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Abstract

We present Chronos, a framework to build accelerators for

applications with speculative parallelism. These applications

consist of atomic tasks, sometimes with order constraints,

and need speculative execution to extract parallelism. Prior

work extended conventional multicores to support specu-

lative parallelism, but these prior architectures are a poor

match for accelerators because they rely on cache coherence

and add non-trivial hardware to detect conflicts among tasks.

Chronos instead relies on a novel execution model, Spa-

tially Located Ordered Tasks (SLOT), that uses order as the

only synchronization mechanism and limits task accesses

to a single read-write object. This simplification avoids the

need for cache coherence and makes speculative execution

cheap and distributed. Chronos abstracts the complexities of

speculative parallelism, making accelerator design easy.

We develop an FPGA implementation of Chronos and use it

to build accelerators for four challenging applications. When

run on commodity AWS FPGA instances, these accelerators

outperform state-of-the-art software versions running on a

higher-priced multicore instance by 3.5× to 15.3×.

CCS Concepts • Computer systems organization →

Multicore architectures.
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1 Introduction

The impending end of Moore’s Law is forcing architectures

to rely on application- or domain-specific accelerators to

improve performance. Accelerators require large amounts of

parallelism. Consequently, prior accelerators have focused

on domains where parallelism is easy to exploit, such as deep

learning [12, 13, 37], and rely on conventional parallelization

techniques, such as data-parallel or dataflow execution [48].

However,many applications do not have such easy-to-extract

parallelism, and have remained off-limits to accelerators.

In this paper, we focus on building accelerators for appli-

cations that need speculative execution to extract parallelism.

These applications consist of tasks that are created dynami-

cally and operate on shared data, and where operations on

shared data must happen in a certain order for execution to

be correct. Order constraints may arise from the need to pre-

serve atomicity (e.g., operations across tasks must be ordered

to not interleave with each other), or from the need to order

tasks due to application semantics (e.g., tasks dequeued from

a priority queue). Enforcing these order constraints a priori,

before running each task, is often too costly and/or limits

parallelism. Thus, it is preferable to run tasks speculatively

and check that they followed a correct order a posteriori.

For instance, consider discrete event simulation, which has

wide applicability in simulating digital circuits, networked

systems, and physical processes. Discrete event simulation

consists of dynamically created tasks that may operate on the

same simulated object and must run in the correct simulated

time order. Running these tasks non-speculatively requires

excessive synchronization and limits parallelism [10, 28].

Running tasks speculatively is far more profitable [32, 34].

To make speculation efficient, prior work has proposed

hardware support for speculation, including Thread-Level

Speculation [21, 34, 53, 55, 57], and Hardware Transactional

Memory [1, 6, 9, 20, 26, 29, 30, 46]. Unfortunately, prior spec-

ulative architectures are hard to apply to accelerators, be-

cause they all rely on coherent cache hierarchies to perform

speculative execution, modifying the coherence protocol to

detect conflicts among tasks. This is a natural match for mul-

ticores, which already have a coherence protocol. But such

a solution would be onerous and complex for an acceler-

ator: it would require implementing coherent caches and

speculation-tracking structures that, while a minor overhead

for general-purpose cores, are too expensive for small, spe-

cialized ones.
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To address this challenge, in this paper we present a hard-

ware system that implements speculative execution without

using coherence. Instead, this system follows a data-centric ap-

proach, where shared data is mapped across the system; work

is divided into small tasks that access at most one shared

object each; and tasks are always sent to run at the place

where their data is mapped. To enforce atomicity across task

groups, or other order constraints, tasks are ordered through

timestamps (these are program-specified logical timestamps

completely decoupled from physical time).

We formalize these semantics through the Spatially Located

Ordered Tasks (SLOT) execution model. In SLOT, all work

happens through tasks that are ordered using timestamps. A

task may create children tasks ordered after them, and parent

tasks communicate input values to children directly. Each

task must operate on a single read-write object, which must

be declared when the task is created (besides this restriction,

tasks may access an arbitrary amount of read-only data).

