Livia: Data-Centric Computing
Throughout the Memory Hierarchy

Elliot Lockerman’, Axel Feldmann?*, Mohammad Bakhshalipourl, Alexandru Stanescu®,

1

Shashwat Gupta!, Daniel Sanchez?, Nathan Beckmann!

! Carnegie Mellon University
{elockerm, astanesc, beckmann}@cs.cmu.edu
{mbakhsha, shashwag}@andrew.cmu.edu

Abstract

In order to scale, future systems will need to dramatically
reduce data movement. Data movement is expensive in cur-
rent designs because (i) traditional memory hierarchies force
computation to happen unnecessarily far away from data and
(ii) processing-in-memory approaches fail to exploit locality.

We propose Memory Services, a flexible programming model
that enables data-centric computing throughout the memory
hierarchy. In Memory Services, applications express func-
tionality as graphs of simple tasks, each task indicating the
data it operates on. We design and evaluate Livia, a new
system architecture for Memory Services that dynamically
schedules tasks and data at the location in the memory hi-
erarchy that minimizes overall data movement. Livia adds
less than 3% area overhead to a tiled multicore and acceler-
ates challenging irregular workloads by 1.3% to 2.4x while
reducing dynamic energy by 1.2X to 4.7X.

CCS Concepts - Computer systems organization —
Processors and memory architectures.

Keywords memory; cache; near-data processing.

ACM Reference Format:

Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexan-
dru Stanescu, Shashwat Gupta, Daniel Sanchez, Nathan Beckmann.
2020. Livia: Data-Centric Computing Throughout the Memory Hi-
erarchy. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °20), March 16-20, 2020, Lausanne, Switzerland.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3373376.
3378497

* — This work was done while Axel Feldmann was at CMU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378497

2 Massachusetts Institute of Technology
{axelf, sanchez}@csail.mit.edu

1 Introduction

Computer systems today are increasingly limited by data
movement. Computation is already orders-of-magnitude
cheaper than moving data, and the shift towards leaner and
specialized cores [17, 22, 36, 39] is exacerbating these trends.
Systems need new techniques that dramatically reduce data
movement, as otherwise data movement will dominate sys-
tem performance and energy going forward.

Why is data so far from compute? Conventional CPU-
based systems reduce data movement via deep, multi-level
cache hierarchies. This approach works well on programs
that have hierarchical reuse patterns, where smaller cache
levels filter most accesses to later levels. However, these
systems only process data on cores, forcing data to traverse
the full memory hierarchy before it can be processed. On
such systems, programs whose data doesn’t fit in small caches
often spend nearly all their time shuffling data to and fro.
Since such compute-centric systems are often inefficient,
prior work has proposed to do away with them and place
cores close to memory instead. In these near-data processing
(NDP) or processing-in-memory (PIM) designs [13, 14, 29, 72],
cores enjoy fast, high-bandwidth access to nearby memory.
PIM works well when programs have little reuse and when
compute and data can be spatially distributed. However, es-
chewing a cache hierarchy makes PIM far less efficient on
applications with significant locality and complicates several
other issues, such as synchronization and coherence. In fact,
prior work shows that for many applications, conventional
cache hierarchies are far superior to PIM [5, 40, 90, 97].

Computing near data while exploiting locality: In this
work, we propose the next logical step, which lies between
these two extremes: reducing data movement by perform-
ing compute throughout the memory hierarchy—near caches
large and small as well as near memory. This lets the system
perform computation at the location in the memory hierar-
chy that minimizes data movement, synchronization, and
cache pollution. Critically, this can mean moving computa-
tion to data or moving data to computation, and in some
cases moving both.

Prior work has already shown that performing compu-
tation within the memory hierarchy is highly beneficial.

App Tasks Load-store Processing In-Memory LIVIA
START
<
[e]
]
3
=
S @
=
FINISH 5§

Fig. 1. Livia minimizes data movement by executing tasks at their
“natural” location in the memory hierarchy.

GPUs [94] and multicores [93] perform atomic memory oper-
ations on shared caches to reduce synchronization costs, and
caches can be repurposed to accelerate highly data-parallel
problems [1], like deep learning [24] and automata process-
ing [87]. However, prior techniques are limited to performing
fixed operations at a fixed location in the cache hierarchy.

To benefit a wide swath of applications, data-centric sys-
tems must overcome these limitations. First, the memory
hierarchy must be fully programmable. Applications should
be able to easily extend the memory interface via a simple
programming model. Second, the system must decide where
to perform computation—not the application programmer!
The best location to perform a given computation depends
on many factors (e.g., data locality, cache size, etc.). It is
very difficult for programmers to reason about these factors.
Caches, not scratchpads, have become ubiquitous because
they relieve programmers from the burden of placing data;
data-centric systems must provide similar ease-of-use for
placing computation.

Our approach: We overcome these limitations through a
combination of software and hardware. First, we propose
MEMORY SERVICES, a flexible programming interface that
facilitates computation throughout the memory hierarchy.
Memory Services break application functionality into a graph
of short, simple tasks. Each task is associated with a memory
location that determines where it will execute in the mem-
ory hierarchy, and can spawn additional tasks to implement
complex computations in a fork-join or continuation-passing
fashion. Memory Services ask programmers what operations
to perform, but not where to perform them.

Second, we present Livia,! an efficient architecture for
Memory Services. Livia introduces specialized Memory Ser-
vice Elements (MSEs) throughout the memory hierarchy.
Each MSE consists of a controller, which schedules tasks
and data in their best location in the memory hierarchy, and
an execution engine, which executes the tasks themselves.

Fig. 1 illustrates how Memory Services reduce data move-
ment over prior architectures. The left shows a chain of three
dependent tasks which, together, implement a higher-level
operation (e.g., a tree lookup; see Sec. 2). Suppose tasks (D
and (2) have good locality and task (3 does not. The baseline
load-store architecture (left) executes tasks on the top-left

S0 named for the messenger pigeon, a variety of Columba livia.

core, and so must move all data to this core. Hence, though
it caches data for D and (2) on-chip, it incurs many expen-
sive round-trips that add significant data movement. PIM
(middle) moves tasks closer to data but sacrifices locality
in tasks D and @), incurring additional expensive DRAM
accesses. In contrast, Livia (right) minimizes data movement
by executing tasks in their natural location in the memory
hierarchy, exploiting locality and eliminating unnecessary
shuffling of data between tasks.

In this paper, we present Memory Services that accelerate
a suite of challenging irregular computations. Irregular com-
putations access memory in unpredictable patterns and are
dominated by data movement. We use this suite of irregular
workloads to explore the design space of the Memory Ser-
vice programming model and Livia architecture, as well as
to demonstrate the feasibility of mapping Memory Services
onto our specialized MSE hardware.

Beyond irregular computations, we believe that Memory
Services can accelerate a wide range of tasks, such as back-
ground systems (e.g., garbage collection [60], data dedup [86]),
cache optimization (e.g., sophisticated cache organizations [77,
80, 81], specialized prefetchers [6, 98, 99]), as well as other
functionality that is prohibitively expensive in software to-
day (e.g., work scheduling [62], fine-grain memoization [28,
102]). We leave these to future work.

Contributions: This paper contributes the following:

1. We propose the Memory Service programming model
to facilitate data-centric programming throughout the
memory hierarchy. We define a simple API for Memory
Services and develop a library of Memory Services for
common irregular data structures and algorithms.

2. We design Livia, an efficient system architecture for
the Memory Services model. Livia distributes special-
ized Memory Service Elements (MSEs) throughout the
memory hierarchy that schedule and execute Memory
Service tasks.

3. We explore the design space of MSEs. This leads us
to a unique hybrid CPU-FPGA architecture that dis-
tributes reconfigurable logic throughout the memory
hierarchy.

4. We evaluate Memory Services for our irregular work-
loads against prior multicore and processing in-memory
(PIM) designs. With only 3% added area, Livia improves
performance by up to 1.3X to 2.4Xx while reducing dy-
namic energy by up to 1.2X to 4.7X.

Road map: Sec. 2 motivates Memory Services on a repre-
sentative irregular workload. Secs. 3 and 4 describe Memory
Services and Livia. Sec. 5 presents our experimental method-
ology, and Sec. 6 evaluates Livia. Sec. 7 discusses related
work, and Sec. 8 concludes with directions for future work.

2 Background and Motivation

We begin by discussing prior approaches to reduce data move-
ment, and why they fall short on irregular computations.

2.1 Data movement is a growing problem

Data movement fundamentally limits system performance
and cost, because moving data takes orders-of-magnitude
more time and energy than processing it [2, 15, 21, 25, 50, 83].
Even on high-performance, out-of-order cores, system per-
formance and energy are often dominated by accesses to
the last-level cache (LLC) and main memory [39, 50]. This
trend is amplified by the shift towards specialized cores that
significantly reduce the time and energy spent on computa-
tion [39, 48, 50].

Irregular workloads are important and challenging: Data
movement is particularly challenging on applications that
access data in irregular and unpredictable patterns. These
include many important workloads in, e.g., machine learn-
ing [32, 58, 68], graph processing [54, 59], and databases [92].

Though locality is often present in these workloads [8],
standard techniques to reduce data movement struggle. Irreg-
ular prefetchers [44, 47, 96] can hide data access latency, but
they do not reduce overall data movement [62]. Moreover,
irregular workloads are poorly suited to common accelerator
designs [18, 65]. Their data-dependent control does not map
well onto an array of simple, replicated hardware with cen-
tralized control, and their unpredictable memory accesses
render scratchpad memories ineffective.

2.2 Motivating example: Lookups in a binary tree

To motivate Livia’s approach and illustrate the challenges
faced by prior techniques, we consider how different systems
behave on a representative workload: looking up items in
the binary tree depicted in Fig. 2. What is the best way to
map such a tree onto a memory hierarchy?

Fig. 2. A self-balancing search tree.

The ideal mapping places the most frequently accessed
nodes in the tree closest to the requesting core, as illustrated
in Fig. 3. This placement is ideal because it makes the best
use of the most efficient memories (i.e., the smallest caches).

