Safecracker: Leaking Secrets through Compressed Caches

Po-An Tsai
Massachusetts Institute of Technology
poantsai@csail.mit.edu

Christopher W. Fletcher

University of Illinois at Urbana-Champaign
cwfletch@illinois.edu

Abstract

The hardware security crisis brought on by recent specula-
tive execution attacks has shown that it is crucial to adopt
a security-conscious approach to architecture research, an-
alyzing the security of promising architectural techniques
before they are deployed in hardware.

This paper offers the first security analysis of cache com-
pression, one such promising technique that is likely to ap-
pear in future processors. We find that cache compression is
insecure because the compressibility of a cache line reveals in-
formation about its contents. Compressed caches introduce
a new side channel that is especially insidious, as simply
storing data transmits information about it.

We present two techniques that make attacks on com-
pressed caches practical. Pack+Probe allows an attacker to
learn the compressibility of victim cache lines, and Safe-
cracker leaks secret data efficiently by strategically changing
the values of nearby data. Our evaluation on a proof-of-
concept application shows that, on a common compressed
cache architecture, Safecracker lets an attacker compromise
a secret key in under 10 ms, and worse, leak large fractions of
program memory when used in conjunction with latent mem-
ory safety vulnerabilities. We also discuss potential ways to
close this new compression-induced side channel. We hope
this work prevents insecure cache compression techniques
from reaching mainstream processors.

Po-An Tsai is now at NVIDIA Research (poant@nvidia.com).
Andres Sanchez is now at EPFL (andres. sanchez@epfl. ch).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00

10.1145/3373376.3378453

Andres Sanchez
Massachusetts Institute of Technology
andressm@csail.mit.edu

Daniel Sanchez
Massachusetts Institute of Technology
sanchez@csail.mit.edu

CCS Concepts - Computer systems organization —
Processors and memory architectures; « Information
systems — Data compression; « Security and privacy
— Side-channel analysis and countermeasures.

Keywords cache; compression; side channel; security.

ACM Reference Format:

Po-An Tsai, Andres Sanchez, Christopher W. Fletcher, and Daniel
Sanchez. 2020. Safecracker: Leaking Secrets through Compressed
Caches. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °20), March 16-20, 2020, Lausanne, Switzerland.
ACM, New York, NY, USA, 16 pages. 10.1145/3373376.3378453

1 Introduction

Over the past two years, computer architecture has suffered a
major security crisis. Researchers have uncovered critical se-
curity flaws in billions of deployed processors related to spec-
ulative execution, starting with Spectre [44], Meltdown [46],
and quickly expanding into a rich new sub-area of microar-
chitectural side channel research [22, 32, 36, 43, 86, 87].

While microarchitectural side channel attacks have been
around for over a decade, speculative execution attacks are
significantly more dangerous because of their ability to leak
program data directly. In the worst case, these attacks let the
attacker construct a universal read gadget [50], capable of
leaking data at attacker-specified addresses. For example, the
Spectre V1 attack—if (i < N) { B[A[i]]; }—exploits
branch misprediction to leak the data at address &A + i
given an attacker-controlled i.

Yet, speculative execution is only one performance feature
of modern microprocessors. It is critical to ask: are there other
microarchitectural optimizations that enable a similarly large
amount of data leakage?

In this paper, we provide an answer in the affirmative
by analyzing the security of memory hierarchy compres-
sion, specifically cache compression. Compression is an at-
tractive technique to improve memory performance, and
has received intense development from both academia (3,
4, 8,9, 37, 40, 55, 59, 60, 62, 69, 70, 81, 90, 92] and indus-
try [17, 18, 31, 41, 45, 61]. Several deployed systems al-
ready use memory-hierarchy compression. For example, IBM
POWER systems use hardware main-memory compression
(MXT [78]), and both NVIDIA and AMD GPUs use hardware

compression for image data (Delta Color Compression [6]).
As data movement becomes increasingly critical, the natural
next step is to adopt general-purpose cache compression.
Nonetheless, despite strong interests from both academia
and industry, prior research in this area has focused on per-
formance and ignored security.

In this paper we offer the first security analysis of cache
compression. The key insight that our analysis builds on is
that the compressibility of data reveals information about the
data itself. Similar to speculative execution attacks, we show
how this allows an attacker to leak program data directly and,
in the worst case, create a new universal read gadget that
can leak large portions of program memory.

A simple example: Fig. 1 shows the setup for a simple attack
on compressed caches. The attacker seeks to steal the victim’s
encryption key, and can submit encryption requests to the
victim. On each request, the victim’s encryption function
stores the key and the attacker plaintext consecutively, so
they fall on the same cache line.

Attacker Victim
' encrypt [[L 010
e

I:I Secret key
)

- |:| Attacker-controlled input
O Attacker sends encryption

request to victim

Victim stores input next to key

Attacker measures line’s | | |
compressed size, infers
0x01 isin the secret data

1 Cache compresses line

Figure 1. A simple attack on a compressed cache, where the at-
tacker exploits colocation with secret data to leak it.

Colocating secret data and attacker-controlled data is safe
with conventional caches, but it is unsafe with a compressed
cache. Suppose we run this program on a system with a
compressed cache that tries to shrink each cache line by re-
moving duplicate bytes. If the attacker can observe the line’s
size, it can leak all individual bytes of the key by trying differ-
ent chosen plaintexts, as the compressed line’s size changes
when a byte of the key matches a byte of the plaintext.

The general principle in the above example is that when
the attacker is able to colocate its own data alongside secret
data, it can learn the secret data. Beyond cases where the
victim itself facilitates colocation (e.g., by pushing arguments
onto the stack), we observe that latent security vulnerabili-
ties related to memory safety, such as buffer overflows, heap
spraying, and uninitialized memory, further enable the at-
tacker to colocate its data with secret data. These can enable
a read gadget that leaks a significant amount of data (e.g., 8
bytes of every 64 bytes cache line in our evaluation).

We demonstrate the extent of this vulnerability by devel-
oping damaging attacks for a commonly used compressed
cache architecture, VSC [3], using a common compression
algorithm, BDI [62]. We first develop Pack+Probe (Sec. 3),

a variant of Prime+Probe that enables an attacker to ob-
serve the compressed size of cache lines from the victim.
We then design Safecracker (Sec. 4), an active attack on the
BDI compression algorithm that leverages data colocation
to recover the data from the compressed size. We evaluate
these techniques in simulation (Sec. 5), and show that an
attacker can obtain the victim’s secret key in under 10 ms.
Finally, we demonstrate how a latent buffer overflow in the
target program allows the attacker to learn O(M) Bytes of
program memory, for an M-Byte memory (where BDI in
particular leaks 1/8*M Bytes). We then present several mit-
igation strategies (Sec. 6), including selective compression
and cache partitioning, and evaluate a secure compressed
cache, which leverages DAWG-style [43] partitioning on its
tag and data arrays. Finally, we discuss how to generalize our
attacks to other cache architectures and algorithms (Sec. 7).
In summary, this paper contributes:

e The first security analysis of compressed caches.

e The observation that cache line compressibility reveals
information about the cache line’s data, representing
a new side channel.

e The observation that colocation of attacker-controlled
data with secret data enables efficient extraction of
secret data through this new side channel.

e Pack+Probe, an efficient protocol to learn cache line
compressibility in VSC-style caches.

e Safecracker, an efficient attack that leverages data colo-
cation to extract secret data from caches using BDL

e Safecracker, augmented with a buffer overflow, to leak
O(M) Bytes for an M-Byte memory.

e A description of mitigation strategies and an evalua-
tion of a secure, partitioned compressed cache.

e Discussions of how our attacks generalize to other
compressed cache architectures and algorithms.

2 The cache compression side channel

In this section we introduce the security pitfalls of cache
compression and summarize our contributions in a generic
fashion, without focusing on specific compressed caches or
compression algorithms. We first describe prior cache-based
side channels and attacks using a general taxonomy. Then,
we use this taxonomy to show how compression-based at-
tacks differ from prior work and why prior defenses are
insufficient. Next, we present generic passive and active at-
tacks on compressed caches, which we term Pack+Probe and
Safecracker. Finally, we sketch general mitigation strategies.

2.1 Cache-based side channels, attacks, and defenses

Fig. 2 shows an abstract view of a side-channel attack, which
prior work introduced and used [43] to understand and clas-
sify attack types. An attacker process seeks to learn some
secret data from a victim process. Attacker and victim reside
in different protection domains, so the attacker resorts to a
side channel (i.e., a means to convey information through an

Victim’s protection domain Side

Attacker’s protection domain

—_—— e e ———

Figure 2. An abstract view of a side-channel attack [43].

implementation-specific detail, such as microarchitectural
state) to extract the secret from the victim. To exploit the
side channel, a transmitter in the victim’s protection domain
encodes the secret into the channel, which is read and inter-
preted by a receiver in the attacker’s protection domain. This
distinction between transmitter, channel, and receiver helps
differentiate attacks and defenses. Defenses need to thwart
at least one of these ingredients to prevent the attack.!

Prior cache-based side channels encode information
through the presence or absence of a cache line. Information
is conveyed only by the line’s presence or absence, and its
location in the cache, which reveals some bits of its address.

Receivers for this side channel rely on measuring timing
differences between hits and misses to infer the line’s pres-
ence. Prime+Probe [57] is a commonly used receiver. In
Prime+Probe, the attacker first fills, i.e., primes, a cache set
with its own lines. Then, it detects whether the victim has
accessed a line mapped to the same set by re-accessing, i.e.,
probing, the same lines and checking if there are cache misses.

