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Abstract

In order to scale, future systems will need to dramatically
reduce data movement. Data movement is expensive in cur-
rent designs because (i) traditional memory hierarchies force
computation to happen unnecessarily far away from data and
(ii) processing-in-memory approaches fail to exploit locality.

We proposeMemory Services, a flexible programmingmodel
that enables data-centric computing throughout the memory
hierarchy. In Memory Services, applications express func-
tionality as graphs of simple tasks, each task indicating the
data it operates on. We design and evaluate Livia, a new
system architecture for Memory Services that dynamically
schedules tasks and data at the location in the memory hi-
erarchy that minimizes overall data movement. Livia adds
less than 3% area overhead to a tiled multicore and acceler-
ates challenging irregular workloads by 1.3× to 2.4× while
reducing dynamic energy by 1.2× to 4.7×.
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1 Introduction

Computer systems today are increasingly limited by data
movement. Computation is already orders-of-magnitude
cheaper than moving data, and the shift towards leaner and
specialized cores [17, 22, 36, 39] is exacerbating these trends.
Systems need new techniques that dramatically reduce data
movement, as otherwise data movement will dominate sys-
tem performance and energy going forward.

Why is data so far from compute? Conventional CPU-
based systems reduce data movement via deep, multi-level
cache hierarchies. This approach works well on programs
that have hierarchical reuse patterns, where smaller cache
levels filter most accesses to later levels. However, these
systems only process data on cores, forcing data to traverse
the full memory hierarchy before it can be processed. On
such systems, programswhose data doesn’t fit in small caches
often spend nearly all their time shuffling data to and fro.
Since such compute-centric systems are often inefficient,

prior work has proposed to do away with them and place
cores close to memory instead. In these near-data processing
(NDP) or processing-in-memory (PIM) designs [13, 14, 29, 72],
cores enjoy fast, high-bandwidth access to nearby memory.
PIM works well when programs have little reuse and when
compute and data can be spatially distributed. However, es-
chewing a cache hierarchy makes PIM far less efficient on
applications with significant locality and complicates several
other issues, such as synchronization and coherence. In fact,
prior work shows that for many applications, conventional
cache hierarchies are far superior to PIM [5, 40, 90, 97].

Computing near data while exploiting locality: In this
work, we propose the next logical step, which lies between
these two extremes: reducing data movement by perform-
ing compute throughout the memory hierarchyÐnear caches
large and small as well as near memory. This lets the system
perform computation at the location in the memory hierar-
chy that minimizes data movement, synchronization, and
cache pollution. Critically, this can mean moving computa-
tion to data or moving data to computation, and in some
cases moving both.
Prior work has already shown that performing compu-

tation within the memory hierarchy is highly beneficial.
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Comparing to Fig. 3, Livia looks very similar to Ideal. Livia
adds time only to (i) execute lookup code and (ii) access
directories to locate data in the hierarchy. These overheads
are small, so Livia achieves near-Ideal behavior.
To sum up, Memory Services express complex compu-

tations as graphs of dependent tasks, and Livia hardware
schedules these tasks to execute at the best location in the
memory hierarchy. Together, these techniques eliminate un-
necessary data movement while capturing locality when it
is present. Livia thus minimizes data movement by enabling
data-centric computing throughout the memory hierarchy.

3 Memory Services API

We describe Memory Services starting from the program-
mer’s view, and then work our way down to Livia’s imple-
mentation of Memory Services.

Executionmodel: Memory Services are designed to acceler-
ate workloads that are bottlenecked on data accesses, which
follow a pattern of: loading data, performing a short compu-
tation, and loading more data. Memory Services include this
data access explicitly within the programming model so that
tasks can be proactively scheduled near their data.
Memory Services express application functionality as a

graph of short, simple, dependent tasks. This is implemented
by letting each task spawn further tasks and pass data to
them. Each task gets its own execution context and runs con-
currently (and potentially in parallel) with the thread that
spawns it. Thismodel supports both fork/join and continuation-
passing programming styles. To simplify programming,Mem-
ory Services execute in a cache-coherent address space like
any other thread in a conventional multicore system.