Ideal data movement: We can now consider how much
data movement tree lookups will incur in the best case. The
highlighted path in Fig. 3 shows how a single lookup must
traverse from the root to a leaf node, accessing larger caches
along the way as it moves down the memory hierarchy.
Hence, the ideal data movement is the cost of walking nodes
along this lookup path: accessing each cache/memory plus

= Data movement

Cores ‘ 1

[
= . Mem

—
o
o
= =
3
L2s > LLC
n - L2
: \t ; <
o
>
O

1 9 N Core

Shared L3

1

() —

........ Ideal

Fig. 3. Ideal data movement: The tree lookup walks the memory
hierarchy, from the root in the L1 to the leaf in memory.

traversing the NoC. This cost is ideal because it considers
only the cost of loading each node and proceeding to the next,
ignoring the cost of locating nodes (i.e., accessing directories)
and processing them (i.e., executing lookup code).

Modeling methodology: Throughout this section, we com-
pare the time per lookup for a 512 MB AVL tree [20, 23] on a
64-core system with a 32 MB LLC and mesh on-chip network.
(See Sec. 5 for further details.) We model how each system
performs lookups, following the figures, by adding up the
average access cost to access the tree at each level of the
memory hierarchy. This simple model matches simulation.

Fig. 3 shows that Ideal data movement is dominated by the
LLC and memory, primarily in the NoC. We now consider
how practical systems measure up to this Ideal.

2.3 Current systems force needless data movement

Traditional multicore memory hierarchies are, in one respect,
not far from Ideal. Fig. 4 shows how, in a conventional system,
each level of the tree eventually settles at the level of the
memory hierarchy where it ought to—at least, most of the
time. The problem is that, since lookup code only executes
on cores, data is never truly settled. This has several harmful
effects: data moves unnecessarily far between lookups, each
lookup must check multiple caches along the hierarchy, and
each lookup evicts other useful data in earlier cache levels.

{:?Task execution = Data movement

10
Cores
X
+L1s = 3 &
—r— | o o~
—
L2s X
v
t @
O
G‘ 4
Shared L3 <
(slices) g 5

----- CPU Ideal

Fig. 4. Compute-centric systems frequently move data long dis-
tances between cores and the memory hierarchy.

The net effect of these design flaws is illustrated by the red
arrows in Fig. 4, showing how data repeatedly moves up and
down the memory hierarchy. Fig. 4 also shows the time per
lookup. The traditional multicore is 2.2X worse than Ideal,

adding cycles to execute lookup code on cores and in the
NoC moving data between cores and the LLC.

Finally, note that replacing cores with an accelerator would
not be very effective because data movement is the main
problem. Even if an accelerator or prefetcher could eliminate
all the time spent on cores, lookups would still take 1.9%
longer than Ideal data movement dictates.

2.4 Processing in-memory fails to exploit locality

Processing in-memory (PIM) avoids the inefficiency of
a conventional cache hierarchy by executing lookups near
memory, below the shared LLC. While many variations of
these systems exist, a common theme is that they do away
with deep cache hierarchies, preferring to access memory di-
rectly. This may benefit streaming computations, but it cedes
abundant locality in irregular workloads like tree lookups.
For these workloads, PIM does not capture our notion of
processing in data’s natural location—namely, the caches.

{fﬁ?Task execution = Data movement

Cores
+L1s

L2s

4.9%

Shared L3
(slices)

PIM Ideal

Memory

Fig. 5. Processing in-memory (PIM) sacrifices locality.

The result is significantly worse data movement for PIM

systems. Fig. 5 shows how a pure PIM approach incurs expen-
sive DRAM accesses, where Ideal has cheap cache accesses,
and still incurs NoC traffic between memory controllers. The

result is a slowdown of 4.9x over Ideal. In fact, this is opti-
mistic, as our model ignores limited bandwidth at the root.

2.5 Prior processing in-cache approaches fall short

Hybrid PIM designs [5, 33] process data on cores if the
data is present in the LLC, and migrate them to execute near-
memory otherwise. Fig. 6 illustrates how lookups execute on
EMC [33]. The first few levels of the tree execute on a core,
like a compute-centric system, until the tree falls off-chip

and is offloaded to the memory controller, like PIM.
10

{',‘(Task execution ==» Data movement
e)
Cores 11 8 X
+Ls {"‘ I e}
) —
o\
\|

L2s

Shared L3
(slices) g

s § 408

Cycles (x100)

2 .

0
Hybrid Ideal

Fig. 6. Hybrid PIM still incurs unnecessary data movement.

One might think that these hybrid designs capture most
of the benefit of Memory Services for tree lookups, but Fig. 6
shows this is not so. Because these designs adopt the compute-
centric design for data that fits on-chip, they still incur much
of its inefficiency. Overall, Hybrid-PIM is only 23% better
than a compute-centric system, and still 1.9 worse than
Ideal.

The unavoidable conclusion is that compute must be dis-
tributed throughout the memory hierarchy, rather than clus-
tered at its edges, so that lookups can execute in-cache where
the data naturally resides. Unfortunately, prior in-cache
computing designs are too limited to significantly reduce
data movement on the irregular workloads we consider. The
few fully programmable near-cache designs focus on co-
herence [55, 74, 82] or prefetching [6, 99], not on reducing
data movement. The others only support a few operations,
e.g., remote memory operations (RMOs) for simple tasks like
addition [5, 37, 42, 51, 57, 79, 94] or, more recently, logical op-
erations using electrical properties of the data array [1, 24].
Most designs operate only at the LLC, and none actively
migrate tasks and data to their best location in the hierarchy.

These designs stream instructions one-by-one from cores.
This means that, for each node in the tree, instructions must
move to caches and data must return to cores (i.e., to decide
which child to follow). Hence, though these designs acceler-
ate part of task execution in-cache, their overall data move-
ment still looks like Fig. 6 and faces the same limitations.

2.6 Memory Services are nearly Ideal

Irregular workloads require a different approach. Frequent
data movement to and from cores must be eliminated. In-
stead, cores should offload a high-level computation into the
memory hierarchy, with no further communication until the
entire computation is finished.

{:?Task execution ==» Data movement 6 x
—
Cores 5
+L1s
4
L2s
1

2

D2 AP l

Livia Ideal

Cycles (x100)

Shared L3

sl &
i

Fig. 7. Memory Services on Livia are nearly ideal.

Fig. 7 shows how Livia executes tree lookups as a Memory
Service. The Memory Service breaks the lookup into a chain
of tasks, where each task operates at a single node of the tree
(see Fig. 9) and spawns tasks within the memory hierarchy to
visit the node’s children. The lookup begins executing on the
core, and, following the path through the tree, spawned tasks
migrate down the hierarchy to where nodes have settled.
(Sec. 4 explains how Livia schedules tasks within the memory
hierarchy and migrates data to its best location.)

Comparing to Fig. 3, Livia looks very similar to Ideal. Livia
adds time only to (i) execute lookup code and (ii) access
directories to locate data in the hierarchy. These overheads
are small, so Livia achieves near-Ideal behavior.

To sum up, Memory Services express complex compu-
tations as graphs of dependent tasks, and Livia hardware
schedules these tasks to execute at the best location in the
memory hierarchy. Together, these techniques eliminate un-
necessary data movement while capturing locality when it
is present. Livia thus minimizes data movement by enabling
data-centric computing throughout the memory hierarchy.

3 Memory Services API

We describe Memory Services starting from the program-
mer’s view, and then work our way down to Livia’s imple-
mentation of Memory Services.

Execution model: Memory Services are designed to acceler-
ate workloads that are bottlenecked on data accesses, which
follow a pattern of: loading data, performing a short compu-
tation, and loading more data. Memory Services include this
data access explicitly within the programming model so that
tasks can be proactively scheduled near their data.
Memory Services express application functionality as a
graph of short, simple, dependent tasks. This is implemented
by letting each task spawn further tasks and pass data to
them. Each task gets its own execution context and runs con-
currently (and potentially in parallel) with the thread that

spawns it. This model supports both fork/join and continuation-

passing programming styles. To simplify programming, Mem-
ory Services execute in a cache-coherent address space like
any other thread in a conventional multicore system.

Invoking tasks: Applications are able to invoke memory
services tasks using ms_invoke, which has the C-like type
shown in Fig. 8. ms_invoke runs the ms_function_t called
fn on data residing at address data_ptr with additional argu-
ments args. Before calling ms_invoke, the caller initializes a
future via ms_future_init that indicates where the eventual
result of the task will be returned. ms_invoke also takes flags,
which can be currently be used to indicate (i) that the task
will need EXCLUSIVE permissions to modify data_ptr, or
that (ii) the task is STREAMING and will not reuse data_ptr.
These are both hints to the system that improve task and
data scheduling, but do not affect program correctness.

typedef void (»ms_function_t)(

T« data_ptr, ms_future_t= future, U... args);
void ms_invoke(ms_function_t fn, int flags,

T« data_ptr, ms_future_t+ future, U... args);
void ms_future_init(ms_future_t+ future);
void ms_return(ms_future_t= future, R result);
R ms_wait(ms_future_t future);

Fig. 8. Memory Services APIL T, U, and R are user-defined types.

Communicating results: Memory Service tasks return val-
ues to their invoker by fulfilling the future through the ms_-
send API (Fig. 8). The invoker obtains this value explicitly
by calling ms_wait. ms_invoke calls are asynchronous, but a
simple wrapper function could be placed around an ms_in-
voke and accompanying ms_wait to allow for a synchronous
programming model similar to an RPC system. Futures can
be passed among invoked tasks until the result is eventually
returned to the invoker (see, e.g., Fig. 7).

Example: Tree lookup. Consider the following simplified
binary tree lookup function using the API in Fig. 8:

void lookup(node_t+ node, ms_future_t+ res, int key) {
if (node—key == key) {
ms_return(res, node);
} else if(node—=key < key) {
ms_invoke(lookup, 0, node—left, res, key);
} else {
ms_invoke(lookup, 0, node—right, res, key);

ms_future_t res;

ms_future_init(&res);

ms_invoke(lookup, /«flags+/ 0, &root, &res, /«key+/ 42);
node_t+ result_node = (node_t+) ms_wait(res);

Fig. 9. Memory Service code for a simple binary tree lookup.

This example shows that Memory Service code looks quite
similar to a naive implementation of the same code on a base-
line CPU system, and our experience has been that, for data
structures and algorithms well-suited to Memory Services,
conversion has been a mechanical process.