In the first reported cache-based side channel attacks,
which leaked keys in AES [11] and RSA [89], the victim
itself was the transmitter, leaking data through its access
pattern. For example, these algorithms used lookup tables
indexed by bits of the secret key, and the attacker inferred
those bits by observing which cache sets the victim used.

To defend against these attacks, modern crypto implemen-
tations use constant-time algorithms, also known as data-
oblivious algorithms (2, 7, 12, 13, 19, 25, 28, 52, 54, 56, 66,
71, 74, 77, 93]. Constant-time algorithms are carefully writ-
ten so that each instruction’s execution does not reveal the
data it operates on over any microarchitectural side chan-
nel. For example, these algorithms do not leak bits of the
key through their access pattern, making the original cache-
based attacks ineffective. Unfortunately, the guidelines for
writing constant-time code do not consider side channels
based on data at rest optimizations, like cache compression,
and are thus rendered insecure by those techniques, as we
will see later see.

Spectre [44] and other recent speculation-based at-
tacks [16, 46, 72] all leverage speculative execution to synthe-
size a transmitter. Specifically, the attacker modifies microar-
chitectural state (e.g., the branch predictor) to get the proces-
sor to speculatively execute code on the victim’s domain that
the victim would not normally execute. The transmitter code
encodes the secret into a side channel, e.g., the cache-based
side channel using address bits to encode the secret.

1 Though we focus on side-channel attacks, covert channels have the same
ingredients. The difference is that in a covert channel setup, both processes
want to communicate through the side channel.

Now that we have understood where existing attacks fit
in this taxonomy, it is easy to see why the attacks we report
are different and more insidious.

2.2 Contribution 1: Cache compression introduces a
new channel

All compression techniques seek to store data efficiently
by using a variable-length code, where the length of the en-
coded message approaches the information content, or en-
tropy, of the data being encoded [73]. It trivially follows that
the compressibility of a data chunk, i.e., the compression ratio
achieved, reveals information about the data.

Different compression algorithms reveal different amounts
of information. In general, more sophisticated algorithms
compress further and thus tend to reveal more informa-
tion [20]. For instance, the example in Sec. 1 only revealed
how many bytes were the same. But a different technique,
delta encoding [62], encodes each byte or word as the differ-
ence with a base value and uses fewer bits for smaller deltas,
thus revealing how close different words are.

Hence, compressed caches introduce a new, fundamentally
different type of side channel. As a point of comparison,
consider conventional cache-based side channels (Sec. 2.1).
Conventional cache channels are based on the presence or
absence of a line in the cache, whereas compressed cache
channels are based on data compressibility in the cache. Thus,
conventional attacks make a strong assumption, namely that
the victim is written in a way that encodes the secret as a load
address. Compressed cache attacks relax this assumption:
data can leak regardless of how the program is written, just
based on what data is written to memory.

In this sense, our attacks on compressed caches are more
similar to Spectre attacks than conventional side channel
attacks. Table 1 compares Spectre and the new attacks in
this paper, using the abstract model in Fig. 2. Spectre at-
tacks allow the attacker to create different transmitters by
arranging different sequences of mispredicted speculations.
Analogously, attacks based on cache compression allow the
attacker to create different transmitters by writing different
data into the cache.

Spectre, using cache
side channels

Compressed cache
attacks (this work)

Line’s presence due to The compressibility

Side .
a secret-dependent of the secret itself (and
channel . .
memory access pattern data in the same line)
. Speculatively executed ~ Stores to secret data or
Transmitter
instructions data in the same line
- . Timing difference to
. Timing difference to ng -
Receiver infer a line’s

infer a line’s presence i
compressibility

Table 1. A comparison between Spectre and compressed cache
attacks using the abstract model in Fig. 2.

2.3 Contribution 2: Compressed caches allow
compressibility to be observed

Exploiting the compressed cache side channel requires a
new receiver. In Spectre, the receiver uses techniques like
Prime+Probe to detect the timing difference due to a line’s
presence. In compressed cache attacks, the receiver has to
detect the compressibility information from the channel.

We propose Pack+Probe, a general technique that lever-
ages the timing difference due to a line’s presence to also infer
the compressibility (Sec. 3). Like Prime+Probe, Pack+Probe
fills a set with cache lines, but with known and crafted com-
pressed sizes, and observes how many lines are evicted after
a victim accesses the block to infer the size (compressibility)
of the victim’s cache line. Since there is a wide variety of
compressed cache organizations, we describe and evaluate
Pack+Probe for VSC [3], a common set-associative design,
and then describe the impact on other organizations (e.g.,
sectored compressed caches) in Sec. 7.

Given a channel and a receiver, an attacker can now
carry out passive attacks, watching for information leakage
through compressibilities.

2.4 Contribution 3: Compressibility can be
manipulated to leak data quickly

Passively watching for compressibilities already reveals in-
formation about the secret data. But compressed caches also
enable a far more damaging active attack, which we call Safe-
cracker, where the attacker manipulates data spatially close
to the secret in a strategic way to affect compressibility and
extract the secret efficiently (Sec. 4).

For example, consider the situation in Fig. 1, where the
attacker issues encryption requests to a victim server. The
server allocates the attacker’s message and the secret key
contiguously, so the secret shares its cache line with part
of the message. Over multiple requests, the attacker tries
different messages and observes how the compressibility of
the line containing the secret changes. With knowledge of
the compression algorithm used, we show that the attacker
can perform a guided search to recover the key.

To make matters worse, we find there are multiple ways
the attacker can colocate its data with select victim data,
enabling Safecracker to leak attacker-selected victim data. We
find that attacker-controlled colocation can be due to either
valid and invalid program behavior, such as failing to zero-
out freed memory or latent memory safety vulnerabilities.
This, to the best of our knowledge, makes Safecracker the
first read gadget caused by a microarchitectural optimization
that is not related to speculative execution.

2.5 Contribution 4: The compressed cache side
channel can be closed, but at a cost

Finally, we present several potential defenses against com-

pressed cache side-channel attacks (Sec. 6). One option is to

let software control compression (e.g., [91]), but this implies

ISA changes, storage overheads to track which data should
not be compressed, and requires programmers to correctly
identify secrets. A different option is cache partitioning,
which is non-trivial because compressed caches have de-
coupled tag and data arrays with different geometries (and
both must be partitioned), and partitioning reduces compres-
sion ratio. In short, while compressed caches can be made
secure, straightforward solutions come at a cost, and it will
be up for future work to develop refined defenses that retain
security with a lower performance impact.

3 Pack+Probe: Observing compressibility

As discussed in Sec. 2, compressed caches already provide
two major components, transmitter and side channel, to con-
struct attacks. To complete an attack, the remaining and
critical component is the receiver, i.e., a way to observe the
compressibility of cache lines in compressed caches.
Building a receiver requires understanding the architec-
ture of compressed caches (i.e., how the cache stores and
manages compressed, variable-sized blocks) and is largely
orthogonal to the compression algorithm used (i.e., how the
cache compresses blocks). We first review the architecture
of compressed caches, then present our Pack+Probe receiver.

3.1 Background on compressed cache architectures

Whereas conventional caches manage fixed-size cache lines,
compressed caches manage variable-sized blocks. Thus, com-
pressed caches divide the data array among variable-sized
blocks and track their tags in a way that (i) enables fast
lookups and insertions, (ii) allows high compression ratios,
and (iii) avoids high tag storage overheads. These require-
ments have led to a wide variety of compressed cache orga-
nizations. Compressed caches typically perform serial tag
and data array accesses, and require extra tag entries to track
more compressed cache lines than uncompressed caches.

While prior work has proposed various compressed cache
architectures, Pack+Probe is general and applies broadly.
For concreteness, we explain ideas using a commonly used
organization, Variable-Sized Cache (VSC) [3]. We discuss
how to adapt Pack+Probe to other organizations in Sec. 7.1.

VSC extends a set-associative design to store compressed,
variable-size cache lines. Fig. 3 illustrates VSC and compares
it with a set-associative design. VSC divides each set of the
data array into small segments (8B in Fig. 3). It stores each
variable-size line as a contiguous run of segments in the data
array. Each tag includes a pointer to identify the block’s data
segments within the set, and VSC increases the number of
tags per set relative to the uncompressed cache (e.g., by 2x
in Fig. 3). More tags per set allow tracking a larger number of
smaller lines. Increasing the number of tags adds overheads
(e.g., 6% area for 2X tags) but allows higher effective compres-
sion ratios (as with highly compressible lines, the number of
tags per set and not the data array limits set capacity).

Tag array Data array Tag array Data array
Tag0 Tagl Way0 Wayl Tag0 Tagl Tag2 Tag3 Segments (0-7)
— W = =
st [set] [
se: [[set | |-
C— < >
32 bytes 64 bytes -

Conventional 2-way cache (32-byte lines)

8 bytes

VSC 4-way tag storage, 8-byte segmented data storage

Figure 3. Comparison of VSC (right) vs. an uncompressed set-associative cache (left). VSC divides each set of the data array into small
segments (8 bytes in this example), stores each variable-size line as a contiguous run of segments in the data array, modifies tags to point to
the block’s data segments, and increases the number of tags per set relative to the uncompressed cache (by 2x in this example) to allow

tracking more, smaller lines per set.

VSC suffers from a few limitations, which prior work has
sought to address. First, VSC increases tag overheads. To
reduce these, DCC [70] and SCC [69] leverage decoupled
sector caches to track multiple compressed lines per sector
without extra tag entries. Second, VSC suffers from fragmen-
tation across sets, which leaves space unused on each set.
The Indirect-Indexed Cache [37] reduces fragmentation by
not dividing the data array into sets and letting tags point to
anywhere in the data array. Finally, VSC can require perform-
ing multiple evictions per fill, which adds complexity, and
can interact poorly with cache replacement. The Base-Victim
Cache [31] is a simpler organization that manages each set
and way of the data array individually, and associates multi-
ple tags to it. This simplifies operation but incurs additional
fragmentation, reducing compression ratio.

