
Chronos: Efficient Speculative Parallelism

for Accelerators

Maleen Abeydeera
maleen@csail.mit.edu

Massachusetts Institute of Technology

Daniel Sanchez
sanchez@csail.mit.edu

Massachusetts Institute of Technology

Abstract

We present Chronos, a framework to build accelerators for

applications with speculative parallelism. These applications

consist of atomic tasks, sometimes with order constraints,

and need speculative execution to extract parallelism. Prior

work extended conventional multicores to support specu-

lative parallelism, but these prior architectures are a poor

match for accelerators because they rely on cache coherence

and add non-trivial hardware to detect conflicts among tasks.

Chronos instead relies on a novel execution model, Spa-

tially Located Ordered Tasks (SLOT), that uses order as the

only synchronization mechanism and limits task accesses

to a single read-write object. This simplification avoids the

need for cache coherence and makes speculative execution

cheap and distributed. Chronos abstracts the complexities of

speculative parallelism, making accelerator design easy.

We develop an FPGA implementation of Chronos and use it

to build accelerators for four challenging applications. When

run on commodity AWS FPGA instances, these accelerators

outperform state-of-the-art software versions running on a

higher-priced multicore instance by 3.5× to 15.3×.

CCS Concepts • Computer systems organization →

Multicore architectures.

Keywords speculative parallelism; fine-grain parallelism;

accelerators; specialization; FPGA.

ACM Reference Format:

Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient

Speculative Parallelism forAccelerators . In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS ’20), March 16–20,

2020, Lausanne, Switzerland. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3373376.3378454

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00

https://doi.org/10.1145/3373376.3378454

1 Introduction

The impending end of Moore’s Law is forcing architectures

to rely on application- or domain-specific accelerators to

improve performance. Accelerators require large amounts of

parallelism. Consequently, prior accelerators have focused

on domains where parallelism is easy to exploit, such as deep

learning [12, 13, 37], and rely on conventional parallelization

techniques, such as data-parallel or dataflow execution [48].

However,many applications do not have such easy-to-extract

parallelism, and have remained off-limits to accelerators.

In this paper, we focus on building accelerators for appli-

cations that need speculative execution to extract parallelism.

These applications consist of tasks that are created dynami-

cally and operate on shared data, and where operations on

shared data must happen in a certain order for execution to

be correct. Order constraints may arise from the need to pre-

serve atomicity (e.g., operations across tasks must be ordered

to not interleave with each other), or from the need to order

tasks due to application semantics (e.g., tasks dequeued from

a priority queue). Enforcing these order constraints a priori,

before running each task, is often too costly and/or limits

parallelism. Thus, it is preferable to run tasks speculatively

and check that they followed a correct order a posteriori.

For instance, consider discrete event simulation, which has

wide applicability in simulating digital circuits, networked

systems, and physical processes. Discrete event simulation

consists of dynamically created tasks that may operate on the

same simulated object and must run in the correct simulated

time order. Running these tasks non-speculatively requires

excessive synchronization and limits parallelism [10, 28].

Running tasks speculatively is far more profitable [32, 34].

To make speculation efficient, prior work has proposed

hardware support for speculation, including Thread-Level

Speculation [21, 34, 53, 55, 57], and Hardware Transactional

Memory [1, 6, 9, 20, 26, 29, 30, 46]. Unfortunately, prior spec-

ulative architectures are hard to apply to accelerators, be-

cause they all rely on coherent cache hierarchies to perform

speculative execution, modifying the coherence protocol to

detect conflicts among tasks. This is a natural match for mul-

ticores, which already have a coherence protocol. But such

a solution would be onerous and complex for an acceler-

ator: it would require implementing coherent caches and

speculation-tracking structures that, while a minor overhead

for general-purpose cores, are too expensive for small, spe-

cialized ones.

1

To address this challenge, in this paper we present a hard-

ware system that implements speculative execution without

using coherence. Instead, this system follows a data-centric ap-

proach, where shared data is mapped across the system; work

is divided into small tasks that access at most one shared

object each; and tasks are always sent to run at the place

where their data is mapped. To enforce atomicity across task

groups, or other order constraints, tasks are ordered through

timestamps (these are program-specified logical timestamps

completely decoupled from physical time).

We formalize these semantics through the Spatially Located

Ordered Tasks (SLOT) execution model. In SLOT, all work

happens through tasks that are ordered using timestamps. A

task may create children tasks ordered after them, and parent

tasks communicate input values to children directly. Each

task must operate on a single read-write object, which must

be declared when the task is created (besides this restriction,

tasks may access an arbitrary amount of read-only data).