Invoking tasks: Applications are able to invoke memory
services tasks using ms_invoke, which has the C-like type
shown in Fig. 8. ms_invoke runs the ms_function_t called
fn on data residing at address data_ptr with additional argu-
ments args. Before calling ms_invoke, the caller initializes a
future via ms_future_init that indicates where the eventual
result of the task will be returned.ms_invoke also takes flags,
which can be currently be used to indicate (i) that the task
will need EXCLUSIVE permissions to modify data_ptr, or
that (ii) the task is STREAMING and will not reuse data_ptr.
These are both hints to the system that improve task and
data scheduling, but do not affect program correctness.

typedef void (∗ms_function_t) (

T∗ data_ptr , ms_future_t∗ future , U. . . args ) ;

void ms_invoke(ms_function_t fn , int flags ,

T∗ data_ptr , ms_future_t∗ future , U. . . args ) ;

void ms_future_init(ms_future_t∗ future ) ;

void ms_return(ms_future_t∗ future , R result ) ;

R ms_wait(ms_future_t future ) ;

Fig. 8. Memory Services API. T, U, and R are user-defined types.

Communicating results: Memory Service tasks return val-
ues to their invoker by fulfilling the future through the ms_-

send API (Fig. 8). The invoker obtains this value explicitly
by calling ms_wait. ms_invoke calls are asynchronous, but a
simple wrapper function could be placed around an ms_in-

voke and accompanyingms_wait to allow for a synchronous
programming model similar to an RPC system. Futures can
be passed among invoked tasks until the result is eventually
returned to the invoker (see, e.g., Fig. 7).

Example: Tree lookup. Consider the following simplified
binary tree lookup function using the API in Fig. 8:

void lookup(node_t∗ node, ms_future_t∗ res , int key) {

if (node−>key == key) {

ms_return(res , node) ;

} else if (node−>key < key) {

ms_invoke(lookup, 0 , node−>left , res , key) ;

} else {

ms_invoke(lookup, 0 , node−>right , res , key) ;

}

}

. . .

ms_future_t res ;

ms_future_init(&res ) ;

ms_invoke(lookup, /∗ flags ∗/ 0 , &root , &res , /∗key∗/ 42);

node_t∗ result_node = (node_t∗) ms_wait( res ) ;

Fig. 9. Memory Service code for a simple binary tree lookup.

This example shows that Memory Service code looks quite
similar to a naïve implementation of the same code on a base-
line CPU system, and our experience has been that, for data
structures and algorithms well-suited to Memory Services,
conversion has been a mechanical process.

Memory Services on FPGA: We map Memory Services
onto FPGA through high-level synthesis (HLS). For FPGA
execution, it is especially important to identify the hot path.
Any execution that strays from this hot path will raise a flag
that causes execution to fall back to software at a known
location. To aid HLS, each task is decomposed into a series
of pure functions that map easily into combinational logic.
This decomposition effectively produces a state machine
with one of the following actions at each transition: invok-
ing another task, waiting upon a future, reading memory,
writing memory, raising the fallback flag, or task completion.
For our applications, this transformation is trivial (e.g., the
tree lookup in Fig. 9), but some tasks would be split into
multiple stages [18]. Table 1 shows the results from HLS for
our benchmarks. Memory Services require negligible area
and execute in at most a few cycles, letting small FPGAs
accelerate a wide range of irregular workloads.

Limitations: Memory Services are currently designed to
minimize data movement for a single data address per task.
Many algorithms and data structures decompose naturally
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To accelerate this common case, Livia speculatively for-
wards spawned tasks to their home memory controller MSE,
which will immediately schedule a memory read for the re-
quested data. In parallel, Livia checks the LLC home node
for coherence. If the data is present, the task executes in the
LLC; otherwise, the LLC adds the new memory controller
MSE as a sharer. Either way, the LLC notifies the memory
controller MSE accordingly. The memory controller MSE
will wait until it has permissions before executing the task.
This approach hides coherence permission checks behind
memory latency at the cost of modest complexity (Sec. 6.5).

4.2.2 Architectural support for task execution

Once a scheduling decision is made, the MSE runs the task
by, in parallel: loading the requested data, allocating the task
an execution context in local memory, and finally starting ex-
ecution. The MSE controller hides the task startup overhead
with the data array access. If a task runs a long-latency op-
eration (a load or ms_wait), the MSE controller deschedules
it until the response arrives. If the MSE controller ever runs
out of local storage for execution contexts, it sheds incoming
tasks to an idle hardware thread on the local OoO core [100]
or, if the local OoO core is overloaded, to the invoking core
to apply backpressure.