3.2 Pack+Probe idea

Threat model: Our threat model is that victim and attacker
are two processes sharing the processor and a compressed
cache. Attacker and victim can be on different cores as long
as those cores share the compressed cache (which is typically
the last-level cache). The attacker wants to learn information
about data in the victim’s protection domain by observing
the compressed size of the victim’s cache lines.

We assume the attacker knows the compression algorithm
used, so that it can construct cache lines of known com-
pressed sizes. We also assume that the attacker knows when
the victim has accessed the secret data (e.g., by invoking
victim code), so that it can run the receiver afterwards.

Key idea: Pack+Probe exploits that, in compressed caches, a
victim’s access to a cache line may cause different evictions of
other lines depending on the compressibility (i.e., compressed
size) of the victim’s line.

To exploit this, Pack+Probe first packs the cache set with
attacker-controlled lines to leave exactly X bytes unused, as
well as enough tag space to avoid evictions due to insuffi-
cient tags. Once the victim accesses the target cache line, if
its compressed size is <X bytes, no evictions will happen,

Tag 1l

Tag 2

v Tag P

Figure 4. A simplified, 16B cache with 2 decoupled tags.

Tag1 16B cache set

(1 oxE o
Tag 2 ‘

o |

(a) Attacker leaves 4 bytes in the cache set.

16B cache set

12B compressed line 4B unused

Tag1 16B cache set
(1 ocr o
| |

e o
4B compressed secret line

(b) If the compressed secret line is < 4bytes, then A is kept.
Tag1 16B cache set

|

Tag 2 e
8B compressed secret line

(c) If the compressed secret line is > 4bytes, then

8B unused
is evicted.

Figure 5. A simplified example of Pack+Probe.

whereas if it is larger than X bytes, at least one of the attacker-
controlled lines will be evicted. Finally, the attacker probes
the lines it inserted again, uses timing differences to infer
which lines hit or miss, and thus infers whether the victim’s
line fits within X bytes. Repeating these steps with a simple
binary search over values of X, the attacker can precisely
determine the compressed size of the victim’s line.

A simple example: Consider the simplified compressed
cache in Fig. 4, which has only one set, with 16 bytes in
the data array and two decoupled cache tags.

Fig. 5 shows a single step of Pack+Probe, where the at-
tacker tests whether the victim’s line compresses to 4 bytes

or smaller. The attacker first sets up the cache set by access-
ing an incompressible, 16-byte line (which evicts everything
else in the data array), and then a 12-byte cache line, A. This
leaves the cache with an empty tag and 4 bytes of space in
the data array. Then the victim accesses the target cache line.
If the target cache line is larger than 4 bytes, then it will evict
; otherwise, A will be kept. Finally, the attacker probes
to determine whether it’s still in the cache, and thus whether
the victim’s line compresses to 4 bytes or smaller.

3.3 Pack+Probe implementation on VSC

We now build on the key idea of Pack+Probe to construct a
concrete receiver for VSC (Sec. 3.1). As previously discussed,
we choose VSC because it is the most commonly used in
cache compression work [8, 9, 17, 41, 42, 60, 70, 81].

There are two differences between VSC and our simple
example. First, VSC has multiple sets, so Pack+Probe requires
finding the target set. Second, each VSC set has more than
two tags and compresses lines to segments rather than bytes.

Before running Pack+Probe, the attacker uses standard
techniques like Prime+Probe [57] to find the target set. With
the target set known, Pack+Probe proceeds in multiple steps
as outlined above. Pack+Probe finds the compressed size in
segments (e.g., 8B chunks in Fig. 3), which is the allocation
granularity in VSC, rather than bytes. Nonetheless, as we
will see, this coarser granularity suffices to leak secret data.

Assume that the uncompressed cache lines are U segments
long. Pack+Probe performs a binary search as follows. In
the first step, Pack+Probe packs the target cache set with
lines that leave U/2 segments and at least one tag unused.
Then, the victim accesses the target line, and the attacker
infers whether the line is < U/2 segments. In the next step
of the binary search, Pack+Probe packs the target set to leave
either U/4 unused segments (if victim line < U/2 segments)
or 3U /4 unused segments (if victim line > U/2 segments).
As each step cuts the search space in half, Pack+Probe finds
the target line size in log,(U) steps. Each step contains a few
main memory accesses (plus a victim function call), taking
less than 10K cycles in our experiments (Sec. 5).

This approach relies on leaving one tag unused to avoid
tag conflicts. This is easily achievable, as tags are overprovi-
sioned and the attacker can use incompressible lines to fill
most of the set without using up the tags. For example, in
a VSC cache with 64-byte uncompressed lines, 16-64 bytes
(1024 bytes) per set in the data array, and 32 tags per set (i.e.,
a 2X tags design), the attacker can fill 15/16ths of the data
array with 15 incompressible lines, leaving 17 tags to fill with
compressible lines and perform the search.

Our Pack+Probe implementation is simple but general. If
the attacker knows the replacement policy, more complex
Pack+Probe variants exist that reduce the number of steps by
watching for multiple evictions. For example, LRU enables
a one-step Pack+Probe that first installs U 1-segment com-
pressed lines in the U LRU positions, then counts the number

of evictions to infer the size of the victim’s line. Nonetheless,
we show that our simple and general Pack+Probe implemen-
tation is fast enough for practical attacks.

4 Safecracker: Recovering secrets efficiently

While Pack+Probe lets the attacker passively learn the com-
pressibility of secret data, this information alone may not
suffice to leak secret data. For example, the secret may be
an incompressible random string as in a cryptographic key.
Although learning that this string is incompressible does
leak something, it does not reveal the exact bits in the string.
To efficiently and precisely recover the secret, we propose
Safecracker, an active attack that exploits attacker-controlled
data colocated with secret data. Safecracker is named after
the process used to crack combination locks in (classic) safes,
where the attacker cycles through each digit of the combina-
tion and listens for changes in the lock that signal when the
digit is correct. Similarly, Safecracker provides a guess and
learns indirect outcomes (compressibility) of the guess. The
attacker then uses the outcome to guide the next guess.
Depending on the compression algorithm used, Safe-
cracker needs different search strategies. Before explaining
Safecracker, we review prior cache compression algorithms.

4.1 Background on cache compression algorithms

To design a compression algorithm, architects have to bal-
ance compression ratio and decompression latency. Since
decompression latency adds to the critical path memory la-
tency, most compressed caches forgo some compression op-
portunities in favor of simpler decompression logic.

Most compression algorithms compress each cache line
individually, i.e., they exploit redundancy within a cache line
but not across cache lines. For example, ZCA [24] removes
zeros in a cache line. Frequent pattern compression (FPC) [4]
recognizes repeated patterns or small-value integers and
uses a static encoding to compress every 32-bit data chunk
in the line. Base-Delta-Immediate (BDI) [62] observes that
values in a cache line usually have a small dynamic range,
and compresses the line into a base plus per-word deltas.

To achieve higher compression ratios, recent work also
considers compressing consecutive cache lines. DISH [60]
builds on decoupled sector caches to compress a super
block by sharing the dictionary across multiple cache lines.
Mbzip [40] extends BDI to store one base value for consecu-
tive cache lines in the same set.

Finally, to achieve even higher compression ratios, some
techniques look for redundancy across the whole cache.
These designs achieve the highest compression ratio, but
also incur significant design changes. For example, cache
deduplication [76] and Doppelganger [51] add hardware to
support content-based indexing. SC? [9] monitors the data
of all cache misses to build an appropriate Huffman code,
which it then uses to compress all cache lines.

Name Compressed Size Pattern Group
B1D0 1 All zeros (1,8]
B8DO 8 Eight same 8B value (1,8]
B8D1 16 8B base + 8x1B deltas (8,16]
B4D1 20 4B base + 16x1B deltas (16,24]
B8D2 24 8B base + 8x2B deltas (16,24]
B2D1 34 2B base + 32x1B deltas (32, 40]
B4D2 36 4B base + 16x2B deltas (32, 40]
B8D4 40 8B base + 8x4B deltas (32, 40]

NoComp 64 Not compressed (56, 64]

Table 2. BDI compression algorithm for 64-byte lines [62, Table 2].

We focus on building a Safecracker attack for compres-
sion algorithms that compress each line independently, both
because these compression schemes are the most common
and because they are harder to exploit. Algorithms that rely
on shared state across lines open up additional opportunities
(Sec. 7) for active attacks. For example, in SC?, the attacker
could leak across protection domains because cache lines for
different domains are compressed together.

As discussed in Sec. 2.2, in general, the better the compres-
sion algorithm, the more information it reveals. For example,
ZCA only eliminates lines full with zeros, which reveals very
limited information. But we find relatively simple algorithms
suffice for Safecracker to leak secret data efficiently. Specifi-
cally, we target the BDI algorithm [62], a simple and widely
used algorithm that relies on delta encoding.

BDI algorithm: The Base-Delta-Immediate (BDI) compres-
sion algorithm [62] performs intra-cache-line compression
by storing a common base value and small deltas. For exam-
ple, for eight 8-byte integer values ranging from 1280 to 1287,
BDI will store an 8-byte base of 1280, and eight 1-byte values
from 0 to 7. With 64-byte cache lines, depending on the base
value and the ranges of the deltas, BDI compresses a cache
line into 8 different sizes, shown in Table 2. If none of these
patterns exist, BDI stores the cache line uncompressed.

4.2 Safecracker implementation on BDI

Since Safecracker’s search process depends on the compres-
sion algorithm, we demonstrate the idea directly with our im-
plementation on BDI, and discuss other algorithms in Sec. 7.

