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Abstract
In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter
graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Ham-
ming cubes with distortion at most 6. It follows that lamplighter graphs over countable
trees bi-Lipschitzly embed into �1. We study the metric behaviour of the operation
of taking the lamplighter graph over the vertex-coalescence of two graphs. Based on
this analysis, we provide metric characterisations of superreflexivity in terms of lamp-
lighter graphs over star graphs or rose graphs. Finally, we show that the presence of
a clique in a graph implies the presence of a Hamming cube in the lamplighter graph
over it. An application is a characterisation, in terms of a sequence of graphs with uni-
formly bounded degree, of the notion of trivial Bourgain–Milman–Wolfson type for
arbitrary metric spaces, similar to Ostrovskii’s characterisation previously obtained in
Ostrovskii (C. R. Acad. Bulgare Sci. 64(6), 775–784 (2011)).

Keywords Lamplighter graphs · Wreath products · Embeddings of graphs into �1
and other Banach spaces
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1 Introduction

Wreath products of groups provide a wealth of fundamental examples with various
algebraic, spectral and geometric properties. Given two groups �1 and �2, we denote
by �

(�1)
2 the set of all functions f : �1 → �2 with finite support, i.e., with {x ∈
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�1 : f (x) �= e�2} finite, where e�2 is the identity element of �2. This is a group
with pointwise multiplication. We let λ : �1 → Aut

(
�

(�1)
2

)
denote the left-regular

representation given by λ(x)( f ) = f x , where f x (y) = f (x−1y). The (restricted)
wreath product �2 � �1 of �2 with �1 is then defined as the semi-direct product
�

(�1)
2 �λ �1. It is the group of all pairs ( f , x), where f ∈ �

(�1)
2 and x ∈ �1, equipped

with the product ( f , x) · (g, y) = ( f gx , xy). When �2 = Z2 (the cyclic group
of order 2), the wreath product Z2 � �1 is commonly referred to as the lamplighter
group of �1. We shall often identify Z

(�1)
2 with the set of all finite subsets of �1.

Under this identification, pointwise product becomes symmetric difference, and hence
the group operation of Z2 � �1 is given by (A, x) · (B, y) = (A � x B, xy), where
x B = {xb : b ∈ B}.

The group Z2 � Z is an example of an amenable group with exponential growth.
Random walks on wreath product groups have been extensively studied and are well
known to exhibit interesting behaviours. In an influential article [11], Kaı̆manovich
and Vershik showed that Z2 � Z is an example of a group of exponential growth for
which the simple random walk on the Cayley graph has zero speed. The variety of
geometric features of wreath products of groups has also come to play an important
role, sometimes quite unexpectedly, in metric geometry. For instance, the geometry
of Z � Z is closely related to the extension of Lipschitz maps [18], and is also used in
distinguishing bi-Lipschitz invariants, namely Enflo type and edge Markov type [17].

In geometric group theory, the theory of compression exponents has undergone
a detailed study, in particular the behaviour of compression exponents under taking
wreath products. Compression exponents were introduced by Guentner and Kaminker
in order to measure how well an infinite, finitely generated group that does not admit
a bi-Lipschitz embedding into a certain metric space, can be faithfully represented in
it. A deep result of Naor and Peres states that the �1-compression of a lamplighter
group over a group with at least quadratic growth is 1. This result includes the case
of the planar lamplighter group Z2 � Z

2. However, it is not known whether Z2 � Z
2

bi-Lipschitzly embeds into �1. This challenging problemwas raised byNaor and Peres
in [18]. Understanding the �1-embeddability of graphs is motivated by its profound
connections with the design of efficient algorithms for someNP-hard problems (see [6,
Chap. 10], [8, Chapters 8 and 43], and [16]). Very little is known about the bi-Lipschitz
embeddability of lamplighter groups into Banach spaces. The Euclidean distortion of
Z2 � Zk is of the order

√
log k. The lower bound was proved in [12] and the upper

bound in [1]. It was shown in [17] that Z2 � Zk bi-Lipschitzly embeds into �1 with
some distortion independent of k (and thus so doesZ2 �Z). In [21], it was proved that a
Banach space is superreflexive if and only if it does not contain bi-Lipschitz copies of
Z2 � Zk (for every k ∈ N and with uniformly bounded distortions). In [5], Cornulier et
al. proved that for a finitely generated group � and for a finitely generated free group
F, the equivariant L1-compression of � � F is equal to that of �. It follows from this
that Z2 � F bi-Lipschitzly embeds into �1.

Working with groups might be restrictive because relatively few graphs can be
realised as Cayley graphs of groups. In this paper we consider the most general graph-
theoretic setting and we will be concerned with the metric geometry of lamplighter
graphs. We anticipate that working in this more flexible framework will be fruitful to
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Fig. 1 Horizontal moves within fibers and vertical moves between fibers of the lamplighter graph

construct new graphs with subtle geometric properties. Moreover, lamplighter graphs
are generalisations of the wreath product construction in group theory and our results
apply to lamplighter groups as well. Indeed, in the context of graph theory it is possible
to define a notion of thewreath product of two graphs that is compatiblewith thewreath
product construction in group theory in the sense that thewreath product of twoCayley
graphs of groups is the Cayley graph of the wreath product of the two groups for a
well-chosen set of generators (cf. [7]). For practical purposes which will be explained
in the next section, we chose to work with the walk/switch model of the lamplighter
graph over a graph G, simply denoted La(G). Specifically, La(G) is the graph whose
vertex set consists of all pairs (A, x) where A is a finite subset of the vertex set of
G, and x is a vertex of G. Vertices (A, x) and (B, y) of La(G) are joined by an edge
if and only if either A = B and xy is an edge in G or x = y and A � B = {x}. A
well-known description of this graph is as follows. Assume there is a lamp attached
to each vertex of G and a lamplighter is able to walk along edges of G and switch
lights on and off. A vertex (A, x) corresponds to the lamplighter standing at vertex x
of G with A being the set of lamps that are currently lit. The lamplighter can make
one of two types of moves: he can either move to a neighbouring vertex of G without
changing the configuration of lamps that are lit, or he can change the state of the lamp
at vertex x and stay at vertex x . We will refer to these as horizontal and verticalmoves,
respectively (see Fig. 1).

Other models with different available moves can also be considered, such as the
move-and-switch/move model or the like. Note that just as different finite generating
sets of a group lead to bi-Lipschitzly equivalent Cayley graphs, it is also easy to verify
whether two models of lamplighter graphs are bi-Lipschitzly equivalent. Here we are
talking about graphs as metric spaces with the geodesic distance. We will recall this
and other standard graph-theoretic notions in Sect. 2.

Our first main result is about lamplighter graphs over arbitrary trees.
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Theorem 1.1 Let T be a (non-empty) tree. Then there is a set I such that La(T ) bi-
Lipschitzly embeds into the Hamming cube HI . More precisely, there exists a map
f : La(T ) → HI such that

1

2
· dLa(T )(x, y) � dH( f (x), f (y)) � 3 · dLa(T )(x, y) (1)

for all x, y ∈ La(T ). Moreover, if T is finite or countable, then I can also be chosen
to be finite or countable, respectively.

It follows from Theorem 1.1 that the lamplighter graph over a countable tree bi-
Lipschitzly embeds into �1. In particular, this applies to the lamplighter group of a
finitely generated free group; as we mentioned in the introduction, this result also
follows from more general results by Cornulier et al. [5]. Unlike [5], which relies
on geometric group-theoretic arguments, our approach is based on elementary metric
techniques.

Our second main result is a technical structural result (Theorem 4.2) which relates
the geometry of the lamplighter graph over the vertex-coalescence of two graphs
with the geometry of the coalesced components. By combining this structural result
together with several embedding results which are discussed in Sect. 6, we extend the
metric characterisations of superreflexivity in terms of lamplighter groups of [21] to
characterisations in terms of lamplighter graphs over graphs that are built by coalescing
several copies of elementary graphs such as cycles or paths. In order to state our
next result, we recall some basic definitions from metric geometry. Let (M, dM ) and
(N , dN ) be two metric spaces. A map f : M → N is called a bi-Lipschitz embedding
if there exist s > 0 and D � 1 such that for all u, v ∈ M ,

s · dM (u, v) � dN ( f (u), f (v)) � D · s · dM (u, v). (2)

The distortion dist( f ) of a bi-Lipschitz embedding f is given by

dist( f ) = sup
u �=v

dN ( f (u), f (v))

dM (u, v)
· sup
u �=v

dM (u, v)

dN ( f (u), f (v))
.

As usual,

cN (M) = inf
{
dist( f ) | f : M → N is a bi-Lipschitz embedding

}

denotes the N -distortion of M . If there is no bi-Lipschitz embedding from M into N ,
then we set cN (M) = ∞. A sequence (Mk)k∈N of metric spaces is said to equi-bi-
Lipschitzly embed into a metric space N if supk∈N cN (Mk) < ∞.

Denote by Stn,k the star graph with n branches of length k, and by Ron,k the rose
graph whose n leaves are k-cycles (see Fig. 2; definitions will be given in Sect. 4).

While these graphs can be easily embedded into every finite-dimensional Banach
space of a sufficiently large dimension, it is far from being the case for lamplighter
graphs over them.
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Fig. 2 The star graph St8,4 and the rose graph Ro4,11

Theorem 1.2 Let Y be a Banach space and n ∈ N. The following assertions are
equivalent.

(i) Y is superreflexive;
(ii) sup

k∈N
cY (La(Stn,k)) = ∞;

(iii) sup
k∈N

cY (La(Ron,k)) = ∞.

If (Mk)k∈N and (Nk)k∈N are sequences of metric spaces, we say that (Mk)k∈N equi-
bi-Lipschitzly embeds into (Nk)k∈N, or (Nk)k∈N equi-bi-Lipschitzly contains (Mk)k∈N,
if supk inf� cN�

(Mk) < ∞, or equivalently, if there is a C > 0 such that for all k ∈ N

there exists � ∈ N such that Mk bi-Lipschitzly embeds into N� with distortion at
most C . We say that (Mk)k∈N and (Nk)k∈N are Lipschitz-comparable if (Mk)k∈N
equi-bi-Lipschitzly embeds into (Nk)k∈N and (Nk)k∈N equi-bi-Lipschitzly embeds
into (Mk)k∈N. In Sect. 6 we prove that the lamplighter graph over Kk , the complete
graph with k vertices, contains a bi-Lipschitz copy of the k-dimensional Hamming
cube Hk with distortion independent of k. Together with Theorem 1.1, it follows
that the geometry of lamplighter graphs over complete graphs or over binary trees is
essentially the same as the geometry of the Hamming cubes.

Theorem 1.3 The sequences (La(Kk))k∈N, (La(Bk))k∈N and (Hk)k∈N are pairwise
Lipschitz-comparable.