Memory Services on FPGA: We map Memory Services
onto FPGA through high-level synthesis (HLS). For FPGA
execution, it is especially important to identify the hot path.
Any execution that strays from this hot path will raise a flag
that causes execution to fall back to software at a known
location. To aid HLS, each task is decomposed into a series
of pure functions that map easily into combinational logic.
This decomposition effectively produces a state machine
with one of the following actions at each transition: invok-
ing another task, waiting upon a future, reading memory,
writing memory, raising the fallback flag, or task completion.
For our applications, this transformation is trivial (e.g., the
tree lookup in Fig. 9), but some tasks would be split into
multiple stages [18]. Table 1 shows the results from HLS for
our benchmarks. Memory Services require negligible area
and execute in at most a few cycles, letting small FPGAs
accelerate a wide range of irregular workloads.

Limitations: Memory Services are currently designed to
minimize data movement for a single data address per task.
Many algorithms and data structures decompose naturally

Benchmark CLoC Area(mm?) Cycles @ 2.4GHz
AVL tree 20 0.00203 4
Linked list 15 0.00212 3
PageRank 5 0.00185 4
Message queue 4 0.00178 1

Table 1. High-level synthesis on the Memory Services considered in
this paper. Designs are mapped from C through Vivado HLS to Ver-
ilog. Latency was taken from Vivado for a Xilinx Virtex Ultrascale.
For area, designs were synthesized with VTR [75] onto a Stratix-IV
FPGA model, scaled to match the more recent Stratix-10 [52, 85].

into a graph of such tasks [46]. In the future, we plan to
extend Memory Services to accelerate multi-address tasks
through in-network computing [1, 42, 70] and online data
scheduling [9, 63]. Additionally, we have thus far ported
benchmarks to the Memory Services API and done HLS by
hand, but these transformations should be amenable to a
compiler pass in future work.

4 Livia Design and Implementation

This section explains the design and implementation of Livia,
our architecture to support Memory Services. Livia is a tiled
multicore system where each tile contains an out-of-order
core (plus its private cache hierarchy), one bank of the shared
distributed LLC, and a Memory Service Element (MSE) to ac-
celerate Memory Service tasks. Livia makes small changes to
the 000 core and introduces the MSEs, which are responsible
for scheduling and executing tasks in the memory hierarchy.

Fig. 10 illustrates the design, showing how Memory Ser-
vices migrate tasks to execute in-cache where it is most
efficient. The top-left core invokes operation f infrequently
on data x, so f is sent to execute on x’s tile when invoked. By
contrast, the bottom-left core invokes f frequently on data
y, so the data y is cached in the bottom-left core’s private
caches and f executes locally. All of this scheduling is done
transparently in hardware without bothering the programmer.

Livia heavily leverages the baseline multicore system to
simplify its implementation. It is always safe to execute Mem-
ory Services on the OoO cores—in other words, executing
on MSEs is “merely” a data-movement optimization. This
property lets Livia fall back on OoO cores when convenient,
so that Livia includes the simplest possible mechanisms that
accelerate common-case execution.

4.1 Modifications to the baseline system

Livia modifies several components of the baseline multicore
system to support Memory Services.

ISA extensions: Livia adds the following instruction:
invoke <function>

The ms_invoke API maps to the invoke instruction, which
takes a pointer to the function being called, the flags, a data_-
ptr that the function will operate on, a pointer to the future
that will hold the result, and the user-defined arguments.

Memory Service
Element (MSE)

f (XKF _{ H ," Core

E|ls s
/ /|| Controller || Execution
/ / "
/ g Execution Engine
/ e | ||
II -
5

L} L § |). —

t L— \ §] @j
(- - fe) In-order Embedded

|' f(y:w 1 13 Slice Core FPGA
o) k
|82 A

Fig. 10. Livia adds a Memory Service Element (MSE) to each tile in a
multicore. MSEs contain a controller that migrates tasks and data to
minimize data movement, and an execution engine that efficiently
executes tasks near-data. The MSE execution engine is implemented
as either a simple in-order core or a small embedded FPGA.

While the function is encoded in the instruction, the other
arguments are passed in registers following the system’s
calling convention. (E.g., we use the x86-64 Sys-V variadic
function call ABI, where RAX also holds the number of inte-
ger registers being passed and the flags.)

invoke first probes the L1 data cache to check if data_-
ptr is present. If it is, invoke turns into a vanilla function
call, simply loading the data and then calling the specified
function. If not, then invoke offloads the task onto MSEs. To
do so, it assembles a packet containing: the function pointer
(64 b), the data_ptr pointer (64 b), the future pointer (64 b), the
flags (2b), and additional arguments. All of our services fit in
a packet smaller than a cache line. The core sends this packet
to the MSE on the local tile, which is thereafter responsible
for scheduling and executing the task.

ms_send and ms_wait can be implemented via loads and
stores. ms_wait spins on the future, waiting for a ready flag
to be set. Like other synchronization primitives, ms_wait
yields to other threads while spinning or quiesces the core if
no threads are runnable. ms_send writes the result into the
future pointer using a store-update instruction that updates
the value in remote caches rather than allocating it locally.
store-update is similar to a remote store [37], except that it
pushes updates into a private cache, rather than the home
LLC bank, if the data has a single sharer. store-update lets
ms_send communicate values without any further coherence
traffic in the common case. Sending results through memory
is done to simplify interactions with the OS (Sec. 4.4).

Compilation and loading: invoke instructions are gener-
ated from the ms_invoke APIL which is supplied as a library.
FPGA bitstreams are bundled with application code as a fat
binary and FPGAs are configured when a program is loaded
or swapped-in.

Coherence: Livia uses clustered coherence [61], with each
tile forming a cluster. OoO cores and MSEs snoop coherence
traffic to each tile. Directories also track MSEs in the memory
controllers as potential sharers. This design keeps MSEs
coherent with minimal extra state over the baseline.

Work-shedding: Falling back to OoO cores: In several pla-
ces, Livia simplifies its design by relying on OoO cores to run
tasks in exceptional conditions, e.g., when an MSE suffers a
page fault. We implement this by triggering an interrupt on
a nearby OoO core and passing along the architectural state
of the task. This is possible in the FPGA design because each
bitstream corresponds to a known application function.

4.2 MSE controller

We now describe the new microarchitectural component
introduced by Livia, the Memory Service Element (MSE).
Fig. 10 shows the high-level design: MSEs are distributed
on each tile and memory controller, and each consists of a
controller and an execution engine. We first describe the
MSE controller, then the MSE execution engine.

The MSE controller handles invoke messages from cores
and other MSEs. It has two jobs: (i) scheduling work to mini-
mize data movement, and (ii) providing architectural support
to simplify programming.

4.2.1 Scheduling tasks and data across the memory
hierarchy to minimize data movement

We first explain how Livia schedules tasks in the common
case, then explain how Livia converges over time to a near-
optimal schedule and handles uncommon cases.

Common case: The MSE decides where to execute a task by
walking the memory hierarchy, following the normal access
path for the requested data_ptr in the invoke instruction.
At each level of the hierarchy, the MSE proceeds based on
whether the data is present. When the data is present, the
MSE controller schedules the task to run locally. Since MSEs
are on each tile and memory controller, there is always an
MSE nearby. When the data is not present, the MSE controller
migrates the task to the next level of the hierarchy (except as
described below) and repeats. The same process is followed
for tasks invoked from MSEs, except that the MSEs bypass
the core’s private caches when running tasks from the LLC.

{f.? Task execution == Data movement O Tag lookup

invoke(f, x)| invoke(f,)

+
—
[N
»
fo«—

— N |\\ T — —
L2s P Y o Z
~ 1
vl 7 [A T vl B /]
(. f t f \\ — -
v/
Shared 13| ¥ / \\/
(slices) y
Memory

Fig. 11. Livia’s task scheduling for three invokes on different data:
X, Y, and z. Livia schedules tasks by following the normal lookup
path and migrates data to its best location through sampling.

Fig. 11 shows three examples. invoke(f,x) finds x in the L1
and so executes f(x) on the main core. invoke(f,y) checks for
y in the L1 and L2 before finding y in the LLC and executing
f(y) on the nearby MSE. (The thin dashed line to the L2 is
explained below.) invoke(f,z) comes from an MSE, not a core,
so it bypasses the private caches and checks the LLC first.

Assuming data has settled in its “natural” location in the
memory hierarchy, this simple procedure schedules all tasks
to run near-data with minimal added data movement over
Ideal. Note that races are not a correctness issue in this
scheduling algorithm, since once a scheduling decision is
made, the MSE controller issues a coherent load for the data.

Migrating data to its natural location: The problem is
that data must migrate to its natural location in the hierarchy
and settle there. In general, finding the optimal data layout
is a very challenging problem. Prior work [5] has addressed
this problem in the LLC by replicating the cache tags; Livia
takes a simpler and much less expensive approach.

When the data is not present, the MSE controller flips a
weighted coin, choosing whether to (i) migrate the task to
the next level of the hierarchy, or (ii) run the task locally.
With e probability (¢ = 1/32 in our implementation), the task
is scheduled locally and the MSE controller fetches the data
with the necessary coherence permissions. The thin dashed
line in Fig. 11 illustrates this case, showing that invoke(f,y)
will occasionally fetch the data into the L2. Similar to prior
caching policies [73], we find that this simple, stateless policy
gradually migrates data to its best location in the memory
hierarchy. For data that is known to have low locality, the pro-
grammer can disable sampling by passing the STREAMING
flag to ms_invoke. (See Sec. 6.5 for a sensitivity study.)

When data is cached elsewhere: Sometimes the MSE con-
troller will find that the data is cached in another tile’s L2. If
the L2 has a shared (i.e., read-only) copy and the EXCLUSIVE
flag is not set, then the LLC also has a valid copy and the MSE
controller can schedule the task locally in the LLC. Other-
wise, the MSE controller schedules the task to execute on the
remote L2’s tile. This is illustrated by invoke(f,z) in Fig. 11,
which shows how Livia locates z in a remote L2 and executes
f(z) on the remote tile’s MSE.

Spawning tasks in memory controllers: When data re-
sides off-chip, tasks will execute in the memory controller
MSEs, where they may spawn additional tasks. Scheduling
tasks in the memory controller MSEs is challenging because
these MSEs lie below the coherence boundary. To find if
a spawned task’s data resides in the LLC, a naive design
must schedule spawned tasks back on their home LLC bank.
However, this naive design adds significant data movement
because tasks spawned in the memory controllers tend to
access data that is not in the LLC and so usually end up back
in the memory controller MSEs anyway.