We leverage SLOT to implement Chronos, a novel acceler-

ation framework for speculative algorithms. Each Chronos

instance consists of spatially distributed tiles. Each tile has

multiple processing elements (PEs) that execute tasks, and a

local cache. Each tile also implements hardware to queue

tasks, dispatch them to PEs, track their speculative state, and

abort or commit them in timestamp order. Chronos maps

read-write objects across tiles, and sends each newly created

task to the tile where its read-write object is mapped. This

enables completely distributed operation without a cache

coherence protocol.

Chronos provides a common framework to accelerate spec-

ulative algorithms, abstracting away the complexities of task

management and speculative execution. Developers need

only express their application as SLOT tasks coded against a

high-level API. To achieve high performance, Chronos sup-

ports two types of customization. First, applications can cus-

tomize the PEs, which can be specified in RTL or described

using High-Level Synthesis (HLS). PEs can also be general-

purpose cores, so developers can start with a software im-

plementation and specialize tasks as needed to achieve high

performance. Second, Chronos lets applications turn off un-

needed features. For example, if the algorithm is naturally

resilient to out-of-orderwrites (e.g., if updates aremonotonic),

applications can disable rollback on misspeculation.

We evaluate Chronos by implementing it on an FPGA and

use it to implement accelerators for several graph analytics

and simulation applications. We use four hard-to-parallelize

applications with speculative parallelism. We deploy these ac-

celerators on commodity AWS FPGA instances. We compare

these accelerators with state-of-the-art software implemen-

tations of these applications running on a higher-priced 40-

thread multicore instance. Chronos achieves speedups of up

to 15.3× and gmean 5.4× over the software versions. Chronos

outperforms the multicore baseline despite running at a 19×

slower frequency, because it exploits orders of magnitude

PrioQueue <Time, GateInput > eventQueue;

void simToggle(Time time, GateInput input) {
Gate gate = input.gate;
bool outToggled = gate.simulateToggle(input);
if (outToggled) {
// Toggle all inputs connected to this gate
for (GateInput i : gate.connectedInputs()) {
Time nextTime = time + gate.delay(input, i);
eventQueue.enqueue(nextTime, i);

}}}

... // Enqueue initial events (input waveforms)
// Main loop
while (!eventQueue.empty()) {
(time, input) = eventQueue.dequeue();
simToggle(time, input);
}

Listing 1. Sequential implementation of des.

more parallelism. These results show that FPGAs are a prac-

tical and cost-effective way to accelerate applications with

speculative parallelism.

In summary, this paper contributes:

• SLOT, the first execution model that supports speculative

parallelism without cache coherence (Sec. 3).

• Chronos, a customizable framework that implements the

SLOT execution model and makes it easy to accelerate

applications with speculative parallelism (Sec. 4).

• A detailed evaluation of Chronos using commodity FPGAs

in the cloud that demonstrates significant speedups for sev-

eral challenging applications, analyzes system efficiency,

and quantifies the benefits of customization (Sec. 6).

Our Chronos implementation is open-source and available

at https://chronos-arch.csail.mit.edu.

2 Motivation and Background

In this section we first present a case for speculative paral-

lelism through a simple application, discrete event simulation

(des). We then review the types of parallelism exploited by

prior accelerators, and see thatmost do not exploit speculative

parallelism. Finally,we review prior speculative architectures,

and use des to identify a key simplification that these archi-

tectures have missed: support for task order avoids the need

for coherence-based conflict detection, motivating SLOT.

2.1 A case for speculative parallelism

We illustrate the utility of speculative parallelism through

des, a discrete event simulator for digital circuits [28]. List-

ing 1 shows code for a sequential implementation of des.

Each des task processes a gate input toggling at a particular

time. If this input toggle causes the gate’s output to toggle,

the task enqueues events for all inputs connected to that out-

put at the appropriate times. The sequential implementation

processes one task at a time in simulated time order, and

maintains the set of tasks to process in a priority queue.

Fig. 1a shows a circuit with input waveforms and prop-

agation delays, and Fig. 1b shows the task diagram of an

execution of des on this circuit. Arrows between tasks show

2

A
v
a
il
a
b
le

T
Q

C
Q

T
S
B

C
a
ch

e

d
e
s

m
a
x
f
l
o
w

s
s
s
p

a
s
t
a
r

c
o
l
o
r

LUTs (K) 895 17 12 0.5 12 7 11 4 10 7

FFs (K) 1790 6 8 0.3 12 7 6 4 10 8

BRAM 1680 38 5 - 72 - - - - -

URAM 800 - - - 64 - - - - -

Table 4. Per-tile FPGA resource consumption for each of the

framework components and application-specific PEs

frequency, we throttle DDR memory bandwidth by 1/16th,

since off-chip bandwidth would not change with frequency.