Threat model: Safecracker assumes the attacker can colo-
cate attacker-controlled data in the same cache line as victim
secret data. There are various real-world scenarios where
this can happen for semantically correct programs. An obvi-
ous example is if the programmer explicitly allocates secrets
next to (attacker-controlled) program inputs, as we saw in
Fig. 1. More subtle, the compiler may colocate secrets with
attacker data, e.g., due to pushing function arguments or
spilling register values to the stack. Further, semantically in-
correct (but also real-world) programs, i.e., those with latent

memory safety vulnerabilities, create even worse problems.
For example, heap sprays and buffer overflows enable the
attacker to co-locate its data with potentially any secret data.

Beyond colocation, we assume that the attacker can mea-
sure the compressibility of lines with colocated data, e.g.,
with Pack+Probe. And again, we assume the attacker knows
the compression algorithm used.

Key idea: Safecracker exploits that, with attacker-controlled
data colocated with the secret and knowledge of the com-
pression algorithm, the attacker can perform a guided search
on the compressibility of the cache line to leak the secret.

To exploit this, the attacker first makes a guess about the
secret and then builds a data pattern that, when colocated
with the secret data, will cause the cache line to be com-
pressed in a particular way if the guess is correct (like in
Fig. 1). By measuring the compressibility of the line, the
attacker knows whether the guess was correct or not.

Moreover, the compression algorithm often allows the at-
tacker to make partial guesses about the secret, e.g., guessing
on particular bytes or half-words of the secret. Thus, to leak
an X-bit secret, the attacker need not guess O(2%) times.
Instead, the attack can be divided into sub-steps to leak parts
of secret more cheaply.

Safecracker attack on BDI: Assume that the attacker
wishes to steal an N-byte secret, located in a cache line where
all other data is attacker-controlled. Since BDI is a delta en-
coding technique, Safecracker works by guessing a base value
that is close enough to the secret content so that when the
attacker fills the line with this base value, it triggers compres-
sion for the whole line. The closer the guess is, the smaller
the cache line compresses, enabling a multi-step approach.

For an N-byte secret, the Safecracker algorithm on BDI
works as follows:

o Select a size of the base value M that is larger than or
equal to the size of the secret, i.e., M > N.

e Target a compression pattern using that base value
size with the largest delta X (BMDX in Table 2).

o Brute-force the base value in the attacker-controlled
data and measure the compressed size (using
Pack+Probe) until the cache line is compressed to the
pattern (BMDX).

e Record the base value that causes compression and
target a pattern with a smaller delta X’.

e Repeat the previous two steps until the pattern is B8D0
(i-e., smallest size, all 8-byte values are the same). This
means the guessed base value is the secret.

For example, if the secret is a 4-byte value and attacker con-
trols the content of the remaining 60 bytes of the cache line,
the attacker uses a 4-byte base and starts by targeting the
B4D2 pattern. It then brute-forces the first two bytes of every
4-byte word in the attacker-controlled data (i.e., trying pat-
terns 0x00000000,0x00010000, . . .0xFFFF000O, at most
216 guesses), and uses Pack+Probe to see if the cache line

Bytes Sequence Attempts
2B NoComp -> B2D1 -> B§D0 0(2%)
4B NoComp -> B4D2 -> B4D1 -> B8D0 0(2'%)
8B NoComp -> B8D4 -> BSD2 -> B8D1 ->B8D0 0(2%)

Table 3. Safecracker brute-force sequences for BDL

compresses to the B4D2 pattern. Once it sees the B4D2 pat-
tern, the attacker records the two bytes it tried, targets the
B4D1 pattern, and brute-forces the third byte (taking at most
28 guesses). When the attacker sees the size corresponding
to the B4D1 pattern, it then targets B8D0 and brute-forces
the last byte; and when the attacker sees the B8DO pattern’s
size, the 4-byte guess matches the 4-byte secret.

Since the largest base in BDI is 8 bytes, Safecracker can
steal up to 8 bytes in a 64-byte line. Though it cannot leak all
memory, leaking 8 bytes of secret data can be devastating. For
example, a 128-bit AES key is considered secure, but leaking
64 bits degrades it to 64-bit protection, which is insecure [14].

Table 3 shows the sequence of target patterns and observed
sizes that Safecracker uses to steal contents ranging from
2 bytes to 8 bytes. As shown in Sec. 3, in VSC, Pack+Probe
only learns the compressed size at 8-byte granularity. Thus,
each step in Table 3 falls into different groups (multiples of
8 bytes), so that Safecracker can observe changes.

Enhancing Safecracker with buffer overflows: So far we
have assumed that the attacker-controlled data is a fixed-size
buffer located right next to the secret. This limits the attacker
to only leak contents contiguous to attacker-controlled data.

However, if the attacker can find a buffer overflow vul-

nerability in the victim program, then this vulnerability can
significantly increase the amount of data leaked and enhance
the efficiency of Safecracker:
1. Reach: First, classic buffer overflow attacks allow the at-
tacker to control where the attacker-controlled data is located.
For example, if a victim suffers a buffer overflow on a stack-
allocated array, and there is a secret elsewhere in the stack,
the attacker can exploit the buffer overflow to place attacker-
controlled data right up to the (non-contiguous) secret.

In the worst case, if the compression algorithm allows
leaking up to X bytes per line, then by using a buffer overflow,
Safecracker could be applied line by line, so the attacker
can leak X bytes in every cache line. That is, if the victim
has a memory footprint of M, then Safecracker with buffer
overflow can leak O(M) bytes of memory, where different
compression algorithms have different constant factors (e.g.,
8/64 = 1/8th of program memory for BDI). In fact, there
are compression algorithms that allow leaking the whole
line with Safecracker, like simple run-length encoding (RLE),
where single-bit changes cause compressibilitiy to change.
Thus, a very sensitive compression algorithm, combined with
a vulnerability that lets the attacker place data in the victim’s
memory, can give the attacker a universal read gadget as
powerful as Spectre.

Attacker-controlled data
D Secret data D due to buffer overflow D Recovered data

Other data 8B secret data

Initial cache line -.....

Istround e ‘ ‘

2ndround e ‘ ‘ D

3rdround e ‘ ‘ ‘ ‘

Figure 6. Buffer overflows further speed up Safecracker.

2. Efficiency: Second, buffer overflows also allow the attacker
to control how many bytes the attacker-controlled data has.
Therefore, by repeatedly performing buffer overflows with
different buffer sizes, an attacker can recover the secret much
faster than in the previous example.

Fig. 6 shows an example of Safecracker using a buffer over-
flow to leak secret data more efficiently. To start, the attacker
allocates a buffer (the orange region) that leaves only one
byte of secret data in the line. By brute-force, the attacker
quickly learns this remaining byte in the same manner as the
previous example. Once the last byte is known, the attacker
learns the second-to-last byte by allocating a smaller buffer
that does not overwrite it and brute-forcing only this byte.
This requires the victim to restore the data over multiple
invocations, which is the case with local/stack-allocated vari-
ables. By repeating these steps, the attacker can learn the 8
bytes of secret data with about 28 tries, because it divides
the task into 8 sub-steps. With BDI, this improves efficiency
susbtantially, as stealing 8 bytes of secret data takes take
8 x 28 tries in the worst case, instead of 2°? (Table 3).

Each interaction in the above fashion may eventually
cause a program crash (e.g., the buffer overwrites a control
variable). Yet, many services restart after a crash [15], thus
allowing the attacker to extract secrets over multiple crashes.

Note that while a traditional buffer overflow exploit re-
quires subsequent steps (e.g., to find ROP gadgets), this
new exploit leaks data at the buffer overflow step. This
defeats certain software defenses, such as stack canaries,
since leakage occurs before the buffer allocation completes.
We demonstrate this by adding compiler protection (i.e.,
-fstack-protect) in our evaluation (Sec. 5).

5 Evaluation

In this section we evaluate the effectiveness of Safecracker us-
ing two Proof-of-Concept workloads (PoC). The first PoC ex-
ploits static colocation of secret data and attacker-controlled
input, and the second PoC exploits a buffer-overflow-based
vulnerability to colocate the data dynamically. In Sec. 7.2, we
discuss other ways to achieve effective colocation.

5.1 Baseline system and methodology

We evaluate our PoCs using architectural simulation, as we
do not have access to hardware with a compressed cache.

x86-64 ISA, 2.3 GHz, Skylake-like OOO [21, 68]:
32B-wide ifetch; 2-level bpred with 2kx18-bit

Core BHSRs + akx2-bit PHT, 4-wide issue, 36-entry 10,
224-entry ROB, 72/56-entry LQ/SQ
L1 32 KB, 8-way set-associative, split D/I caches, 64 B

lines, LRU
L2 256 KB private per-core, 8-way set-associative, LRU
LLC 8MB shared, 16-way set-associative, LRU
Mem 3 DDR3-1333 channels

Algorithm BDI [62] compression algorithm
ArchitectureVSC [3] compressed cache (2x tag array)

Table 4. Configuration of the simulated system.

103
N victim
~ 102 - attacker
£ B
g 10t 11
= e \
0 0
B 10% 4 \ \
§ N \ \ \
i 10—1_
tTl1111
10_2 \I T T \l \I \I T T
1 2 3 4 5 6 Find set

Size of the secret to recover (Bytes)

Figure 7. Safecracker results in simulation: worst-case time to leak
secret with attacker-controlled data in a fixed-size buffer.

Simulated system: We use ZSim [68], an execution-driven,
Pin-based [49] simulator. We model a four-core system with
a three-level cache hierarchy similar to Skylake [21], with a
compressed last-level cache. Table 4 shows the parameters of
the simulated system. We use -fstack-protect to compile
all programs, which blocks conventional buffer overflows.