We leverage SLOT to implement Chronos, a novel acceler-

ation framework for speculative algorithms. Each Chronos

instance consists of spatially distributed tiles. Each tile has

multiple processing elements (PEs) that execute tasks, and a

local cache. Each tile also implements hardware to queue

tasks, dispatch them to PEs, track their speculative state, and

abort or commit them in timestamp order. Chronos maps

read-write objects across tiles, and sends each newly created

task to the tile where its read-write object is mapped. This

enables completely distributed operation without a cache

coherence protocol.

Chronos provides a common framework to accelerate spec-

ulative algorithms, abstracting away the complexities of task

management and speculative execution. Developers need

only express their application as SLOT tasks coded against a

high-level API. To achieve high performance, Chronos sup-

ports two types of customization. First, applications can cus-

tomize the PEs, which can be specified in RTL or described

using High-Level Synthesis (HLS). PEs can also be general-

purpose cores, so developers can start with a software im-

plementation and specialize tasks as needed to achieve high

performance. Second, Chronos lets applications turn off un-

needed features. For example, if the algorithm is naturally

resilient to out-of-orderwrites (e.g., if updates aremonotonic),

applications can disable rollback on misspeculation.

We evaluate Chronos by implementing it on an FPGA and

use it to implement accelerators for several graph analytics

and simulation applications. We use four hard-to-parallelize

applications with speculative parallelism. We deploy these ac-

celerators on commodity AWS FPGA instances. We compare

these accelerators with state-of-the-art software implemen-

tations of these applications running on a higher-priced 40-

thread multicore instance. Chronos achieves speedups of up

to 15.3× and gmean 5.4× over the software versions. Chronos

outperforms the multicore baseline despite running at a 19×

slower frequency, because it exploits orders of magnitude

PrioQueue <Time, GateInput > eventQueue;

void simToggle(Time time, GateInput input) {
Gate gate = input.gate;
bool outToggled = gate.simulateToggle(input);
if (outToggled) {
// Toggle all inputs connected to this gate
for (GateInput i : gate.connectedInputs()) {
Time nextTime = time + gate.delay(input, i);
eventQueue.enqueue(nextTime, i);

}}}

... // Enqueue initial events (input waveforms)
// Main loop
while (!eventQueue.empty()) {
(time, input) = eventQueue.dequeue();
simToggle(time, input);
}

Listing 1. Sequential implementation of des.

more parallelism. These results show that FPGAs are a prac-

tical and cost-effective way to accelerate applications with

speculative parallelism.

In summary, this paper contributes:

• SLOT, the first execution model that supports speculative

parallelism without cache coherence (Sec. 3).

• Chronos, a customizable framework that implements the

SLOT execution model and makes it easy to accelerate

applications with speculative parallelism (Sec. 4).

• A detailed evaluation of Chronos using commodity FPGAs

in the cloud that demonstrates significant speedups for sev-

eral challenging applications, analyzes system efficiency,

and quantifies the benefits of customization (Sec. 6).

Our Chronos implementation is open-source and available

at https://chronos-arch.csail.mit.edu.

2 Motivation and Background

In this section we first present a case for speculative paral-

lelism through a simple application, discrete event simulation

(des). We then review the types of parallelism exploited by

prior accelerators, and see thatmost do not exploit speculative

parallelism. Finally,we review prior speculative architectures,

and use des to identify a key simplification that these archi-

tectures have missed: support for task order avoids the need

for coherence-based conflict detection, motivating SLOT.

2.1 A case for speculative parallelism

We illustrate the utility of speculative parallelism through

des, a discrete event simulator for digital circuits [28]. List-

ing 1 shows code for a sequential implementation of des.

Each des task processes a gate input toggling at a particular

time. If this input toggle causes the gate’s output to toggle,

the task enqueues events for all inputs connected to that out-

put at the appropriate times. The sequential implementation

processes one task at a time in simulated time order, and

maintains the set of tasks to process in a priority queue.

