
Thou Shalt Discuss Security: Quantifying the Impacts of
Instructions to RFC Authors

Justin Whitaker
North Carolina State University

jdwhitak@ncsu.edu

Sathvik Prasad
North Carolina State University

snprasad@ncsu.edu

Bradley Reaves
North Carolina State University

bgreaves@ncsu.edu

William Enck
North Carolina State University

whenck@ncsu.edu

ABSTRACT

The importance of secure development of new technologies is un-

questioned, yet the best methods to achieve this goal are far from

certain. A key issue is that while significant effort is given to evalu-

ating the outcomes of development (e.g., security of a given project),

it is far more difficult to determine what organizational practices

result in secure projects. In this paper, we quantitatively examine

efforts to improve the consideration of security in Requests for Com-

ments (RFCs)Ð the design documents for the Internet and many

related systems Ð through the mandates and guidelines issued to

RFC authors. We begin by identifying six metrics that quantify the

quantity and quality of security informative content. We then apply

these metrics longitudinally over 8,437 documents and 49 years

of development to determine whether guidance to RFC authors

changed these security metrics in later documents. We find that

even a simply worded Ð but effectively enforced Ð mandate to

explicitly consider security created a significant effect in increased

discussion and topic coverage of security content both in and out-

side of a mandated security considerations section. We find that

later guidelines with more detailed advice on security also improve

both volume and quality of security informative content in RFCs.

Our work demonstrates that even modest amounts of guidance can

correlate to significant improvements in security focus in RFCs, in-

dicating a promising approach for other network standards bodies.

CCS CONCEPTS

· Networks → Security protocols; · Security and privacy →

Usability in security and privacy.

KEYWORDS

Requests for Comments; Internet Standards; Network Security; Text

Analysis

ACM Reference Format:

Justin Whitaker, Sathvik Prasad, Bradley Reaves, and William Enck. 2019.

Thou Shalt Discuss Security: Quantifying the Impacts of Instructions to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSR’19, November 11, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6832-2/19/11. . . $15.00
https://doi.org/10.1145/3338500.3360332

RFC Authors. In 5th Security Standardisation Research Workshop (SSR’19),

November 11, 2019, London, United Kingdom. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3338500.3360332

1 INTRODUCTION

The security of networks and networked systems is of paramount

importance, and it is commonly recognized that trustworthy sys-

tems do not occur by accident. Rather, security must be considered

from the very beginning of a project in order to prevent major

errors [57]. Accordingly, efforts like the Security Development Life-

cycle provide extensive guidance on the process by which secure

software should be designed and implemented to improve security.

While prior work has sought to understand how the software de-

velopment process contributes to security of completed projects [3],

to the best of our knowledge such questions have not been asked of

network standards. This is a vast oversight. Not only are network

standards substantial development undertakings in their own right,

network protocols are not as easily patched or replaced and can be

operational for decades. For example, secure extensions for DNS

and BGP have existed for many years, but are rarely used [8, 23].

In this paper, we seek to understand how instructions to network

standard authors affect network security through the lens of Re-

quest for Comments (RFC) documents. Requests for Comments are

used to define new network protocols, enhance existing protocols,

and codify best practices. Not only are these documents freely avail-

able, but they are developed transparently in public meetings and

through public online venues (e.g., mailing lists). The availability of

these documents Ð with the first dating back to 1969 Ð provides an

unprecedented window through which to longitudinally analyze

security consideration in network standard designs.

Unlike the secure development lifecycle, which establishes a

sophisticated process model for organizations to follow, published

guidance to RFC writers is limited. It primarily consists of two

critical interventions Ð a mandate to include a distinct łsecurity

considerationsž section and a set of guidelines for that section. As

a result, it is unclear how much improvement in security coverage

we should realistically expect from such minimal guidance. We seek

to quantitatively evaluate the effects of this guidance by measuring

the security informative content that appears in RFCs before and

after the implementation of the mandate and guidelines.

We make the following contributions:

• Define Quantitative Metrics: We define six metrics to

measure the security content and quality of RFCs. Among

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

57

our 16 key findings, we were surprised to learn that a sim-

ple mandate to discuss security in a dedicated section led

to a substantial increase in both the size and quality of the

mandated section and the amount of security discussion out-

side the mandated section. The later introduction of more

detailed guidelines also had a significant positive effect.

• Identify Security Informative Text: We define łsecurity

informativež content, show that experts can label security

informative content with high interrater reliability, and cre-

ate and evaluate a machine learning classifier to identify

security informative content.

• ExamineDevelopment Process:We analyze how security

coverage changes over the course of developing RFC stan-

dards. We learn that successfully published draft standards

tend to have longer security considerations sections, discuss

a greater number of topics, and include more security discus-

sion throughout the document. We also learn that roughly

half of RFCs have a low amount of security content added

initially that remains low, while the other half see a gradual

increase in security content as the draft nears completion.

This paper focuses on a quantitative analysis of RFCs. We recog-

nize that many factors Ð including organizational culture Ð also im-

pact security outcomes, yet are beyond the visibility of researchers.

Nevertheless, by performing the first security analyses of the net-

work standards development, we take the first steps to better un-

derstanding this crucial issue.

The paper is organized as follows. In Section 2, we discuss the

background of RFCs and their publishing organizations. Section

3 describes our metrics and other aspects of our methodology. In

Section 4, we develop and evaluate a model that classifies security-

informative paragraphs. Section 5 describes our analysis of security

considerations sections, while Section 6 describes our analysis of all

security informative content. In Section 7, we conduct case studies

on draft standards, examples provided by the RFC 3552 łSecurity

Considerationsž section guidelines, and a known vulnerable RFC.

Section 8 provides additional discussion, and Section 9 provides

recommendations for future standards writers. Section 10 provides

a discussion of related work, while Section 11 concludes.

2 BACKGROUND

Requests for Comments (RFCs) started as informal memos between

Internet researchers. The first, Host Software, was published in April

1969 [10] Ð the same year ARPANET was established. RFCs have

evolved from their nascent form to become structured commu-

niques for relaying protocol standards and other information to

the Internet technology community. They are technical documents

used to specify new Internet protocols, describe or update existing

protocols, and promote current best practices.

RFCs are numbered in their sequence of publication, though

some RFC numbers have never been issued. They are authored,

reviewed, and published by Internet researchers and engineers in

streams for the Internet Architecture Board (IAB), Internet En-

gineering Task Force (IETF), and Internet Research Task Force

(IRTF). There is also a stream for independent authors to submit

RFCs and a legacy stream for older RFCs. RFCs follow a particu-

lar submission process depending on their stream, are then edited

by the RFC Editor, and finally returned to the authors for final

review before being published [2]. RFCs additionally have a status

which is either łProposed Standard,ž łInformational,ž łUnknown,ž

łExperimental,ž łBest Current Practice,ž łDraft Standard,ž łInter-

net Standard,ž or łHistoric.ž Most RFCs are Proposed Standards,

followed by Informational. RFCs that specify protocol standards

begin as Proposed Standards, are matured in a series of Draft Stan-

dards, and finally become Internet Standards. Revisions of Internet

Standards start the process again as Proposed Standards.

RFCs contain natural language text as well as code examples

and figures conveyed in ASCII art. Though they were originally

very free-form, RFCs are now highly structured. There are style

conventions which much be followed for language, punctuation,

capitalization, citations, and abbreviations, as well as a prescribed

structure [16]. Currently, RFCs must contain a first-page header,

title, abstract, łStatus of This Memož, copyright notice, table of

contents, body, and łAuthor’s Addressž sections. The body must

contain an łIntroductionž section and a łSecurity Considerationsž

section. If applicable, RFCs are expected to contain łRequirements

Language,ž łIANA Considerations,ž łInternationalization Consider-

ations,ž and łReferencesž sections as well.