5.2 PoC 1: Static colocation

The first PoC has two separate processes, victim and attacker.
The victim is a login server with a vulnerability that lets
attacker-controlled input be stored next to a secret key. The
attacker can provide input to the cache line where the key is
allocated, without modifying the key. The attacker can also
invoke victim accesses to the secret by issuing encryption
requests that use the secret key. This lets the attacker perform
Pack+Probe, as explained in Sec. 3.2.

The attacker first finds the set that holds the secret cache
line using standard Prime+Probe [57]. Once the conflicting
set is found, the attacker follows the Safecracker process to
steal the secret key of the victim.

Safecracker steals secrets efficiently: Fig. 7 shows the
worst-case execution time needed to steal different numbers
of bytes. Safecracker requires less than a second to crack a
6-byte secret value. For a secret with 1-3 bytes, most of the

overhead comes from finding the conflicting set (which takes
50 ms), and when stealing 4-6 bytes, finding the set is still a
significant part of the runtime.

Though Safecracker can steal up to 8 bytes when applied
to BDI, trying to steal more than 6 bytes requires much
longer run-times. As shown in Table 3, the complexity of
Safecracker on BDI grows exponentially. So when stealing 4
bytes, the guess is over 2 bytes in a single step. Compared
with guessing only 1 byte in a single step (stealing 2 bytes),
this increase in complexity already incurs in a substantial
overhead, as shown in Table 3. With a similar exponential
growth, to steal 7 bytes, the attacker needs to guess 3 bytes
in a single step, which by extrapolation would take about
16 seconds (which is too long to simulate). Finally, to steal
8 bytes, the attacker must guess 4 bytes (O(2%) tries) in a
single step, which would take take 90 hours wall-clock time.

Finally, Fig. 7 shows that the victim takes at most 20% of
the execution time of the attacker. This is due to the commu-
nication between victim and attacker and the time taken by
attacker-triggered requests.

5.3 PoC 2: Buffer-overflow-based attack

As in Sec. 5.2, the second PoC consists of separate victim
and attacker processes. However, this time, the victim has
a buffer-overflow vulnerability. Its encryption process uses
two local arrays, to store the key and an external input, re-
spectively. The vulnerable function is as follows:

1void encrypt(char *plaintext) {

> char result[LINESIZE];

5 char data[DATASIZE]; // can be any size
. char key[KEYSIZE];

5 memcpy(key, KEYADDR, KEYSIZE);

¢ strcpy(result, plaintext);

s}

The buffer overflow stems from the unsafe call to strcpy,
which causes out-of-bounds writes when the plaintext in-
put string exceeds LINESIZE bytes. The attacker exploits this
buffer overflow to scribble over the stack and overwrite some
of the bytes of the key. After encrypt returns, the scribbled-
over line remains in the stack, and the attacker is then able
to measure its compressibility with Pack+Probe and to run
Safecracker as described in Section 4.2.

Efficiency: As explained in Sec. 4.2, buffer overflows give
Safecracker much higher bandwidth by allowing it to guess
a single byte on each step. Using buffer overflow, Safecracker
steals 8 bytes of secret data in under 10 ms. Fig. 8 shows
that attack time with a buffer overflow grows linearly, vs.
exponentially with static colocation (Fig. 7).

While Safecracker applied to BDI can steal only 8 bytes
per line, this buffer-overflow attack could extend to steal data
in other lines, e.g., using longer overflows to steal secrets
from lines further down the stack.

102

aza victim

= B attacker
£
° 101_
£
=]
c
o
= 0
o 10°
9]
X
w

10—1_

1 2 3 4 5 6 7 8
Size of the secret to recover (Bytes)

Figure 8. Safecracker results in simulation: worst-case time to leak
secret with a buffer-overflow-based attack.

Finally, note that other compression algorithms can allow
stealing more data. For example, with run-length encoding
(Sec. 4.2), Safecracker would leak beyond the 8-byte-per-line
limit, at an expected rate of hundreds of bytes per second.

6 Defenses against cache compression
attacks

To defend against Pack+Probe, Safecracker, and other attacks
on compressed caches, architects must disable at least one
of the three components in Fig. 2: channel, transmitter, or
receiver. We discuss a few alternative approaches to do so.

Preventing compression of sensitive data: Compressed
cache attacks are ineffective if the cache does not compress
sensitive data. This can be implemented with hardware sup-
port, e.g., by letting software specify address ranges or pages
that should never be compressed. However, this requires
additional state in hardware to track incompressible data.
Software-only mitigations are also possible, e.g., by padding
every word of sensitive data with enough incompressible
data to render the line incompressible given the machine’s
compression algorithm. However, this approach is inefficient
and brittle, as changes to the compression scheme may make
the chunk compressible. Moreover, both hardware and soft-
ware mitigations require program modifications and rely on
correct identification of sensitive data, which is hard.

Partitioning the compressed cache: Cache partition-
ing [10, 67, 79] provides isolation between processes sharing
the compressed cache. Unlike the previous approach, parti-
tioning prevents compressed cache attacks without software
changes. This approach resembles prior partitioning-based
mitigations [43, 47] for conventional caches. However, com-
pressed caches have a different organization from conven-
tional ones, so partitioning them is not as easy.

Specifically, to ensure full isolation, both tag and data ar-
rays must be partitioned. Partitioning only the tag array or
the data array does not provide full isolation, since a different
process can detect compressibility indirectly, from pressure

10

on either the data array (as we saw with Pack+Probe) or
on the tag array. If only the data array is partitioned, the
attacker can still prime the whole tag array by filling the
attacker’s partition with all compressed lines (e.g., all-zero
lines) and then observe the pressure from the victim in the
tag array to learn the compressibility of victim data.

Obfuscation-based defenses: Since Pack+Probe relies on
timing measurements to learn compressibility, mitigations
that only expose coarse-grained timings [38] can reduce the
receiver’s effectiveness. Also, randomized cache replacement
policies [48] and architectures [30, 64] add significant noise
to the channel and prevent precise per-line compressibility
measurements in Pack+Probe. However, the attacker may
still learn valuable information, e.g., by monitoring the over-
all compressibility of the victim’s working set.

6.1 Partitioning compressed caches

As mentioned earlier, partitioning is an effective way to to
prevent compressed cache attacks by providing full cache iso-
lation. However, partitioning a compressed cache limits the
performance benefits of compression. To see how partition-
ing affects performance, we study four cache architectures:
e Uncompressed cache without partitioning
Compressed cache using VSC+BDI (see Sec. 5)
Conventional cache with static way partitioning
Compressed cache with both static tag and data array
partitioning
Static partitioning evenly divides cache resources among
four cores in the system. For compressed caches, we partition
both the tag array and data array to provide isolation.

We simulate mixes of SPEC CPU2006 apps on systems
with these four configurations. We use the 12 compression-
sensitive SPEC CPU2006 apps, and we use weighted speedup
as our performance metric and use uncompressed and un-
partitioned cache as our baseline. Our benchmark selection
and performance metric mirror the methodology in the BDI
paper [62]. We fast-forward all apps in each mix for 20B
instructions. We use a fixed-work methodology similar to
FIESTA [39]: the mix runs until all apps execute at least 2B
instructions, and we consider only the first 2B instructions
of each app to report performance.

Fig. 9 shows the weighted speedup over the baseline (un-
compressed and unpartitioned cache) for different cache orga-
nizations on 25 4-app mixes. The compressed, unpartitioned
cache improves performance by up to 14% and by 3.2% on
average over the baseline (these benefits are similar to those
reported in prior work). However, static partitioning hurts
performance for both the uncompressed and compressed
caches. Static partitioning hurts performance of the baseline
by up to 16% and by 4% on average. It also hurts performance
of the compressed cache by up to 13% and by 5% on average.
The performance loss in the partitioned compressed cache

Baseline
Compressed
Way-part baseline
Way-set-part Comp.

-y
e
6]

—_

-

o
T

1.05H " "

1.00

0.95

Weighted Speedup

0.90

0.85

Worloads

Figure 9. Weighted speedup over uncompressed shared cache on
4-application mixes.

stems from not only the reduced number of ways and capac-
ity, but also a decrease in compression ratio, which is due to
limited tag and data array resources. For example, the data
array has more internal fragmentation, as each partition is
managed independently.

These results show that even though it is possible to make
compressed caches secure, the straightforward solution that
partitions both the tag and data array comes at a cost. How
to limit this performance impact while minimizing leakage
with dynamic partitioning would be interesting future work.

7 Discussion

In this section, we discuss how to generalize our attacks to
other compressed caches, and how Safecracker can exploit
other ways to colocate data.

7.1 Generalizing attacks to other compressed caches

While we implement and evaluate our attacks on VSC+BDI,
Pack+Probe and Safecracker apply to other cache architec-
tures and algorithms.

Attacking other compressed cache architectures: As dis-
cussed in Sec. 3.1, most compressed cache architectures share
the two ingredients Pack+Probe uses to attack VSC: a decou-
pled tag store with extra tags, and a data array divided in
fixed-size sets where variable-sized blocks are laid over. With
these two ingredients, it’s easy for Pack+Probe to generate
data-array capacity pressure to find the size of a victim line.

There are two important exceptions to the above. First,
architectures with decoupled tag and data stores, such as
IIC [37], V-Way cache [65], and Zippads [80, 81], do not divide
the data array in sets, and tags can point anywhere in the
data array. This makes Pack+Probe much harder, as getting
a conflict requires a full pass over the data array, and noise
from other accesses may make measuring the compressibility
of an individual line infeasible.