Theorem1.3 has an important consequence regarding characterisations of the notion
of trivial Bourgain–Milman–Wolfson type [4] (BMW-type in short). In 1986, Bour-
gain, Milman, and Wolfson showed that a metric space Y has trivial BMW-type if
and only if supk∈N cY (Hk) < ∞. This result is a nonlinear analogue of the Maurey–
Pisier theorem for trivial type. The Hamming cube Hk is a k-regular graph and thus
(Hk)k∈N is a sequence of graphs with unbounded degree. The notion of BMW-type
comes from the local theory of Banach spaces and a natural question is whether trivial
BMW-type can be characterised as above using a sequence of graphs (Gk)k∈N with
uniformly bounded degree. For Banach spaces, Ostrovskii [19] answered this ques-
tion positively and it is not difficult to see that the sequence of graphs with maximum
degree 3 from [19] is actually Lipschitz-comparable to the sequence of Hamming
cubes and thus also settles the question for arbitrary metric spaces. Since every graph
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in the sequence (La(Bk))k∈N has maximum degree 4, Theorem 1.3 also provides a
sought after sequence (Gk)k∈N.

Corollary 1.4 Let (Y , dY ) be a metric space. Then

Y has trivial BMW-type if and only if sup
k∈N

cY (La(Bk)) < ∞.

Note that the similar question for the nonlinear analogue of the Maurey–Pisier
theorem for trivial cotype, obtained by Mendel and Naor [15], has a simple solution
for arbitrary metric spaces (see [19] for a proof and a discussion of these questions).

2 Preliminaries on Lamplighter Graphs

We shall use standard graph theory terminology as can be found in [2]. In particular, a
graph G is a pair (V , E) where V = V (G) is an arbitrary set (the set of vertices) and
E = E(G) is the set of edges, i.e., a set consisting of some unordered pairs of distinct
vertices. (So edges are not directed and there are no multiple edges or loops.) We
shall often write x ∈ G instead of x ∈ V for a vertex x . The edge connecting distinct
vertices x and y is simply denoted by xy (which is the same as yx). A walk in G is a
finite sequence w = (x0, x1, . . . , xn) of vertices of G with n � 0 such that xi−1xi is
an edge of G for all 1 � i � n. We call w a walk from x = x0 to y = xn and call n the
length of w. If w has no repetition of vertices other than the first and last vertices, i.e.,
if xi �= x j whenever 1 < j− i < n, thenw is called a path (from x to y). Ifw is a walk
and xr = xs for some r , s with 1 < s − r < n, then (x0, . . . , xr−1, xs, xs+1, . . . , xn)
is a strictly shorter walk from x to y. It follows that if w′ is a subsequence of w of
minimal length such that w′ is a walk from x to y, then w′ is in fact a path. We say
that the graph G is connected if any two vertices are connected in G by a walk (or,
equivalently, by a path).

A connected graph G becomes a metric space in a natural way. For vertices x and y
of G, we denote by dG(x, y) (or sometimes simply by d(x, y)) the length of a shortest
path in G (called a geodesic) from x to y. It is easy to verify that dG is a metric. An
important example for us are Hamming cubes. For an arbitrary set I , the Hamming
cube HI has vertex set {0, 1}(I ) consisting of all functions ε : I → {0, 1} with finite
support, i.e., the set {i ∈ I : εi = 1} is a finite subset of I . Two vertices ε and δ are
joined by an edge if and only if they differ in exactly one coordinate, i.e., there is a
unique i ∈ I with εi �= δi . The graph distance on HI , denoted dH and referred to as
the Hamming metric, is the �1-metric given by

dH(ε, δ) =
∑

i∈I
|εi − δi |.

We shall often identify {0, 1}(I ) with the set of all finite subsets of I . Under this
identification, the Hamming metric becomes the symmetric difference metric given
by dH(A, B) = |A � B| for finite subsets A and B of I .
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2.1 A Closed Formula for the Lamplighter GraphMetric

Let us recall the definition of the lamplighter graph La(G) of a graph G. The vertex
set of La(G) consists of all pairs (A, x) with x ∈ G and A a finite subset of G. Two
vertices (A, x) and (B, y) are joined by an edge in La(G) if and only if either A = B
and xy is an edge in G or x = y and A� B = {x}, and these correspond, respectively,
to horizontal and vertical moves by the lamplighter.

It is clear that if La(G) is connected, then so is G. Indeed, the horizontal moves
in a path in La(G) from (∅, x) to (∅, y) correspond to a path from x to y in G. The
converse also holds and its proof yields a formula for the graph metric of La(G) given
in Proposition 2.1 below. Computing the distance in La(G) boils down to the problem
of finding a shortest walk inG from a vertex x to another vertex y that visits all vertices
in a given subset C of G. This is a well-known and famous problem, the travelling
salesman problem for G. We shall denote by tspG(x,C, y) the length of a solution
to this problem, i.e., the least n � 0 for which there is a walk (x0, x1, . . . , xn) from
x = x0 to y = xn such that C ⊂ {x0, x1, . . . , xn}.

Proposition 2.1 Let G be a connected graph. Then the lamplighter graph La(G) is
also connected with graph metric given by

dLa(G)

(
(A, x), (B, y)

) = tspG(x, A � B, y) + |A � B|. (3)

Proof Let us fix vertices (A, x) and (B, y). The lamplighter clearly needs at least
|A � B| vertical moves in getting from (A, x) to (B, y) in order to switch all lamps
in A \ B off and to lit all lamps in B \ A. As the lamplighter can only alter the state of
the lamp at the vertex he is currently at, his horizontal moves must visit all vertices in
A� B while travelling from x to y. Thus, the right-hand side in the expression above
is a lower bound for the distance. It is easy to see that this lower bound is attained.
Indeed, let n = tspG(x, A � B, y) and let w = (x0, x1, . . . , xn) be a walk in G from
x = x0 to y = xn such that A � B ⊂ {x0, x1, . . . , xn}. Let m = |A � B| and let
0 � i1 < i2 < . . . < im � n be such that A � B = {xi1 , . . . , xim }. Set im+1 = n.
Now consider the following path of length m + n in La(G) from (A, x) to (B, y).
Start with horizontal moves (A, xi ), 0 � i � i1, from (A, x) to (A, xi1). Having
reached the vertex

(
A � {xi1, . . . , xi j−1}, xi j

)
for some 1 � j � m, make the vertical

move
(
A � {xi1 , . . . , xi j }, xi j

)
followed by horizontal moves

(
A � {xi1 , . . . , xi j }, xi

)

for i j < i � i j+1. These moves end at the vertex
(
A � {xi1, . . . , xi j }, xi j+1

)
which

becomes (B, y) when j = m.

In general, the Travelling Salesman Problem is NP-hard. However, for some graphs
it is possible to find explicit algorithms. We present one such algorithm for trees in
Sect. 3.1. This is essentially a pre-order traversal algorithm which also accounts for
backtracking.
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2.2 A First Example: The Lamplighter Graph over a Path

It was shown, amongst other things, in [23] that the group Zq � Z (with a specific
generating set) embeds bi-Lipschitzlywith distortion atmost 4 in theCartesian product
of two infinite (q + 1)-regular trees. Their proof is based on a lengthy and tricky
computation of the word-length of certain group elements. We provide a simpler
proof of the finite analogue for the case q = 2 in the purely graph-theoretic context.
We replaceZwith Pk , the path of length k, which has vertices v0, v1, . . . , vk and edges
vi−1vi , 1 � i � k, and replace the lamplighter groupZ2 �Zwith the lamplighter graph
La(Pk). After the proof we explain how our argument extends to the infinite case, and
hence shows the result for Z2 � Z just mentioned.

We first describe the binary tree Bk of height k, and introduce some notation. The
vertex set of Bk is

⋃k
i=0{0, 1}i . Let δ = (δ1, . . . , δm) and ε = (ε1, . . . , εn) be vertices

of Bk . We write δ ≺ ε if m < n and δi = εi for 1 � i � m. Then δε is an edge of Bk

if and only if |m − n| = 1 and either δ ≺ ε or ε ≺ δ. We will write δ � ε if δ = ε or
δ ≺ ε. We define the length of δ to be |δ| = m. If m � 1, we let δ′ = (δ1, . . . , δm−1).
Note that if |δ| � |ε|, then δε is an edge of Bk if and only if δ = ε′. The unique vertex
of length zero will be denoted by ∅ and the graph metric by dB regardless of the value
of k.

Given graphs G and H , the Cartesian product graph G�H of G and H has vertex
set V (G) × V (H), and vertices (x, y) and (v, z) are joined by an edge if and only if
either x = v and yz is an edge in H or y = z and xv is an edge in G. Observe that
the graph metric on the Cartesian product is given by

d�
(
(x, y), (v, z)

) = dG(x, v) + dH (y, z).

Note that the Hamming cube Hn = H{1,...,n} is the n-fold Cartesian product graph
P1� . . . �P1.

Proposition 2.2 Let k ∈ N. There exists a map f : La(Pk) → Bk+1�Bk+1 such that
for all x, y ∈ La(Pk) we have

2

3
· dLa(Pk)(x, y) � d�( f (x), f (y)) � 2 · dLa(Pk )(x, y).

Proof For (A, vm) ∈ La(Pk) let f (A, vm) = (
(εAi )mi=1, (ε

A
k+1−i )

k−m
i=0

)
where

εAi =
{
1 if vi−1 ∈ A,

0 if vi−1 /∈ A.

Let (A, vm), (B, vn) ∈ La(Pk) and assume without loss of generality that m � n. If
A � B = ∅, then A = B, εA = εB and

d�
(
f (A, vm), f (B, vn)

)

= dB
(
(εAi )mi=1, (ε

B
i )ni=1)

) + dB
(
(εAk+1−i )

k−m
i=0 , (εBk+1−i )

k−n
i=0

)

= n − m + (k − m) − (k − n) = 2 · dLa(Pk)
(
(A, vm), (B, vn)

)
.

(4)
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If vm = vn and A � B = {vm}, then εAi = εBi if and only if i �= m + 1, and hence

d�
(
f (A, vm), f (B, vn)

)

= dB
(
(εAi )mi=1, (ε

B
i )mi=1

) + dB
(
(εAk+1−i )

k−m
i=0 , (εBk+1−i )

k−m
i=0

) = 0 + 2 = 2.
(5)

Since dLa(Pk) is a graph metric, it is sufficient to estimate the Lipschitz constant on
adjacent vertices, and it follows from (4) and (5) that f is 2-Lipschitz.

Assumenow that A�B �= ∅. Set� = min {i : vi−1 ∈ A � B} = min
{
i : εAi �= εBi

}

and r = max {i : vi−1 ∈ A � B} = max
{
i : εAi �= εBi

}
. From the definition of � and

r it follows that

dB
(
(εAi )mi=1, (ε

B
i )ni=1

) =
{
n − m if � > m,

m − (� − 1) + n − (� − 1) if � � m,

=
{
n − m if � > m,

m + n + 2 − 2� if � � m,

(6)

and

dB
(
(εAk+1−i )

k−m
i=0 ,(εBk+1−i )

k−n
i=0

)

=
{

(n + 1) − (m + 1) if r � n,

(r + 1) − (m + 1) + (r + 1) − (n + 1) if r > n,

=
{
n − m if r � n,

2r − m − n if r > n.