The łSecurity Considerationsž section (SCS) is the prime section

for the security impacts of an RFC. The SCS is the designated area

for authors to discuss security issues relevant to the RFC. The first

RFC to include an SCS was RFC 1060 [47], published in 1990. The

section ironically read:

Security issues are not discussed in this memo. [47]

After SCSs first appeared with RFC 1060, they fast became a com-

mon feature of RFCs, but were included on a purely voluntary

basis. SCSs were made mandatory by RFC 1543, Instructions to RFC

Authors [42], which was published in October 1993. We refer to

this RFC as themandate in this paper. The SCS was one of many

sections enumerated in the RFC to now be required. The mandate

for łSecurity Considerationsž sections, in its entirety, read:

All RFCs must contain a section near the end of the

document that discusses the security considerations of

the protocol or procedures that are the main topic of the

RFC. [42]

This was later considered insufficient guidance on how to discuss

security. Although there was an updated Instructions to RFC Au-

thors [43] in 1997, its instructions on SCSs remained the same.

Ten years after RFC 1543, in July 2003, the second milestone RFC

regarding SCSs was published. This was RFC 3552, Guidelines for

Writing RFC Text on Security Considerations [46]. We refer to this

RFC as the guidelines. These were written in response to a per-

ceived deficiency in the security discussion of prior RFCs. RFC 3552

provided additional instructions on writing SCSs. It urged authors

to conduct thorough threat modeling prior to writing their RFCs,

and specifically required authors to discuss eavesdropping, replay,

message insertion, deletion, modification, man-in-the-middle, and

denial-of-service attacks. If any of these attacks were out of scope,

it required authors to describe why. The guidelines required an as-

sessment of authentication methods, assumptions, and lower level

services required by the protocol.

RFC 3552 also gave a crash course in security. It discussed the

goals of security (confidentiality, integrity, and availability) and

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

58

additional properties such as non-repudiation. The RFC gave an

overview of the Internet’s threat model, including active and passive

adversaries. It specified types of attacks, such as man-in-the-middle

attacks, and described security mechanisms, technologies, and pro-

tocols. This thorough treatment made the RFC 43 pages in total.

Lastly, the guidelines provided two SCSs that were deemed ex-

emplary. The first was a hypothetical further revision to the SMTP

update in RFC 2821 The revision added inline notes and supple-

mented the SMTP update’s communication security discussion. The

second was from the Virtual Router Redundancy Protocol standard

in RFC 2338 with added inline notes. These example SCSs will be

the subject of a case study in section 7. RFCs are the cornerstone

of the development of Internet technologies. Because of this, it is

important that they include high quality security discussion. In

subsequent sections, we will analyze the effects of time, the RFC

1543 SCS mandate, and the RFC 3552 SCS guidelines on metrics

quantifying security discussion in RFCs.

3 METHODOLOGY

In this paper, we seek to characterize both the security content

of RFCs and the effect of the mandate and guideline RFCs on se-

curity content in RFCs. In this section, we begin by defining the

metrics we use to quantitatively measure this security content. To

aid this effort, we also provide a novel definition of łsecurity infor-

mativež text. We then describe the RFC data we use in our study,

and conclude with an overview of the statistical procedures we use

to characterize our findings. The following section describes the cre-

ation and evaluation of a classifier to identify security informative

paragraphs, and later sections describe our findings.

3.1 Security Metrics

We aim to analyze what factors impact an SCS being included in an

RFC, how long RFCs are, the breadth of their discussion, and how

much security discussion occurs in them. We also want to identify

how much text in both the SCS and the remainder of the RFC is

security discussion. To quantify security discussion in RFCs, we

have developed six metrics:

SCS Presence measures whether an RFC has a clearly labeled SCS.

This metric is binary.

SCS Word Count measures the length of SCS.

SCS Topic Coverage measures how many of 10 topics identified

in the SCS Guidelines are discussed in the SCS based on the

presence of keywords.

SIP Word Count measures the word count of all security informa-

tive (SI) content in the RFC, regardless of whether it is inside

the SCS. We discuss our definition of łsecurity informativež

in detail later in this section.

Compartmentalization indicates the ratio of SI content within

the SCS to the total amount of SI content. For example, a

compartmentalization of 40% indicates that 40% of all SI

content is inside the SCS, while 60% falls outside the SCS.

Density measures how much of the SCS content is actually se-

curity informative. It is the ratio of SI content in the SCS

to total content in the SCS. For example, a density of 80%

indicates that 20% of the content in the SCS is not SI, while

the remaining 80% is SI.

The latter three metrics rely on a determination of whether text

is łsecurity informative.ž In this paper, we make this determination

on a paragraph level and refer specifically to security informative

paragraphs (SIPs). We use a machine learning classifier, discussed

in Section 4, to label RFC paragraphs as security informative. Be-

cause of the importance of context, lower levels of granularity

(e.g., sentence-level) are more difficult to obtain (and would require

solving decades-old problems in NLP), and are ultimately no more

useful for our purposes than paragraph-level metrics.

Our definition of łsecurity informativež text is:

Text that a security expert would recognize as being

intended to alert the reader to a potential security issue

or concern.

Discussion of privacy, security protocols, security tools such as

firewalls, adversaries, threat models, insecure use cases or configura-

tions, authentication, and authorization are all security informative.

Because of this, there will inherently be more SIPs in an RFC which

discusses a security topic. We acknowledge that this definition is

necessarily subjective, and we chose this definition after rejecting

several alternatives, including a definition of łsecurity relevantž

text. Because any functionality or implementation could have secu-

rity implications (whether obvious or not at time of creation), this

latter definition was too imprecise and broad to be useful.

In Section 4, we discuss the results of asking two security experts

to independently code paragraphs as SI or not-SI. We show that

such coding has high inter-rater reliability, providing confidence

that our definition is meaningful and reproducible. To better provide

the reader with insights into what is or is not SI, we provide three

example paragraphs from this analysis.

An example SIP which both labelers agreed upon is:

However, it should be noted that an attacker that has

some knowledge, such as of MAC addresses commonly

used in DHCP client identification data, may be able

to discover the client’s DHCP identify by using a brute-

force attack. Even without any additional knowledge,

the number of unknown bits used in computing the hash

is typically only 48 to 80. [54]

This is clearly a SIP because it is discussing an attack. An example

of a non-SIP, which both labelers agreed upon, is:

The values 1-47 are reserved for algorithms for which

an RFC has been approved for publication. The values

48-63 are reserved for private use amongst cooperat-

ing systems. The values 64-255 are reserved for future

expansion. [41]

This is clearly not a SIP because it is not discussing any security

topics. An edge case the two labelers disagreed on is:

One may notice that many documents that explain the

DNS and that are intended for a wide audience incor-

rectly describe the resolution process as using QNAME

minimization (e.g., by showing a request going to the

root, with just the TLD in the query). As a result, these

documents may confuse readers that use them for pri-

vacy analysis. [55]

This was an edge case the two labelers disagreed on. The first

labeler argued it was security informative because the authors are

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

59

considering confusion around privacy information. The second

labeler argued it was not security informative because it does not

itself include any privacy discussion. The final label was decided

by a third labeler was SIP for the same reason as the first labeler.