Second, some architectures have limited or no tag overpro-
visioning. Specifically, DCC [70] and SCC [69] use decoupled
sector caches to track multiple compressed lines. Performing
Pack+Probe on them requires carefully constructing access

11

and data patterns that leverage multi-block tags and leave the
right amount of space with some tags unused. For example,
since DCC has the same number of cache tags as baseline,
it is important to make sure some tags track more than two
lines so that there are no tag conflicts during Pack+Probe.

Attacking other compression algorithms: While we
demonstrate Safecracker on BDI, we believe it is straightfor-
ward to come up with a search process for other compression
algorithms, though the amount of information learned will
vary. As discussed in Sec. 4.1, the better the algorithm com-
presses, the more information it can leak.

More importantly, if the compression algorithm performs
compression across protection domains (e.g., schemes that
compress across lines such as cache deduplication [76]), then
there is opportunity to leak even more data. For example, if
the size of an attacker-controlled line is influenced by kernel
data, Safecracker could be used to leak this kernel data.

7.2 Colocating attacker-controlled data

In Sec. 4 and Sec. 5 we consider two ways for the attacker
to colocate data. But there are many more ways to colocate
attacker-controlled data near sensitive data, since program-
mers do not avoid this scenario intentionally. For example,
for sensitive data in the memory heap, attackers can leverage
both spatial and temporal colocation opportunities.

Spatial heap-based attacks: Heap spraying is an effective
way to increase the chance to colocate data. In heap spray-
ing, the attacker fills the victim’s heap with its own data at
various places (e.g., by forcing the victim to allocate data).
This increases the possibility that attacker-controlled data is
next to some sensitive data. Once the attacker succeeds, it
can apply a brute-force attack similar to the chosen-plaintext
example (Sec. 5) by changing the values of its data in the
heap, or forcing the victim to free and reallocate the data.

Temporal heap-based attacks: The attacker may also learn
information about data not at the edge of an object by taking
advantage of uninitialized memory. The idea is that before
being allocated, the addresses to store new secret data may be
storing attacker-controlled data or vice versa. If the private
object is not initialized, e.g., zeroed-out, on allocation, old
attacker data written previously can locate right next to the
secret data.

We manually inspected the source of several real-world
programs and found exploitable patterns for temporal attacks.
For example, a common pattern in OpenSSL-1.1.1 is:

1buf =
2 memcpy (buf ,user_input,len);

malloc(len);

That is, the program allocates and fills a buffer without
zero-ing the buffer contents in between, similar to our PoC
2 in Sec. 5.3. Combined with Safecracker, this code is akin
to Heartbleed [23], giving the attacker a chance to learn the
heap data stored at the buffer address prior to the allocation.

As another example, Linux’s kernel allocator lets objects
used in different protection domains share cache lines by de-
fault. This colocation due to a centralized memory allocator
could allow leaking kernel data using Safecracker by chang-
ing same-line, attacker-controlled data (e.g., a file buffer).

While there are many opportunities to colocate attacker-
controlled data with sensitive data, some cases are harder or
more expensive to exploit. For example, if colocating sensi-
tive data crashes the victim program, the wait between two
Safecracker attempts might be too long for the full attack to
be useful. A quantitative analysis of the side-channel band-
width due to different compression algorithms under various
colocation opportunities is interesting future work.

8 Related work
8.1 Microarchitectural side/covert channel attacks

This paper builds on a rich literature on microarchitectural
side/covert channel attacks. Many processor structures have
been shown to leak privacy over these channels, including
a variety of cache architectures [57, 87-89], branch predic-
tors [1, 27], pipeline components [5, 7, 34], and other struc-
tures [26, 33, 53, 63, 83, 85]. All these channels reveal in-
formation about data “in transit,” i.e., being operated on by
specific instructions in the sender (victim) program. By con-
trast, leaking privacy through cache compression is, to our
knowledge, the first microarchitectural side/covert channel
that leaks information about data at rest. That is, compres-
sion applies in the same way, regardless of what instructions
were used to produce the data.

Prior work on Data Oblivious ISA extensions [91] briefly
mentions the use of cache compression to defeat constant
time/data oblivious programming, but does not go into details
or allude to active cache compression attacks (Sec. 4).

8.2 Defenses on cache side-channel attacks

Prior work has also studied how to thwart the various cache
side-channel attacks found in commercial machines.

On the one hand, software techniques try to eliminate
cache side channels from existing systems. For example,
some techniques use cache partitioning hardware [43, 47]
or segregate threads from different users into different
cores [29] to avoid cache side-channel attacks. On the other
hand, hardware techniques aim to develop mechanisms that
balance performance and security. These techniques include
adding randomness to the system [48, 64] or changing the
cache organization [84, 86].

In Sec. 6, we discussed how some of these techniques may
be adapted to prevent attacks on compressed caches.

8.3 Attacks on software compression

Prior work has already identified that compression and vari-
able-length messages can leak information in other contexts,
such as HTTP requests [82]. Similarly, attacks on memory

12

deduplication [35, 58, 75] have shown that page deduplica-
tion in virtualized environments can leak information about
the host or be used as a covert channel between guests.

Our contribution over this prior work is to realize that
compressed caches are especially affected by these problems,
and to develop practical attacks that demonstrate the extent
of the problem. Beyond the severity of the problem, a key
difference with compressed caches is that they are software-
transparent, so software has no control over whether data
is compressed or not. Moreover, since hardware patches are
much more difficult to apply, it is important to prevent in-
secure cache compression implementations from reaching
mainstream processors.

9 Conclusion

We have presented the first security analysis of cache com-
pression, a promising technique that is likely to appear in
future processors. While to the best of our knowledge no com-
mercial general-purpose processors implement compressed
caches, the recent security crisis brought on by speculative
execution attacks has shown that it is crucial to analyze the
security of architectural techniques before they are deployed
in hardware.

We find that cache compression is insecure because the
compressibility of a cache line reveals information about its
contents. Compressed caches introduce a new side channel
that is especially insidious, as simply storing data transmits
information about it.

We present two techniques that make attacks on com-
pressed caches practical: Pack+Probe lets an attacker learn
the compressibility of victim cache lines, and Safecracker ex-
ploits colocation with attacker-controlled data to leak secret
data efficiently. Our evaluation shows that, on a common
compressed cache architecture, Safecracker lets an attacker
compromise a secret key in under 10 ms. We also present po-
tential defenses against compressed cache attacks, and show
that partitioning, the most complete one, comes at a cost.

We hope this work sparks follow-on research on high-
performance defenses and, more importantly, prevents in-
secure cache compression techniques from reaching main-
stream processors, averting a potential security crisis.

Acknowledgments

We sincerely thank Maleen Abeydeera, Joel Emer, Mark Jef-
frey, Anurag Mukkara, Quan Nguyen, Victor Ying, Guowei
Zhang, and the anonymous reviewers for their feedback. We
thank Joel Emer for his insights on the taxonomy in Sec. 2.
We thank Paul Kocher for sharing his concerns about the
security of memory compression. This work was supported
in part by NSF grants CAREER-1452994 and SaTC-1816226,
a Google faculty research award, and an Intel ISRA grant.
Andres Sanchez was supported by a MISTI grant by the Tech-
nical University of Madrid.

A Artifact Appendix
A.1 Abstract

Our artifact includes the source code and simulation frame-
work for the two PoC attacks in Sec. 5, as well as scripts to
run the experiments and reproduce the results. The source
code includes a self-contained library of the Safecracker at-
tack to the BDI compression algorithm described in Sec. 4,
which can be reused in other PoCs.

To ease reproducibility, our artifact uses Vagrant to au-
tomatically set up and provision a virtual machine with all
necessary dependences.

A.2 Artifact check-list (meta-information)

e Compilation: scons, make, gcc

Run-time environment: Any OS where Vagrant is sup-

ported, or Linux for native execution.

Hardware: Any x86-64 platform.

Execution: About 5 minutes for the main experiments.

Metrics: Simulated cycles.

Output: Proof-of-concept attacks and simulation results.

How much disk space required (approximately)?:

<100MB

e How much time is needed to prepare workflow (ap-
proximately)?: About 30 minutes.

e How much time is needed to complete experiments

(approximately)? About 30 minutes.

Publicly available?: Yes.

Code licenses (if publicly available)?: GNU GPL v2.

Workflow framework used?: No.

Archived (provide DOI)?: 10.5281/zenodo.3560520 (https:

//zenodo.org/record/3560520)

A.3 Description

A.3.1 How delivered

Our artifact is available at DOI:10.5281/zenodo.3560520
(https://zenodo.org/record/3560520) and is packaged as a tarball
(cc_artifact_evaluation.tar.gz).

A.3.2 Hardware dependencies
Any x86-64 platform.

A.3.3 Software dependencies

The recommended Vagrant-based setup should work on any
system where Vagrant is supported (e.g., Linux, Windows, MacOS),
and only requires Vagrant to be installed (available at https://www.
vagrantup.com/). We also recommend using VirtualBox (https://
www.virtualbox.org/) with Vagrant.

Alternatively, a Linux system (preferebly Ubuntu 14.04) can be
used for native execution.

A.4 Installation

Please follow the README.md in the tarball to install zsim and
compile two proof-of-concept workloads. We highly recommend
to use Vagrant (http://vagrantup.com) to set up the environment.
The artifact includes a Vagrantfile (Vagrant configuration file)
that automatically provisions a VM with all the dependences.
Assuming you have Vagrant installed (sudo apt-get install
vagrant on Ubuntu or Debian), follow these steps:

13

tar -xvf cc_artifact_evaluation.tar.gz
cd cc_artifact_evaluation

vagrant up

vagrant ssh

Once logged into in the VM, simply build the simulator and
PoCs by running:

cd /vagrant/zsim_simulator/
scons -j4 # Build zsim

cd ..

make # Build PoCs

A.5 Experiment workflow and expected results

Once both the simulator and workloads are successfully built,
under /vagrant/plots, executing

bash generate.sh

will simulate our PoCs using different sizes for the secret and gen-
erate plots in Fig. 7 and Fig. 8. If you are not using Vagrant, edit
generate.sh to set $ZSIM to the path to zsim.