We find all applications except color are not bandwidth-

bound and the 2 GHz ASIC achieves a 16× performance im-

provement over the 125MHz FPGA (the FPGA prototype has

a memory bandwidth of about 50GB/s). For color, the im-

provement is limited to 13.7×. Thus, compared to the CPU

baseline, an ASIC RISC-V Chronos would achieve speedups

ranging from 4.7× (color) to 244.8× (des). Compared to

having specialized PEs on an FPGA, speedups would range

from 1.5× (sssp) to 3.7× (color).

6.4 Analysis of implementation costs

Lines of code: Chronos makes it simple to design custom

accelerators to extract speculative parallelism. The Chronos

framework components take over 20000 lines of SystemVer-

ilog. By contrast, each application is much simpler: sssp

takes just 100 lines, des, maxflow, and color around 300

lines, and astar is around 600 lines.

FPGA utilization: Table 4 shows the FPGA resource con-

sumption of each framework component and PE. Overall,

we observe that, while the framework components consume

substantial resources, they are comparable to those of PEs,

which are very simple.

7 Additional Related Work

Transactional memory on accelerators: Prior work has

demonstrated HTM systems on FPGAs [8, 47]. However, they

do not target application acceleration using FPGAs, and in-

stead focus on implementing a prototypewith soft coreswhere

conflict detection is achieved by augmenting a coherence pro-

tocol. Unfortunately, for high-throughput FPGA accelerators,

the overheads of a coherence protocol are not desirable.

Ma et al. [42] is the only system that targets FPGA ac-

celeration using TM. However, they do not use an on-chip

cache, and hence suffers from reduced performance. Further,

while they use priority scheduling to reduce useless work,

they do not support strict order constraints among tasks, only

unordered transactions.

Kilo TM [18, 19] proposes to implement HTM on GPUs

without using cache coherence. Instead, it uses value-based

conflict detection, relying on a post-completion validation

phase where read values are re-read to detect conflicts. This

technique is expensive (e.g., requiring logging of read val-

ues) and is restricted to lazy version management, which

makes it hard to support speculative forwarding, a key fea-

ture for Chronos.

Accelerators for graph algorithms:Numerous otherwork

have also proposed accelerators for graph algorithms, both

for FPGA [14, 40] and ASIC [23, 49]. However, none of them

support strict task ordering, and as a result resort to less

work-efficient algorithms like Bellman-Ford for sssp.

Simulation accelerators: Prior work in parallel discrete

event simulation has proposed accelerators for different as-

pects of the Time Warp protocol. The Rollback chip [17] ac-

celerates the speculative versioning and rollback process, but

leaves other aspects such as conflict detection to software.

Rahman et al. [51] implement a discrete event simulation

accelerator on an FPGA. This uses a centralized design that

shows why Chronos’s distributed, high-throughput approach

is crucial: its single event queue saturates around 0.15 events

per cycle, a 50× lower task throughput than a 16-tile Chronos

system. Moreover, Rahman et al. evaluated their design using

a microbenchmark with long tasks and do not explore how

to accelerate actual applications. Hence, they do not consider

subtle issues that arise when doing so, such as dealing with

limited on-chip queue capacity.

FPGAs have also been used to accelerate architectural sim-

ulation. RAMP [60, 61] simulates multicore systems, and

FireSim [38] simulates large, scale-out clusters. These sys-

tems use non-speculative CMB-style simulation, which may

limit parallelism,and could benefit fromChronos’s techniques.

8 Conclusion

We have presented Chronos, the first framework to build

accelerators for applications with ordered speculative par-

allelism. Chronos makes speculative execution cheap by re-

lying on SLOT, a new execution model that limits tasks to

access a single read-write object, avoiding the need for cache

coherence.

We implement Chronos on an FPGA and use it to acceler-

ate several challenging applications in graph analytics and

simulation. We deploy these accelerators on commodity AWS

FPGAs, where we demonstrate 5.4× gmean speedup for the

same applications over their software-parallel versions.

Acknowledgments

We sincerely thank Mark Jeffrey, Victor Ying, Joel Emer, Po-

An Tsai, Anurag Mukkara, Guowei Zhang, Quan Nguyen,

Hyun Ryong Lee, Keiko Yamaguchi, Shuichi Konami, and the

anonymous reviewers for their helpful feedback. This work

was supported in part by NSF grants CAREER-1452994 and

SHF-1814969, NSF/SRC grant E2CDA-1640012, and by a Sony

research grant.