Implementation overhead: The MSE controller contains
simple logic and its area is dominated by storage for execu-
tion contexts. To support one outstanding execution context
from each core (a conservative estimate), the MSE requires
approximately 64 B × 64 cores = 4 KB of storage.

4.3 MSE execution engine

The MSE execution engine is the component that actually
runs tasks throughout the cache hierarchy. We consider two
design alternatives, depicted in Fig. 10: (i) in-order cores
and (ii) embedded FPGAs. The former is the simplest design
option, whereas the latter delivers higher performance.

4.3.1 In-order core

The first design option is to execute tasks on a single-issue in-
order core placed near cache banks and memory controllers.
This core executes the same code as the OoO cores, though,
to reduce overheads and simplify context management in
the MSE controller, each task is allocated a minimal stack
sufficient only for local variables and a small number of func-
tion calls. If a thread would ever overrun its stack, it is shed
to a nearby OoO core (see łWork-sheddingž above).

Implementation overhead: Weassume single-issue, in-order
cores similar to an ARM Cortex M0, which require approxi-
mately 12,000 gates [7]. This is a small area and power over-
head over a wide-issue core, comparable to the size of its L1
data cache [6].

4.3.2 FPGA

The in-order core is a simple and cheap design point, but it
pays for this simplicity in performance. Since a single appli-
cation request may invoke a chain of many tasks, Livia is
sensitive to MSE execution latency (see Sec. 6). We therefore
consider a specializedmicroarchitectural design that replaces
the in-order core with a small embedded FPGA. Memory Ser-
vice tasks take negligible area (Table 1), letting us configure
the fabric when a program is loaded or swapped in. An inter-
esting direction for further study is the area-latency tradeoff
in fabric design [4] and fabrics that can swap between multi-
ple designs efficiently [30], but these are not justified by our
current workloads given their negligible area.

Implementation overhead: As indicated in Table 1, Mem-
ory Services map to small FPGA designs. Among our bench-
marks, the largest area is still less than 0.01mm2. Hence, a
small fabric of 0.1mm2 (3% area overhead on a 64-tile system
at 200mm2) can support more than 10 concurrent services.

4.4 System integration

Livia’s design includes several mechanisms for when Mem-
ory Services interact with the wider system.

Virtual memory: Tasks execute in an application’s address
space and dereference virtual addresses. The MSE controller
translates these addresses by sharing the tile’s L2 TLB. MSEs
located on memory controllers include their own small TLBs.
We assume memory is mapped through huge pages so that a
small TLB (a few KB) suffices, as is common in applications
with large amounts of data [49, 56, 69].

Interrupts: Memory Service tasks are concurrent with ap-
plication threads and execute in their own context (Sec. 3).
Hence, Memory Services do not complicate precise inter-
rupts on the OoO cores. Memory Service tasks can continue
executing on the MSEs while an OoO core services an I/O
interrupt and, since they pass results through memory, can
even complete while the interrupt is being processed. Faults
from within a Memory Service task are handled by shedding
the task to a nearby OoO core, as described above.

OS thread scheduling: Futures are allocated in an applica-
tion’s address space, and results are communicated through
memory via a store-update. This means it is safe to desched-
ule threads with outstanding tasks, because the response will
be just be cached and processed when the thread is resched-
uled. Moreover, the thread can be rescheduled on any core
without correctness concerns. Memory Service tasks are de-
scheduled when an application is swapped out by sending an
inter-process interrupt (IPI) that causes MSEs to shed tasks
from the swapped-out process to nearby OoO cores.
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Cores
64 cores, x86-64 ISA, 2.4 GHz, OOO Goldmont µarch

(3-way issue, 78-entry IQ/ROB, 16-entry SB, ... [3])

L1 32 KB, 8-way set-assoc, split data and instruction caches

L2 128 KB, 8-way set-assoc, 2-cycle tag, 4-cycle data array

LLC
32MB (512 KB per tile), 8-way set-assoc, 3-cycle tag,

5-cycle data array, inclusive, LRU replacement

NoC mesh, 128-bit flits and links, 2/1-cycle router/link delay

Memory 4 DRAM controllers at chip corners; 100-cycle latency

Table 2. System parameters in our experimental evaluation.

5 Experimental Methodology

Simulation framework: We evaluate Livia in execution-
driven microarchitectural simulation via a custom, cycle-
level simulator, which we have validated against end-to-end
performance models (like Sec. 2) and through extensive ex-
ecution traces. Tightly synchronized simulation of dozens
of concurrent execution contexts (e.g., 64 cores + 72 MSEs)
restricts us to simulations of hundreds of millions of cycles.