During the simulation, the victim will first report the secret
key (e.g., [S] Key is: 41,224,151,78,), and the attacker will
perform our Safecracker attack to leak and report the key (e.g., [A]
Secret value is: 41,224,151,78,).

Finally, /vagrant/README . md provides detailed documentation
on how to read and use our APIs. We hope this documentation helps
artifact users understand and reuse our infrastructure.

References

(1]

—
15
—

—_
k=
—

—
o
—

—
=)
—

[10

[

[11

—

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

[21]

Onur Aciicmez, Cetin Kaya Koc, and Jean-Pierre Seifert. 2006. Predict-
ing Secret Keys via Branch Prediction. In Proc. of the 7th Cryptogra-
phers’ Track at the RSA Conference on Topics in Cryptology (CT-RSA’07).
Adil Ahmad, Kyungtae Kim, Muhammad Thsanulhaq Sarfaraz, and
Byoungyoung Lee. 2018. OBLIVIATE: A Data Oblivious Filesystem for
Intel SGX. In Proc. of the 25th Annual Network and Distributed System
Security Symposium (NDSS-25).

Alaa R Alameldeen and David A Wood. 2004. Adaptive cache com-
pression for high-performance processors. In Proc. of the 31st annual
Intl. Symp. on Computer Architecture (ISCA-31).

Alaa R Alameldeen and David A Wood. 2004. Frequent pattern compres-
sion: A significance-based compression scheme for L2 caches. Technical
Report 1500. Dept. Comp. Sci., Univ. Wisconsin-Madison.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida Garcia, and Nicola Tuveri. 2018. Port Contention for Fun
and Profit. Cryptology ePrint Archive, Report 2018/1060. https:
//eprint.iacr.org/2018/1060.

AMD. 2015. AMD Radeon R9 Fury X Graphics Card.

M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H.
Shacham. 2015. On Subnormal Floating Point and Abnormal Timing.
In Proc. of the 2015 IEEE Symposium on Security and Privacy (SP).
Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. 2015. HyComp:
A hybrid cache compression method for selection of data-type-specific
compression methods. In Proc. of the 48th annual IEEE/ACM intl. symp.
on Microarchitecture (MICRO-48).

Angelos Arelakis and Per Stenstrom. 2014. SC2: A statistical compres-
sion cache scheme. In Proc. of the 41st annual Intl. Symp. on Computer
Architecture (ISCA-41).

Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. 2015. Scaling
Distributed Cache Hierarchies through Computation and Data Co-
Scheduling. In Proc. of the 21st IEEE intl. symp. on High Performance
Computer Architecture (HPCA-21).

Daniel J. Bernstein. 2005. Cache-timing attacks on AES. Technical
Report. https://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
Daniel J. Bernstein. 2005. The Poly1305-AES Message-Authentication
Code. In Intl. Workshop on Fast Software Encryption.

Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed
Records. In Intl. Workshop on Public Key Cryptography (PKC 2006).
Karthikeyan Bhargavan and Gaétan Leurent. 2016. On the practical
(in-) security of 64-bit block ciphers: Collision attacks on HTTP over
TLS and OpenVPN. In Proc. of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16).

A. Bittau, A. Belay, A. Mashtizadeh, D. Maziéres, and D. Boneh. 2014.
Hacking Blind. In Proc. of the 2014 IEEE Symposium on Security and
Privacy (SP).

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In Proc. of the
27th USENIX Security Symposium (USENIX Security 18).

Esha Choukse, Mattan Erez, and Alaa Alameldeen. 2018. Compresso:
Pragmatic main memory compression. In Proc. of the 51st annual
IEEE/ACM intl. symp. on Microarchitecture (MICRO-51).

Esha Choukse, Mattan Erez, and Alaa Alameldeen. 2018. Compress-
Points: An evaluation methodology for compressed memory systems.
Computer Architecture Letters 17, 2 (2018).

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De
Sutter. 2009. Practical Mitigations for Timing-Based Side-Channel
Attacks on Modern x86 Processors. In Proc. of the 2009 IEEE Symposium
on Security and Privacy (SP).

Thomas M Cover and Joy A Thomas. 2012. Elements of information

theory. John Wiley & Sons.
Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat,

Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin,

14

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

and Adi Yoaz. 2017. Inside 6th-Generation Intel Core: New Microar-
chitecture Code-Named Skylake. IEEE Micro 37, 2 (2017).

Goran Doychev and Boris Kopf. 2017. Rigorous Analysis of Software
Countermeasures Against Cache Attacks. ACM SIGPLAN Notices 52, 6
(2017).

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,
Michael Bailey, and John Halderman. 2014. The matter of Heartbleed.
In Proc. of the 2014 Internet Measurement Conference (IMC).

Julien Dusser, Thomas Piquet, and André Seznec. 2009. Zero-content
augmented caches. In Proc. of the Intl. Conf. on Supercomputing
(ICS’09).

Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query
Processing for Secure Databases. Proc. VLDB Endow. 13, 2 (2019).
Dmitry Evtyushkin and Dmitry Ponomarev. 2016. Covert Channels
Through Random Number Generator: Mechanisms, Capacity Estima-
tion and Mitigations. In Proc. of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16).

Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. 2018. BranchScope: A New Side-Channel Attack on Directional
Branch Predictor. In Proc. of the 23rd intl. conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXIII).
Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gor-
bunov. 2017. IRON: Functional Encryption Using Intel SGX. In Proc.
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17).

Anders Fogh and Christopher Ertl. 2018. Wrangling with the
Ghost: Aninside story of mitigating speculative execution side
channel vulnerabilities. https://i.blackhat.com/us-18/Thu-August-
9/us-18-Fogh-Ertl-Wrangling-with-the-Ghost- An-Inside-Story-of-
Mitigating-Speculative-Execution-Side-Channel-Vulnerabilities.pdf
Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu
Aweke, Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Har-
ris, Zhixing Xu, Baris Kasikci, Valeria Bertacco, Sharad Malik, Mohit
Tiwari, and Todd Austin. 2019. Morpheus: A Vulnerability-Tolerant
Secure Architecture Based on Ensembles of Moving Target Defenses
with Churn. In Proc. of the 24th intl. conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XXIV).
Jayesh Gaur, Alaa R Alameldeen, and Sreenivas Subramoney. 2016.
Base-victim compression: An opportunistic cache compression archi-
tecture. In Proc. of the 43rd annual Intl. Symp. on Computer Architecture
(ISCA-43).

Daniel Genkin, Luke Valenta, and Yuval Yarom. 2017. May the Fourth
Be With You: A Microarchitectural Side Channel Attack on Several
Real-World Applications of Curve25519. In Proc. of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS
17).

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018.
Translation Leak-aside Buffer: Defeating Cache Side-channel Protec-
tions with TLB Attacks. In Proc. of the 27th USENIX Security Symposium
(USENIX Security 18).

Johann Grof3schédl, Elisabeth Oswald, Dan Page, and Michael Tun-
stall. 2009. Side-Channel Analysis of Cryptographic Software via
Early-Terminating Multiplications. In Proc. of the 2009 Intl. Conf. on
Information Security and Cryptology (ICISC’09).

Daniel Gruss, David Bidner, and Stefan Mangard. 2015. Practical mem-
ory deduplication attacks in sandboxed javascript. In Proc. of the 20th
European Symposium on Research in Computer Security (ESORICS).
Marcus Héhnel, Weidong Cui, and Marcus Peinado. 2017. High-
Resolution Side Channels for Untrusted Operating Systems. In Proc. of
the 2017 USENIX Annual Technical Conference (USENIX ATC 17).

Erik G Hallnor and Steven K Reinhardt. 2005. A unified compressed
memory hierarchy. In Proc. of the 11th IEEE intl. symp. on High Perfor-
mance Computer Architecture (HPCA-11).

(38]

(39]

(40]

[41]

(43]

(4]

(45]

[46

—

(47]

(48]

[49]

(50]

[51]

(52]

(53]

(54]

Gernot Heiser, Gerwin Klein, and Toby Murray. 2019. Can We Prove
Time Protection?. In Proc. of the Workshop on Hot Topics in Operating
Systems (HotOS).

Andrew Hilton, Neeraj Eswaran, and Amir Roth. 2009. FIESTA: A
sample-balanced multi-program workload methodology. Proc. MoBS
(2009).

Raghavendra Kanakagiri, Biswabandan Panda, and Madhu Mutyam.
2017. Mbzip: Multiblock data compression. ACM Transactions on
Architecture and Code Optimization (TACO) 14, 4 (2017).

Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. 2016.
Bit-plane compression: Transforming data for better compression in
many-core architectures. In Proc. of the 43rd annual Intl. Symp. on
Computer Architecture (ISCA-43).

Seikwon Kim, Seonyoung Lee, Tachoon Kim, and Jaechyuk Huh. 2017.
Transparent dual memory compression architecture. In Proc. of the
26th Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT-26).

Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. 2018. DAWG: A defense against cache timing
attacks in speculative execution processors. In Proc. of the 51st annual
IEEE/ACM intl. symp. on Microarchitecture (MICRO-51).

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Ex-
ecution. In Proc. of the 2019 IEEE Symposium on Security and Privacy
(SP).