12

A Artifact Appendix

A.1 Abstract

Our artifact consists of the source code for the Chronos FPGA

acceleration framework; pre-compiled FPGA images for our

evaluated configurations (to facilitate a quick evaluation);

and scripts to set up the development environment, compile

the images from source code, run the experiments in the

paper, and regenerate the graphs.

This appendix describes how to use Chronos to reproduce

the paper’s results, and explains how to set up and run other

Chronos configurations and experiments. All experiments

are run on the Amazon AWS f1.2xlarge instance, configured

using the Amazon-provided FPGA Developer AMI.

A.2 Artifact check-list (meta-information)

• Compilation: Xilinx Vivado, GNU RISC-V embedded GCC com-

piler.

• Run-time environment: Amazon AWS FPGA instance.

• Hardware: Xilinx UltraScale VU9P.

• How much disk space required (approximately)?: 2GB.

• How much time is needed to prepare workflow (approxi-

mately)?: Approx. 1 hour.

• How much time is needed to complete experiments (ap-

proximately)?: 2weeks to reproduce the full results from scratch,

or 2 hours if using the precompiled images. The tutorials (Sec. A.7)

take about 2 days each, or 2 hours if using precompiled images.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: GPL v2.

• Archived (provide DOI)?: 10.5281/zenodo.3558760

A.3 Description

A.3.1 How delivered

Our artifact can be downloaded from https://doi.org/10.5281/

zenodo.3558760 as a .zip file.

A.3.2 Hardware dependencies

Chronos is designed to run on an Amazon AWS f1.2xlarge

instance configured with the Amazon FPGA Developer AMI.

A.3.3 Software dependencies

The main dependence is Xilinx Vivado 2018.2, which comes

with the FPGA Developer AMI. The RISC-V Chronos variant

relies on the GNU RISC-V embedded GCC compiler.

A.3.4 Data sets

For small, testing runs, we include scripts to generate syn-

thetic datasets. The experiments in the paper use large, pub-

licly available datasets from other projects. Since datasets are

large and publicly available, they are not included directly

in the artifact code. Instead, the artifact includes scripts to

download these datasets. These datasets are also archived,

with the DOI 10.5281/zenodo.3563178.

A.4 Installation

1. Launch an AWS f1.2xlarge instance using the Amazon

FPGA Developer AMI. Log into the instance.

2. Extract the Chronos artifact .zip file, and navigate to its

base directory.

3. Run source install.sh. This will clone the Amazon

FPGA SDK repository and install the necessary drivers.

4. Run aws configure to set up the instance with your

AWS credentials.

5. (Optional) Install the GNU RISC-V embedded GCC com-

piler within the instance (https://xpack.github.io/riscv-

none-embed-gcc/). This step is optional because the dis-

tribution already includes pre-compiled RISC-V binaries

necessary for the workflow.

A.5 Experiment workflow

We provide an automated workflow to validate the main re-

sults in the paper from scratch. Note that this process involves

synthesizing multiple Chronos instances for each application,

a process that takes about two weeks to complete.

To facilitate a quick evaluation, we also provide precom-

piled FPGA images of the Chronos instances; when using

these images, reproducing the results takes about two hours.

The cl_chronos/validation/scripts/ directory contains

the necessary scripts to validate the results from the paper.

The full process is explained in comments in the master script

run_validation.py.

To run all experiments from scratch, run:

python run_validation.py

To run all experiments with precompiled images, run:

python run_validation.py --precompiled

This will download a list of precompiled image IDs from a

shared S3 bucket and run the rest of the workflow.

Sec. A.7 includes two smaller tutorials using Chronos,

which can be completed in about 2 hours.

A.6 Evaluation and expected result

Running run_validation.py would generate all evaluation

plots (Figures 10-14).

A.7 Experiment customization

This section provides two smaller tutorials on using Chronos.

First, we illustrate the SLOT programming model using a

sample application running on a Chronos instance with RISC-

V soft cores. Second, we describe how to generate Chronos

instances with specialized cores.

Before starting either tutorial, run source aws_setup.sh to

configure the necessary environment variables and to define

the $CL_DIR environment variable to point to the cl_chronos

subdirectory. Please see README.txt here for more detailed

information, including topics not covered in this workflow,

such as how to simulate Chronos RTL and how to debug

Chronos.

13

A.7.1 Tutorial 1: Chronos using RISC-V soft cores

Step 1: Generate a test graph.

The graph_gen tool can be used to generate test graphs to

test our implementation of sssp.

cd $CL_DIR/tools/graph_gen

make

./graph_gen sssp grid 20

This generates a 20x20 grid graph with random weights.

Step 2: Synthesize a Chronos image with RISC-V soft cores.