3.2 Data Sources

In this paper, we examine two datasets: the set of all published

RFCs and the set of all RFC draft standards. The RFC dataset is

composed of the text and associated metadata of 8,437 RFCs up

to RFC 8453,1 obtained from the official RFC repository [2]. We

verified that the łmissingž 16 RFCs were never actually issued. All

RFCs are in plain-text, ASCII format.

The set of draft standards was also acquired from the official RFC

repository [2] on February 7, 2019. This set includes both historic

drafts and in-progress drafts. Not all RFCs are standards, but all

RFC standards begin as draft standards. A published RFC may have

numerous unpublished draft revisions until it is published as an RFC.

RFCs do not change after publication, and changes to an accepted

standard are only made through external errata or a subsequent

standard.

In our analysis, we associate 125,946 draft documents to 33,706

draft standards bymatching documents to the unique draft standard

identifier (e.g., draft-ietf-drums-smtpupd, which became RFC 2821

revising SMTP). The IETF website [1] provides a link from RFC to

its pre-publication draft, and we use this information to identify

which drafts became standards. We identified 6,831 published draft

standards and 26,875 non-published draft standards. Note that non-

published drafts may still be accepted at a later+ point. Draft sets

that are not published often include a final document consisting of

a short description of the fate of the draft standard, such as being

rejected or merged into another project. To prevent these status

updates from affecting our results, we ignore the last document in

a draft document set if it contains less than three paragraphs.

3.3 Statistics Preliminaries

We use several statistical measures to quantify the effects of time,

the mandate, and the guidelines on our metrics. To assess the man-

date’s impact, we compare RFCs published before the mandate to

those published between the mandate and guidelines. To evaluate

the guideline’s impact, we compare RFCs published between the

mandate and the guidelines to those published after the guidelines.

We do this to prevent the impacts of the mandate from influencing

the measurements of the guideline’s impacts and vice versa.

The first statistic is Spearman’s rank correlation coefficient, ρ.

This measures the monotonicity of a relationship between two

variables. A positive value indicates a positive relationship, and a

negative value indicates a negative relationship. The absolute value

of ρ indicates the degree of monotonicity. A value of zero indicates

no relationship, and an absolute value of one indicates a perfectly

monotonic relationship. We use Spearman’s ρ over the Pearson

correlation because Spearman’s ρ does not assume linearity. We

use it to quantify the relationship our metrics have with time. As

in common in other fields[35], we interpret an absolute value of ρ

equal to or greater than 0.9 to indicate łvery high correlation,ž than

1Framework for Abstraction and Control of TE Networks (ACTN), published August
2018 [7]

0.7 to indicate łhigh correlation,ž than 0.5 to indicate łmoderate

correlation,ž than 0.3 to indicate łlow correlation,ž and less than 0.3

to indicate łnegligible correlation.ž

We also use t-tests to measure if the difference between the

means of two populations is significant. If the p-value of a t-test is

less than α , we have identified a statistically significant difference

between the two populations. We use Cohen’s d to quantify the

effect size, or magnitude of the differences between two popula-

tions given there is a statistically significant difference. We follow

the interpretation guidelines provided by Sawilowsky [48], which

describes ad of 0.01 as łvery small,ž 0.20 as łsmall,ž 0.50 as łmedium,ž

0.80 as łlarge,ž 1.20 as łvery large,ž and 2.0 as łhuge.ž

We select an initial α of 0.01 to determine the significance of

our statistical tests. Our p-values must lie below α to be considered

statistically significant. We additionally use Bonferroni correction

to control family-wise error rate. Because we conduct three null

hypothesis tests for each metric, we correct our α to 0.0033.

4 SECURITY-INFORMATIVE PARAGRAPHS

CLASSIFIER

In this section, we create a classifier for security-informative para-

graphs (SIPs) of RFCs to enable our SIP word count, compart-

mentalization, and density metrics. We pre-process RFC text into

paragraphs which we partition into training and testing sets. We

leverage a paragraph’s presence in an SCS to automatically cre-

ate noisy labels for the training set. We then design and apply a

classifier which uses term frequency-inverse document frequency

(TF-IDF) [45] vectorization, singular-value decomposition (SVD),

and logistic regression. A large set of labeled training data is re-

quired to optimize the weights of our logistic regression model. To

reduce the amount of manual labeling required for our training set,

we labeled SCS paragraphs as SIP and others as non-SIP. We used

regular expressions to identify paragraphs in SCSs. We hypothesize

Ð and later verify Ð that SIPs occur both inside and outside SCSs,

but occur more frequently within SCSs. This means that the labels

of our training data are noisy, but provide meaningful information

for learning to classify SIPs due to the sheer size of the data set.

Because we know our training data labels are not always correct,

the training set performance of our model is not a focus of our

performance evaluation. We will instead evaluate the accuracy of

our model on the manually labeled test set.

Can experts reliably identify security-informative content?:

Before we further describe our classifier design and evaluation,

we must first ensure that our definition of łsecurity-informativež

is meaningful. We do this by manually labeling 1,100 paragraphs,

which we also use to evaluate our classifier’s performance. These

1,100 paragraphs were randomly selected from the set of paragraphs

present in RFCs, and were not used in the training of our classifier.

Two raters (both paper authors) manually code our test set into

three classes: łSIPž, łnon-SIPž, and łmalformedž. łMalformedž para-

graphs were affected by parsing errors or failures of the ASCII-art

removal heuristic. We chose to label 1,100 paragraphs so as to have

roughly 1,000 paragraphs labeled as either łSIPž or łnon-SIP.ž

Finding 1: Security-informative text can consistently be manually

identified by experts. Cohen’s kappa inter-rater agreement measure

[18] quantifies the agreement of raters on labeling categorical data.

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

60

A low kappa means raters frequently disagreed, while a high kappa

means raters often agreed. We achieved a kappa of 0.742 across

three classes on our test set, which may be interpreted as significant

agreement[17]. This confirms our choice of definition for łsecurity

informativež and leads to our finding that security-informative text

can be consistently manually identified by experts.

Data Pre-Processing: Because RFCs are unstructured text, pre-

processing is required to remove irrelevant information and seg-

ment them into paragraphs. To remove irrelevant text which is not

intended to inform the reader about a standard or convey other cen-

tral information, we use regular expressions to remove the łTable of

Contents,ž łAcknowledgements,ž łReferences,ž łAuthors’ Addresses,ž

łStatus of This Memo,ž and łCopyrightž sections. An additional com-

plicating factor was the inclusion of ASCII-art figures in RFCs. We

created a heuristic to remove paragraphs containing a ratio of char-

acters commonly used in ASCII-art (such as +, |, _, and others)

above a selected threshold of 0.05. The character set and threshold

were selected manually to minimize the number of ASCII-art figures

included in the data set without excluding legitimate paragraphs.

Finally, we removed the headers and footers on each page, and

removed empty paragraphs caused by many consecutive newlines.

We break text into paragraphs at consecutive double newline char-

acters, which is the structure used in RFCs to delineate paragraphs.

However, manual review revealed it was often the case that there

are single sentences isolated this way. Therefore, we merged single-

sentence paragraphs into the subsequent paragraph if doing so does

not span a section boundary. Our training set was composed of the

127,551 paragraphs not included in our testing set.

Classifier Design: Our classifier uses TF-IDF vectorization fol-

lowed by SVD, which is then input into a logistic regression model.