(7)

Obtaining a lower bound on d�
(
f (A, vm), f (B, vn)

)
using (6) and (7) naturally splits

into four cases. In all cases we will use the estimate |A � B| � r − � + 1.
Case 1: � � m and r � n. In this case tspPk (vm, A � B, vn) = m + n + 2 − 2� as

the salesman moves from vm to v�−1 and then to vn . We then get

dLa(Pk )
(
(A, vm), (B, vn)

)

� m + n + 2 − 2� + r − � + 1 = r + m + n − 3(� − 1)

� 3(n − � + 1) = 3

2
· d�

(
f (A, vm), f (B, vn)

)
.

Case 2: � � m and r > n. In this case tspPk (vm, A � B, vn) = m − n + 2r − 2�
as the salesman moves from vm to v�−1, then to vr−1 and finally to vn . Thus,

dLa(Pk )
(
(A, vm), (B, vn)

)

� m − n + 2r − 2� + r − � + 1 = m − n − 2 + 3(r − � + 1)

� 3(r − � + 1) = 3

2
· d�

(
f (A, vm), f (B, vn)

)
.
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Case 3: � > m and r � n. Then tspPk (vm, A� B, vn) = n−m as the optimal walk
for the salesman is from vm to vn . Therefore,

dLa(Pk )
(
(A, vm), (B, vn)

)

� n − m + r − � + 1 � n + r − 2m

� 2(n − m) = d�
(
f (A, vm), f (B, vn)

)
.

Case 4: � > m and r > n. In this range tspPk (vm, A � B, vn) = 2r − 2 − m − n
as the salesman moves from vm to vr−1 and to vn . Using (6) and (7) for the last time,
we get

dLa(Pk )
(
(A, vm), (B, vn)

)

� 2r − 2 − m − n + r − � + 1 = 3r − 2 − m − n − (� − 1)

� 3r − 3m = 3

2
· d�

(
f (A, vm), f (B, vn)

)
.

Remark Let Z denote the double-infinite path. This graph has vertex set Z and edges
between consecutive integers. Let T3 be the 3-regular (infinite) tree. A description of
T3 is as follows. For n ∈ Z denote by Z�n the initial segment {m ∈ Z : m � n} of Z.
Then T3 has vertex set

{
ε : Z�n → {0, 1} | n ∈ Z, ε has finite support

}

and vertices (δi )
m
i=−∞ and (εi )

n
i=−∞ with m � n are joined by an edge if and only

if n = m + 1 and δi = εi for all i � m. An almost identical argument as the
one used in the proof above shows that the map f : La(Z) → T3�T3 defined by
f (A, n) = (

(εAi )ni=−∞, (εA−i )
−n−1
i=−∞

)
has distortion at most 3, where εA denotes the

indicator function of the finite subset A ofZ. It is clear that La(Z) is isometric toZ2 �Z
with respect to a suitable set of generators.

2.3 Lamplighter Graphs vs Lamplighter Groups

Weconclude this section bymakingprecise the connection between lamplighter graphs
and lamplighter groups. As previously mentioned, the lamplighter group of a group �

is the (restricted) wreath product Z2 � �. This can be thought of as the set of all pairs
(A, x) with A a finite subset of � and x ∈ �, with multiplication defined by

(A, x) · (B, y) = (A � x B, xy),

where x B = {xb : b ∈ B}. Now assume that � is generated by S ⊂ �. We assume
that the identity e /∈ S and that x−1 ∈ S whenever x ∈ S. The (right) Cayley graph
Cay(�, S) of � with respect to S has vertex set �, and x, y ∈ � are joined by an edge
if and only if y−1x ∈ S. Since S generates �, it follows that Cay(�, S) is connected.
It is easy to verify that

S′ = {(∅, s) : s ∈ S} ∪ {({e}, e)}
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generates Z2 ��. Moreover, the Cayley graph Cay(Z2 ��, S′) is the lamplighter graph
La(Cay(�, S)).

Remark It is possible to define the wreath product of graphs which generalises the
notion of wreath product of groups. Let G = (VG , EG) and H = (VH , EH ) be two
graphs, and let v0 be a distinguished point in VH . A function f : VG → VH is called
finitely supported if f (v) = v0 for all but finitely many v ∈ VG . The wreath product
H � G of H with G is the graph with vertex set

V (VG )
H × VG = {

( f , v) | f : VG → VH finitely supported, v ∈ VG
}
,

and two vertices ( f , x) and (g, y) are connected by an edge if and only if either f = g
and xy is an edge in G or x = y, f (v) = g(v) for every v ∈ G \ {x}, and f (x)g(x)
is an edge in H . As in the special case above, it is easy to verify that if G and H are
Cayley graphs of groups � and �, respectively, then H � G is the Cayley graph of
� � � with respect to a suitable generating set.

In this paper we are concerned with lamplighter graphs. It is not too hard to verify
that some of our results extend fairly easily tomore general wreath products. Aswreath
products with Z2 are of greatest interest, we prefer to state and prove our results only
for such products. One justification for concentrating on lamplighter graphs instead of
more general wreath products is as follows. Any finite graph H is Lipschitz isomorphic
to the complete graph S on the vertex set of H with distortion D depending on H . This
naturally induces a Lipschitz isomorphism between H � G and S � G with distortion
at most D for any graph G. An argument similar to [18, Lem. 2.1] shows that the
bi-Lipschitz embeddability into L p of S � G and La(G) are the same up to universal
constants.

3 Embeddability of Lamplighter Graphs over Trees into Hamming
Cubes

3.1 The Travelling Salesman Problem for Trees

A tree is a connected acyclic graph, i.e., a connected graph in which there is no path
(x0, . . . , xn) with n � 3 and x0 = xn . Equivalently, a tree is a graph such that for any
two vertices x and y there is a unique path from x to y. E.g. every binary tree is a tree.

We now fix a tree T for the rest of this section. For vertices x, y ∈ T we denote by
p(x, y) the unique path in T from x to y. If p(x, y) = (x0, x1, . . . , xn), then we let
pi (x, y) = xi for 0 � i � n, and we also let [x, y] = {xi−1xi : 1 � i � n} be the set
of edges on the path p(x, y). By definition of a path, every edge in [x, y] occurs exactly
once, and so |[x, y]| = dT (x, y). It is also clear that if p(x, y) = (x0, x1, . . . , xn),
then p(y, x) = (xn, xn−1, . . . , x1, x0), and hence [x, y] = [y, x].

For x ∈ T and for A ⊂ T we let [x, A] = ⋃
a∈A[x, a]. Note that if A is finite,

then so is [x, A]. We are now ready to provide a closed formula for the Travelling
Salesman Problem on a tree.
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Theorem 3.1 For x, y ∈ T and a finite A ⊂ T , we have

tspT (x, A, y) = 2
∣∣[x, A] \ [x, y]∣∣ + |[x, y]|.

We begin the proof with a couple of simple lemmas.

Lemma 3.2 Let x, y, a be vertices of T . Then [x, a] \ [x, y] = [y, a] \ [x, y].
Proof We may assume that x, y, a are pairwise distinct, otherwise the result is clear.
Let p(x, y) = (x0, x1, . . . , xm) and p(x, a) = (y0, y1, . . . , yn). Then x0 = y0 = x ,
xm = y and yn = a. Choose i maximal with 0 � i � min (m, n) such that x j = y j
for 0 � j � i . Then

w = (yn, yn−1, . . . , yi+1, yi = xi , xi+1, xi+2, . . . , xm)

is a walk from a to y. We show that w is in fact a path. If it is not, then we must have
i < min (m, n) and xk = y� for some k, � with i + 1 � k � m and i + 1 � � � n.
Choosing k minimal, we obtain a cycle

p = (xi , xi+1, . . . , xk = y�, y�−1, . . . , yi+1, yi )

in T . Indeed, xi = yi and there is no other repetition of vertices by minimality of k.
Thus, p is a path from xi to yi . Moreover, since xi+1 �= yi+1, either k > i + 1 or
� > i + 1, and hence the length (k − i) + (� − i) of p is at least 3. This contradiction
completes the proof that w is a path, and so p(a, y) = w.

Now let e ∈ [x, a] \ [x, y]. Since e ∈ [x, a], we have e = y j−1y j for some
1 � j � n, and since e /∈ [x, y], we must have i < j . It follows that e is also on the
path w = p(a, y), i.e., that e ∈ [y, a]. The inclusion [x, a] \ [x, y] ⊂ [y, a] \ [x, y]
follows, and the reverse inclusion holds by symmetry in x, y.

The next lemma shows that any walk from x to y must travel through every edge
in the unique path from x to y.

Lemma 3.3 Let x, y ∈ T and w = (w0, w1, . . . , wn) be a walk from x to y. Then for
every e ∈ [x, y] there exists 1 � j � n such that e = w j−1w j .

Proof Let p(x, y) = (x0, x1, . . . , xm). Then e = xi−1xi for some 1 � i � m. We
observed at the start of the previous section that in any graph, every walk between
vertices contains a subsequence which is a path between the same vertices. It follows
that p(x, y) is a subsequence of w. Hence there is a maximal j , 1 � j � n, such
that w j−1 = xi−1. If w j = xi , then we are done. So let us assume w j �= xi . Then
w j /∈ {xk : i � k � m} since otherwise we obtain a cycle in T . It follows that

p(w j , y) = (w j , xi−1, xi , . . . , xm),

which therefore must be a subsequence of the walk (w j , w j+1, . . . , wn). In particular,
xi−1 = wk−1 for some j < k � n, which contradicts the maximality of j .
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We are now ready to prove the lower bound for the Travelling Salesman Problem
in T .

Proposition 3.4 For x, y ∈ T and a finite A ⊂ T , we have

tspT (x, A, y) � 2
∣∣[x, A] \ [x, y]∣∣ + |[x, y]|.

Proof Let n = tspT (x, A, y) and let w = (w0, w1, . . . , wn) be a walk from x to y
such that A ⊂ {w0, w1, . . . , wn}. By Lemma 3.3, for every e ∈ [x, y], there is at least
one j ∈ {1, 2, . . . , n} such that e = w j−1w j .

Now assume e ∈ [x, A] \ [x, y]. Then e ∈ [x, a] \ [x, y] for some a ∈ A. Choose i
with 0 � i � n and a = wi . Then (w0, w1, . . . , wi ) is a walk from x to a, and hence
by Lemma 3.3, e = w j−1w j for some 1 � j � i . On the other hand, by Lemma 3.2
we also have e ∈ [a, y]. Since (wi , wi+1, . . . , wn) is a walk from a to y, it follows
that e = wk−1wk for some i < k � n. Since j �= k, it follows that every edge in
[x, A] \ [x, y] appears at least twice in the walk w. The result follows.

We next introduce some more notation. For x ∈ T we denote by Nx the set of
neighbours of x given by Nx = {y ∈ T : xy ∈ E(T )}. For y ∈ Nx we let Tx,y =
{z ∈ T : p1(x, z) = y}, and for y ∈ Nx and A ⊂ T we let Ax,y = A ∩ Tx,y . We now
establish some simple properties.