To accelerate this common case, Livia speculatively for-
wards spawned tasks to their home memory controller MSE,
which will immediately schedule a memory read for the re-
quested data. In parallel, Livia checks the LLC home node
for coherence. If the data is present, the task executes in the
LLC; otherwise, the LLC adds the new memory controller
MSE as a sharer. Either way, the LLC notifies the memory
controller MSE accordingly. The memory controller MSE
will wait until it has permissions before executing the task.
This approach hides coherence permission checks behind
memory latency at the cost of modest complexity (Sec. 6.5).

4.2.2 Architectural support for task execution

Once a scheduling decision is made, the MSE runs the task
by, in parallel: loading the requested data, allocating the task
an execution context in local memory, and finally starting ex-
ecution. The MSE controller hides the task startup overhead
with the data array access. If a task runs a long-latency op-
eration (a load or ms_wait), the MSE controller deschedules
it until the response arrives. If the MSE controller ever runs
out of local storage for execution contexts, it sheds incoming
tasks to an idle hardware thread on the local 00O core [100]
or, if the local O0O core is overloaded, to the invoking core
to apply backpressure.

Implementation overhead: The MSE controller contains
simple logic and its area is dominated by storage for execu-
tion contexts. To support one outstanding execution context
from each core (a conservative estimate), the MSE requires
approximately 64 B X 64 cores = 4KB of storage.

4.3 MSE execution engine

The MSE execution engine is the component that actually
runs tasks throughout the cache hierarchy. We consider two
design alternatives, depicted in Fig. 10: (i) in-order cores
and (ii) embedded FPGAs. The former is the simplest design
option, whereas the latter delivers higher performance.

4.3.1 In-order core

The first design option is to execute tasks on a single-issue in-
order core placed near cache banks and memory controllers.
This core executes the same code as the OoO cores, though,
to reduce overheads and simplify context management in
the MSE controller, each task is allocated a minimal stack
sufficient only for local variables and a small number of func-
tion calls. If a thread would ever overrun its stack, it is shed
to a nearby OoO core (see “Work-shedding” above).

Implementation overhead: We assume single-issue, in-order
cores similar to an ARM Cortex M0, which require approxi-
mately 12,000 gates [7]. This is a small area and power over-
head over a wide-issue core, comparable to the size of its L1
data cache [6].

4.3.2 FPGA

The in-order core is a simple and cheap design point, but it
pays for this simplicity in performance. Since a single appli-
cation request may invoke a chain of many tasks, Livia is
sensitive to MSE execution latency (see Sec. 6). We therefore
consider a specialized microarchitectural design that replaces
the in-order core with a small embedded FPGA. Memory Ser-
vice tasks take negligible area (Table 1), letting us configure
the fabric when a program is loaded or swapped in. An inter-
esting direction for further study is the area-latency tradeoff
in fabric design [4] and fabrics that can swap between multi-
ple designs efficiently [30], but these are not justified by our
current workloads given their negligible area.

Implementation overhead: As indicated in Table 1, Mem-
ory Services map to small FPGA designs. Among our bench-
marks, the largest area is still less than 0.01 mm?. Hence, a
small fabric of 0.1 mm? (3% area overhead on a 64-tile system
at 200 mm?) can support more than 10 concurrent services.

4.4 System integration

Livia’s design includes several mechanisms for when Mem-
ory Services interact with the wider system.

Virtual memory: Tasks execute in an application’s address
space and dereference virtual addresses. The MSE controller
translates these addresses by sharing the tile’s L2 TLB. MSEs
located on memory controllers include their own small TLBs.
We assume memory is mapped through huge pages so that a
small TLB (a few KB) suffices, as is common in applications
with large amounts of data [49, 56, 69].

Interrupts: Memory Service tasks are concurrent with ap-
plication threads and execute in their own context (Sec. 3).
Hence, Memory Services do not complicate precise inter-
rupts on the OoO cores. Memory Service tasks can continue
executing on the MSEs while an OoO core services an I/O
interrupt and, since they pass results through memory, can
even complete while the interrupt is being processed. Faults
from within a Memory Service task are handled by shedding
the task to a nearby OoO core, as described above.

OS thread scheduling: Futures are allocated in an applica-
tion’s address space, and results are communicated through
memory via a store-update. This means it is safe to desched-
ule threads with outstanding tasks, because the response will
be just be cached and processed when the thread is resched-
uled. Moreover, the thread can be rescheduled on any core
without correctness concerns. Memory Service tasks are de-
scheduled when an application is swapped out by sending an
inter-process interrupt (IPI) that causes MSEs to shed tasks
from the swapped-out process to nearby OoO cores.

64 cores, x86-64 ISA, 2.4 GHz, OO0 Goldmont parch

Cores (3-way issue, 78-entry IQ/ROB, 16-entry SB, ... [3])

L1 32KB, 8-way set-assoc, split data and instruction caches
L2 128KB, 8-way set-assoc, 2-cycle tag, 4-cycle data array

32 MB (512 KB per tile), 8-way set-assoc, 3-cycle tag,

LLC 5-cycle data array, inclusive, LRU replacement

NoC mesh, 128-bit flits and links, 2/1-cycle router/link delay

Memory 4 DRAM controllers at chip corners; 100-cycle latency

Table 2. System parameters in our experimental evaluation.

5 Experimental Methodology

Simulation framework: We evaluate Livia in execution-
driven microarchitectural simulation via a custom, cycle-
level simulator, which we have validated against end-to-end
performance models (like Sec. 2) and through extensive ex-
ecution traces. Tightly synchronized simulation of dozens
of concurrent execution contexts (e.g., 64 cores + 72 MSEs)
restricts us to simulations of hundreds of millions of cycles.

System parameters: Except where specified otherwise, our
system parameters are given in Table 2. We model a tiled
multicore system with 64 cores connected in a mesh on-chip
network. Each tile contains a main core that runs applica-
tion threads (modeled after Intel Goldmont), one bank of the
shared LLC, and MSEs (to ease implementation, our simula-
tor models MSEs at both the L2 and LLC bank). MSE engines
are modeled as simple IPC=1 cores or FPGA timing models,
as appropriate to the evaluated system. We conduct several
sensitivity studies and find that Livia’s benefits are robust to
a wide range of system parameters.

Workloads: We have implemented four important data-ac-
cess-bottlenecked workloads as Memory Services: lock-free
AVL trees, linked lists, PageRank, and producer-consumer
queues. We evaluate these workloads on different data sizes,
system sizes, and access patterns. These workloads are de-
scribed in more detail as they are presented in Sec. 6.

Each workload first warms up the caches by executing
several thousand tasks, and we present results for a represen-
tative sample of tasks following warm-up. To reduce simula-
tion time for Livia, our warm-up first runs several thousand
requests on the main cores using normal loads and stores
before running additional Livia warm-up tasks via invoke.
This fills the caches quickly, and we have confirmed that this
methodology matches results run with a larger number of
Livia warm-up tasks.

Systems: We compare these workloads across five systems:

e CPU: A baseline multicore with a passive cache hier-
archy that executes tasks in software on OoO cores.

e PIM: A near-memory system that executes tasks on
simple cores within memory controllers.

e Hybrid-PIM: A hybrid design that executes tasks on
000 cores when they are cached on-chip, or on simple
cores in memory controllers otherwise.

e Livia-SW: Our proposed design with MSE execution
engines implemented as simple cores.
e Livia-FPGA: Our proposed design with MSE execution
engines implemented as embedded FPGAs.
PIM and Hybrid-PIM are implemented basically as Livia-SW
with MSEs at the L2 and LLC disabled. The CPU system
executes each benchmark via normal loads and stores, and
all other systems use our new invoke instruction.

Metrics: We present results for execution time and dynamic
execution energy, using energy parameters from [89]. Where
possible, we breakdown results to show where time and
energy are spent throughout the memory hierarchy. We
focus on dynamic energy because Livia has negligible impact
on static power and to clearly distinguish Livia’s impact on
data movement energy from its overall performance benefits.

6 Evaluation

We evaluate Livia to demonstrate the benefits of the Mem-
ory Service programming model and Livia hardware on four
irregular workloads that are bottlenecked by data movement.
We will show that performing computation throughout the
memory hierarchy provides dramatic performance and en-
ergy gains. We will also identify several important areas
where the current Livia architecture can be improved. Some
results are described only in text due to limited space; these
can be found online in a technical report [19].

6.1 Lock-free-lookup AVL tree

We first consider a lock-free AVL search tree [23]. Binary-
search trees like this AVL tree are popular data structures,
despite being bottlenecked by pointer chasing, which is diffi-
cult to accelerate. In addition to the usual child/parent point-
ers, pointers to successors and predecessor nodes are used
to locate the correct node in the presence of tree rotations,
allowing concurrent modifications to the tree structure. We
implemented this tree as a Memory Service in three functions:
the root function walks a single level of the tree, invoking
itself on the child node pointer, or returning the correct node
if a matching key is found; two other functions follow suc-
cessor/predecessor pointers until the correct node is found
(or a sentinel, in the rare case that a race is detected).

Livia accelerates trees dramatically: We evaluateda 512 MB
tree (~8.5 million nodes) on a 64-tile system. Fig. 12 shows
the average number of cycles and dynamic execution energy
for a single thread to walk the tree on a uniform distribution,
broken down into components across the system. The graph
also shows, in text, each system’s improvement vs. CPU.
PIM takes nearly 2x as long as CPU because it cannot
leverage the locality present in nodes near the root. Hybrid-
PIM gives some speedup (18%), but its benefit is limited by
the high NoC latency for both the in-CPU and in-memory-
controller portions of its execution. Hybrid-PIM spends more

0.57x 0.54x

2500 . Mem
LLC
- 2

I Core

700

2000 600

500
1500

118x 1.04x

1.54x
l 1.69x

Cycles
Energy (pJ)
9 IS

2

w
=3
S

1000

161x 1.63x

500

o - I s - 0
CPU PIM Hybrld Livia Livia CPU PIM Hybrid Livia Livia
PIM SW FPGA PIM SW FPGA
(a) Execution time. (b) Dynamic energy.

Fig. 12. AVL tree lookups on 64 tiles with uniform distribution.

time and energy in cores due to the overhead of invoke in-
structions. Livia-SW and Livia-FPGA perform significantly
better, accelerating lookups by 54% and 69%, respectively.
Livia drastically reduces NoC traversals, and Livia-FPGA ad-
ditionally reduces cycles spent in computation at each level
of the tree. This leads to similar dynamic energy improve-
ments of 61% and 63%, respectively.