System parameters: Except where specified otherwise, our
system parameters are given in Table 2. We model a tiled
multicore system with 64 cores connected in a mesh on-chip
network. Each tile contains a main core that runs applica-
tion threads (modeled after Intel Goldmont), one bank of the
shared LLC, and MSEs (to ease implementation, our simula-
tor models MSEs at both the L2 and LLC bank). MSE engines
are modeled as simple IPC=1 cores or FPGA timing models,
as appropriate to the evaluated system. We conduct several
sensitivity studies and find that Livia’s benefits are robust to
a wide range of system parameters.

Workloads: We have implemented four important data-ac-
cess-bottlenecked workloads as Memory Services: lock-free
AVL trees, linked lists, PageRank, and producer-consumer
queues. We evaluate these workloads on different data sizes,
system sizes, and access patterns. These workloads are de-
scribed in more detail as they are presented in Sec. 6.
Each workload first warms up the caches by executing

several thousand tasks, and we present results for a represen-
tative sample of tasks following warm-up. To reduce simula-
tion time for Livia, our warm-up first runs several thousand
requests on the main cores using normal loads and stores
before running additional Livia warm-up tasks via invoke.
This fills the caches quickly, and we have confirmed that this
methodology matches results run with a larger number of
Livia warm-up tasks.

Systems: We compare these workloads across five systems:
• CPU: A baseline multicore with a passive cache hier-
archy that executes tasks in software on OoO cores.
• PIM: A near-memory system that executes tasks on
simple cores within memory controllers.
• Hybrid-PIM: A hybrid design that executes tasks on
OoO cores when they are cached on-chip, or on simple
cores in memory controllers otherwise.

• Livia-SW: Our proposed design with MSE execution
engines implemented as simple cores.
• Livia-FPGA: Our proposed design with MSE execution
engines implemented as embedded FPGAs.

PIM and Hybrid-PIM are implemented basically as Livia-SW
with MSEs at the L2 and LLC disabled. The CPU system
executes each benchmark via normal loads and stores, and
all other systems use our new invoke instruction.

Metrics: We present results for execution time and dynamic
execution energy, using energy parameters from [89]. Where
possible, we breakdown results to show where time and
energy are spent throughout the memory hierarchy. We
focus on dynamic energy because Livia has negligible impact
on static power and to clearly distinguish Livia’s impact on
data movement energy from its overall performance benefits.

6 Evaluation

We evaluate Livia to demonstrate the benefits of the Mem-
ory Service programming model and Livia hardware on four
irregular workloads that are bottlenecked by data movement.
We will show that performing computation throughout the
memory hierarchy provides dramatic performance and en-
ergy gains. We will also identify several important areas
where the current Livia architecture can be improved. Some
results are described only in text due to limited space; these
can be found online in a technical report [19].

6.1 Lock-free-lookup AVL tree

We first consider a lock-free AVL search tree [23]. Binary-
search trees like this AVL tree are popular data structures,
despite being bottlenecked by pointer chasing, which is diffi-
cult to accelerate. In addition to the usual child/parent point-
ers, pointers to successors and predecessor nodes are used
to locate the correct node in the presence of tree rotations,
allowing concurrent modifications to the tree structure. We
implemented this tree as aMemory Service in three functions:
the root function walks a single level of the tree, invoking
itself on the child node pointer, or returning the correct node
if a matching key is found; two other functions follow suc-
cessor/predecessor pointers until the correct node is found
(or a sentinel, in the rare case that a race is detected).

Livia accelerates trees dramatically: Weevaluated a 512MB
tree (≈8.5 million nodes) on a 64-tile system. Fig. 12 shows
the average number of cycles and dynamic execution energy
for a single thread to walk the tree on a uniform distribution,
broken down into components across the system. The graph
also shows, in text, each system’s improvement vs. CPU.
PIM takes nearly 2× as long as CPU because it cannot

leverage the locality present in nodes near the root. Hybrid-
PIM gives some speedup (18%), but its benefit is limited by
the high NoC latency for both the in-CPU and in-memory-
controller portions of its execution. Hybrid-PIM spends more
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calls (RPCs) [12] execute tasks remotely, often to move them
closer to data.
Livia also takes a middle ground, adding a dash of data-

centric design to existing systems. Livia improves on prior
data-centric systems in two respects. First, we rely on the
Memory Service model to statically identify which functions
are well-suited to execute within the memory hierarchy,
rather than always migrating computation to data (unlike,
e.g., EM2 [53] and pure dataflow). Second, we rely on cache
hardware to dynamically discover locality and schedule com-
putation and data, rather than statically assigning tasks to
execute at specific locations [12, 46, 91] or schedule compute
infrequently in large chunks [10]. We believe this division
of work between hardware and software strikes the right
balance, letting each do what it does best [63].