Lemma 3.5 Fix x ∈ T and A ⊂ T . We have then the following.

(i) T = {x} ∪ ⋃
y∈Nx

Tx,y .
(ii) For y ∈ Nx and z ∈ Tx,y , we have [x, z] = {xy} ∪ [y, z]. Moreover, the

endvertices of an edge in [x, z] lie in {x} ∪ Tx,y .
(iii) A \ {x} = ⋃

y∈Nx
Ax,y and [x, A] = ⋃

y∈Nx
[x, Ax,y].

(iv) Given y ∈ Nx , if Ax,y �= ∅, then [x, Ax,y] = {xy} ∪ [y, Ax,y].
Furthermore, all unions above are disjoint unions.

Proof Given a vertex z �= x , let p(x, z) = (x0, x1, . . . , xn). Then n � 1, y = x1 is a
neighbour of x0 = x , and z ∈ Tx,y . It is clear that x /∈ Tx,y for any y ∈ Nx . Moreover,
it is immediate from definition that Tx,y ∩ Tx,z = ∅ for distinct neighbours y, z of x .
Thus, (i) follows.

To see (ii), let p(x, z) = (x0, x1, . . . , xn). Then n � 1, x0 = x , x1 = y and
p(y, z) = (x1, . . . , xn). Hence [x, z] = {xy} ∪ [y, z], and xy /∈ [y, z] since the
vertices x0, x1, . . . , xn are pairwise distinct. For 1 � i � n, we have p(x, xi ) =
(x0, x1, . . . , xi ), and hence p1(x, xi ) = y. This implies that {x0, x1, . . . , xn} ⊂ {x} ∪
Tx,y and the second part of (ii) follows.

It follows from (i) that A \ {x} = ⋃
y∈Nx

Ax,y and that this is a disjoint union. The
second part of (iii) now follows:

[x, A] =
⋃

a∈A

[x, a] =
⋃

y∈Nx

⋃

a∈Ax,y

[x, a] =
⋃

y∈Nx

[x, Ax,y],

and moreover, since the endvertices of an edge in [x, Ax,y] lie in {x}∪ Tx,y , it follows
that the sets [x, Ax,y], y ∈ Nx , are pairwise disjoint.
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Finally, we establish (iv). If Ax,y �= ∅, then from (ii) it follows that

[x, Ax,y] =
⋃

a∈Ax,y

[x, a] =
⋃

a∈Ax,y

{xy} ∪ [y, a] = {xy} ∪ [y, Ax,y]

and the union is a disjoint union.

We next prove Theorem 3.1 in a special case.

Theorem 3.6 For x ∈ T and a finite A ⊂ T , we have tspT (x, A, x) = 2|[x, A]|.
Proof We may assume A �= ∅, otherwise the result is clear. Let us define h =
h(x, A) = maxa∈A d(x, a). We construct by recursion on h a walk w from x to x
of length n = 2|[x, A]| visiting all vertices in A. Together with Proposition 3.4, this
will complete the proof.

If h = 0, then A = {x} and the result is clear. Let us now assume that h � 1. Set
N = Nx and Ay = Ax,y for each y ∈ N . Let M = {y ∈ N : Ay �= ∅}. Fix y ∈ M .
For every a ∈ Ay , we have p(x, a) = (x, p(y, a)), and thus, h(y, Ay) � h − 1. By
recursion, there is a walk w(y) from y to y of length 2|[y, Ay]| visiting all vertices of
Ay . Now since A is finite, so is M , which we can then enumerate as y1, y2, . . . , yk .
Then

w = (
x, w(y1), x, w(y2), x, . . . , x, w(yk ), x

)

is a walk from x to x visiting all vertices in
⋃

y∈M Ay . It follows from Lemma 3.5 that
w visits all vertices in A and has length

2k +
∑

y∈M
2|[y, Ay]| =

∑

y∈M
2
∣∣{xy} ∪ [y, Ay]

∣∣ =
∑

y∈M
2|[x, Ay]| = 2|[x, A]|.

We are finally ready to complete the proof of our main result.

Proof We proceed by induction on dT (x, y) and construct a walk from x to y of length
2
∣∣[x, A] \ [x, y]∣∣ + |[x, y]| visiting all vertices of A. Together with Proposition 3.4,

this will complete the proof.
When dT (x, y) = 0, the result follows from Theorem 3.6. Now assume dT (x, y) �

1 and set x1 = p1(x, y). Let N = Nx and Ay = Ax,y for all y ∈ N . Set A0 =⋃
z∈N ,z �=x1 Az and A1 = Ax1 . From Lemma 3.5 we have the following:

A \ {x} =
⋃

z∈Nx

Az = A0 ∪ A1,

[x, A1] = {xx1} ∪ [x1, A1] if A1 �= ∅,

[x, y] = {xx1} ∪ [x1, y],
[x, A] =

⋃

z∈Nx

[x, Az] = [x, A0] ∪ [x, A1],

[x, A0] ∩ [x, y] = ∅,
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and moreover, all unions are disjoint unions. From this we obtain

[x1, A1] \ [x1, y] = [x, A1] \ [x, y] and

[x, A] \ [x, y] = [x, A0] ∪ ([x, A1] \ [x, y]). (8)

By Theorem 3.6, there is a walk w(0) from x to x of length �0 = 2|[x, A0]| visiting
all vertices in A0. By induction hypothesis, there is a walk w(1) from x1 to y of
length �1 = 2|[x1, A1] \ [x1, y]| + |[x1, y]| visiting all vertices in A1. It follows that
w = (w(0), w(1)) is a walk from x to y visiting all vertices in {x}∪ A0∪ A1 = {x}∪ A.
Let � be the length of w. Then from (8) we obtain

� = �0 + �1 + 1 = 2|[x, A0]| + 2
∣∣[x1, A1] \ [x1, y]

∣∣ + |[x1, y]| + 1

= 2|[x, A0]| + 2
∣∣[x, A1] \ [x, y]∣∣ + |[x, y]| = 2

∣∣[x, A] \ [x, y]∣∣ + |[x, y]|,

as required.

Remark It is not hard to see that the proof of Theorem 3.1 yields an efficient algorithm
for finding optimal walks in T for the Travelling Salesman Problem.

3.2 Embeddability into Hamming Cubes

We will show that the lamplighter graph over a tree bi-Lipschitzly embeds into a
Hamming cube, and thus prove Theorem 1.1. Let us fix a tree T . By Proposition 2.1
and Theorem 3.1, the graph metric in the lamplighter graph La(T ) is given by

dLa(T )

(
(A, x), (B, y)

) = 2
∣
∣[x, A � B] \ [x, y]∣∣ + |[x, y]| + |A � B|. (9)

For C ⊂ T let [C] = ⋃
x,y∈C [x, y] be the minimal set of edges needed to travel

between different vertices of C . Define

I = {
(e,C) : e ∈ E(T ), ∅ �= C ⊂ T , C finite, e /∈ [C]}.

For A ⊂ T , x ∈ T and e ∈ E(T ), let Ax,e = {a ∈ A : e ∈ [x, a]}. We now define a
map into theHamming cubeHI whose role is to capture the first of the three summands
in the right-hand side of (9).

Lemma 3.7 Define f : La(T ) → HI as follows. For (A, x) ∈ La(T ) and i ∈ I we
let

f (A, x)i = 1 ⇐⇒ ∃ e ∈ E(T ) Ax,e �= ∅ and i = (e, Ax,e).

Then for vertices (A, x) and (B, y) of La(T ) we have

∣∣[x, A � B] \ [x, y]∣∣ � dH
(
f (A, x), f (B, y)

)
� 2

∣∣[x, A � B] \ [x, y]∣∣ + 2|[x, y]|.
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Proof We first check that f is well-defined, i.e., that f (A, x) has finite support. Given
i = (e,C) ∈ I , if f (A, x)i = 1, then C = Ax,e �= ∅, and hence e ∈ [x, A]. It follows
that the support of f (A, x) has at most (in fact, exactly) |[x, A]| elements. Since A is
finite, so is [x, A], and hence f (A, x) is finitely supported.

We now turn to the inequalities. Given i = (e,C) ∈ I , we have

f (A, x)i �= f (B, y)i ⇐⇒ Ax,e �= By,e and either C = Ax,e or C = By,e.

Thus, setting E = {e ∈ E(T ) : Ax,e �= By,e and either Ax,e �= ∅ or By,e �= ∅}, we
have

|E | � dH
(
f (A, x), f (B, y)

)
� 2|E |. (10)

To estimate |E |, let us first consider an edge e ∈ E \ [x, y]. By definition of E , there
is a vertex c ∈ Ax,e � By,e. Hence, using Lemma 3.2, we have e ∈ [x, c] \ [x, y] =
[y, c] \ [x, y]. It follows that c ∈ A� B, and thus e ∈ [x, A� B] \ [x, y]. This shows
the upper bound

|E | �
∣∣[x, A � B] \ [x, y]∣∣ + |[x, y]|. (11)

Next consider e ∈ [x, A � B] \ [x, y]. Then, using Lemma 3.2 again, we have some
c ∈ A�B such that e ∈ [x, c]\[x, y] = [y, c]\[x, y]. It follows that c ∈ Ax,e�By,e,
and hence e ∈ E . This yields the lower bound

∣∣[x, A � B] \ [x, y]∣∣ � |E |. (12)

Combining the inequalities (10), (11) and (12) completes the proof of the lemma.

After some definitions, wewill state and prove themain result of this section, which
then immediately yields Theorem 1.1. Note that for disjoint sets J and K , the product
HJ�HK is the Hamming cube HJ∪K . In the next result we identify the vertices of a
Hamming cube HJ with finite subsets of J .

Theorem 3.8 Let T be a (non-empty) tree. Let f : La(T ) → HI be the map from
Lemma 3.7. Fix x0 ∈ T and define F : La(T ) → HI�HE(T )�HT by

F(A, x) = (
f (A, x), [x0, x], A

)
.

Then F is a bi-Lipschitz embedding with distortion at most 6.

Proof Fix two vertices (A, x) and (B, y) in La(T ). Then

d�
(
F(A, x), F(B, y)

) = dH
(
f (A, x), f (B, y)

) + ∣∣[x0, x] � [x0, y]
∣∣ + |A � B|.

We first estimate the middle term. Let p(x0, x) = (x0, x1, . . . , xm) and p(x0, y) =
(y0, y1, . . . , yn). As in the proof of Lemma 3.2, if i � min (m, n) is maximal such
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that x j = y j for 0 � j � i , then

p(y, x) = (yn, yn−1, . . . , yi+1, yi = xi , xi+1, . . . , xm).

It follows at once that

[x0, x] � [x0, y] = [x, y].

