tutorial 1: Chronos using RISC-V soft cores

Step 1: Generate a test graph.

The graph_gen tool can be used to generate test graphs to
test our implementation of sssp.

cd $CL_DIR/tools/graph_gen

make

./graph_gen sssp grid 20

This generates a 20x20 grid graph with random weights.

Step 2: Synthesize a Chronos image with RISC-V soft cores.
The output of this step is an Amazon FPGA Image ID
(AGFI-ID) that can loaded into the FPGA. This step will take
about 8 hours to complete. If you’d like to skip this step, you
can instead use the pre-synthesized FPGA image with the
AGFI-ID (agfi-02159d0614fb731a9).
1. Configure Chronos to use RISC-V cores.
cd $CL_DIR/design/
./scripts/gen_cores.py riscv
2. Run synthesis
cd $CL_DIR/build/scripts
./aws_build_dcp_from_cl.sh
This script launches a Vivado synthesis/place-and-route
job. The output of this process is a placed-and-routed
design, produced at:
$CL_DIR/build/checkpoints/to_aws/
<timestamp>.Developer_CL.tar
3. Create an FPGA image. (The commands below follow
the standard instructions on how to generate a runnable
FPGA image from the placed-and-routed design, at https:
//github.com/aws/aws-fpga/blob/master/hdk/README.
md#step3.)
First, copy the design file to a location in Amazon S3:
aws s3 cp $CL_DIR/build/checkpoints/to_aws/
<timestamp>.Developer_CL.tar <s3_location>.tar
Then, create the FPGA image
aws ec2 create-fpga-image --name <name>
--input-storage-location Bucket=<s3_bucket>,
Key=<location_in_s3> --logs-storage-location
Bucket=<s3_bucket_name>, Key=<location_in_s3>
Running this command generates an AGFI-ID that can
be used to load the image into the FPGA.

Step 3: Compile sssp RISC-V code.

This step requires the RISC-V embedded GCC compiler.
You can skip this step by using the precompiled binaries from
$CL_DIR/riscv-code/binaries in the next step.

To build sssp from source, run:

cd $CL_DIR/riscv-code/sssp

make

Step 4: Run sssp on the FPGA.
First load the generated image into the FPGA (This com-
mand may have to be run twice the first time it is loaded).
sudo fpga-load-local-image -S O -I <agfi-id>
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Next, compile and run the test_chronos program that
transfers the input graph to the FPGA, collects results, and
analyzes performance.

cd $CL_DIR/software/runtime

make

./test_chronos --n_tiles=1 sssp <sssp_input_file>

<sssp_riscv_binary>

A.7.2 Tutorial 2: Chronos with specialized cores

The RTL code for specialized applications can be found in
$CL_DIR/design/apps/. For this example, we will again use
sssp; other applications are similar.

To generate a Chronos instance with these cores, run:

./scripts/gen_cores.py SsSsp

The rest of the steps are same as in Tutorial 1, except that
the test_chronos script does not take a <sssp_riscv_binary>
argument.

A precompiled sssp Chronos instance is also available
with the AGFI-ID = agfi-0d3750b6360762108.

A.7.3 Customized configurations and applications

Customizing Chronos parameters: The file config. sv con-
tains the configuration parameters of Chronos. These include
the number of tiles, the sizes for various queues and cache
parameters.

Porting new applications: The first step in porting a new
application is to break the application down into SLOT tasks
(single-object tasks ordered using timestamps). Initially, these
tasks can be expressed as software functions and run on a
Chronos instance with RISC-V cores.

Once the SLOT implementation is verified, a specialized
core can be designed for each task. Please refer to the script
$CL_DIR/design/scripts/gen_cores.py on how to integrate
new specialized cores into the Chronos workflow.
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