7.2 Schools of accelerator design

The recent trend towards architectural specialization has led
to a proliferation of accelerator designs. We classify these
designs into three categories: co-processor, in-core, and in-

cache. Livia falls into the under-explored in-cache category.
Co-processor designs treat an accelerator as a concurrent
processor that is loosely integratedwith cores. Co-processors
can be discrete cards accessed over PCIe (e.g., GPUs and
TPUs [48]), or IP blocks in a system-on-chip. Co-processor de-
signs yield powerful accelerators, but make communication
between cores and the accelerator expensive. PIM [38, 41]
falls into this category, as do existing designs that integrate
a powerful reconfigurable fabric alongside a CPU in order to
accelerate large computations [27, 43, 65, 71, 95]. In contrast,
Livia integrates many small reconfigurable fabrics through-
out the memory hierarchy to accelerate short tasks.
In-core designs treat an accelerator as a łmega functional
unitž that is tightly integrated with cores [31, 34, 35]. A good
example is DySER [31], which integrates a reconfigurable
spatial array into a core’s pipeline to accelerate commonly
executed hyperblocks. However, in-core designs like DySER
often do not interface with memory at all, whereas Livia
focuses entirely on interfacing with memory to accelerate
data-heavy, irregular computations. In-core acceleration is
insufficient for these workloads (Sec. 2.3).
In-cache designs are similar to in-core designs in that they
tightly integrate an accelerator with an existing microarchi-
tectural component. The difference is that the accelerator is
tightly integrated into the memory hierarchy, not the core.

This part of the design space is relatively unexplored. As
discussed in Sec. 2.4, prior approaches are limited to a few
operations and still require frequent data movement between
cores and the memory hierarchy to stream instructions and
fetch results [1, 24, 37, 51, 57, 79, 94]. Livia further develops
the in-cache design school of accelerators by providing a fully
programmable memory hierarchy that captures locality at all
levels and eliminates unnecessary communication between
cores and caches. As a result, Livia accelerates a class of

challenging irregular workloads that have remained beyond
the reach of existing accelerator designs.

8 Conclusion and Future Work

This paper has presented Memory Services, a new program-
ming model that enables near-data processing throughout
the memory hierarchy. We designed Livia, an architecture
for Memory Services that introduces simple techniques to
dynamically migrate tasks and data to their best location in
the memory hierarchy. We showed that these techniques sig-
nificantly accelerate several challenging irregular workloads
that are at the core of many important applications. Memory
Services open many avenues for future work:

New applications: This paper focuses on irregular work-
loads, but there are awide range of otherworkloads amenable
to in-cache acceleration. Prior work contains many exam-
ples: e.g., garbage collection [60], data deduplication [86],
and others listed in Sec. 1. Unfortunately, it is unlikely that
general-purpose systems will implement specialized hard-
ware for these tasks individually. We intend to expand Livia
and Memory Services into a general-purpose platform for
in-cache acceleration of these applications.

Productive programming: This paper presented an initial
exploration of the Memory Service programming model tar-
geted at expert programmers with deep knowledge of their
workloads and of hardware. We plan to explore enhance-
ments to the model and compiler that will make Memory
Services more productive for the average programmer, e.g.,
by providing transactional semantics for chains of tasks [11]
or by extracting Memory Services from lightly annotated
code.

Improved microarchitecture: Finally, we see abundant op-
portunities to refine Livia’s current design. Livia employed
existing cores and FPGAs to simplify its design and demon-
strate the basic potential of Memory Services. However, FP-
GAs are not the final answer for MSE execution, and we
have left several important issues in the MSE controller un-
explored. We plan to explore more efficient architectures for
task execution, such as CGRAs [4, 65, 71] with wider data-
paths. We will also develop policies in the MSE controller
to manage resources and avoid harmful interference across
co-running applications. Finally, our evaluation highlighted
several opportunities to improve the microarchitecture, e.g.,
by designing more responsive data-migration techniques.
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