We use TF-IDF to transform a sequence of characters into a vector

that represents the importance of terms to a document. TF-IDF

captures the relative frequency of a term in a document adjusted

for how frequent the term is in the corpus. We removed uninforma-

tive terms by requiring a minimum document frequency threshold

of 0.5% and removing stopwords. The result of our this TF-IDF

vectorization is a vector of size |V |, where V is the selected set of

terms from the corpus. The dimensionality of these vectors are

reduced from 889 terms to 100 components with truncated SVD

to reduce overfitting and improve computational efficiency before

being input into the model.

We selected binary logistic regression as our classifier because of

its robustness against overfitting. We used balanced class weighting,

which weighs the error penalty of a class inversely proportional to

its size, because of the disproportionate ratio of non-SCS paragraphs

to SCS paragraphs. We also used balanced class weighting because

we anticipated that our training data would contain many samples

falsely labeled as non-SIP by our SCS heuristic.

Evaluation: We evaluated our classifier qualitatively and quan-

titatively. By inverting the logistic regression model’s coefficient

vector with training data’s SVD transformation, we associated the

classifier’s input weights to terms in the TF-IDF vocabulary. We

found the terms weighted heavily by the model were indeed more

security-informative.

A third rater labeled conflicting data points in our test set to

decide the final classes. The result was that 104 of test samples

were labeled malformed, 221 were SIP, and 793 were non-SIP. We

quantitatively evaluated our model on the test set and achieved

an accuracy of 82%, with a recall of 56% and precision of 59%. We

note that these accuracies are well within expected ranges for diffi-

cult natural language processing problems [27, 59]. Our classifier’s

performance is standard for this domain of text analysis, and we

will use it to apply our SIP word count, compartmentalization, and

density metrics to RFCs in subsequent sections.

5 SECURITY CONSIDERATIONS SECTIONS

METRICS

In this section, we describe the SCS presence, word count, and

topic coverage metrics in greater detail. We investigate how they

were affected by time, the RFC 1543 mandate, and the RFC 3552

guidelines. Because we conduct three null hypothesis tests per

metric in this section, we correct our initial α of 0.01 to 0.0033.

5.1 Presence

Wefirst investigate the presence of SCSs in RFCs, whichwemeasure

by identifying łSecurity Considerationsž section headings.

Finding 2: Since the mandate and guidelines, SCSs are nearly al-

ways present. Figure 1a shows the changes in the yearly mean SCS

presence ratio in RFCs. Year of publication and SCS presence have

a ρ of 0.917 (p < 0.0001), meaning that the rates of SCS presence

have a very high positive correlation with time. The SCS presence

ratio more than tripled from 27% to 94% after the mandate, with a

significant t-test (p < 0.0001) and a Cohen’s d effect size of 1.89.

The average SCS presence ratio rose from 94% to 99% after the

guidelines, with a significant t-test (p < 0.0001) and a Cohen’s d

effect size of 0.31. Although both had a statistically significant effect

on SCS presence, the mandate had a huge effect and the guidelines

had a small one.

Finding 3: SCS presence increased dramatically in the year before

the mandate. The rates of including SCSs in RFCs rose from 0%

to over 90% in a single year before the mandate. This may have

two explanations: one is that the mandate formalized an existing

consensus to include SCSs in RFCs. The other is that writers were

aware of the pending mandate and responded before its official

publication. Because SCSs are present in virtually all RFCs since

the guidelines, if there is an absence of important security content,

it is not due to the SCS being omitted.

5.2 SCS Word Count

We approximate the amount of security discussion in SCSs by the

number of words they contain. We separate the SCS from the rest of

the RFC and count the number of words in the section. This metric

considers only RFCs that contain an SCS because its purpose is to

identify changes in how SCSs are written, not if they are present.

Finding 4: Despite its lack of detailed guidance, SCS word count grew

four-fold only after the mandate’s publication. It nearly doubled after

the guidelines. Figure 1b shows the changes in the yearly mean

SCS word count in RFCs. Year of publication and SCS word count

have a ρ of 0.779 (p < 0.0001). This indicates SCS word count

grows longer with time. Mean SCS word count grew four-fold after

the mandate, increasing from 38.91 to 169.73 after the mandate

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

61

(a) SCS Presence ratio rapidly increased before
the section was mandated.

(b) Later SCSs dwarf early ones by word count. (c) Early SCSs had poor topic coverage compared
to recent ones.

Figure 1: SCS presence, word count, and topic coverage findings

with a significant t-test (p < 0.0001) and a Cohen’s d effect size of

0.507. It nearly doubled after the guidelines from 169.731 to 324.356

with a significant t-test (p < 0.0001) and a Cohen’s d effect size of

0.366. Both the mandate and guidelines had a medium effect size

on increasing the SCS word count.

5.3 Topic Coverage

The third SCS metric we analyzed is topic coverage. In this analy-

sis, we aim to quantify the breadth of topics discussed in an SCS

when present. We extracted a set of topics from the RFC 3552 SCS

Guidelines’ overview of security and associated a list of keywords

from the SCS Guidelines with respect to each topic. We used the

guidelines RFC as a source of topics because the guidelines are what

authors are expected to follow when discussing security in RFCs.

Measuring the inclusion rates of security topics put forward by the

guidelines enables us to assess the extent to which the guidelines

succeeded in broadening the security discussion in SCSs.

Topics were determined by the headings of sections in the SCS

Guidelines. We identified initial keywords by using terms high-

lighted with all-capitalized letters in the sections and terms included

in sub-section headings. We added the full names for acronyms

and, because the SCS Guidelines were written in 2003, we also in-

cluded modern equivalents for dated terms. An example of this is

adding the modern term łHTTPSž for what was then referred to

as łS-HTTP.ž We did this to prevent false negatives in newer RFCs

that mention the same technologies or techniques discussed in the

guidelines but with recent equivalents.

We pre-process the RFCs to make all characters lowercase, re-

place punctuation marks with spaces, and replace consecutive

whitespace characters with a single space. If a term is contained

in the set of terms used by an SCS, then we consider the topic the

term is associated with to be covered. The topic coverage ratio for

an RFC is the number of topics covered by its SCS out of the total

number of ten topics.

Finding 5: Simply mandating authors to include SCSs coincided with

an eight-fold increase in topic coverage. Topic coverage further doubled

after the guidelines. Figure 1c shows the changes in the yearly mean

topic coverage ratio. Year of publication and topic coverage ratio

have a ρ of 0.785 (p < 0.0001). This indicates that topic coverage has

a high positive correlation with date of publication and is steadily

increasing with time. The mean topic coverage ratio rose nearly

eight-fold from 0.009 to 0.068 after the mandate, with a significant

t-test (p < 0.0001) and a Cohen’s d effect size of 0.692. The mean

topic coverage ratio nearly doubled from 0.068 to 0.130 after the

guidelines, with a significant t-test (p < 0.0001) and a Cohen’s d

effect size of 0.441. Both the mandate and guidelines had a medium

effect size on increasing topic coverage. This indicates that despite

the mandate lacking guidance on which topics should be included

in RFCs, authors may have been influenced by the mandate to

discuss additional topics compared to before. It also indicates that

the guidelines were successful in promoting the discussion of a

broad range of security topics in SCSs.

5.4 Discussion

SCS presence increased to over 90% before the section was man-

dated. Interestingly, other metrics such as SCS word count and topic

coverage improved only after the mandate. This may show that the

mandate had a positive effect on security discussion. All metrics in-

creased further after the guidelines. However, it is possible that the

increase in SCS word count is solely due to the inclusion of non-SI

content. The metrics in Section 6 will investigate this possibility.