0.46x

N Mem
LLC

-2

I Core

Mem
LLC
NoC
MSE
L2
Core

500

400

0.83x

g 2300
E 1000 1 %
S 0x 1.01x 5 L 16>< ik
750 . . 1285 o0 Y
500
100
250
, I == == 0
CPU PIM Hybrid Livia Livia CPU PIM Hybrid lela Livia
PIM SW FPGA PIM SW FPGA
(a) Execution time. (b) Dynamic energy.
Fig. 13. AVL tree lookups on 64 tiles with Zipfian distribution.

Livia works well across access patterns: Fig. 13 shows
that these benefits hold on the more cache-friendly YCSB-B
workload, which accesses keys following a Zipf distribution
(a = 0.9). Due to increased temporal locality, performance
improves in absolute terms for all systems. More tree levels
fit in the core’s private caches, reducing the opportunity for
Livia to accelerate execution. Nevertheless, Livia still sees the
largest speedups and energy savings. In contrast, PIM gets
little speedup because it does not exploit locality, making it
relatively worse compared to CPU (now over 2X slower).

Livia works well at different data and system sizes: Fig. 14
shows how Livia performs as we scale the system size. Scal-
ing the LLC allows more of the tree to fit on-chip, but since
binary trees grow exponentially with depth, this benefit is
outweighed by the increasing cost of NoC traversals. Livia is
effective at small tree sizes and scales the most gracefully of

10

= .-
C P HLSLF

I Core W] LLC B Mem x
X =N
X <])
X ~ T =)
X 2 1 =]
o
2500 e o
o
+
2000 T 7 T ey X
& 2
8 3 S S M x = B -
< 1500 S <= = =
3 Y T X a0k
1000 I i =

9
—

B 149
B 1 63%
B 169
51

| 1
C P HLSLF

mElm-
C P HLSLF

1 1 I I]
C P HLSLF

16 tiles 36 tiles 64 tiles 100 tiles 144 tiles

Fig. 14. Avg. lookup cycles on 512 MB AVL tree vs. system sizes.

I Core W) LLC B Mem x
X =
o =}
3000 3 3
~ =]
. g ;
2500 x = = =
N o
e 3 &

2000 < — X P
4] X I~ A
< F |2 q s aR
S 1500 « l x — S IR bl

S © — m X — ™~
X T T L 05 i
1000 XM x = FEE IH +
—“ S Qo | I
500 S Em
g e m s Nl =N - --
C P HLSLF C P HLSLF C P HLSLF C P HLSLF C P HLSLF
32MB 128MB 512MB 2GB 8GB

Fig. 15. Avg. lookup cycles on AVL tree at 64 tiles vs. tree size.

all systems because it halves NoC traversals for tasks execut-
ing in the LLC and memory. Going from 16 tiles to 144 tiles,
Livia-FPGA’s speedup improves from 53% to 87%, whereas
both PIM and HybridPIM do relatively worse as the system
scales because they do not help with NoC traversals.

Fig. 15 shows the effect of scaling tree size on a 64-tile
system, going from a tree that fits in cache to one 256x
larger than the LLC. PIM and HybridPIM both improve as a
larger fraction of the tree resides in memory, getting up to
34% speedup. Livia maintains consistent speedups of gmean
54%/70% on small to large trees. This is because Livia accel-
erates tree walks throughout the memory hierarchy, halving
NoC traversals in the LLC, and, since tree levels grow expo-
nentially in size with depth, a large fraction of tree levels
remain on-chip even at the largest tree sizes.

Livia’s benefits remain substantial even when doing ex-
tra work: Most applications use the result of a lookup as
input to some other computation. We next consider whether
Livia’s speedup on lookups translates into end-to-end per-
formance gains for such applications. Fig. 16 evaluates a
workload that, after completing a lookup, loads an associ-
ated value via regular loads on the main core. This extra
processing introduces additional delay and cache pollution.

Despite this, Fig. 16 shows that Livia still provides sig-
nificant end-to-end speedup, even when the core loads an
additional 1 KB for each lookup. (This value size corresponds
to an overall tree size of 8 GB.) Livia’s benefits remain sub-
stantial for two reasons. First, the out-of-order core is able
to accelerate the value computation much more effectively

N Core W LLC B Mem B Processing
P
é 2
X X X 2
3000 X o 3 8 S S«
ﬂ.% =] =] o — g « X
2500 S W “N 8
X X & BT C
£ 2000 o M x Sl x ~ WS x — N9
N PR FESE EERE-| BEE =T
O 1500 Z WS x "X Y ==
I 49 & ol -
o
1000 IHH III II II
500 II
o mlme_ mlile | sle. | slis. | =l =N
CPHLSLF CPHLSLF C P HLSLF C P HLSLF C P HLSLF C P HLSLF
0B 64B 1288 2568 512B 1KB

Fig. 16. Avg. cycles to lookup a key and then load the associated
value on the main core. Results are for a 512 MB tree at 64 tiles, for
different value sizes along the x-axis.

than the tree lookup, so the performance loss from accessing
a 1KB value is much less than an accessing an equivalent
amount of data in a tree lookup. Second, the cache pollution
from the value is not as harmful as it seems. Though the
value flushes tree nodes from the L1 and L2, a significant
fraction of the tree remains in the LLC. As a result, the time
it takes to do a lookup (i.e., ignoring “Processing” in Fig. 16),
only degrades slightly as value grows larger.

6.2 Linked lists

We next consider linked lists. Despite their reputation for
poor performance, linked lists are commonly used in situa-
tions where pointer stability is important, as standalone data
structures, embedded in a larger data structure (e.g., separate
chaining for hash maps), or used to manage raw memory
without overhead (e.g., free lists in an allocator).

Livia accelerates linked lists dramatically: Because of
their O(N) lookup time, in practice linked lists are short and
embedded in larger data structures. To evaluate this scenario,
we first consider an array of 4096 linked-lists, each with 32
elements (8 MB total). To perform a lookup, we generate a key
and scan the corresponding list. Keys are chosen randomly,

following either a uniform or Zipfian distribution.
0.46x

0.3x

1400

B Mem BN Mem
4000 LLC LLC
2 1200 BN NoC
3500 B Core MSE
. 2
E 1000
3000 B Core
g 2500 E‘, 800
S 1.0x 0.99% &
© 2000 7]
5600
.
1500 164
19x 400
1000
200
500 444x 473x
o I 0 L N .
CPU PIM Hybrid Livia Livia CPU PIM Hybrid Livia Livia
PIM SW FPGA PIM SW FPGA
(a) Execution time. (b) Dynamic energy.

Fig. 17. Linked-list lookups on 64 tiles with uniform distribution.

Fig. 17 shows the uniform distribution. The data fits in
the LLC, so PIM is very inefficient. Hybrid-PIM also sees

11

no benefit vs. CPU because the working set fits on-chip.
(Its added energy is due to invoke instructions.) Meanwhile,
both Livia-SW and Livia-FPGA see large speedups of 64% and
90%, respectively, because task execution is moved off energy-
inefficient cores and NoC traversals are greatly reduced. Livia
improves energy by 4.4x and 4.7X. Energy savings exceed
performance gains because, in addition to avoiding a NoC tra-
versal for each load, Livia also eliminates an eviction, which
is not on the critical path but shows up in the energy.

In fact, Fig. 17 is potentially quite pessimistic, since Livia
can achieve much greater benefits in some scenarios. Ini-
tially, we unintentionally allocated linked-list nodes so that
they were located in adjacent LLC banks. With this alloca-
tion, Livia could traverse a link in the list with a single NoC
hop (vs. a full NoC round-trip for CPU), achieving dramatic
speedups of 5X or more. In Fig. 17, we eliminate this effect
by randomly shuffling nodes, but we plan in future work to

explore techniques that achieve a similar effect by design.

0.38x 0.27x

4000 B Mem . Mem
LLC 1200 LLC
3500 [W) B NoC
EE Core 1000 MSE
3000 -2
I Core
2500 = 800
" 2
< >
S
200 20
G 2000 T 600
1.0x 0.98x W5
1500 0.83x
1.47x 400 1.0x
1000 1.68x
: 200
500 39x 418x
CPU PIM Hybrid Livia Livia CPU PIM Hybrid Livia Livia
PIM FPGA PIM SW FPGA
(a) Execution time. (b) Dynamic energy.

Fig. 18. Linked-list lookups on 64 tiles with Zipfian distribution.

Livia works well across access patterns: Fig. 18 shows
linked-list results with the YCSB-B (Zipfian) workload. Un-
like the AVL tree (Fig. 13), the Zipfian pattern has less impact
on linked-list behavior. This is because linked-list lookups
still quickly fall out of the private caches and enter the LLC.

Livia works well at different data and system sizes: Sim-
ilar to the AVL tree, Figs. 19 and 20 show how results change
when scaling the system and data size, respectively. Specifi-
cally, we scale input size by increasing the number of lists.
(Results are similar when scaling the length of each list.)

As before, Livia’s benefits grow with system size as NoC
traversals become more expensive. However, as data size
increases, Livia’s benefits decrease from 1.9%X to 1.54%. This
is because the lists fall out of the LLC and lookups must go
to memory, which starts to dominate lookup time. PIM gets
speedup only at the largest list size, when most tasks execute
in-memory. HybridPIM gets modest speedup, up to 36%, but
significantly under-performs Livia even when most of the
lists reside in memory.

I Core LLC

X X
X ™ ©
X © & =
X = 5 =3
© &P o
¢4 o
4000 =)
X
X {2
X o ()
4, 3000 x & =g B
[} X o S
< X o g =]
> X x & Sl 4
Y2000 x Mo s s X & x 5 x
2 2 < x — S & x I x = -
et g =2 s =
1000 -; o1
) =M N N e e E -
CPHLSLF CPHLSLF CP HLSLF C P HLSLF C P HLSLF
16 tiles 36 tiles 64 tiles 100 tiles 144 tiles

Fig. 19. Avg. lookup cycles on 4096 linked-lists vs.
[LC

system sizes.
Mem

X
<
=
X X X X Ex
5000 @ S 2 Ry Sy
=3 o =] — O X M o X
— — < <
1000 &y S
X X é § é
4] 2 =) & = — 9
¢ 3000 M =5 &0 = N —
N1 LB | (EER | | EE
2000 % -~ +—1-
o
e NP L
1000
, HHHEE NN E__ S Slam _—EEm
CPHLSLF CP HLSLF CP HLSLF C P HLSLF C P HLSLF
4K x 2KB 8K x 2KB 16K x 2KB 32K x 2KB 64K x 2KB

Fig. 20. Avg. cycles per linked-list lookup at 64 tiles vs. input size.