The output of this step is an Amazon FPGA Image ID

(AGFI-ID) that can loaded into the FPGA. This step will take

about 8 hours to complete. If you’d like to skip this step, you

can instead use the pre-synthesized FPGA image with the

AGFI-ID (agfi-02159d0614fb731a9).

1. Configure Chronos to use RISC-V cores.

cd $CL_DIR/design/

./scripts/gen_cores.py riscv

2. Run synthesis

cd $CL_DIR/build/scripts

./aws_build_dcp_from_cl.sh

This script launches a Vivado synthesis/place-and-route

job. The output of this process is a placed-and-routed

design, produced at:

$CL_DIR/build/checkpoints/to_aws/

<timestamp>.Developer_CL.tar

3. Create an FPGA image. (The commands below follow

the standard instructions on how to generate a runnable

FPGA image from the placed-and-routed design, at https:

//github.com/aws/aws-fpga/blob/master/hdk/README.

md#step3.)

First, copy the design file to a location in Amazon S3:

aws s3 cp $CL_DIR/build/checkpoints/to_aws/

<timestamp>.Developer_CL.tar <s3_location>.tar

Then, create the FPGA image

aws ec2 create-fpga-image --name <name>

--input-storage-location Bucket=<s3_bucket>,

Key=<location_in_s3> --logs-storage-location

Bucket=<s3_bucket_name>, Key=<location_in_s3>

Running this command generates an AGFI-ID that can

be used to load the image into the FPGA.

Step 3: Compile sssp RISC-V code.

This step requires the RISC-V embedded GCC compiler.

You can skip this step by using the precompiled binaries from

$CL_DIR/riscv-code/binaries in the next step.

To build sssp from source, run:

cd $CL_DIR/riscv-code/sssp

make

Step 4: Run sssp on the FPGA.

First load the generated image into the FPGA (This com-

mand may have to be run twice the first time it is loaded).

sudo fpga-load-local-image -S 0 -I <agfi-id>

Next, compile and run the test_chronos program that

transfers the input graph to the FPGA, collects results, and

analyzes performance.

cd $CL_DIR/software/runtime

make

./test_chronos --n_tiles=1 sssp <sssp_input_file>

<sssp_riscv_binary>

A.7.2 Tutorial 2: Chronos with specialized cores

The RTL code for specialized applications can be found in

$CL_DIR/design/apps/. For this example, we will again use

sssp; other applications are similar.

To generate a Chronos instance with these cores, run:

./scripts/gen_cores.py sssp

The rest of the steps are same as in Tutorial 1, except that

the test_chronos script does not take a <sssp_riscv_binary>

argument.

A precompiled sssp Chronos instance is also available

with the AGFI-ID = agfi-0d3750b6360762108.

A.7.3 Customized configurations and applications

CustomizingChronos parameters:The file config.sv con-

tains the configuration parameters of Chronos. These include

the number of tiles, the sizes for various queues and cache

parameters.

Porting new applications: The first step in porting a new

application is to break the application down into SLOT tasks

(single-object tasks ordered using timestamps). Initially, these

tasks can be expressed as software functions and run on a

Chronos instance with RISC-V cores.

Once the SLOT implementation is verified, a specialized

core can be designed for each task. Please refer to the script

$CL_DIR/design/scripts/gen_cores.py on how to integrate

new specialized cores into the Chronos workflow.

References
[1] C. Scott Ananian, Krste Asanović, Bradley C. Kuszmaul, Charles E. Leis-

erson, and Sean Lie. 2005. Unbounded transactional memory. In Proc.

of the 11th IEEE intl. symp. on High Performance Computer Architecture

(HPCA-11).

[2] Richard J. Anderson and João C. Setubal. 1992. On the parallel imple-

mentation of Goldberg’s maximum flow algorithm. In Proc. of the 4th

ACM Symp. on Parallelism in Algorithms and Architectures (SPAA).

[3] AWS FPGA Hardware and Software Development Kit. 2017. https:

//github.com/aws/aws-fpga.

[4] Ranjita Bhagwan and Bill Lin. 2000. Fast and scalable priority queue ar-

chitecture for high-speed network switches. In Proc. of the IEEE Infocom

2000.

[5] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay

Sipelstein, andMarco Zagha. 1993. Implementation of a portable nested

data-parallel language. In Proc. of the ACM SIGPLAN Symp. on Principles

and Practice of Parallel Programming (PPoPP).

[6] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,

Michael M. Swift, and David A. Wood. 2007. Performance pathologies

in hardware transactional memory. In Proc. of the 34th annual Intl.

Symp. on Computer Architecture (ISCA-34).