Hence, using (9) and Lemma 3.7, we deduce that

dLa(T )

(
(A, x), (B, y)

) = 2
∣∣[x, A � B] \ [x, y]∣∣ + |[x, y]| + |A � B|

� 2 · dH
(
f (A, x), f (B, y)

) + ∣
∣[x0, x] � [x0, y]

∣
∣ + |A � B|

� 2 · d�
(
F(A, x), F(B, y)

)

and that

d�
(
F(A, x), F(B, y)

)
� 2

∣∣[x, A � B] \ [x, y]∣∣ + 3|[x, y]| + |A � B|
� 3 · dLa(T )

(
(A, x), (B, y)

)
.

4 Lamplighter Graph over the Vertex-Coalescence of Two Graphs

The procedure that consists of gluing two graphs at a common vertex is known
as vertex-coalescence or, simply, coalescence of two graphs. Consider two pointed
graphs G1 = (V1, E1, v1) and G2 = (V2, E2, v2), i.e., graphs Gi , i = 1, 2, with ver-
tex set Vi , edge set Ei , and a specified vertex vi ∈ Vi .We define the vertex-coalescence
G1 ∗ G2 of G1 and G2 by first taking the disjoint union of G1 and G2 followed by
identifying the vertices v1 and v2. Formally, G1 ∗ G2 has vertex set

V = {
(x, i) : x ∈ Vi \ {vi }, i = 1, 2

} ∪ {v0}

where v0 /∈ V1 × {1} ∪ V2 × {2}, and edge set

E = {
((x, i), (y, i)) : x, y ∈ Vi \ {vi }, xy ∈ Ei , i = 1, 2

}

∪ {
((x, i), v0) : x ∈ Vi \ {vi }, xvi ∈ Ei , i = 1, 2

}
.

This formal definition is rather cumbersome. In practice, we shall either assume after
relabeling that V1 ∩ V2 = {v0} and v0 = v1 = v2, in which case we can simply take
V = V1 ∪ V2 and E = E1 ∪ E2, or, particularly in the case of gluing several copies
of the same pointed graph together, we shall refer to vertices of the original graph as
being in the kth copy in the coalesced graph for k = 1, 2, . . . Note that if G1 and G2
are connected, then so is G1 ∗ G2 with the graph metric given by
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dG1∗G2(u, v) =
{
dGi (u, v) if u, v ∈ Gi ,

dG1(u, v0) + dG2(v0, v) if u ∈ G1, v ∈ G2.
(13)

In the next lemma we record a relationship between the Travelling Salesman Problem
on the coalescence graph with the ones on its components. The proof is elementary
and left to the reader.

Lemma 4.1 Let G1 ∗G2 be the coalescence of two connected pointed graphs G1 and
G2 at a common vertex v0. Let x, y ∈ G1 ∗ G2 and C ⊂ G1 ∗ G2 with C finite. If
there exists i ∈ {1, 2} such that x, y ∈ Gi and C ⊂ Gi , then

tspG1∗G2
(x,C, y) = tspGi

(x,C, y). (14)

If x ∈ G1, y ∈ G2 and C = C1 ∪ C2 with Ci ⊂ Gi for i = 1, 2, then

tspG1∗G2
(x,C, y) = tspG1

(x,C1, v0) + tspG2
(v0,C2, y). (15)

If x ∈ G1, y ∈ G1 and C ∩ G2 �= ∅, then
tspG1∗G2

(x,C, y)

= min
{
tspG1

(x,C ′, v0) + tspG2
(v0,C ∩ V2, v0) + tspG1

(v0,C
′′, y)

}
,
(16)

where the minimum is taken over all sets C ′,C ′′ ⊂ V1 with C ′ ∪ C ′′ = C ∩ V1.

The purpose of the next theorem is to establish a metric connection between the
lamplighter graph over the coalescence of two graphs with the lamplighter graphs over
its components. To do this, we need to make use of clover graphs. Given n ∈ N and a
pointed graph G = (V , E, v0), the clover graph Clo(G, n) is obtained by coalescing
n copies of G at v0 in an obvious inductive fashion.

Theorem 4.2 Let G1 ∗ G2 be the coalescence of two finite, connected pointed graphs
G1 and G2 at a common vertex v0. Then there exists a map

f : La(G1 ∗ G2) → La(G1)�La(G2)�Clo
(
G1, 2

|G2|)�Clo
(
G2, 2

|G1|)

such that

dLa(G1∗G2)(u, v) � d�
(
f (u), f (v)

)
� 2 · dLa(G1∗G2)(u, v) (17)

for all u, v ∈ La(G1 ∗ G2).

Proof Observe that 2|G2| is the number of subsets of G2, and thus we can index
the 2|G2| copies of G1 in Clo

(
G1, 2|G2|) by the collection of all subsets of G2. For

x ∈ G1 and S ⊂ G2 we denote by ιS(x) the element x considered in the copy of G1 in
Clo

(
G1, 2|G2|) that is indexed by S. We proceed in a similar way for Clo

(
G2, 2|G1|).

We define the function

f : La(G1 ∗ G2) → La(G1)�La(G2)�Clo
(
G1, 2

|G2|)�Clo
(
G2, 2

|G1|)
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as follows. Given a vertex (A, x) of La(G1 ∗ G2), we let Ai = A ∩ Gi for i = 1, 2,
and set

f (A, x) =
{(

(A1, x), (A2, v0), ιA2(x), v0
)

if x ∈ G1,(
(A1, v0), (A2, x), v0, ιA1(x)

)
if x ∈ G2.

(18)

To establish (17), we fix vertices (A, x) and (B, y) in La(G1∗G2), we let Ai = A∩Gi

and Bi = B ∩ Gi for i = 1, 2, and consider several cases. To make the notation less
crowded, we will at times drop subscripts in the graph distance.

Case 1: x, y ∈ G1 and A � B ⊂ G1. In this case we have A � B = A1 � B1 and
A2 = B2. It follows that

d�
(
f (A, x), f (B, y)

)

= d
(
(A1, x), (B1, y)

) + d
(
(A2, v0), (B2, v0)

) + d
(
ιA2(x), ιB2(y)

)

+ d(v0, v0)

= tspG1
(x, A1 � B1, y) + |A1 � B1| + tspG2

(v0, A2 � B2, v0) + |A2 � B2|
+ d

(
ιA2(x), ιB2(y)

)
(by (3))

= tspG1∗G2
(x, A � B, y) + |A � B| + dG1(x, y) (by (14) and (13))

= dLa(G1∗G2)

(
(A, x), (B, y)

) + dG1∗G2(x, y) (by (3) and (13)),

which implies (17) since

0 � dG1∗G2(x, y) � tspG1∗G2
(x, A � B, y) � dLa(G1∗G2)

(
(A, x), (B, y)

)
.

Case 2: x ∈ G1 and y ∈ G2. Then

d�
(
f (A, x), f (B, y)

)

= d
(
(A1, x), (B1, v0)

) + d
(
(A2, v0), (B2, y)

) + d
(
ιA2(x), v0

) + d
(
v0, ιB1(y)

)

= tspG1
(x, A1 � B1, v0) + |A1 � B1| + tspG2

(v0, A2 � B2, y) + |A2 � B2|
+ dG1(x, v0) + dG2(v0, y) (by (3) and (13))

= tspG1∗G2
(x, A � B, y) + |A � B| + dG1(x, v0) + dG2(v0, y) (by (15))

= dLa(G1∗G2)

(
(A, x), (B, y)

) + dG1∗G2(x, y) (by (3) and (13))

and we are again done as in the previous case.
Case 3: x, y ∈ G1 and A � B ∩ G2 �= ∅. Then A2 � B2 �= ∅, and thus A2 �= B2.

Therefore,

d�
(
f (A, x), f (B, y)

)

= d
(
(A1, x), (B1, y)

) + d
(
(A2, v0), (B2, v0)

) + d
(
ιA2(x), ιB2(y)

) + d(v0, v0)

= tspG1
(x, A1 � B1, y) + |A1 � B1| + tspG2

(v0, A2 � B2, v0) + |A2 � B2|
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+ dG1(x, v0) + dG1(v0, y) (by (3) and (13))

= tspG1
(x, A1 � B1, y) + tspG2

(v0, A2 � B2, v0) + dG1(x, v0) + dG1(v0, y)

+ |A � B|.

For any decomposition C ∪ D of A1 � B1 one has

tspG1
(x, A1 � B1, y) � tspG1

(x,C, v0) + tspG1
(v0, D, y),

dG1(x, v0) � tspG1
(x,C, v0),

dG1(v0, y) � tspG1
(v0, D, y),

and hence

d�
(
f (A, x), f (B, y)

)

� 2 · tspG1
(x,C, v0) + tspG2

(v0, A2 � B2, v0) + 2 · tspG1
(v0, D, y) + |A � B|

� 2
(
tspG1

(x,C, v0) + tspG2
(v0, A2 � B2, v0) + tspG1

(v0, D, y)
) + |A � B|

= 2 · tspG1∗G2
(x, A � B, y)+|A � B| (for some choice of C, D by (16))

� 2 · dLa(G1∗G2)

(
(A, x), (B, y)

)
. (by (3))

For the lower bound, assume without loss of generality that dG1(x, v0) �
dG1(v0, y). Since tspG1

(x, A1 � B1, y) + dG1(v0, y) � tspG1
(x, A1 � B1, v0), it

follows that

d�
(
f (A, x), f (B, y)

)

� tspG1
(x, A1 � B1, v0) + tspG2

(v0, A2 � B2, v0) + dG1(x, v0) + |A � B|
� tspG1

(x, A1 � B1, v0) + tspG2
(v0, A2 � B2, v0) + tspG1

(v0,∅, y)

+ |A � B|
� tspG1∗G2

(x, A � B, y) + |A � B| (by (16))

= dLa(G1∗G2)

(
(A, x), (B, y)

)
(by (3))

We will now illustrate the utility of Theorem 4.2 with two applications. The first
result (Proposition 4.5) is concerned with embeddings of lamplighter graphs over star
graphs into non-superreflexive Banach spaces. Given k, n ∈ N, we define the star
graph Stn,k to be the clover graph Clo(Pk, n) obtained by coalescing n copies of a
path of length k at an endvertex (see Fig. 2).

Lemma 4.3 Let k, n ∈ N and let (E, ‖·‖) be an n-dimensional Banach space. Then
Stn,k bi-Lipschitzly embeds into E with distortion at most 2.

Proof Let (ei )ni=1 be an Auerbach basis for E . By this we mean that ‖ei‖ = 1 for
i = 1, . . . , n and that there are functionals (e∗

i )
n
i=1 in the dual of E which are also
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normalised and such that e∗
i (e j ) = δi j for all i, j = 1, . . . , n. Define f : Stn,k → E

by f (x) = dPk (v0, x)ei if x belongs to the i th copy of Pk in Stn,k . Here v0 is the
endvertex of Pk at which the n copies of Pk are coalesced. If, for some i , both x and
y belong to the i th copy of Pk in Stn,k , then

‖ f (x) − f (y)‖ = |dPk (v0, x) − dPk (v0, y)| · ‖ei‖ = dPk (x, y) = dStn,k (x, y).