6.3 Graph analytics: PageRank

We next consider PageRank [66], a graph algorithm, running
on synthetic graphs [16] that do not fit in the LLC at 16/64
cores. We compare multithreaded CPU push and pull imple-
mentations [84] to a push-based implementation written as a
Memory Service, which accelerates edge updates by pushing
them into the memory hierarchy where they can execute
efficiently near-data, similar to recent work [64, 100, 101].

x10%

0.45x
051x 05X
l.ox I I

x10%

0.56x

12

10 0.72x 0.71x

08 0.6
P 1.0x
S
506

1.6x 1.59x

0.4

0.2

0.0 0.0

CPU CPU PIM Hybrid Livia Livia CPU CPU PIM Hybrid Livia Livia
pull push PIM SW FPGA pull push PIM SW FPGA

(a) 2M vert/20M edge, 16 tiles. (b) 4M vert/40M edge, 64 tiles.
Fig. 21. PageRank on synthetic random graphs at 16/64 cores.

Cyc\es

1.51x

15x

Livia accelerates graph processing dramatically: Fig. 21
shows the time needed to process one full iteration after
warming up the cache for one iteration. We do not break
down cycles across the cache hierarchy due to the difficulty
in identifying which operations are on the critical path.
Livia is 60%/51% faster than CPU-Pull at 16/64 tiles and
2.8X%/3.4% faster than CPU-Push. Notice that pull is faster

12

than push in the baseline CPU version, but the push-based
Memory Service is better than both. (PIM and HybridPIM
are both faster than CPU-Push, but still slower than CPU-
Pull.) This is because push-based implementations in the
CPU version incur a lot of expensive coherence traffic to
invalidate vertices in other tiles’ private caches and must
update data via expensive atomic operations. Livia avoids
this extra traffic by executing most updates in-place in the
caches. PageRank tasks run efficiently in software, so Livia-
FPGA does not help much.

Curiously, Livia’s speedup decreases at 64 tiles. This is
because of backpressure that frequently sheds work back to
remote cores (Sec. 4.2.2). In particular, we find that the four
MSEs at the memory controllers are overloaded with 64 tiles.
In the future, we plan to avoid this issue through smarter
work-shedding algorithms and higher-throughput MSEs at
the memory controllers.

Finally, CPU-Push, CPU-Pull, Livia-SW, and Livia-FPGA
get dynamic energy all within 10% of each other (omitted for
space), whereas PIM and HybridPIM add modest dynamic
energy (20-35%). This is due to instruction energy from shed
tasks, and the relatively large fraction of data accesses that go
to memory for PageRank. However, bear in mind that Livia
still achieves significant end-to-end energy savings because
its improved performance reduces static energy: at 16/64
tiles, Livia-FPGA improves overall energy by 1.24X/1.16X vs.
CPU-Pull and by 1.82%/1.78X vs. CPU-Push.

6.4 Producer-consumer queue

Many irregular applications are split into stages and com-
municate among stages via producer-consumer queues [78].
These queues perform poorly on conventional invalidation-
based coherence protocols, since each push and pop incurs
at least two round-trips with the directory. With multiple
producers, the number of coherence messages can be much
worse than two. Fortunately, Memory Services give a natural
way to implement queues without custom hardware support
for message passing. We implement multi-producer, single-
consumer queues by invoking pushes on the queue itself.
Only a single NoC traversal is on the critical path, instead of
three (two round-trips, partially overlapped) in CPU systems.
All queue operations occur on the consumer’s tile, avoiding
unnecessary coherence traffic and leaving the message in
the receiver’s L2, where it can be quickly retrieved.

Livia accelerates producer-consumer queues dramati-
cally: Fig. 22 shows the latency to push and pop an item
from the queue on systems with 16 to 144 tiles. To factor out
directory placement, we measure the latency between oppo-
site corners of the mesh network. These results are therefore
worst-case, but within a factor of two of expected latency.
Compared to the CPU baseline, Livia-SW and Livia-FPGA
accelerate producer-consumer queues by roughly 2Xx across

X
S
=i
500
3
100 T T =
S S
i 3
$300 X o
o T X X ~ o
%) Lo & X 5 3 & &
200 P g 5 5 - o
ST o
oo
- II II
0
C LS LF C LS LF C LS LF C LS LF C LS LF

16 tiles 36 tiles 64 tiles 100 tiles 144 tiles

Fig. 22. Avg. latency for producer-consumer queue vs. system size.

all system sizes. This is because Livia eliminates NoC de-
lay due to coherence traffic. With multiple senders, even
larger speedup can be expected as senders can conflict and
invalidate the line mid-push on the CPU system.

Note that push uses the STREAMING flag (Sec. 3) to pre-
vent data from being fetched into the sender’s L2. With-
out this hint, we observe modest performance degradation
(roughly 25%, depending on system size), as data is occasion-
ally migrated to the wrong cache via random sampling.

6.5 Sensitivity studies

Livia is insensitive to core microarchitecture: We ran the
512 MB AVL tree on 64 tiles modeling Silvermont, Goldmont,
Ivy Bridge, and Skylake core microarchitectures (graph omit-
ted due to space). We found that core microarchitecture had
negligible impact, since Livia targets benchmarks dominated
by data-dependent loads. On such workloads, increasing is-
sue width is ineffective because simple, efficient core designs
already extract all available memory-level parallelism.

I Core W] LLC s Mem

X
™~
S

0.57x
0.64x

2500

0.4x
0.49x

2000

1500 s
e}

Cycles
1.76%

- —a e
1.0x
2
1.66x
B 0
L 22>

—

1000

B 118

-0~
55
B 1 60~

1.39%

53

1.1x
1.18x

B 1.33%
I 10x

500 I I

0

o mEEm wElm- - e =l e =2lm-
CPHLSLF CPHLSLF CP HLSLF C P HLSLF C P HLSLF
0 cycles 1 cycles 2 cycles 3 cycles 4 cycles

Fig. 23. Avg. lookup cycles on a 512 MB AVL tree at 64 tiles. Livia’s
benefits increase with larger on-chip routing delay.

Livia’s benefits increase with network delay: Next,Fig. 23
considers the impact of increasing NoC delay on Livia’s re-
sults, e.g., due to congestion. We found, unsurprisingly, that
Livia’s benefits grow as the NoC becomes more expensive,
achieving up to 89% speedup as routing delay grows. How-
ever, Livia still provides substantial benefit on lightly loaded
networks—even with zero router delay, Livia-FPGA gets 33%
speedup for the AVL tree at 64 tiles.

13

1000 -

Fig. 24. Avg. lookup
cycles on a 512MB
AVL tree at 64 tiles, af-
ter warm-up, for Livia-
SW with different sam-
pling probability. Livia-
SW’s steady-state per- 200 -
formance is insensitive

toe < 1/8. 0-

800 -

600 -

Cycles

100 -

1/ 14 18 116 132 1641128
Sampling Probability (e

Livia’s steady-state performance is insensitive to sam-
pling probability: Fig. 24 shows the steady-state perfor-
mance of Livia on an AVL tree, after several million requests
to warm up the caches, with different sampling probability.
Similar to adaptive cache replacement policies [45, 73], we
find that Livia is not very sensitive to sampling rate, so long
as sampling is not too frequent. That said, we have observed
that sampling can take a long time to converge to the steady-
state, so € should not be too small. Looking forward, Livia
would benefit from data-migration techniques that can re-
spond quickly to changes in the application’s access pattern.

Livia’s speculative memory prefetching is effective: Livia
hides LLC coherence checks by performing them in parallel

with a DRAM load for tasks spawned at memory controllers.
We found that, on the AVL tree and linked list benchmarks

at 64 tiles, this technique consistently hides latency equiva-
lent to 26% of the DRAM load. The savings depend on the

cost of coherence checks: speculation saves latency equal

to 13% of the DRAM load at 16 tiles, but up to 38% at 144

tiles. Speculation is accurate on input sizes larger than the

LLC (e.g., >99% accuracy for 512 MB AVL tree), but can be

inaccurate for small inputs that just barely do not fit in the

LLC (worst-case: 45% accuracy). We expect a simple adaptive

mechanism would avoid these problem cases.

7 Related work

We wrap up by putting Livia in the context of related work
in data-centric computing and a taxonomy of accelerators.

7.1 Data-centric computing

Data-centric computing has a long history in computer sys-
tems. There is a classic tradeoff in system design: should we
move compute to the data, or data to the compute?

At one extreme, conventional CPU-based systems adopt
a purely compute-centric design that always moves data to
cores. At the other extreme, spatial dataflow architectures
adopt a purely data-centric design that always moves data
to compute [53, 88]. Many designs have explored a middle
ground between these extremes. For example, hierarchical
dataflow designs [67, 76] batch groups of instructions to-
gether for efficiency, and there is a large body of prior work
on scheduling tasks to execute near data [10, 26, 46, 63].
Similarly, active messages (AMs) [91] and remote-procedure

calls (RPCs) [12] execute tasks remotely, often to move them
closer to data.

Livia also takes a middle ground, adding a dash of data-
centric design to existing systems. Livia improves on prior
data-centric systems in two respects. First, we rely on the
Memory Service model to statically identify which functions
are well-suited to execute within the memory hierarchy,
rather than always migrating computation to data (unlike,
e.g., EM2 [53] and pure dataflow). Second, we rely on cache
hardware to dynamically discover locality and schedule com-
putation and data, rather than statically assigning tasks to
execute at specific locations [12, 46, 91] or schedule compute
infrequently in large chunks [10]. We believe this division
of work between hardware and software strikes the right
balance, letting each do what it does best [63].