Fig. 1a shows a circuit with input waveforms and prop-

agation delays, and Fig. 1b shows the task diagram of an

execution of des on this circuit. Arrows between tasks show
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LUTs (K) 895 17 12 0.5 12 7 11 4 10 7

FFs (K) 1790 6 8 0.3 12 7 6 4 10 8

BRAM 1680 38 5 - 72 - - - - -

URAM 800 - - - 64 - - - - -

Table 4. Per-tile FPGA resource consumption for each of the

framework components and application-specific PEs

frequency, we throttle DDR memory bandwidth by 1/16th,

since off-chip bandwidth would not change with frequency.

We find all applications except color are not bandwidth-

bound and the 2 GHz ASIC achieves a 16× performance im-

provement over the 125MHz FPGA (the FPGA prototype has

a memory bandwidth of about 50GB/s). For color, the im-

provement is limited to 13.7×. Thus, compared to the CPU

baseline, an ASIC RISC-V Chronos would achieve speedups

ranging from 4.7× (color) to 244.8× (des). Compared to

having specialized PEs on an FPGA, speedups would range

from 1.5× (sssp) to 3.7× (color).

6.4 Analysis of implementation costs

Lines of code: Chronos makes it simple to design custom

accelerators to extract speculative parallelism. The Chronos

framework components take over 20000 lines of SystemVer-

ilog. By contrast, each application is much simpler: sssp

takes just 100 lines, des, maxflow, and color around 300

lines, and astar is around 600 lines.

FPGA utilization: Table 4 shows the FPGA resource con-

sumption of each framework component and PE. Overall,

we observe that, while the framework components consume

substantial resources, they are comparable to those of PEs,

which are very simple.

7 Additional Related Work

Transactional memory on accelerators: Prior work has

demonstrated HTM systems on FPGAs [8, 47]. However, they

do not target application acceleration using FPGAs, and in-

stead focus on implementing a prototypewith soft coreswhere

conflict detection is achieved by augmenting a coherence pro-

tocol. Unfortunately, for high-throughput FPGA accelerators,

the overheads of a coherence protocol are not desirable.

Ma et al. [42] is the only system that targets FPGA ac-

celeration using TM. However, they do not use an on-chip

cache, and hence suffers from reduced performance. Further,

while they use priority scheduling to reduce useless work,

they do not support strict order constraints among tasks, only

unordered transactions.

Kilo TM [18, 19] proposes to implement HTM on GPUs

without using cache coherence. Instead, it uses value-based

conflict detection, relying on a post-completion validation

phase where read values are re-read to detect conflicts. This

technique is expensive (e.g., requiring logging of read val-

ues) and is restricted to lazy version management, which

makes it hard to support speculative forwarding, a key fea-

ture for Chronos.

Accelerators for graph algorithms:Numerous otherwork

have also proposed accelerators for graph algorithms, both

for FPGA [14, 40] and ASIC [23, 49]. However, none of them

support strict task ordering, and as a result resort to less

work-efficient algorithms like Bellman-Ford for sssp.

Simulation accelerators: Prior work in parallel discrete

event simulation has proposed accelerators for different as-

pects of the Time Warp protocol. The Rollback chip [17] ac-

celerates the speculative versioning and rollback process, but

leaves other aspects such as conflict detection to software.

Rahman et al. [51] implement a discrete event simulation

accelerator on an FPGA. This uses a centralized design that

shows why Chronos’s distributed, high-throughput approach

is crucial: its single event queue saturates around 0.15 events

per cycle, a 50× lower task throughput than a 16-tile Chronos

system. Moreover, Rahman et al. evaluated their design using

a microbenchmark with long tasks and do not explore how

to accelerate actual applications. Hence, they do not consider

subtle issues that arise when doing so, such as dealing with

limited on-chip queue capacity.

FPGAs have also been used to accelerate architectural sim-

ulation. RAMP [60, 61] simulates multicore systems, and

FireSim [38] simulates large, scale-out clusters. These sys-

tems use non-speculative CMB-style simulation, which may

limit parallelism,and could benefit fromChronos’s techniques.

8 Conclusion

We have presented Chronos, the first framework to build

accelerators for applications with ordered speculative par-

allelism. Chronos makes speculative execution cheap by re-

lying on SLOT, a new execution model that limits tasks to

access a single read-write object, avoiding the need for cache

coherence.