If, for some i �= j , we have that x belongs to the i th copy and y to the j th copy of Pk
in Stn,k , then

‖ f (x) − f (y)‖ = ‖dPk (v0, x)ei − dPk (v0, y)e j‖ � max {dPk (v0, x), dPk (v0, y)}
� 1

2

(
dPk (v0, x) + dPk (v0, y)

) = 1

2
· dStn,k (x, y).

On the other hand, f is clearly 1-Lipschitz by the triangle inequality.

The following lemma says that under certain conditions one can embed a finite
product of metric spaces into a Banach space if the metric spaces are themselves
embeddable in a particular fashion. Similar arguments have already been used in
metric geometry (cf. [20, Thm. 1.7]) and their proofs simply rely on basic functional
analytic principles. We provide a proof for the convenience of the reader unfamiliar
with those.

Lemma 4.4 Let M1, . . . , Mn be metric spaces, and let Y be an infinite-dimensional
Banach space. Assume that there exist positive real numbers D1, . . . , Dn such that
for every i = 1, . . . , n and for every finite-codimensional subspace Z of Y , there is a
bi-Lipschitz embedding ϕi,Z of Mi of distortion at most Di into a finite-dimensional
subspace of Z. Then for every ε > 0, the product M = ∏n

i=1 Mi equipped with the
�1-metric bi-Lipschitzly embeds into Y with distortion at most (2+ε)nmax1�i�n Di .

Proof We begin with a basic result from the geometry of Banach spaces. Given δ > 0
and a finite-dimensional subspace E of Y , there is a finite-codimensional subspace Z
of Y such that ‖x + z‖ � (1− δ)‖x‖ for all x ∈ E and z ∈ Z . Indeed, choose a δ-net
x1, . . . , xK in the unit sphere of E together with norming functionals x∗

1 , . . . , x
∗
K in

Y ∗. Set Z = ⋂K
i=1 ker x

∗
i . Given x ∈ E and z ∈ Z , assuming as we may that ‖x‖ = 1,

choose i ∈ {1, . . . , K } such that ‖x − xi‖ � δ. Then we have

‖x + z‖ � ‖xi + z‖ − δ � |x∗
i (xi + z)| − δ = 1 − δ,

as required.
Let us now turn to the statement of the lemma. Firstly, after scaling, wemay assume

that for every i = 1, . . . , n and for every finite-codimensional subspace Z of Y we
have

dMi (u, v) � ‖ϕi,Z (u) − ϕi,Z (v)‖ � Di · dMi (u, v) for all u, v ∈ Mi .
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Fix ε > 0 and choose δ > 0 satisfying2(1−δ)−n < 2+ε.Wewill recursively construct
finite-codimensional subspaces Z1, . . . , Zn of Y together with finite-dimensional sub-
spaces Ei of Zi as follows. At the j th step, having chosen Ei ⊂ Zi for 1 � i < j ,
we choose a finite-codimensional subspace Z j of Y such that ‖x + z‖ � (1 − δ)‖x‖
for all x ∈ E1 + · · · + E j−1 and for all z ∈ Z j . We then choose a finite-dimensional
subspace E j of Z j containing ϕ j,Z j (Mj ). This completes the recursive construction,
which has the following consequence. Given xi ∈ Ei for i = 1, . . . , n, we have

(1 − δ)n−m ·
∥∥∥

m∑

i=1

xi
∥∥∥ �

∥∥∥
n∑

i=1

xi
∥∥∥.

for eachm = 1, . . . , n. It follows by the triangle inequality and by the choice of δ that

max
1�m�n

‖xm‖ � (2 + ε)

∥∥
∥

n∑

i=1

xi
∥∥
∥. (19)

We now define ϕ : M → Y by ϕ(u) = ∑n
i=1 ϕi,Zi (ui ) for u = (u1, . . . , un) in the

product space M = ∏n
i=1 Mi . We claim that ϕ is bi-Lipschitz with distortion at most

(2 + ε)Dn where D = max1�i�n Di . Let us fix u = (ui )ni=1 and v = (vi )
n
i=1 in M .

On the one hand, the triangle inequality yields

‖ϕ(u) − ϕ(v)‖ �
n∑

i=1

‖ϕi,Zi (ui ) − ϕi,Zi (vi )‖ �
n∑

i=1

Di · dMi (ui , vi ) � D · dM (u, v).

On the other hand, using (19) we obtain the following lower bound.

(2 + ε) · ‖ϕ(u) − ϕ(v)‖ � max
1�i�n

‖ϕi,Zi (ui ) − ϕi,Zi (vi )‖

� max
1�i�n

dMi (ui , vi ) � 1

n
· dM (u, v).

Thus, ϕ has distortion at most (2 + ε)Dn, as claimed.

Using Theorem 4.2 we can show that for fixed n ∈ N, the sequence (La(Stn,k))k∈N
of lamplighter graphs equi-bi-Lipschiztly embeds into any non-superreflexive Banach
space.

Proposition 4.5 Let Y be a non-superreflexive Banach space. For all n ∈ N, there
exist C(n) ∈ (0,∞) and maps fn,k : La(Stn,k) → Y such that

dLa(Stn,k )(x, y) � ‖ fn,k(x) − fn,k(y)‖Y � C(n) · dLa(Stn,k )(x, y)

for all k ∈ N and for all x, y ∈ La(Stn,k).
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Proof It is sufficient to prove the proposition for each n ∈ {2i : i ∈ N}. Observe that
St2i ,k = St2i−1,k ∗St2i−1,k and |St2i−1,k | = k ·2i−1+1. Set αi,k = 2k·2i−1+1. Applying
Theorem 4.2, La(St2i ,k) bi-Lipschitzly embeds with distortion at most 2 into

La(St2i−1,k)�La(St2i−1,k)�Clo(St2i−1,k, αi,k)�Clo(St2i−1,k, αi,k).

Now observe that Clo(Str ,s, t) = Str t,s for any r , s, t ∈ N. If we apply Theorem 4.2
another i − 1 times, we obtain that La(St2i ,k) bi-Lipschitzly embeds with distortion
at most 2i into the Cartesian product of 4 · 2i−1 +2 · 2i−2 +· · ·+2 · 2+2 = 3 · 2i −2
graphs each of which is either La(Pk) or a graph of the form Str ,k for some r ∈ N. Note
that all these graphs admit bi-Lipschitz embeddings into every finite-codimensional
subspace of any non-superreflexive Banach space. Indeed, by Bourgain’s metric char-
acterisation of superreflexivity [3], for every ε > 0, every binary tree of finite height
admits a bi-Lipschitz embedding into every finite-codimensional subspace of any non-
superreflexive Banach space with distortion at most 1 + ε. Therefore the conclusion
follows by combining this result with Lemma 4.3, Proposition 2.2, and Lemma 4.4.

Let Ck denote the k-cycle, i.e., the cycle of length k with vertices v1, . . . , vk and
edges vi−1vi for i = 1, . . . , k, where we set v0 = vk . Given k, n ∈ N, we define the
rose graph Ron,k to be the clover graph Clo(Ck, n) obtained by coalescing n copies
of Ck at v0. Using Theorem 4.2 together with the main result from [21], we can show
that for fixed n ∈ N the sequence (La(Ron,k))k∈N of lamplighter graphs equi-bi-
Lipschiztly embeds into any non-superreflexive Banach space. First we need to prove
that Ron,k can be well embedded into Euclidean spaces.

Lemma 4.6 Let n ∈ N. There exist maps gn,k : Ron,k → �2n2 such that

1√
2

· dRon,k (x, y) � ‖gn,k(x) − gn,k(y)‖ � π

2
· dRon,k (x, y)

for all k ∈ N and for all x, y ∈ Ron,k .

Proof It was proved in [13] that the natural embedding of the k-cycle onto the vertices
of the regular k-gon inR

2 is optimal and has distortion exactly k
2 sin

π
k � π

2 . Therefore,
there exist maps ϕk: Ck → �22 with ϕk(v0) = 0 and such that

dCk (x, y) � ‖ϕk(x) − ϕk(y)‖2 � π

2
· dCk (x, y).

Let Ei = �22 for all i ∈ N and define

gn,k : Ron,k → (E1 ⊕ · · · ⊕ Ei−1 ⊕ Ei ⊕ Ei+1 ⊕ · · · ⊕ En)�2 = �2n2 ,

x �→ (0, . . . , 0, ϕk(x), 0, . . . , 0) if x belongs to the i th copy of Ck .

Observe that if x and y belong to the same copy of Ck in Ron,k , then one has

‖gn,k(x) − gn,k(y)‖2 = ‖ϕk(x) − ϕk(y)‖2.
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Otherwise

‖gn,k(x) − gn,k(y)‖2 =
√

‖ϕk(x)‖22 + ‖ϕk(y)‖22 � ‖ϕk(x)‖2 + ‖ϕk(y)‖2
� π

2
· dCk (x, v0) + π

2
· dCk (y, v0) = π

2
· dRon,k (x, y)

and

‖gn,k(x) − gn,k(y)‖2 � 1√
2

(‖ϕk(x)‖2 + ‖ϕk(y)‖2
)

� 1√
2

(
dCk (x, v0) + dCk (y, v0)

) = 1√
2

· dRon,k (x, y).

Proposition 4.7 Let Y be a non-superreflexive Banach space. For all n ∈ N there exist
D(n) ∈ (0,∞) and maps fn,k : La(Ron,k) → Y such that

dLa(Ron,k )(x, y) � ‖ fn,k(x) − fn,k(y)‖Y � D(n) · dLa(Ron,k )(x, y)

for all k ∈ N and for all x, y ∈ La(Ron,k).

Proof It is sufficient to prove the proposition for each n ∈ {2i : i ∈ N}. Observe that
Ro2i ,k = Ro2i−1,k ∗Ro2i−1,k and |Ro2i−1,k | = (k−1)2i−1+1. Set βi,k = 2(k−1)2i−1+1.
Applying Theorem 4.2, La(Ro2i ,k) bi-Lipschitzly embeds with distortion at most 2
into

La(Ro2i−1,k)�La(Ro2i−1,k)�Clo(Ro2i−1,k, βi,k)�Clo(Ro2i−1,k, βi,k).

Now observe that Clo(Ror ,s, t) = Ror t,s for any r , s, t ∈ N. If we apply Theorem 4.2
another i−1 times, we obtain that La(Ro2i ,k) bi-Lipschitzly embeds with distortion at
most 2i into the Cartesian product of 4·2i−1+2·2i−2+· · ·+2·2+2 = 3·2i −2 graphs
each of which is either La(Ck) or a graph of the form Ror ,k for some r ∈ N. Note
that all these graphs admit bi-Lipschitz embeddings into every finite-codimensional
subspace of any non-superreflexive Banach space. Indeed, it was proved in [21] that
La(Ck) can be embedded into a product of 8 trees, and hence one can again use
Bourgain’s metric characterisation of superreflexivity [3]. The conclusion follows by
appealing to Lemma 4.6, Dvoretzky’s theorem, and Lemma 4.4.