6 SECURITY-INFORMATIVE PARAGRAPHS

METRICS

The metrics defined in Section 5 are limited in their ability to quan-

tify security discussion in RFCs because such discussion may occur

outside of SCSs, and SCSs may contain non-SI paragraphs. In this

section, we use the classifier described in Section 4 to implement

SIP word count, compartmentalization, and density. These are im-

portant for assessing the total amount of security discussion in an

RFC, howmuch of that discuss is isolated in the SCS, and howmuch

of the SCS is security discussion. Because we conduct three null

hypothesis tests per metric in this section, we correct our initial α

of 0.01 to 0.0033.

6.1 SIP Word Count

The first metric we investigate is SIP word count, which is the total

number of words in the paragraphs that are classified as SI by our

model. But, not all paragraphs from SCSs are SI and not all SIPs are

from an SCS. Because of this, SIP word count is a more accurate

proxy for the total amount of text devoted to security discussion

throughout an RFC than the previous SCS word count metric.

Finding 6: SI content in RFCs has rapidly increased over time. Figure

2 shows the changes in the yearly mean SIP word count. Year of

publication and mean annual SIP word count have a very high

positive correlation with a ρ of 0.929 (p < 0.0001). The figure also

contrasts SIP word count for text from SCSs and all other sections.

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

62

between the qualities of accepted and non-accepted drafts. We

found a stark contrast in approaches where some authors include

security discussion in the first draft, after which it remains largely

unchanged, and that others gradually add security discussion along

drafts. Neither approach is alone tied to a draft being accepted or

not. Instead, all metrics tend to increase along draft completion

for accepted and rejected draft standards, but that SCS presence

ratio, SCS word count, SIP word count, and SCS topic coverage

are consistently higher in accepted draft standards throughout the

draft writing process. We expect that this is due to RFCs with high

values for those metrics tending to be more fully developed than

those with low values for them.

7.2 RFC 3552 SCSs

In this section, we investigate the metrics of the two example SCSs

provided to RFC authors by the guidelines. We do this to gain

insight on which metrics were being emphasized by the IETF at

the time the guidelines were published. The first example given by

the guidelines was a retrospective rework of RFC 2821, Simple Mail

Transfer Protocol. RFC 2821 revised RFC 821 by adding a previously

absent SCS. The retrospective SMTP SCS put forth in the guidelines

added further discussion on communication security topics. The

second example was from RFC 2338, Virtual Router Redundancy

Protocol, to show a high quality existing SCS. This one was not

significantly altered in the guidelines.

In total, we investigate the metrics of four actual or synthetic

RFCs. The first two are the original SMTP standard, RFC 821, and

the revised SMTP standard, RFC 2821. We directly use these RFCs

without modification. The third RFC is the retrospective improve-

ment of RFC 2821 included in the guidelines. Because only the SCS

is provided in the guidelines, we manually replaced the SCS of RFC

2821 with the retrospective SCS given in the guidelines to create a

synthetic RFC before applying our metrics. For our last document,

we use RFC 2338 without modification because its SCS was not

significantly altered in the guidelines.

The metrics of these documents are shown in Table 2. Because

the original SMTP standard had no SCS, the only applicable metric

is SIP word count. Its SIP word count was higher than the mean,

but the lowest of any of the RFCs investigated in this section. The

SMTP revision’s SIP word count jumped dramatically with more

than five times the amount of security discussion compared to its

predecessor. The revision’s compartmentalization was low, how-

ever, indicating that much of this added discussion did not occur

within the SCS. The only topic its SCS matched was authentica-

tion. Although the SCS word count was high, the density was very

low. Low compartmentalization combined with very low density

indicates that the SCS did not contain much more security content

than other parts of the RFC. This may have been a factor in its low

SCS topic coverage compared with the remaining two RFCs we

investigate in this section.

The additions to RFC 2821’s SCS by the guidelines in our syn-

thetic RFCmore than doubled the word count of the SCS and greatly

increased the SCS topic coverage. The SIP word count, compartmen-

talization, and density in the document increased. Compartmental-

ization rose substantially from the 37.7th percentile to the 61.6th

percentile. Density rose much less and remained much lower than

the mean. This may indicate that density was not an emphasized

in the guidelines as other metrics such as compartmentalization.

The RFC chosen by the guidelines with a positive example of an

SCSs was RFC 2338, Virtual Router Redundancy Protocol (VRRP). It

had high topic coverage and SCS and SIP word counts compared to

the population. Compartmentalization and density were not much

higher than the mean. This indicates other factors were considered

more important for an SCS to be high quality.

Finding 16: There is evidence the guidelines promoted high SCS

word count, SCS topic coverage, and SIP word count over density and

compartmentalization. In this section, we applied our metrics to

several SCSs described in the guidelines. We found that the retro-

spective SMTP SCS did not feature a substantial increase in density

compared to other metrics, and that it remained low compared

to other SCSs. The VRRP example was above the mean for every

metric, but its density and compartmentalization were not as high

compared to the other metrics. This may have been a factor in

density continuing to decrease after the guidelines or in compart-

mentalization not featuring a strong positive trend over time. We

found that even though it had a high SCS and SIP word count, the

SMTP revision in RFC 2821 had low topic coverage, which may

have been due to low density and compartmentalization. The ideal

SCSs put forth by the guidelines had higher SCS word count, SCS

topic coverage, and SIP word count than average, but their density

and compartmentalization varied more.

7.3 Known Vulnerable RFC

Our final case study examines RFC 8342,NetworkManagement Data-

store Architecture (NMDA)[6]. A recently published paper showed

that this standard enabled a denial of service attack by failing to

specify which entity should clear inactive or timed out flow rules

from the controller’s configuration datastore [13]. In its brief, 115

word-long łSecurity Considerationsž section , the standard incor-

rectly asserted the datastore architecture it defined had no security

impacts. Its SCS did not mention denial-of-service. The RFC’s SCS

word count was in the 51st percentile, its SIP word count was in the

61st percentile, compartmentalization was in the 41st percentile,

density was in the 46th percentile, and SCS topic coverage was 0.0.

The SCS word count, SIP word count, and topic coverage are lower

than the positive SCS examples provided by the guidelines, but

most are close to the average for the entire population of RFCs. The

expected metrics for an RFC must be known to identify whether

its actual metrics fall short. Because so many RFCs do not require

serious discussion of security, not all can be held to the same stan-

dard. More context is required to automatically detect whether a

particular RFC lacks in security discussion that it requires, which

is a source of future work in this area.

8 DISCUSSION

In this section, we answer questions raised by our investigation and

address potential concerns the reader may have with our methods.

Should our metrics be treated normatively? We do not prescribe

criteria for RFCs, and our metrics should not necessarily be treated

as normative. Some standards describe protocols with fewer secu-

rity concerns than most, and so do not require as much text to fully

discuss them. About 50% of draft standards did not experience a

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

65

Table 2: Values and percentiles of the metrics for RFCs related to the examples given in the SCS Guidelines.