We implement Chronos on an FPGA and use it to acceler-

ate several challenging applications in graph analytics and

simulation. We deploy these accelerators on commodity AWS

FPGAs, where we demonstrate 5.4× gmean speedup for the

same applications over their software-parallel versions.
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A Artifact Appendix

A.1 Abstract

Our artifact consists of the source code for the Chronos FPGA

acceleration framework; pre-compiled FPGA images for our

evaluated configurations (to facilitate a quick evaluation);

and scripts to set up the development environment, compile

the images from source code, run the experiments in the

paper, and regenerate the graphs.

This appendix describes how to use Chronos to reproduce

the paper’s results, and explains how to set up and run other

Chronos configurations and experiments. All experiments

are run on the Amazon AWS f1.2xlarge instance, configured

using the Amazon-provided FPGA Developer AMI.

A.2 Artifact check-list (meta-information)

• Compilation: Xilinx Vivado, GNU RISC-V embedded GCC com-

piler.

• Run-time environment: Amazon AWS FPGA instance.

• Hardware: Xilinx UltraScale VU9P.

• How much disk space required (approximately)?: 2GB.

• How much time is needed to prepare workflow (approxi-

mately)?: Approx. 1 hour.

• How much time is needed to complete experiments (ap-

proximately)?: 2weeks to reproduce the full results from scratch,

or 2 hours if using the precompiled images. The tutorials (Sec. A.7)

take about 2 days each, or 2 hours if using precompiled images.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: GPL v2.

• Archived (provide DOI)?: 10.5281/zenodo.3558760

A.3 Description

A.3.1 How delivered

Our artifact can be downloaded from https://doi.org/10.5281/

zenodo.3558760 as a .zip file.

A.3.2 Hardware dependencies

Chronos is designed to run on an Amazon AWS f1.2xlarge

instance configured with the Amazon FPGA Developer AMI.

A.3.3 Software dependencies

The main dependence is Xilinx Vivado 2018.2, which comes

with the FPGA Developer AMI. The RISC-V Chronos variant

relies on the GNU RISC-V embedded GCC compiler.

A.3.4 Data sets

For small, testing runs, we include scripts to generate syn-

thetic datasets. The experiments in the paper use large, pub-

licly available datasets from other projects. Since datasets are

large and publicly available, they are not included directly

in the artifact code. Instead, the artifact includes scripts to

download these datasets. These datasets are also archived,

with the DOI 10.5281/zenodo.3563178.

A.4 Installation

1. Launch an AWS f1.2xlarge instance using the Amazon

FPGA Developer AMI. Log into the instance.

2. Extract the Chronos artifact .zip file, and navigate to its

base directory.

3. Run source install.sh. This will clone the Amazon

FPGA SDK repository and install the necessary drivers.

4. Run aws configure to set up the instance with your

AWS credentials.

5. (Optional) Install the GNU RISC-V embedded GCC com-

piler within the instance (https://xpack.github.io/riscv-

none-embed-gcc/). This step is optional because the dis-

tribution already includes pre-compiled RISC-V binaries

necessary for the workflow.

A.5 Experiment workflow

We provide an automated workflow to validate the main re-

sults in the paper from scratch. Note that this process involves

synthesizing multiple Chronos instances for each application,

a process that takes about two weeks to complete.

To facilitate a quick evaluation, we also provide precom-

piled FPGA images of the Chronos instances; when using

these images, reproducing the results takes about two hours.

The cl_chronos/validation/scripts/ directory contains

the necessary scripts to validate the results from the paper.

The full process is explained in comments in the master script

run_validation.py.

To run all experiments from scratch, run:

python run_validation.py

To run all experiments with precompiled images, run:

python run_validation.py --precompiled

This will download a list of precompiled image IDs from a

shared S3 bucket and run the rest of the workflow.

Sec. A.7 includes two smaller tutorials using Chronos,

which can be completed in about 2 hours.

A.6 Evaluation and expected result

Running run_validation.py would generate all evaluation

plots (Figures 10-14).

A.7 Experiment customization

This section provides two smaller tutorials on using Chronos.

First, we illustrate the SLOT programming model using a

sample application running on a Chronos instance with RISC-

V soft cores. Second, we describe how to generate Chronos

instances with specialized cores.