Remark By carefully keeping track of the distortions of embeddings in the proofs of
Propositions 4.5 and 4.7, one obtains order n2 upper bounds on C(n) and D(n).

Remark At this point we have established the implications “(ii)⇒ (i)” and “(iii)⇒ (i)”
in Theorem 1.2. The remaining implications will be shown in Sect. 6.
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5 InducedMaps Between Lamplighter Graphs

Amap f : G → H between two graphs induces a map f : La(G) → La(H) defined
by f (A, x) = ( f (A), f (x)), where f (A) = { f (y) : y ∈ A}. Moreover, if G and H
are connected and for some a, b ∈ [0,∞] we have

a · dG(x, y) � dH ( f (x), f (y)) � b · dG(x, y)

for all x, y ∈ G, then it is easy to see (cf. Remark following Lemma 5.1 below) that

a′ · dLa(G)(u, v) � dLa(H)( f (u), f (v)) � b′ · dLa(G)(u, v)

for all u, v ∈ La(G), where a′ = min {1, a} and b′ = max {1, b}. Of course, this result
is only interesting if a > 0, b < ∞ or both, i.e., if f is co-Lipschitz, Lipschitz or bi-
Lipschitz, respectively. In particular, if (G, dG) bi-Lipschitzly embeds into (H , dH ),
then La(G) bi-Lipschitzly embeds into La(H). Observe that if f is injective, then
b � 1, and if in addition 0 < a � 1, then dist( f ) � dist( f ). However, there are
bi-Lipschitz embeddings of interest where a → ∞ with b/a bounded. In this case,
b′/a′ gets arbitrarily large. For this reason, wewill consider more complicated induced
maps in Lemmas 5.1 and 5.2 below.

Lemma 5.1 Let f : G → H be a map between connected graphs G and H, and let
a, b ∈ [0,∞] be given so that

a · dG(x, y) � dH ( f (x), f (y)) � b · dG(x, y) for all x, y ∈ G.

Then for every m ∈ {0} ∪ {1, . . . , �a/2� − 1}, there is a map fm : La(G) → La(H)

induced by f and m such that f0 = f and

a′ · dLa(G)(u, v) � dLa(H)( fm(u), fm(v)) � b′ · dLa(G)(u, v)

for all u, v ∈ La(G), where a′ = min {a,m + 1} and b′ = max {b, 3m + 1}.
Remark Assume that f : G → H is a bi-Lipschitz embedding, and thus thatb � 1 and
a > 0. The observations made before the statement of the lemma follow immediately
by taking m = 0. On the other hand, choosing m = �a/2� − 1, and by considering
the fractions b

a ,
b

m+1 ,
3m+1

a and 3m+1
m+1 , it is easy to see that dist( fm) � b′/a′ � 3b/a.

Hence we obtain the universal bound

dist
(
f�a/2�−1

)

dist( f )
� 3.

Proof If m = 0 we define f0 to be the natural induced map f , and the conclusion
holds with a′ = min {a, 1} and b′ = max {b, 1}. Indeed, let x0, x1, . . . , xn be vertices
of G, and let yi = f (xi ) for 0 � i � n. Consider a walk w of length � in G from x0
to xn visiting x0, x1, . . . , xn in this order. For each i = 1, . . . , n, let wi be the section
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of w from xi−1 to xi , and let �i be the length of wi . Then dH ( f (xi−1), f (xi )) �
b · dG(xi−1, xi ) � b · �i for each i = 1, . . . , n. Hence there is a walk in H of
length at most b · � from y0 to yn visiting y0, y1, . . . , yn in this order. An essentially
identical argument shows that if there is a walk in H of length � from y0 to yn visiting
y0, y1, . . . , yn in this order, then there is a walk in G of length at most �/a from x0 to
xn visiting x0, x1, . . . , xn in this order. It follows that

a · tspG(x,C, y) � tspH
(
f (x), f (C), f (y)

)
� b · tspG(x,C, y) (20)

for all x, y ∈ G and for all finiteC ⊂ G. Now fix vertices (A, x) and (B, y) of La(G).
Observe that f (A) � f (B) ⊂ f (A � B) and | f (A � B)| � |A � B|, and moreover
equality holds when a > 0. Hence, using Proposition 2.1 and (20), we have

dLa(H)

(
f (A, x), f (B, y)

) = tspH
(
f (x), f (A) � f (B), f (y)

) + | f (A) � f (B)|
� b · tspG(x, A � B, y) + |A � B| � b′ · dLa(G)

(
(A, x), (B, y)

)

and if a > 0, then

dLa(H)

(
f (A, x), f (B, y)

) = tspH
(
f (x), f (A � B), f (y)

) + | f (A � B)|
� a · tspG(x, A � B, y) + |A � B| � a′ · dLa(G)

(
(A, x), (B, y)

)
.

Assume now that 1 � m � �a/2� − 1 and in particular that a > 0. Set a′ =
min (a,m + 1) and b′ = max (b, 3m + 1). Without loss of generality we will assume
that G has at least two vertices. For every vertex y in the image of f , choose a path
(u0, u1, u2, . . . , um) in H starting at u0 = y, and setWy = {u0, u1, . . . , um}. This can
always be done by picking another vertex z ∈ f (G) and using dH (y, z) � a which in
turn follows from the assumptions on f . It is easy to see that tspH (y,Wy, y) = 2m
since the unique optimal walk for the salesman is the path from u0 to um and back.
Note also that the setsWy , y ∈ f (G), are pairwise disjoint, since the vertices in f (G)

are a-separated and 2m < a. For a finite set C ⊂ f (G) we put WC = ⋃
y∈C Wy .

Finally, we define fm : La(G) → La(H) by letting fm(A, x) = (
W f (A), f (x)

)
.

Given vertices y, z and a finite subset C in the image of f , we now obtain esti-
mates on tspH (y,WC , z). Since C ⊂ WC , we immediately obtain tspH (y,WC , z) �
tspH (y,C, z). On the other hand, consider the following walk. Start with a walk w in
H of length tspH (y,C, z) from y to z visiting all vertices of C , and each time w visits
a vertex u ∈ C , insert a walk of length 2m = tspH (u,Wu, u) starting and ending at u
and visiting all vertices in Wu . The resulting walk from y to z visits all the vertices in
WC and has length tspH (y,C, z) + 2m |C |. Therefore, we have

tspH (y,C, z) � tspH (y,WC , z) � tspH (y,C, z) + 2m |C |. (21)

Let us now fix vertices (A, x) and (B, y) in La(G). Observe that W f (A) � W f (B) =
W f (A)� f (B) and f (A)� f (B) = f (A�B). Combining Proposition 2.1, (21) and (20),
we obtain

dLa(H)

(
fm(A, x), fm(B, y)

) = tspH
(
f (x),W f (A�B), f (y)

) + ∣∣W f (A�B)

∣∣
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� tspH
(
f (x), f (A � B), f (y)

) + 2m · | f (A � B)| + (m + 1) · | f (A � B)|
� b · tspG(x, A � B, y) + (3m + 1) · |A � B|
� b′ · dLa(G)

(
(A, x), (B, y)

)
,

and

dLa(H)

(
fm(A, x), fm(B, y)

)
� tspH

(
f (x), f (A � B), f (y)

) + ∣∣W f (A�B)

∣∣

� a · tspG(x, A � B, y) + (m + 1) · | f (A � B)|
� a′ · dLa(G)

(
(A, x), (B, y)

)
.

In the last lemma of this section we consider a more sophisticated construction
in order to improve the bound on the distortion. This construction is of a slightly
different nature since it provides an embedding with a higher degree of faithfulness
at the expense that we need to consider the lamplighter graph over a slightly bigger
graph that contains the original graph H under scrutiny. In some specific situations
(see Proposition 6.4), this turns out not to be an issue and Lemma 5.2 can be efficiently
used to significantly improve the distortion.

Let us fix a map f : G → H between two graphs. Let Q = (V , E, v0) be a pointed
graph and W be a finite subset of V with v0 ∈ W . Let H̃ be the graph obtained by
coalescing H with | f (G)| copies of Q as follows. For each vertex y in the image of
f , we coalesce to H at the vertex y the copy of Q that corresponds to y. This leads
to a map f̃ : La(G) → La(H̃) induced by f , Q and W and defined as follows. For
y ∈ f (G) we let Wy denote the set W considered in the copy of Q that corresponds
to y, and for a finite subset C of f (G) we let WC = ⋃

y∈C Wy . Finally, for a vertex

(A, x) of La(G) define f̃ (A, x) = (
W f (A), f (x)

)
.

Lemma 5.2 Let f : G → H be amap between connected graphs. Let Q = (V , E, v0)

be a connected pointed graph and W be a finite subset of V with v0 ∈ V . Let H̃ and
f̃ : La(G) → La(H̃) be the map defined above. Assume that there exist a, b ∈ [0,∞]
such that

a · dG(x, y) � dH ( f (x), f (y)) � b · dG(x, y)

for all x, y ∈ G. Then it follows for all u, v ∈ La(G) that

a′ · dLa(G)(u, v) � dLa(H̃)

(
f̃ (u), f̃ (v)

)
� b′ · dLa(G)(u, v),

where a′ = min {a, c}, b′ = max {b, c} and c = tspQ(v0,W , v0) + |W |.
Remark This result can be very versatile. Assume that a, b ∈ N and b − a � 2.
Assume further that |V | � b. Then W can be chosen so that a � c � b, and hence
dist( f̃ ) � b/a. Indeed, given a finite W ⊂ V , replacing W by W ∪ {q} for some
q ∈ V \W that is joined to a vertex inW , the value of c increases by at most 3. Hence,
starting with W = {v0} and adding one vertex at a time, we eventually arrive at a set
W for which a � c � b holds.
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Proof Given vertices y, z and a finite subset C in the image of f , an optimal solution
for computing tspH̃ (y,WC , z) can be obtained as follows. Start with a walk w in H
of length tspH (y,C, z) from y to z visiting all vertices of C , and each time w visits a
vertex u ∈ C insert a walk of length tspQ(v0,W , v0) in the copy of Q corresponding
to u that starts and ends at v0 and visits all vertices in W . The resulting walk is easily
seen to be optimal, and hence yields the formula

tspH̃ (y,WC , z) = tspH (y,C, z) + |C | · tspQ(v0,W , v0). (22)

Let us now fix vertices (A, x) and (B, y) in La(G). Observing thatW f (A) �W f (B) =
W f (A)� f (B), and combining Proposition 2.1 with (22), we obtain

dLa(H̃)

(
f̃ (A, x), f̃ (B, y)

) = tspH̃
(
f (x),W f (A)� f (B), f (y)

) + ∣
∣W f (A)� f (B)

∣
∣

= tspH
(
f (x), f (A) � f (B), f (y)

) + (
tspQ(v0,W , v0) + |W |) · | f (A) � f (B)|.