Standard SCS Word Count SCS Topic Coverage SIP Word Count Compartmentalization Density

SMTP Original - / - - / - 768 / 63.8% - / - - / -

SMTP Revision 1,256 / 96.4% 0.1 / 53.2% 4,167 / 95.5% 0.150 / 37.7% 0.497 / 9.3%

SMTP Retrospective 2,638 / 99.4% 0.6 / 98.5% 5,499 / 97.4% 0.307 / 61.6% 0.606 / 15.7%

VRRP 416 / 81.9% 0.2 / 72.3% 1,639 / 81.6% 0.250 / 54.2% 0.983 / 58.5%

lift in metric values throughout the draft process. This trend was

not more noticeable in non-accepted drafts than accepted ones. A

deeper, more qualitative investigation is required to verify if stan-

dards are unfairly rejected due to expectations by the IETF for RFCs

with a particular length SCS and amount of security content despite

mitigating circumstances.

An interesting example of why our metrics are descriptive, not

prescriptive, is compartmentalization. It is not clear whether a high

compartmentalization is generally good or bad. One view is that

highly compartmentalized security discussion results in a document

where security discussion is consolidated in the relevant section,

and as such it is easy to quickly find and read all of the security

impacts of the RFC. A countering view is that low compartmental-

ization is to be expected, and arguably desirable, because authors

are discussing security in the context of features they impact. This

may reduce the likelihood of readers missing important security

information of functions because they were moved to the SCS. Com-

partmentalization tends to be low, so there is evidence that this

latter position is the current norm.

Is the security culture of RFC authors changing? We found evi-

dence that security content in RFCs is increasing. Assuming this

is due to increasing expectations by the publisher, we claim that

the security culture of RFC-publishing organizations is improving.

Our approach has limits because we are trying to infer security

culture and practices from published artifacts. We do not conduct

interviews with members of the IAB, IETF, and IRTF to probe their

perceptions, and doing so would only provide insight on the current

culture Ð not where it evolved from.

Are authors of standards taking security seriously enough? Roughly

half of authors add substantial security discussion towards the final

drafts of their standard. This raises the question of whether the

engineers are taking security seriously in the early development of

the protocol. Drafts convey incomplete protocols being developed,

and authors cannot be faulted for not considering security issues

for protocol features that have not been developed yet. As such,

we do not claim that authors are failing to take security seriously

because security discussion is added towards its final drafts.

Is security content truly increasing? Our metrics have provided

evidence that the security discussion in RFCs is growing with time.

However, it is possible that information is being repeated in the

body and the SCS or that irrelevant security discussion is being

included in the SCS to meet culturally normative standards. These

aspects are not measured with our methods because they require

parsing and reasoning about semantics at a fine level of granularity.

This requires a more sophisticated analysis which we leave to future

work.

Do RFCs produce more trustworthy standards? This work focuses

on the effects that security considerations (and the mandate and

guidelines) have had on standards text, but the ultimate goal is

more trustworthy products. Unfortunately, investigating whether

higher-quality SCSs result in more secure products is an interesting

question that would be very difficult (if not impossible) to satisfac-

torily evaluate. Of course, any such analysis would face the issue

that demonstrating security is much harder than demonstrating

its absence. Important metrics to evaluate would be rate of design

vulnerabilities, implementation vulnerabilities, and frequency of

configuration errors. Such metrics are difficult to obtain, especially

on a per-standard basis. These metrics would of course be con-

founded by the quality of implementations (independent of the

standard in question).

9 RECOMMENDATIONS

In this section, we highlight recommendations and lessons learned

for future standards writers and standards bodies.

Recommendation 1: Standards bodies should mandate security

considerations sections. To the best of our knowledge, no other stan-

dards body mandates content similar to a security considerations

section. The lack of such sections has had a demonstrable neg-

ative impact on the security of deployed systems as well as the

ability of analysts and researchers to fully understand the security

implications of standards. For example, in recent work analyzing

the security of the new 5G authentication protocol [5, 9], authors

claimed as a substantial contribution that Ð after reading hun-

dreds of pages of standards documents Ð they were actually able to

succinctly describe the apparent security goals of the 5G AKA cryp-

tographic authentication protocol. The lack of explicit identification

of security goals for such an important, security-sensitive protocol

is troubling. In contrast, our work demonstrated that mandates and

guidelines corresponded with substantial improvements in secu-

rity content in RFCs. Thus, we strongly recommend that standards

bodies that create standards for computing mandate security con-

siderations for all future standards. These bodies include the IEEE,

the ITU, the 3GPP, as well as industry consortia like CableLabs.

Recommendation 2: Individual standard authors should voluntar-

ily include discrete security considerations sections in their documents.

While it is clear from our analysis on RFCs that even short mandates

and guidelines can have a significant effect, we note that a mandate

is not necessary for standards writers to begin to create separate

security considerations sections. In fact, as we noted in Section 5,

the mandate was established after a number of RFCs voluntarily

began including SCSs. Given that organizations may not quickly

move to establish their own mandates, we recommend that authors

begin incorporating security considerations sections regardless of

the existence of a mandate.

Recommendation 3: SCS Guidelines should be periodically updated

to reflect advances in security knowledge. In Section 5 we noted that

for our topic coverage analysis we augmented the list of recom-

mended topics in the guidelines to include modern alternatives (e.g.,

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

66

łHTTPSž instead of łS-HTTPž). While the guidelines do not claim to

attempt to exhaustively enumerate all security issues, many current,

important issues are not present. This limits the usefulness of the

guidelines. Some of the important topics not mentioned are: modern

side channel attacks (e.g., Spectre and Meltdown), key reinstallation

attacks [58], reflected and amplified DoS attack techniques, network

middleboxes, DNS hijacking, and multi-factor authentication.

10 RELATEDWORK

Since we communicate in natural language, there is a wealth of text

like RFCs from which security researchers extract information. Re-

searchers have used mobile app descriptions to identify when an ap-

plication requestsmore permissions than necessary [40].Descriptions

have also been compared against behavior to detect misleading de-

scriptions or malicious software [24]. Researchers disambiguated

privacy policies with topic modeling [53], and summarized them

with deep learning [26] and data mining [62].

Analyzing natural language software engineering artifacts has

also provided information on the process by which software is

developed. Morrison et al. applied text mining to such artifacts to

identify if security practices are followed by development teams

[34]. Machine learning has helped extract bug reports and feature

requests [31] and identify users’ rationale for their feedback [30].

Researchers have alsomined social media for software feedback [25]

and user requirements [28].

RFCs are similar to software engineering requirements because

they specify the requirements which must be met by implemen-

tations of protocols. A wealth of research has been conducted in

automatically identifying ambiguity in software [15, 38, 61], and

regulatory [32] requirements, including detecting domain-specific

ambiguities [14] and ambiguities arising in multilingual environ-

ments [11]. In addition to ambiguity, other metrics have been used

to assess the quality of requirements. Quality-assessment tools

have identified linguistic defects [22], incompleteness or inconsis-

tency [37], template-conformance [4], and errors in use cases [56].

Singh et al. applied similar techniques to natural-language reviews

of these requirements [51].

We use machine learning to classify security informative para-

graphs to measure security discussion in RFCs, but predicting vul-

nerable code and software components has been another prominent

application of machine learning. Researchers have used static met-

rics such as static analysis alerts [21] and software metrics [49, 52]

to predict vulnerable software components. These static metrics

have been used to detect risky applications on Android [44], and

have detected vulnerabilities in Windows Vista with high precision

but low recall [63]. Researchers have also used dynamic metrics [50]

such as non-security failure alerts [19] to detect vulnerable compo-

nents. Project metrics have been shown to have strong predictive

power in identifying vulnerable code [33].

Researchers have used text analysis to identify security-relevant

information in natural language text, but not on network protocol

standards like RFCs. Examples are identifying bug reports with

security impacts [20] and temporal constraints in API usage [39].