7.2 Schools of accelerator design

The recent trend towards architectural specialization has led
to a proliferation of accelerator designs. We classify these
designs into three categories: co-processor, in-core, and in-
cache. Livia falls into the under-explored in-cache category.
Co-processor designs treat an accelerator as a concurrent
processor that is loosely integrated with cores. Co-processors
can be discrete cards accessed over PCle (e.g., GPUs and
TPUs [48]), or IP blocks in a system-on-chip. Co-processor de-
signs yield powerful accelerators, but make communication
between cores and the accelerator expensive. PIM [38, 41]
falls into this category, as do existing designs that integrate
a powerful reconfigurable fabric alongside a CPU in order to
accelerate large computations [27, 43, 65, 71, 95]. In contrast,
Livia integrates many small reconfigurable fabrics through-
out the memory hierarchy to accelerate short tasks.
In-core designs treat an accelerator as a “mega functional
unit” that is tightly integrated with cores [31, 34, 35]. A good
example is DySER [31], which integrates a reconfigurable
spatial array into a core’s pipeline to accelerate commonly
executed hyperblocks. However, in-core designs like DySER
often do not interface with memory at all, whereas Livia
focuses entirely on interfacing with memory to accelerate
data-heavy, irregular computations. In-core acceleration is
insufficient for these workloads (Sec. 2.3).
In-cache designs are similar to in-core designs in that they
tightly integrate an accelerator with an existing microarchi-
tectural component. The difference is that the accelerator is
tightly integrated into the memory hierarchy, not the core.
This part of the design space is relatively unexplored. As
discussed in Sec. 2.4, prior approaches are limited to a few
operations and still require frequent data movement between
cores and the memory hierarchy to stream instructions and
fetch results [1, 24, 37, 51, 57, 79, 94]. Livia further develops
the in-cache design school of accelerators by providing a fully
programmable memory hierarchy that captures locality at all
levels and eliminates unnecessary communication between
cores and caches. As a result, Livia accelerates a class of

14

challenging irregular workloads that have remained beyond
the reach of existing accelerator designs.

8 Conclusion and Future Work

This paper has presented Memory Services, a new program-
ming model that enables near-data processing throughout
the memory hierarchy. We designed Livia, an architecture
for Memory Services that introduces simple techniques to
dynamically migrate tasks and data to their best location in
the memory hierarchy. We showed that these techniques sig-
nificantly accelerate several challenging irregular workloads
that are at the core of many important applications. Memory
Services open many avenues for future work:

New applications: This paper focuses on irregular work-
loads, but there are a wide range of other workloads amenable
to in-cache acceleration. Prior work contains many exam-
ples: e.g., garbage collection [60], data deduplication [86],
and others listed in Sec. 1. Unfortunately, it is unlikely that
general-purpose systems will implement specialized hard-
ware for these tasks individually. We intend to expand Livia
and Memory Services into a general-purpose platform for
in-cache acceleration of these applications.

Productive programming: This paper presented an initial
exploration of the Memory Service programming model tar-
geted at expert programmers with deep knowledge of their
workloads and of hardware. We plan to explore enhance-
ments to the model and compiler that will make Memory
Services more productive for the average programmer, e.g.,
by providing transactional semantics for chains of tasks [11]
or by extracting Memory Services from lightly annotated
code.

Improved microarchitecture: Finally, we see abundant op-
portunities to refine Livia’s current design. Livia employed
existing cores and FPGAs to simplify its design and demon-
strate the basic potential of Memory Services. However, FP-
GAs are not the final answer for MSE execution, and we
have left several important issues in the MSE controller un-
explored. We plan to explore more efficient architectures for
task execution, such as CGRAs [4, 65, 71] with wider data-
paths. We will also develop policies in the MSE controller
to manage resources and avoid harmful interference across
co-running applications. Finally, our evaluation highlighted
several opportunities to improve the microarchitecture, e.g.,
by designing more responsive data-migration techniques.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful feedback. We also thank Graham Gobieski for his

help with high-level synthesis. This work was supported by
NSF award CAREER-1845986 and CAREER-1452994.

References

(1]

[2]

(3]

(4]

(5]

(6]

(7]
(8]

(15]

(16]

(17

—

Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish
Narayanasamy, David Blaauw, and Reetuparna Das. 2017. Compute
caches. In Proc. HPCA-23.

V. Agarwal, M.S. Hrishikesh, SW. Keckler, and D. Burger. 2000. Clock
rate versus IPC: the end of the road for conventional microarchitec-
tures. In Proc. ISCA-27.

Agner Fog. 2020. The microarchitecture of Intel, AMD and VIA CPUs.
https://www.agner.org/optimize/microarchitecture.pdf.

Elias Ahmed and Jonathan Rose. 2004. The effect of LUT and cluster
size on deep-submicron FPGA performance and density. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 12, 3 (2004),
288-298.

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015.
PIM-enabled instructions: a low-overhead, locality-aware processing-
in-memory architecture. In Proc. ISCA-42.

Sam Ainsworth and Timothy M Jones. 2018. An Event-Triggered
Programmable Prefetcher for Irregular Workloads. In Proc. ASPLOS-
XXI1IL

ARM. 2019. Cortex MO+. http://www.arm.com/products/processors/
cortex-m/cortex-mOplus.php.

Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality ex-
ists in graph processing: Workload characterization on an Ivy Bridge
server. In Proc. IISWC.

Nathan Beckmann and Daniel Sanchez. 2013.
Software-Defined Caches. In Proc. PACT-22.
Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. 2015. Scal-
ing distributed cache hierarchies through computation and data co-
scheduling. In Proc. HPCA-21.

Emery D Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009.
Grace: safe multithreaded programming for C/C++. In Proc. OOPSLA.
Brian Bershad, Thomas Anderson, Edward Lazowska, and Henry Levy.
1989. Lightweight remote procedure call. ACM SIGOPS Operating
Systems Review 23, 5 (1989), 102-113.

Bryan Black. 2013. Die Stacking is Happening!. In MICRO-46 Keynote.
Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Ku-
usela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu. 2018.
Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks. In Proc. ASPLOS-XXIIIL

David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch:
A framework for architectural-level power analysis and optimizations.
In Proc. ISCA-27.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A recursive model for graph mining. In Proceedings of the
2004 SIAM International Conference on Data Mining. SIAM, 442-446.
Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. 2014. DianNao: a small-footprint
high-throughput accelerator for ubiquitous machine-learning. In Proc.
ASPLOS-XIX.

Tao Chen, Shreesha Srinath, Christopher Batten, and G Edward Suh.
2018. An architectural framework for accelerating dynamic parallel
algorithms on reconfigurable hardware. In Proc. MICRO-51.

CORGi Research Group. 2020. CORGi Research Group Web Page.
https://cmu-corgi.github.io/.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. 2009. Introduction to algorithms. MIT press.

William J. Dally. 2010. GPU Computing: To Exascale and Beyond. In
Supercomputing ’10, Plenary Talk.

Benoit Dupont de Dinechin, Renaud Ayrignac, P-E Beaucamps, Patrice
Couvert, Benoit Ganne, Pierre Guironnet de Massas, Francois Jacquet,
Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, and Thierry
Strudel. 2013. A clustered manycore processor architecture for em-
bedded and accelerated applications. In Proc. of the High Performance

Jigsaw: Scalable

15

(23]

(24

[l

[27

—

[28

=

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37

[

(38

[

(39]

(40]

[41]

(42]

Extreme Computing Conference.

Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical
concurrent binary search trees via logical ordering. In Proc. PPoPP.
Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan,
Ravi Iyer, Dennis Sylvester, David Blaauw, and Reetuparna Das. 2018.
Neural cache: bit-serial in-cache acceleration of deep neural networks.
In Proc. ISCA-45.

H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D.
Burger. 2011. Dark Silicon and The End of Multicore Scaling. In Proc.
ISCA-38.

K. Fatahalian, D.R. Horn, T.J. Knight, L. Leem, M. Houston, J.Y. Park,
M. Erez, M. Ren, A. Aiken, W.]. Dally, and P. Hanrahan. 2006. Sequoia:
Programming the Memory Hierarchy. In Proc. of the 2006 ACM/IEEE
conf. on Supercomputing.

Michael Feldman. 2018. Intel Ships Xeon Skylake Pro-
cessor with Integrated FPGA. https://www.top500.0rg/news/
intel-ships-xeon-skylake-processor-with-integrated-fpga/.

Adi Fuchs and David Wentzlaff. 2018. Scaling Datacenter Accelerators
With Compute-Reuse Architectures. In Proc. ISCA-45.

Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical
near-data processing for in-memory analytics frameworks. In Proc.
PACT-24.

Mingyu Gao and Christos Kozyrakis. 2016. HRL: Efficient and flexible
reconfigurable logic for near-data processing. In Proc. HPCA-22.
Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankar-
alingam. 2011. Dynamically specialized datapaths for energy efficient
computing. In Proc. HPCA-17.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pdream, Mark A.
Horowitz, and William J. Dally. 2016. EIE: Efficient Inference Engine
on Compressed Deep Neural Network. In Proc. ISCA-43.

Milad Hashemi, Eiman Ebrahimi, Onur Mutlu, Yale N Patt, et al. 2016.
Accelerating dependent cache misses with an enhanced memory
controller. In Proc. ISCA-43.

Scott Hauck, Thomas W Fry, Matthew M Hosler, and Jeffrey P Kao.
2004. The Chimaera reconfigurable functional unit. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 12, 2 (2004), 206-217.
John R Hauser and John Wawrzynek. 1997. Garp: A MIPS processor
with a reconfigurable coprocessor. In Proceedings. The 5th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
Cat. No. 97TB100186). IEEE, 12-21.

John Hennessy and David Patterson. 2018. A New Golden Age for
Computer Architecture: Domain-Specific Hardware/Software Co-
Design, Enhanced Security, Open Instruction Sets, and Agile Chip
Development. In Turing Award Lecture.

Henry Hoffmann, David Wentzlaff, and Anant Agarwal. 2010. Remote
store programming. In Proc. HiPEAC.

Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon,
Hongsik Kim, and John Kim. 2016. Accelerating linked-list traversal
through near-data processing. In Proc. PACT-25.

Mark Horowitz. 2014. Computing’s energy problem (and what we
can do about it). In Proc. of the IEEE Intl. Solid-State Circuits Conf.
(IsSce).

Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W
Keckler. 2016. Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems. In
Proc. ISCA-43.

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Ami-
rali Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating
pointer chasing in 3D-stacked memory: Challenges, mechanisms,
evaluation. In Proc. ICCD.

Jiayi Huang, Ramprakash Reddy Puli, Pritam Majumder, Sungkeun
Kim, Rahul Boyapati, Ki Hwan Yum, and Eun Jung Kim. 2019. Active-
Routing: Compute on the Way for Near-Data Processing. In Proc.

[43

=

(44]

(45]

[46]

(47]

(48]

[50]

(51]

[52]

(53]
(54]

(55]

[56]

(57]
(58]

[59]

[60]

[61]

[62]

(63]

[64]

HPCA-25.