Donghyuk Lee, Mike O’Connor, and Niladrish Chatterjee. 2018. Re-
ducing Data Transfer Energy by Exploiting Similarity within a Data
Transaction. In Proc. of the 24th IEEE intl. symp. on High Performance
Computer Architecture (HPCA-24).

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In Proc. of the 27th USENIX Security
Symposium (USENIX Security 18).

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee.
2016. CATalyst: Defeating last-level cache side channel attacks in cloud
computing. In Proc. of the 22nd IEEE intl. symp. on High Performance
Computer Architecture (HPCA-22).

Fangfei Liu and Ruby B Lee. 2014. Random fill cache architecture.
In Proc. of the 47th annual IEEE/ACM intl. symp. on Microarchitecture
(MICRO-47).

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
2005. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI).

Ross Mcllroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. 2019. Spectre is here to stay: An analysis of side-channels
and speculative execution. In arXiv preprint arXiv:1902.05178.

Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie En-
right Jerger. 2015. Doppelgénger: a cache for approximate computing.
In Proc. of the 48th annual IEEE/ACM intl. symp. on Microarchitecture
(MICRO-48).

P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. 2018. Oblix: An
Efficient Oblivious Search Index. In Proc. of the 2018 IEEE Symposium
on Security and Privacy (SP).

Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2019. MemJam:
A False Dependency Attack against Constant-Time Crypto Implemen-
tations. International Journal of Parallel Programming 47, 4 (2019).
David Molnar, Matt Piotrowski, David Schultz, and David Wagner.
2005. The Program Counter Security Model: Automatic Detection and
Removal of Control-Flow Side Channel Attacks. In Proc. of the 2005
Intl. Conf. on Information Security and Cryptology (ICISC).

15

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Tri M Nguyen and David Wentzlaff. 2015. MORC: A manycore-oriented
compressed cache. In Proc. of the 48th annual IEEE/ACM intl. symp. on
Microarchitecture (MICRO-48).

Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Se-
bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious
Multi-Party Machine Learning on Trusted Processors. In Proc. of the
25th USENIX Security Symposium (USENIX Security 16).

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks
and Countermeasures: The Case of AES. In Proc. of the 7th Cryptogra-
phers’ Track at the RSA Conference on Topics in Cryptology.

Rodney Owens and Weichao Wang. 2011. Non-interactive OS fin-
gerprinting through memory de-duplication technique in virtual ma-
chines. In Proc. of the 30th IEEE International Performance Computing
and Communications Conference (IPCCC).

David J Palframan, Nam Sung Kim, and Mikko H Lipasti. 2015. COP:
To compress and protect main memory. In Proc. of the 42nd annual Intl.
Symp. on Computer Architecture (ISCA-42).

Biswabandan Panda and André Seznec. 2016. Dictionary sharing: An
efficient cache compression scheme for compressed caches. In Proc. of
the 49th annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-49).
Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur
Mutlu, Todd C Mowry, and Stephen W Keckler. 2016. A case for toggle-
aware compression for GPU systems. In Proc. of the 22nd IEEE intl.
symp. on High Performance Computer Architecture (HPCA-22).
Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, and Todd C Mowry. 2012. Base-delta-immediate
compression: Practical data compression for on-chip caches. In Proc. of
the 21st Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT-21).

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. 2016. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In Proc. of the 25th USENIX Security Symposium
(USENIX Security 16).

Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based
Cache Attacks via Encrypted-Address and Remapping. In Proc. of the
51st annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-51).
Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. 2005. The
V-Way cache: Demand based associativity via global replacement. In
Proc. of the 32nd annual Intl. Symp. on Computer Architecture (ISCA-32).
Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing
Digital Side-Channels through Obfuscated Execution. In Proc. of the
24th USENIX Security Symposium (USENIX Security 15).

Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: Scalable and
Efficient Fine-Grain Cache Partitioning. In Proc. of the 38th annual Intl.
Symp. on Computer Architecture (ISCA-38).

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate
microarchitectural simulation of thousand-core systems. In Proc. of
the 40th annual Intl. Symp. on Computer Architecture (ISCA-40).
Somayeh Sardashti, André Seznec, and David A Wood. 2014. Skewed
compressed caches. In Proc. of the 47th annual IEEE/ACM intl. symp.
on Microarchitecture (MICRO-47).

Somayeh Sardashti and David A Wood. 2013. Decoupled compressed
cache: Exploiting spatial locality for energy-optimized compressed
caching. In Proc. of the 46th annual IEEE/ACM intl. symp. on Microar-
chitecture (MICRO-46).

Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2018. Ze-
roTrace: Oblivious Memory Primitives from Intel SGX. In Proc. of
the 25th Annual Network and Distributed System Security Symposium
(NDSS-25).

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In Proc. of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’19).

(73]

(74]

[75]

[76

—

(77

—

(78]

(79]

(80]

(81]

(82]

(83]

Claude Elwood Shannon. 1948. A mathematical theory of communica-
tion. Bell system technical journal 27, 3 (1948).

Fahad Shaon, Murat Kantarcioglu, Zhigiang Lin, and Latifur Khan. 2017.
SGX-BigMatrix: A Practical Encrypted Data Analytic Framework With
Trusted Processors. In Proc. of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS °17).

Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. 2011.
Memory deduplication as a threat to the guest OS. In Proc. of the Fourth
European Workshop on System Security.

Yingying Tian, Samira M Khan, Daniel A Jiménez, and Gabriel H Loh.
2016. Last-level cache deduplication. In Proc. of the Intl. Conf. on
Supercomputing (ICS’16).

Shruti Tople and Prateek Saxena. 2017. On the Trade-Offs in Obliv-
ious Execution Techniques. In Proc. of the Intl. Conf. on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA).

R Brett Tremaine, Peter A Franaszek, John T Robinson, Charles O
Schulz, T Basil Smith, Michael E Wazlowski, and P Maurice Bland.
2001. IBM memory expansion technology (MXT). IBM Journal of
Research and Development (2001).

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga:
Software-defined cache hierarchies. In Proc. of the 44th annual Intl.
Symp. on Computer Architecture (ISCA-44).

Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking the
memory hierarchy for modern languages. In Proc. of the 51st annual
IEEE/ACM intl. symp. on Microarchitecture (MICRO-51).

Po-An Tsai and Daniel Sanchez. 2019. Compress objects, not cache
lines: An object-based compressed memory hierarchy. In Proc. of the
24th intl. conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXIV).

Common Vulnerabilities and Exposures. 2012. CVE-2012-4929. Avail-
able from MITRE, CVE-ID CVE-2012-4929. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=cve-2012-4929

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017.
Leaky Cauldron on the Dark Land: Understanding Memory Side-
Channel Hazards in SGX. In Proc. of the 2017 ACM SIGSAC Conference

16

[84]

[85]

[86]

(87]

(88]

[89]

[90]

[o1]

[92]

[93]

on Computer and Communications Security (CCS ’17).

Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for
Thwarting Software Cache-based Side Channel Attacks. In Proc. of the
34th annual Intl. Symp. on Computer Architecture (ISCA-34).

Y. Xu, W. Cui, and M. Peinado. 2015. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In Proc.
of the 2015 IEEE Symposium on Security and Privacy (SP).

Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas.
2017. Secure hierarchy-aware cache replacement policy (SHARP):
Defending against cache-based side channel attacks. In Proc. of the
44th annual Intl. Symp. on Computer Architecture (ISCA-44).

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher,
Roy Campbell, and Josep Torrellas. 2019. Attack Directories, Not
Caches: Side Channel Attacks in a Non-Inclusive World. In Proc. of the
2019 IEEE Symposium on Security and Privacy (SP).

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In Proc. of the
23rd USENIX Security Symposium (USENIX Security 14).

Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A
timing attack on OpenSSL constant-time RSA. Journal of Cryptographic
Engineering (2017).

Vinson Young, Prashant J Nair, and Moinuddin K Qureshi. 2017. DICE:
Compressing DRAM caches for bandwidth and capacity. In Proc. of
the 44th annual Intl. Symp. on Computer Architecture (ISCA-44).
Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W.
Fletcher. 2019. Data Oblivious ISA Extensions for Side Channel-
Resistant and High Performance Computing. In Proc. of the 26th Annual

Network and Distributed System Security Symposium (NDSS-26).
Qi Zeng, Rakesh Jha, Shigang Chen, and Jih-Kwon Peir. 2018. Data

Locality Exploitation in Cache Compression. In Proc. of the 24th Intl.
Conf. on Parallel and Distributed Systems (ICPADS-24).

Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. In Proc. of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17).

	Abstract
	1 Introduction
	2 The cache compression side channel
	2.1 Cache-based side channels, attacks, and defenses
	2.2 Contribution 1: Cache compression introduces a new channel
	2.3 Contribution 2: Compressed caches allow compressibility to be observed
	2.4 Contribution 3: Compressibility can be manipulated to leak data quickly
	2.5 Contribution 4: The compressed cache side channel can be closed, but at a cost

	3 Pack+Probe: Observing compressibility
	3.1 Background on compressed cache architectures
	3.2 Pack+Probe idea
	3.3 Pack+Probe implementation on VSC

	4 Safecracker: Recovering secrets efficiently
	4.1 Background on cache compression algorithms
	4.2 Safecracker implementation on BDI

	5 Evaluation
	5.1 Baseline system and methodology
	5.2 PoC 1: Static colocation
	5.3 PoC 2: Buffer-overflow-based attack

	6 Defenses against cache compression attacks
	6.1 Partitioning compressed caches

	7 Discussion
	7.1 Generalizing attacks to other compressed caches
	7.2 Colocating attacker-controlled data

	8 Related work
	8.1 Microarchitectural side/covert channel attacks
	8.2 Defenses on cache side-channel attacks
	8.3 Attacks on software compression

	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow and expected results

	References