NLP has helped identify security content in software requirements

to extract security policies [60], security requirements [12, 36],

and mandatory log events [29]. Our research is the first to apply

text analysis to network protocol standards to quantify security

discussion.

11 CONCLUSION

We investigated the impacts the instructions to RFC authors by RFC

1543 & 3552 had on security discussion in RFCs. Because RFCs are

unstructured natural language documents, we used text analysis

and machine learning techniques to develop metrics that quantify

how they discuss security. We used the łSecurity Considerationsž

section of RFCs and a security-informative paragraph classifier

to create six metrics that describe how much security discussion

is in an RFC, what it discusses, and where it takes place. In addi-

tion to the several case studies we conducted, we found that even

a simple mandate to include łSecurity Considerationsž sections

had profound positive effects on how authors discussed security

throughout the entire RFC, increasing both the amount and quality

of security discussion. Our work shows that even minimal guidance

can correspond to significant improvements in security-relevant

outcomes.

ACKNOWLEDGMENTS

We would like to thank Sarah Reaves for her insights on the statisti-

cal analysis. We would also like to thank our anonymous reviewers

for their helpful comments. This material is based upon work sup-

ported by the National Science Foundation under grant numbers

CNS-1849994 and CNS-1513690. Any opinions, findings, and con-

clusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES
[1] 2019. Internet Engineering Task Force. https://www.ietf.org/.
[2] 2019. RFC Editor. https://www.rfc-editor.org.
[3] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl. 2017. Devel-

opers Need Support, Too: A Survey of Security Advice for Software Developers.
In 2017 IEEE Cybersecurity Development (SecDev). 22ś26.

[4] Chetan Arora, Mehrdad Sabetzadeh, Lionel C. Briand, and Frank Zimmer. 2015.
Automated Checking of Conformance to Requirements Templates Using Natural
Language Processing. IEEE Transactions on Software Engineering 41 (2015), 944ś
968.

[5] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A Formal Analysis of 5G Authentication. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18). ACM, New York, NY, USA, 1383ś1396. https://doi.org/10.1145/3243734.
3243846

[6] M. Bjorklund, J. Schoenwaelder, P. Shafer, K.Watsen, and R.Wilton. 2018. Network
Management Datastore Architecture (NMDA). RFC 8342. RFC Editor.

[7] D Ceccarelli and Y Lee. 2018. Framework for Abstraction and Control of TE
Networks (ACTN). RFC 8453. RFC Editor.

[8] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David
Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and Christo Wilson. 2017.
A Longitudinal, End-to-End View of the DNSSEC Ecosystem. In 26th USENIX
Security Symposium. 1307ś1322.

[9] Cas Cremers and Martin Dehnel-Wild. 2019. Component-Based Formal Analysis
of 5G-AKA: Channel Assumptions and Session Confusion. In Proceedings 2019
Network and Distributed System Security Symposium. Internet Society, San Diego,
CA. https://doi.org/10.14722/ndss.2019.23394

[10] Steve Crocker. 1969. Host Software. RFC 1. RFC Editor.
[11] Breno Dantas Cruz, Bargav Jayaraman, Anurag Dwarakanath, and Collin McMil-

lan. 2017. Detecting Vague Words & Phrases in Requirements Documents in a
Multilingual Environment. 2017 IEEE 25th International Requirements Engineering
Conference (RE) (2017), 233ś242.

[12] Alex Dekhtyar and Vivian Fong. 2017. RE Data Challenge: Requirements Identifi-
cation with Word2Vec and TensorFlow. 2017 IEEE 25th International Requirements
Engineering Conference (RE) (2017), 484ś489.

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

67

[13] Vaibhav Hemant Dixit, Adam Doupé, Yan Shoshitaishvili, Ziming Zhao, and
Gail-Joon Ahn. 2018. AIM-SDN: Attacking Information Mismanagement in SDN-
datastores. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 664ś676.

[14] Alessio Ferrari, Beatrice Donati, and Stefania Gnesi. 2017. Detecting Domain-
Specific Ambiguities: An NLP Approach Based on Wikipedia Crawling and Word
Embeddings. 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW) (2017), 393ś399.

[15] Alessio Ferrari, Giuseppe Lipari, Stefania Gnesi, and Giorgio Oronzo Spagnolo.
2014. Pragmatic ambiguity detection in natural language requirements. 2014 IEEE
1st International Workshop on Artificial Intelligence for Requirements Engineering
(AIRE) (2014), 1ś8.

[16] H Flanagan and S Ginoza. 2014. RFC Style Guide. RFC 7322. RFC Editor. https:
//www.rfc-editor.org/rfc/rfc7322.txt

[17] Deen Freelon. 2010. Intercoder Reliability Calculation as a Web Service.
[18] Deen Freelon. 2013. ReCal OIR : Ordinal , Interval , and Ratio Intercoder Reliability

as a Web Service.
[19] Michael Gegick, Pete Rotella, and Laurie A. Williams. 2009. Toward Non-security

Failures as a Predictor of Security Faults and Failures. In ESSoS.
[20] Michael Gegick, Pete Rotella, and Tao Xie. 2010. Identifying security bug reports

via text mining: An industrial case study. 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010) (2010), 11ś20.

[21] Michael Gegick and Laurie L. Williams. 2007. Toward the Use of Automated Static
Analysis Alerts for Early Identification of Vulnerability- and Attack-prone Com-
ponents. Second International Conference on Internet Monitoring and Protection
(ICIMP 2007) (2007), 18ś18.

[22] Stefania Gnesi, Giuseppe Lami, and Gianluca Trentanni. 2005. An automatic
tool for the analysis of natural language requirements. Comput. Syst. Sci. Eng. 20
(2005).

[23] Sharon Goldberg. 2014. Why is it taking so long to secure internet routing?
Commun. ACM 57, 10 (2014), 56ś63.

[24] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking app behavior against app descriptions. In Proceedings of the 36th Inter-
national Conference on Software Engineering. ACM, 1025ś1035.

[25] Emitza Guzman, Rana Mohammed A. Alkadhi, and Norbert Seyff. 2016. A Needle
in a Haystack: What Do Twitter Users Say about Software? 2016 IEEE 24th
International Requirements Engineering Conference (RE) (2016), 96ś105.

[26] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G. Shin,
and Karl Aberer. 2018. Polisis: Automated Analysis and Presentation of Privacy
Policies Using Deep Learning. In USENIX Security Symposium.

[27] Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, and Xi Niu. 2017.
TTPDrill: Automatic and Accurate Extraction of Threat Actions from Unstruc-
tured Text of CTI Sources. In Proceedings of the 33rd Annual Computer Security
Applications Conference (ACSAC 2017). ACM, New York, NY, USA, 103ś115.

[28] Georgi M. Kanchev, Pradeep K. Murukannaiah, Amit K. Chopra, and Peter Sawyer.
2017. Canary: Extracting Requirements-Related Information from Online Dis-
cussions. 2017 IEEE 25th International Requirements Engineering Conference (RE)
(2017), 31ś40.

[29] Jason King, Rahul Pandita, and Laurie A. Williams. 2015. Enabling forensics by
proposing heuristics to identify mandatory log events. In HotSoS.

[30] Zijad Kurtanovic and Walid Maalej. 2017. Mining User Rationale from Software
Reviews. 2017 IEEE 25th International Requirements Engineering Conference (RE)
(2017), 61ś70.