Before starting either tutorial, run source aws_setup.sh to

configure the necessary environment variables and to define

the $CL_DIR environment variable to point to the cl_chronos

subdirectory. Please see README.txt here for more detailed

information, including topics not covered in this workflow,

such as how to simulate Chronos RTL and how to debug

Chronos.

13



A.7.1 Tutorial 1: Chronos using RISC-V soft cores

Step 1: Generate a test graph.

The graph_gen tool can be used to generate test graphs to

test our implementation of sssp.

cd $CL_DIR/tools/graph_gen

make

./graph_gen sssp grid 20

This generates a 20x20 grid graph with random weights.

Step 2: Synthesize a Chronos image with RISC-V soft cores.

The output of this step is an Amazon FPGA Image ID

(AGFI-ID) that can loaded into the FPGA. This step will take

about 8 hours to complete. If you’d like to skip this step, you

can instead use the pre-synthesized FPGA image with the

AGFI-ID (agfi-02159d0614fb731a9).

1. Configure Chronos to use RISC-V cores.

cd $CL_DIR/design/

./scripts/gen_cores.py riscv

2. Run synthesis

cd $CL_DIR/build/scripts

./aws_build_dcp_from_cl.sh

This script launches a Vivado synthesis/place-and-route

job. The output of this process is a placed-and-routed

design, produced at:

$CL_DIR/build/checkpoints/to_aws/

<timestamp>.Developer_CL.tar

3. Create an FPGA image. (The commands below follow

the standard instructions on how to generate a runnable

FPGA image from the placed-and-routed design, at https:

//github.com/aws/aws-fpga/blob/master/hdk/README.

md#step3.)

First, copy the design file to a location in Amazon S3:

aws s3 cp $CL_DIR/build/checkpoints/to_aws/

<timestamp>.Developer_CL.tar <s3_location>.tar

Then, create the FPGA image

aws ec2 create-fpga-image --name <name>

--input-storage-location Bucket=<s3_bucket>,

Key=<location_in_s3> --logs-storage-location

Bucket=<s3_bucket_name>, Key=<location_in_s3>

Running this command generates an AGFI-ID that can

be used to load the image into the FPGA.

Step 3: Compile sssp RISC-V code.

This step requires the RISC-V embedded GCC compiler.

You can skip this step by using the precompiled binaries from

$CL_DIR/riscv-code/binaries in the next step.

To build sssp from source, run:

cd $CL_DIR/riscv-code/sssp

make

Step 4: Run sssp on the FPGA.

First load the generated image into the FPGA (This com-

mand may have to be run twice the first time it is loaded).

sudo fpga-load-local-image -S 0 -I <agfi-id>

Next, compile and run the test_chronos program that

transfers the input graph to the FPGA, collects results, and

analyzes performance.

cd $CL_DIR/software/runtime

make

./test_chronos --n_tiles=1 sssp <sssp_input_file>

<sssp_riscv_binary>

A.7.2 Tutorial 2: Chronos with specialized cores

The RTL code for specialized applications can be found in

$CL_DIR/design/apps/. For this example, we will again use

sssp; other applications are similar.

To generate a Chronos instance with these cores, run:

./scripts/gen_cores.py sssp

The rest of the steps are same as in Tutorial 1, except that

the test_chronos script does not take a <sssp_riscv_binary>

argument.

A precompiled sssp Chronos instance is also available

with the AGFI-ID = agfi-0d3750b6360762108.

A.7.3 Customized configurations and applications

CustomizingChronos parameters:The file config.sv con-

tains the configuration parameters of Chronos. These include

the number of tiles, the sizes for various queues and cache

parameters.

Porting new applications: The first step in porting a new

application is to break the application down into SLOT tasks

(single-object tasks ordered using timestamps). Initially, these

tasks can be expressed as software functions and run on a

Chronos instance with RISC-V cores.

Once the SLOT implementation is verified, a specialized

core can be designed for each task. Please refer to the script

$CL_DIR/design/scripts/gen_cores.py on how to integrate

new specialized cores into the Chronos workflow.
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