Intel. 2018. Intel Arria 10 Device Datasheet. https:
//www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/arria-10/a10_datasheet.pdf.

Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory
accesses for improved correlated prefetching. In Proc. MICRO-46.
Aamer Jaleel, Kevin Theobald, Simon C. Steely Jr, and Joel Emer. 2010.
High Performance Cache Replacement Using Re-Reference Interval
Prediction (RRIP). In Proc. of the 37th annual Intl. Symp. on Computer
Architecture.

Mark C Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer,
and Daniel Sanchez. 2016. Data-Centric Execution of Speculative
Parallel Programs. In Proc. MICRO-49.

Doug Joseph and Dirk Grunwald. 1997. Prefetching using Markov
predictors. In Proc. ISCA-24.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, et al. 2017. In-datacenter performance analysis of a tensor
processing unit. arXiv preprint arXiv:1704.04760 (2017).

Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrian Cristal,
Mark D Hill, Kathryn S McKinley, Mario Nemirovsky, Michael M
Swift, and Osman Unsal. 2015. Redundant memory mappings for fast
access to large memories. In Proc. ISCA-42.

Stephen W Keckler, William J Dally, Brucek Khailany, Michael Gar-
land, and David Glasco. 2011. GPUs and the future of parallel com-
puting. IEEE Micro 31, 5 (2011).

Richard E Kessler and James L Schwarzmeier. 1993. CRAY T3D: A
new dimension for Cray Research. In Compcon Spring’93, Digest of
Papers.

Farheen Fatima Khan and Andy Ye. 2017. A study on the accuracy
of minimum width transistor area in estimating FPGA layout area.
Microprocessors and Microsystems 52 (2017), 287-298.

Omer Khan, Mieszko Lis, and Srini Devadas. 2010. Em2: A scalable
shared-memory multicore architecture. (2010).

Vladimir Kiriansky, Yunming Zhang, and Saman Amarasinghe. 2016.
Optimizing indirect memory references with milk. In Proc. PACT-25.
Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard
Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel
Baxter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, , and John
Hennessy. 1994. The Stanford FLASH multiprocessor. In Proc. ISCA-
21.

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher] Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens.. In Proc. OSDI-12.

James Laudon and Daniel Lenoski. 1997. The SGI Origin: a ccNUMA
highly scalable server. In Proc. ISCA-24.

Jing Liu, Mingjing Li, Qingshan Liu, Hanqing Lu, and Songde Ma.
2009. Image annotation via graph learning. Pattern recognition (2009).
Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan Berry. 2007. Challenges in parallel graph processing. PPL
17, 01 (2007).

Martin Maas, Krste Asanovic, and John Kubiatowicz. 2018. A Hard-
ware Accelerator for Tracing Garbage Collection. In Proc. ISCA-45.
Milo Martin, Mark D Hill, and Daniel J Sorin. 2012. Why on-chip
cache coherence is here to stay. Commun. ACM (2012).

Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong
Ma, and Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics
through Hardware-Accelerated Traversal Scheduling. In Proc. MICRO-
51

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2016.
Whirlpool: Improving dynamic cache management with static data
classification. In Proc. ASPLOS-XXI.

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI:
Architectural Support for Synchronization- and Bandwidth-Efficient

16

[65]

[66

[67

[68

(69

[70

(71

(72

(73

(74

(75

(76

(77

(83

(84

—

—

]

[

=

—

—

=

=

=

[}

[

=

—

=

]

Commutative Scatter Updates. In Proc. MICRO-52.

Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan
Sankaralingam. 2017. Stream-Dataflow Acceleration. In Proc. ISCA-
44.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank citation ranking: bringing order to the web. Tech-
nical Report. Stanford InfoLab.

Gregory M Papadopoulos and David E Culler. 1990. Monsoon: an
explicit token-store architecture. In Proc. ISCA-17.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
Stephen W. Keckler, and William J. Dally. 2017. SCNN: An Accelera-
tor for Compressed-sparse Convolutional Neural Networks. In Proc.
ISCA-44.

Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaechyuk Huh.
2017. Hybrid TLB Coalescing: Improving TLB Translation Coverage
under Diverse Fragmented Memory Allocations. In Proc. ISCA-44.
Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit
Mishra, Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R
Das. 2019. Opportunistic computing in gpu architectures. In Proc.
ISCA-46.

Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. 2017. Plasticine: A Reconfigurable Architecture For Parallel
Patterns. In Proc. ISCA-44.

Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian,
and Vijayalakshmi Srinivasan. 2014. NDC: Analyzing the Impact of
3D-Stacked Memory + Logic Devices on MapReduce Workloads. In
Proc. of the IEEE Intl. Symp. on Performance Analysis of Systems and
Software (ISPASS).

Moinuddin Qureshi, Aamer Jaleel, Yale Patt, Simon Steely, and Joel
Emer. 2007. Adaptive insertion policies for high performance caching.
In Proc. ISCA-34.

Steven K Reinhardt, James R Larus, and David A Wood. 1994. Tempest
and Typhoon: User-level shared memory. In Proc. ISCA-21.
Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goed-
ers, Andrew Somerville, Kenneth B Kent, Peter Jamieson, and Jason
Anderson. 2012. The VTR project: architecture and CAD for FPGAs
from verilog to routing. In Proceedings of the ACM/SIGDA interna-
tional symposium on Field Programmable Gate Arrays. ACM, 77-86.
Shuichi Sakai, Kci Hiraki, Y Kodama, T Yuba, et al. 1989. An architec-
ture of a dataflow single chip processor. In Proc. ISCA-16.

Daniel Sanchez and Christos Kozyrakis. 2010. The ZCache: Decou-
pling Ways and Associativity. In Proc. of the 43rd intl. symp. on Mi-
croarchitecture.

Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and
Christos Kozyrakis. 2011. Dynamic Fine-Grain Scheduling of Pipeline
Parallelism. In Proc. PACT-20.

Steven L Scott. 1996. Synchronization and communication in the T3E
multiprocessor. In Proc. ASPLOS-VIL

André Seznec. 1993. A case for two-way skewed-associative caches.
In Proc. of the 20th annual Intl. Symp. on Computer Architecture.
André Seznec. 1994. Decoupled sectored caches: conciliating low tag
implementation cost. In Proc. ISCA-21.

Ofer Shacham, Zain Asgar, Han Chen, Amin Firoozshahian, Rehan
Hameed, Christos Kozyrakis, Wajahat Qadeer, Stephen Richardson,
Alex Solomatnikov, Don Stark, Megan Wachs, and Mark Horowitz.
2009. Smart memories polymorphic chip multiprocessor. In Proc.
DAC-46.

John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale com-
puting technology challenges. In Proc. High Performance Computing
for Computational Science (VECPAR).

Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph
processing framework for shared memory. In Proc. PPoPP.

(85]

(86]

(87]

(88]
(89]

[90]

(91]

[92]

(93]

Etienne Sicard. 2017. Introducing 7-nm FinFET technology in Mi-
crowind. (2017).

Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. 2017. Page-
forge: a near-memory content-aware page-merging architecture. In
Proc. MICRO-50.

Arun Subramaniyan, Jingcheng Wang, Ezhil RM Balasubramanian,
David Blaauw, Dennis Sylvester, and Reetuparna Das. 2017. Cache
automaton. In Proc. MICRO-50.

Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin.
2003. WaveScalar. In Proc. MICRO-36.

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga:
Software-Defined Cache Hierarchies. In Proc. ISCA-44.

Po-An Tsai, Changping Chen, and Daniel Sanchez. 2018. Adaptive
Scheduling for Systems with Asymmetric Memory Hierarchies. In
Proc. MICRO-51.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and
Klaus Erik Schauser. 1992. Active messages: a mechanism for inte-
grated communication and computation. In Proc. of the 19th annual
Intl. Symp. on Computer Architecture.

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G Andersen. 2018. Building a
Bw-tree takes more than just buzz words. In Proceedings of the 2018
International Conference on Management of Data.

David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce
Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F
Brown III, and Anant Agarwal. 2007. On-chip interconnection archi-
tecture of the tile processor. IEEE micro (2007).

17

[94] Craig M Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011.

[95

[96

[97

[98

[99

[100

[101

[102

=

— =

=

-

=

—

—

Fermi GF100 GPU architecture. IEEE Micro 31, 2 (2011).
Xilinx. 2017. ZC706 evaluation board for the
7000 XC7Z045 all programmable SoC user guide.
//www.xilinx.com/support/documentation/boards_and_kits/
2c706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf.
Xiangyao Yu, Christopher] Hughes, Nadathur Satish, and Srinivas
Devadas. 2015. IMP: Indirect memory prefetcher. In Proc. MICRO-48.
Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L.
Greathouse, Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM:
Throughput-oriented Programmable Processing in Memory. In Proc.
HPDC.

Dan Zhang, Xiaoyu Ma, and Derek Chiou. 2016. Worklist-directed
Prefetching. IEEE Computer Architecture Letters (2016).

Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek Chiou. 2018.
Minnow: Lightweight Offload Engines for Worklist Management and
Worklist-Directed Prefetching. In Proc. ASPLOS-XXIIL

Guowei Zhang, Virginia Chiu, and Daniel Sanchez. 2016. Exploiting
Semantic Commutativity in Hardware Speculation. In Proc. MICRO-
49.

Guowei Zhang, Webb Horn, and Daniel Sanchez. 2015. Exploiting
commutativity to reduce the cost of updates to shared data in cache-
coherent systems. In Proc. MICRO-48.

Guowei Zhang and Daniel Sanchez. 2018. Leveraging Hardware
Caches for Memoization. Computer Architecture Letters (CAL) 17, 1
(2018).

Zyng-
https:

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data movement is a growing problem
	2.2 Motivating example: Lookups in a binary tree
	2.3 Current systems force needless data movement
	2.4 Processing in-memory fails to exploit locality
	2.5 Prior processing in-cache approaches fall short
	2.6 Memory Services are nearly Ideal

	3 Memory Services API
	4 Livia Design and Implementation
	4.1 Modifications to the baseline system
	4.2 MSE controller
	4.3 MSE execution engine
	4.4 System integration

	5 Experimental Methodology
	6 Evaluation
	6.1 Lock-free-lookup AVL tree
	6.2 Linked lists
	6.3 Graph analytics: PageRank
	6.4 Producer-consumer queue
	6.5 Sensitivity studies

	7 Related work
	7.1 Data-centric computing
	7.2 Schools of accelerator design

	8 Conclusion and Future Work
	References