[31] Walid Maalej and Hadeer Nabil. 2015. Bug report, feature request, or simply
praise? On automatically classifying app reviews. 2015 IEEE 23rd International
Requirements Engineering Conference (RE) (2015), 116ś125.

[32] Aaron K. Massey, Richard L. Rutledge, Annie I. Antón, and Peter P. Swire. 2014.
Identifying and classifying ambiguity for regulatory requirements. 2014 IEEE
22nd International Requirements Engineering Conference (RE) (2014), 83ś92.

[33] Nadia Patricia Da Silva Medeiros, Naghmeh Ivaki, Pedro Costa, and Marco Vieira.
2017. Software Metrics as Indicators of Security Vulnerabilities. IEEE 28th
International Symposium on Software Reliability Engineering (2017), 216ś227.

[34] Patrick Morrison, Benjamin A H Smith, and Laurie A. Williams. 2017. Measuring
Security Practice Use: A Case Study at IBM. 2017 IEEE/ACM 5th International
Workshop on Conducting Empirical Studies in Industry (CESI) (2017), 16ś22.

[35] Mavuto Mukaka. 2012. Statistics corner: A guide to appropriate use of correlation
coefficient in medical research. Malawi medical journal : the journal of Medical
Association of Malawi 24 3 (2012), 69ś71.

[36] Nuthan Munaiah, Andrew Meneely, and Pradeep K. Murukannaiah. 2017. A
Domain-Independent Model for Identifying Security Requirements. 2017 IEEE
25th International Requirements Engineering Conference (RE) (2017), 506ś511.

[37] Tuong Huan Nguyen, John C. Grundy, and Mohamed Almorsy. 2014. GUITAR:
An ontology-based automated requirements analysis tool. 2014 IEEE 22nd Inter-
national Requirements Engineering Conference (RE) (2014), 315ś316.

[38] Olga Ormandjieva, Ishrar Hussain, and Leila Kosseim. 2007. Toward a text
classification system for the quality assessment of software requirements written
in natural language. In SOQUA.

[39] Rahul Pandita, Kunal Taneja, Laurie A. Williams, and Teresa Tung. 2016. ICON:

Inferring Temporal Constraints from Natural Language API Descriptions. 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME)
(2016), 378ś388.

[40] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications.. In USENIX
Security Symposium, Vol. 2013.

[41] D. Piper. 1998. The Internet IP Security Domain of Interpretation for ISAKMP. RFC
2407. RFC Editor.

[42] J Postel. 1993. Instructions to RFC Authors. RFC 1543. RFC Editor. https://www.rfc-
editor.org/rfc/rfc1543.txt

[43] J Postel and J Reynolds. 1997. Instructions to RFC Authors. RFC 2223. RFC Editor.
[44] Akond Rahman, Priysha Pradhan, Asif Partho, and Laurie A. Williams. 2017. Pre-

dicting Android Application Security and Privacy Risk with Static Code Metrics.
2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft) (2017), 149ś153.

[45] A Rajarman and J Ullman. 2011. "Mining of Massive Datasets". 1ś17 pages.
[46] E Rescorla. 2033. Guidelines for Writing RFC Text on Security Considerations. RFC

3552. RFC Editor. https://www.rfc-editor.org/rfc/rfc3552.txt
[47] J Reynolds and J Postel. 1990. Assigned Numbers. RFC 1060. RFC Editor. https:

//www.rfc-editor.org/rfc/rfc1060.txt
[48] Shlomo S Sawilowsky. 2009. New effect size rules of thumb. (2009).
[49] Yonghee Shin, Andrew Meneely, Laurie A. Williams, and Jason A. Osborne. 2011.

Evaluating Complexity, Code Churn, and Developer ActivityMetrics as Indicators
of Software Vulnerabilities. IEEE Transactions on Software Engineering 37 (2011),
772ś787.

[50] Yonghee Shin and Laurie A. Williams. 2011. An initial study on the use of execu-
tion complexity metrics as indicators of software vulnerabilities. In SESS@ICSE.

[51] Maninder Singh. 2018. Automated Validation of Requirement Reviews: A Ma-
chine Learning Approach. 2018 IEEE 26th International Requirements Engineering
Conference (RE) (2018), 460ś465.

[52] Ben H. Smith and Laurie A.Williams. 2011. Using SQLHotspots in a Prioritization
Heuristic for Detecting All Types of Web Application Vulnerabilities. 2011 Fourth
IEEE International Conference on Software Testing, Verification and Validation
(2011), 220ś229.

[53] John W. Stamey and Ryan A. Rossi. 2009. Automatically identifying relations in
privacy policies. In SIGDOC.

[54] M. Stapp, T. Lemon, and A. Gustafsson. 2006. A DNS Resource Record (RR) for
Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID RR).
RFC 4701. RFC Editor.

[55] M. Stiemerling, J. Quittek, and T. Taylor. 2005. Middlebox Communications (MID-
COM) Protocol Semantics. RFC 3989. RFC Editor.

[56] Saurabh Tiwari and Mayank Laddha. 2017. UCAnalyzer: A Tool to Analyze Use
Case Textual Descriptions. 2017 IEEE 25th International Requirements Engineering
Conference (RE) (2017), 448ś449.

[57] Alexander van den Berghe, Koen Yskout, Riccardo Scandariato, and Wouter
Joosen. 2018. A Lingua Franca for Security by Design. 2018 IEEE Cybersecurity
Development (SecDev) (2018), 69ś76.

[58] Mathy Vanhoef and Frank Piessens. 2017. Key Reinstallation Attacks: Forcing
Nonce Reuse in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’17). ACM, New York, NY, USA,
1313ś1328. https://doi.org/10.1145/3133956.3134027

[59] TheresaWilson, JanyceWiebe, and Paul Hoffmann. 2005. Recognizing contextual
polarity in phrase-level sentiment analysis. In Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural Language
Processing.

[60] Xusheng Xiao, Amit M. Paradkar, Suresh Thummalapenta, and Tao Xie. 2012.
Automated extraction of security policies from natural-language software docu-
ments. In SIGSOFT FSE.

[61] Hui Yang, Anne N. De Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar
Nuseibeh. 2011. Analysing anaphoric ambiguity in natural language requirements.
Requirements Engineering 16 (2011), 163ś189.

[62] Razieh Nokhbeh Zaeem, Rachel L. German, and K. Suzanne Barber. 2018. Pri-
vacyCheck: Automatic Summarization of Privacy Policies Using Data Mining.
ACM Trans. Internet Techn. 18 (2018), 53:1ś53:18.

[63] Thomas Zimmermann, Nachiappan Nagappan, and Laurie A. Williams. 2010.
Searching for a Needle in a Haystack: Predicting Security Vulnerabilities for Win-
dows Vista. 2010 Third International Conference on Software Testing, Verification
and Validation (2010), 421ś428.

Session 3 SSR ’19, November 11, 2019, London, United Kingdom

68

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Security Metrics
	3.2 Data Sources
	3.3 Statistics Preliminaries

	4 Security-Informative Paragraphs Classifier
	5 Security Considerations Sections Metrics
	5.1 Presence
	5.2 SCS Word Count
	5.3 Topic Coverage
	5.4 Discussion

	6 Security-Informative Paragraphs Metrics
	6.1 SIP Word Count
	6.2 Compartmentalization
	6.3 Density
	6.4 Discussion

	7 Case Studies
	7.1 Draft Standards
	7.2 RFC 3552 SCSs
	7.3 Known Vulnerable RFC

	8 Discussion
	9 Recommendations
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