14

[7] Christopher D. Carothers, David Bauer, and Shawn Pearce. 2000. ROSS:

A High-performance, Low Memory, Modular Time Warp System. In

Proc. of the 14th Workshop on Parallel and Distributed Simulation

(PADS).

[8] Jared Casper, Tayo Oguntebi, Sungpack Hong, Nathan G. Bronson,

Christos Kozyrakis, and Kunle Olukotun. 2011. Hardware Acceleration

of Transactional Memory on Commodity Systems. In Proc. of the 16th

intl. conf. on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-XVI).

[9] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald,

Chi CaoMinh,Woongki Baek, Christos Kozyrakis, and Kunle Olukotun.

2007. A scalable, non-blocking approach to transactional memory.

In Proc. of the 13th IEEE intl. symp. on High Performance Computer

Architecture (HPCA-13).

[10] K. Mani Chandy and Jayadev Misra. 1981. Asynchronous distributed

simulation via a sequence of parallel computations. Commun. ACM 24,

4 (1981).

[11] Tao Chen, Shreesha Srinath, and G. Edward Batten, Christopher Suh.

2018. An Architectural Framework for Accelerating Dynamic Parallel

Algorithms on Reconfigurable Hardware. In Proc. of the 51st annual

IEEE/ACM intl. symp. on Microarchitecture (MICRO-51).

[12] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,

Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam.

2014. DaDianNao: A Machine-Learning Supercomputer. In Proc. of the

47th annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-47).

[13] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial

Architecture for Energy-efficient Dataflow for Convolutional Neural

Networks. In Proc. of the 43rd annual Intl. Symp. on Computer Architec-

ture (ISCA-43).

[14] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. 2016. FPGP:

Graph Processing Framework on FPGA A Case Study of Breadth-First

Search. In Proc. of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA).

[15] C. Demetrescu, A. Goldberg, and D. Johnson. 2006. 9th DIMACS Im-

plementation Challenge: Shortest Paths. http://www.dis.uniroma1.it/

~challenge9

[16] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The im-

plementation of the Cilk-5 multithreaded language. In Proc. of the ACM

SIGPLAN Conf. on Programming Language Design and Implementation

(PLDI).

[17] R. M. Fujimoto, J.-J. Tsai, and G. C. Gopalakrishnan. 1992. Design and

evaluation of the rollback chip: special purpose hardware for Time

Warp. IEEE Trans. Comput. 41, 1 (1992).

[18] Wilson W. L. Fung and Tor M. Aamodt. 2013. Energy Efficient GPU

Transactional Memory via Space-Time Optimizations. In Proc. of the

46th annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-46).

[19] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M.

Aamodt. 2011. Hardware TransactionalMemory forGPUArchitectures.

In Proc. of the 44th annual IEEE/ACM intl. symp. on Microarchitecture

(MICRO-44).

[20] Epifanio Gaona-Ramirez, Rubén Titos-Gil, Juan Fernandez, and

Manuel E. Acacio. 2010. Characterizing energy consumption in hard-

ware transactional memory systems. In Proc. of the 22nd symp. on

Computer Architecture and High Performance Computing (SBAC-PAD

22).

[21] María Jesús Garzarán, Milos Prvulovic, José María Llabería, Víctor

Viñals, Lawrence Rauchwerger, and Josep Torrellas. 2003. Tradeoffs

in buffering speculative memory state for thread-level speculation in

multiprocessors. In Proc. of the 9th IEEE intl. symp. on High Performance

Computer Architecture (HPCA-9).

[22] Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-

generated street maps. IEEE Pervasive Computing 7, 4 (2008).

[23] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and

Margaret Martonosi. 2016. Graphicionado: A High-performance and

Energy-efficient Accelerator for Graph Analytics. In Proc. of the 49th

annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-49).

[24] Lance Hammond, Mark Willey, and Kunle Olukotun. 1998. Data spec-

ulation support for a chip multiprocessor. In Proc. of the 8th intl. conf.

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-VIII).

[25] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.

Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos

Kozyrakis, and Kunle Olukotun. 2004. Transactional memory coher-

ence and consistency. In Proc. of the 31st annual Intl. Symp. on Computer

Architecture (ISCA-31).

[26] Tim Harris, James Larus, and Ravi Rajwar. 2010. Transactional memory.

Synthesis Lectures on Computer Architecture (2010).

[27] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leis-

erson. 2014. Ordering heuristics for parallel graph coloring. In Proc.

of the 26th ACM Symp. on Parallelism in Algorithms and Architectures

(SPAA).

[28] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali.

2011. Ordered vs. unordered: a comparison of parallelism and work-

efficiency in irregular algorithms. In Proc. of the ACM SIGPLAN Symp.

on Principles and Practice of Parallel Programming (PPoPP).