As before, we have f (A) � f (B) ⊂ f (A � B) and | f (A � B)| � |A � B|, and
moreover equality holds when a > 0. Hence, by (20), which is still valid in this
context, we obtain

dLa(H̃)

(
f̃ (A, x), f̃ (B, y)

)
� b · tspG(x, A � B, y) + c · |A � B|
� b′ · dLa(G)

(
(A, x), (B, y)

)
,

and if a > 0, then

dLa(H̃)

(
f̃ (A, x), f̃ (B, y)

)
� a · tspG(x, A � B, y) + c · | f (A � B)|
� a′ · dLa(G)

(
(A, x), (B, y)

)
.

6 Binary Trees and Hamming Cubes in Lamplighter Graphs

It was observed in [14] that the lamplighter group Z2 � Z contains a bi-Lipschitz copy
of the infinite binary tree. We provide a simple proof of the finite version of this fact.

Lemma 6.1 Let k ∈ N. Then Bk bi-Lipschitzly embeds with distortion at most 2 into
La(Pk).

Proof Let v0, . . . , vk be the vertices of Pk with edges vi−1vi for 1 � i � k. For any
ε = (ε1, . . . , εn) ∈ Bk , let Aε = {vs−1 : εs = 1}, and define f : Bk → La(Pk) by
setting f (ε) = (Aε, v|ε|). We show that f is a bi-Lipschitz embedding with distortion
at most 2.

Let us fix δ, ε ∈ Bk and assume without loss of generality that |δ| � |ε|. Then by
Proposition 2.1 we have

dLa(Pk )( f (δ), f (ε)) = tspPk
(
v|δ|, Aδ � Aε, v|ε|

) + |Aδ � Aε|. (23)
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Assume that δ and ε are adjacent, and thus ε = (δ, δm+1), wherem = |δ|. If δm+1 = 0,
then Aδ � Aε = ∅, otherwise Aδ � Aε = {vm}. Therefore,

dLa(Pk)( f (δ), f (ε)) = tspPk
(
vm, Aδ � Aε, vm+1

) + |Aδ � Aε| � 1 + 1 = 2,

and thus f is 2-Lipschitz.
We now derive the lower bound. Let δ ∧ ε denote the last common ancestor of δ

and ε. Thus, δ ∧ ε = (δ1, . . . , δr ), where r = max {i � 0 : δ j = ε j for 1 � j � i}.
Since by definition we have Aδ � Aε ⊂ {v|δ∧ε|, . . . , v|ε|−1}, an optimal solution for
computing tspPk

(
v|δ|, Aδ � Aε, v|ε|

)
starts at v|δ|, then travels to v|δ∧ε|, and finally

travels to v|ε|. Thus,

tspPk
(
v|δ|, Aδ � Aε, v|ε|

) = dPk
(
v|δ|, v|δ∧ε|

) + dPk
(
v|δ∧ε|, v|ε|

)

= (|δ| − |δ ∧ ε|) + (|ε| − |δ ∧ ε|) = dB(δ, ε).

It follows that

dLa(Pk )( f (δ), f (ε)) � dB(δ, ε).

It is clear that a similar argument as in the proof above shows that the lamplighter
graph La(P∞) over the infinite path P∞ contains a bi-Lipschitz copy of the infinite
binary tree. Since La(P∞) and Z2 �Z are isometric (with suitable choice of generators
for Z2 � Z), the observation from [14] can be recovered. Lemma 6.1 also provides the
final result we need to complete the proof of Theorem 1.2.

Proof The implications “(ii)⇒ (i)” and “(iii)⇒ (i)” follow from Propositions 4.5 and
4.7, respectively. To establish the reverse implications, fix n ∈ N. Observe that for
each k ∈ N the graphs Stn,k and Ron,2k contain isometric copies of Pk , and hence by
combining Lemmas 5.1 and 6.1, the binary tree Bk bi-Lipschitzly embeds with distor-
tion at most 2 into the lamplighter graphs La(Stn,k) and La(Ron,2k). The implications
“(i)⇒ (ii)” and “(i)⇒ (iii)” now follow from Bourgain’s metric characterisation of
superreflexivity [3].

We now turn to the embeddability of Hamming cubes into lamplighter graphs. Here
Kn , for n ∈ N, denotes the complete graph on n vertices.

Lemma 6.2 Let k,m ∈ N. ThenHk bi-Lipschitzly embeds intoLa(Kkm)with distortion
at most 1 + 1

2m .

Proof Recall that Hk can be thought of as the set of all subsets of {1, . . . , k} and
that under this identification the Hamming metric becomes the symmetric difference
metric. Let us now partition the vertex set of Kkm into k sets V1, . . . , Vk each of size
m, and let us also fix a vertex v0 of Kkm . Define f : Hk → La(Kkm) by setting
f (I ) = (VI , v0), where VI = ⋃

i∈I Vi .
To estimate the distortion of f , let us fix distinct elements I , J ∈ Hk . Note that

VI � VJ = VI�J , and hence

|VI � VJ | = m |I � J | = m · dH(I , J ).
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It follows that

tspKkm
(v0, VI � VJ , v0) =

{
m · dH(I , J ) if v0 ∈ VI � VJ ,

m · dH(I , J ) + 1 if v0 /∈ VI � VJ .

Combining the above with Proposition 2.1 yields

2m · dH(I , J ) � dLa(Kkm )( f (I ), f (J )) � 2m · dH(I , J ) + 1 � (2m + 1) · dH(I , J ).

Remark Lemma 6.2 shows in particular that for every k ∈ N, there is a bi-Lipschitz
embedding of Hk into La(Kk) of distortion at most 3

2 , and that for every k ∈ N and
ε > 0, there exists n ∈ N such that Hk bi-Lipschitzly embeds into La(Kn) with
distortion at most 1 + ε, and moreover n can be chosen to be k

2ε .

At this point, we need one more ingredient to prove Theorem 1.3, which is the
following well-known fact.

Lemma 6.3 Let k ∈ N and ε > 0. Then Kk embeds with distortion at most 1 + ε into
Bn whenever n � 1+ε

ε
log2 k.

Proof Choose s, t ∈ N such that 2s � k and s+t
t+1 < 1 + ε. We show that n = s + t

works. By a leaf of the binary tree Bs of height s, we mean a vertex ε with |ε| = s.
The binary tree Bn of height n = s + t can be considered as being constructed by
coalescing 2s copies of the binary tree Bt to the leaves of the binary tree Bs as follows.
For each leaf ε of Bs , we coalesce a copy of Bt at ∅, its root, to Bs at ε.

Pick k leaves �1, . . . , �k of Bn , one from each of k different copies of Bt . Let
v1, . . . , vk be the vertices of Kk , and define f : Kk → Bn by f (vi ) = �i , i = 1, . . . , k.
We then have

2t + 2 � dB( f (vi ), f (v j )) � diam(Bs+t ) = 2(s + t)

for all i �= j . Thus, f has distortion at most s+t
t+1 , which in turn is at most 1+ ε by the

choice of s and t .

Proof It follows from Theorem 1.1 that La(Bk) embeds with distortion at most 6
into a finite Hamming cube. In turn, by Lemma 6.2, the Hamming cube Hk embeds
into La(Kk) with distortion at most 3

2 . It remains to show that (La(Kk))k∈N equi-bi-
Lipschitzly embeds into (La(Bk))k∈N, but this is true due to Lemma 6.3 combined
with Lemma 5.1.

The equi-bi-Lipschitz embeddability of (La(Kk))k∈N into (La(Bk))k∈N can bemade
quantitatively more precise using Lemma 5.2.

Proposition 6.4 Let k ∈ N and ε > 0. Then La(Kk) embeds with distortion at most
1 + ε into La(BN ) whenever N > n + log2 n + 1 and n � 1+ε

ε
log2 k.
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Proof For k = 1, 2, it is clear that Kk embeds isometrically into Bk , and hence the
same holds for the corresponding lamplighter graphs. We now assume that k � 3
and follow the notation from the proof of Lemma 6.3. We have s � 2, and hence
2(s + t) − (2t + 2) = 2s − 2 � 2. Choose r ∈ N with 2r > 2(s + t), and let Q be the
pointed graph (Br ,∅). It follows fromLemma 5.2 and the subsequent remark that there
is a subsetW of the vertices of Q such that themap f̃ : La(Kk) → La(B̃n), induced by
f , Q andW , has distortion at most s+t

t+1 < 1+ ε. Finally observe that, since the image
of f is contained in the set of leaves of Bn , it follows that B̃n isometrically embeds
into Bn+r , which in turn implies that La(B̃n) isometrically embeds into La(Bn+r ).

7 Conclusions

Assume that a sequence (Gk)k∈N of graphs equi-bi-Lipschitzly contains (Kk)k∈N.
It follows then from Theorem 1.3 and Lemma 5.1, together with the remark there-
after, that the sequence (Hk)k∈N of Hamming cubes equi-bi-Lipschitzly embeds into
(La(Gk))k∈N. We do not know if the converse holds.

Problem 7.1 Given a sequence (Gk)k∈N of graphs, if the Hamming cubes (Hk)k∈N
equi-bi-Lipschitzly embed into (La(Gk))k∈N, does it follow that (Kk)k∈N equi-bi-
Lipschitzly embeds into (Gk)k∈N?

The following tree might be a counterexample to Problem 7.1.

Example We construct a tree which can be seen as a “binary tree with variable-size
legs” as follows. Given k ∈ N and � = (�1, �2, . . . , �k) ∈ N

k , replace each edge on
the j th level of the binary tree of length k by a path of length � j , where by an edge
on the j th level we mean an edge such that the distance from its farthest endpoint to
the root is j . Denote by B� the new tree, of length � = ∑k

i=1 �i , thus obtained. The
tree B�, with � = (4, 2, 1) is the tree of length � = 7 depicted in the illustration below
(Fig. 3).

If we choose for every k ∈ N, the sequence �(k) = (
�
(k)
1 , �

(k)
2 , . . . , �

(k)
k

)
so that

�
(k)
1 is chosen large enough compared to �

(k)
2 , �(k)

2 is chosen large enough compared to

�
(k)
3 , etc. it is not hard, but cumbersome, to prove that the sequence

(
B�(k)

)
k∈N does not

equi-bi-Lipschitzly contain (Kk)k∈N. So for this example to become a counterexample
to Problem 7.1, we need a positive answer to the following question.

Problem 7.2 Let
(
B�(k)

)
k∈N be constructed as in the description above. Does (Hk)k∈N

equi-bi-Lipschitzly embed into
(
La(B�(k) )

)
k∈N?

Any counterexample to Problem 7.1 would be a counterexample to the following
problem.

Problem 7.3 If (Gk)k∈N is a sequence of graphs which does not equi-bi-Lipschitzly
contain (Kk)k∈N, and if X is a non-reflexive Banach space, does it follow that the
sequence (La(Gk))k∈N equi-bi-Lipschitzly embeds into X?
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Fig. 3 B�̄, with �̄ = (4, 2, 1)

Indeed, there are non-reflexive Banach spaces X with non-trivial type (cf. [9,10]
or [22]). By the observation at the beginning of this section, these spaces cannot
equi-bi-Lipschitzly contain sequences of graphs which equi-bi-Lipschitzly contain
(Hk)k∈N.
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