[29] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory:

Architectural support for lock-free data structures. In Proc. of the 20th

annual Intl. Symp. on Computer Architecture (ISCA-20).

[30] Syed Ali Raza Jafri, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2013.

Wait-n-GoTM: improving HTM performance by serializing cyclic de-

pendencies. In Proc. of the 18th intl. conf. on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-XVIII).

[31] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto. 1987.

Time Warp Operating System. In Proceedings of the Eleventh ACM

Symposium on Operating Systems Principles.

[32] David R. Jefferson. 1985. Virtual time. ACM TOPLAS 7, 3 (1985).

[33] Mark C. Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer,

and Daniel Sanchez. 2016. Data-centric execution of speculative par-

allel programs. In Proc. of the 49th annual IEEE/ACM intl. symp. on

Microarchitecture (MICRO-49).

[34] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel

Sanchez. 2015. A scalable architecture for ordered parallelism. In Proc.

of the 48th annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-

48).

[35] Mark C. Jeffrey, Victor A. Ying, Suvinay Subramanian, Hyun Ryong

Lee, Joel Emer, and Daniel Sanchez. 2018. Harmonizing Speculative and

Non-Speculative Execution in Architectures for Ordered Parallelism.

In Proc. of the 51st annual IEEE/ACM intl. symp. on Microarchitecture

(MICRO-51).

[36] Mark T. Jones and Paul E. Plassmann. 1993. A Parallel Graph Coloring

Heuristic. SIAM J. Sci. Comput. 14, 3 (1993).

[37] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,

JeremyCoriell,Mike Daley,Matt Dau, JeffreyDean,Ben Gelb, Tara Vazir

Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hag-

mann, C. Richard Ho,Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,

Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit

Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,

James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,

Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire

Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray

Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,

Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,

Chris Severn,Gregory Sizikov,Matthew Snelham, Jed Souter, Dan Stein-

berg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia

Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance

15

Analysis of a Tensor Processing Unit. In Proc. of the 44th annual Intl.

Symp. on Computer Architecture (ISCA-44).

[38] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,

Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin

Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,

Randy Katz, Jonathan Bachrach, and Krste Asanović. 2018. Firesim:

FPGA-accelerated Cycle-exact Scale-out System Simulation in the Pub-

lic Cloud. In Proc. of the 45th annual Intl. Symp. on ComputerArchitecture

(ISCA-45).

[39] Jure Leskovec and Andrej Krevl. 2014. SNAP datasets: Stanford large

network dataset collection. http://snap.stanford.edu/data.

[40] Zhaoshi Li, Leibo Liu, Yangdong Deng, Shouyi Yin, Yao Wang, and

Shaojun Wei. 2017. Aggressive Pipelining of Irregular Applications

on Reconfigurable Hardware. In Proc. of the 44th annual Intl. Symp. on

Computer Architecture (ISCA-44).

[41] Kyle Locke. 2011. Parameterizable Content-Addressable Memory. Xil-

inx Application Note (2011).

[42] Xiaoyu Ma, Dan Zhang, and Derek Chiou. 2017. FPGA-Accelerated

Transactional Execution of Graph Workloads. In Proc. of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate Ar-

rays (FPGA).

[43] Steve Margerm, Amirali Sharifian, Apala Guha Guha, and Gilles Shri-

raman, Arrvindh Shriraman Pokam. 2018. TAPAS: Generating Par-

allel Accelerators from Parallel Programs. In Proc. of the 51st annual

IEEE/ACM intl. symp. on Microarchitecture (MICRO-51).

[44] UlrichMeyer and Peter Sanders. 1998. Delta-Stepping: A Parallel Single

Source Shortest Path Algorithm. In Proc. of the 6th Annual European

Symposium on Algorithms (ESA).

[45] Vincent Mirian and Paul Chow. 2012. FCache: A System for Cache

Coherent Processing on FPGAs. In Proc. of the 2012 ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays (FPGA).

[46] Kevin Moore, Jayaram Bobba, Michelle Moravan, Mark D. Hill, and

David Wood. 2006. LogTM: Log-based transactional memory. In Proc.

of the 12th IEEE intl. symp. on High Performance Computer Architecture

(HPCA-12).

[47] Njuguna Njoroge, Jared Casper, Sewook Wee, Yuriy Teslyar, Daxia

Ge, Christos Kozyrakis, and Kunle Olukotun. 2007. ATLAS: A Chip-

multiprocessor with Transactional Memory Support. In Proc. of the

conf. on Design, Automation and Test in Europe (DATE).

[48] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan

Sankaralingam. 2017. Stream-Dataflow Acceleration. In Proc. of the

44th annual Intl. Symp. on Computer Architecture (ISCA-44).

[49] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov,

John Greth, Steven Burns, and Ozcan Ozturk. 2016. Energy Efficient

Architecture for Graph Analytics Accelerators. In Proc. of the 43rd

annual Intl. Symp. on Computer Architecture (ISCA-43).

[50] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,

M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew

Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prount-

zos, and Xin Sui. 2011. The tao of parallelism in algorithms. In Proc. of

the ACM SIGPLAN Conf. on Programming Language Design and Imple-

mentation (PLDI).

[51] Shafiur Rahman, Nael Abu-Ghazaleh, and Walid Najjar. 2017. PDES-

A: A Parallel Discrete Event Simulation Accelerator for FPGAs. In

Proc. of the ACM SIGSIM Conference on Principles of Advanced Discrete

Simulation (PADS).

[52] Ravi Rajwar and James R Goodman. 2002. Transactional lock-free

execution of lock-based programs. In Proc. of the 10th intl. conf. on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS-X).

[53] Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti Sarangi, James

Tuck, and Josep Torrellas. 2005. Thread-level speculation on a CMP

can be energy efficient. In Proc. of the Intl. Conf. on Supercomputing

(ICS’05).

[54] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2015. Ef-

ficient GPU Synchronization without Scopes: Saying No to Complex

Consistency Models. In Proc. of the 48th annual IEEE/ACM intl. symp.

on Microarchitecture (MICRO-48).

[55] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. 1995. Multi-

scalar processors. In Proc. of the 22nd annual Intl. Symp. on Computer

Architecture (ISCA-22).

[56] SpinalHDL. 2018. A FPGA friendly 32 bit RISC-V CPU implementation.

https://github.com/SpinalHDL/VexRiscv.

[57] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C.

Mowry. 2000. A scalable approach to thread-level speculation. In Proc.

of the 27th annual Intl. Symp. on Computer Architecture (ISCA-27).

[58] Suvinay Subramanian. 2018. Architectural Techniques to Unlock Ordered

and Nested Speculative Parallelism. Ph.D. Dissertation. Massachusetts

Institute of Technology.

[59] Suvinay Subramanian,Mark C. Jeffrey,Maleen Abeydeera,Hyun Ryong

Lee, Victor A. Ying, Joel Emer, and Daniel Sanchez. 2017. Fractal: An

execution model for fine-grain nested speculative parallelism. In Proc.

of the 44th annual Intl. Symp. on Computer Architecture (ISCA-44).

[60] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry

Cook, David Patterson, and Krste Asanović. 2010. RAMP gold: an

FPGA-based architecture simulator for multiprocessors. In Proc. of the

47th Design Automation Conf. (DAC-47).

[61] John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christo-

foros Kozyrakis, James C Hoe, Derek Chiou, and Krste Asanovic. 2007.

RAMP: Research accelerator for multiple processors. IEEE Micro 27, 2

(2007).

[62] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar, Daxia Ge,

Christos Kozyrakis, and Kunle Olukotun. 2007. A Practical FPGA-

based Framework for Novel CMP Research. In Proceedings of the 2007

ACM/SIGDA 15th International Symposium on Field Programmable Gate

Arrays (FPGA).

[63] H. J. Yang, K. Fleming, M. Adler, and J. Emer. 2014. LEAP Shared

Memories: Automating the Construction of FPGA Coherent Memories.

In Proc. of the Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM).

[64] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris

Volos,Mark D. Hill,MichaelM. Swift, andDavid A.Wood. 2007. LogTM-

SE: Decoupling hardware transactional memory from caches. In Proc.

of the 13th IEEE intl. symp. on High Performance Computer Architecture

(HPCA-13).

[65] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. 1998. Hardware

for speculative run-time parallelization in distributed shared-memory

multiprocessors. In Proc. of the 4th IEEE intl. symp. on High Performance

Computer Architecture (HPCA-4).

16

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 A case for speculative parallelism
	2.2 Types of parallelism in prior accelerators
	2.3 Prior speculative architectures rely on cache coherence
	2.4 Reasons for speculative execution

	3 The SLOT Execution Model
	3.1 Spatially Located Ordered Tasks
	3.2 Mapping multi-object computations to SLOT
	3.3 Discussion

	4 Chronos System
	4.1 Design requirements and techniques
	4.2 Distributed ordered speculation
	4.3 Task unit design
	4.4 Chronos customization

	5 Methodology
	5.1 PE implementations

	6 Evaluation
	6.1 Application analysis
	6.2 Chronos on non-speculative algorithms
	6.3 Analysis of system efficiency
	6.4 Analysis of implementation costs

	7 Additional Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

	References

