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Abstract

A hierarchical Model Predictive Control (MPC) formulation is presented for discrete-time linear systems with state and input
constraints. A vertical hierarchical controller, with one controller per level, reduces the computational burden associated with
the solution of centralized MPC having long prediction horizons and short time steps. To guarantee satisfaction of state and
input constraints in the presence of both known and unknown disturbances, a robust MPC formulation is used at each level
while waysets are used as a novel coordination mechanism between controllers at different levels. These waysets are implemented
as terminal state constraints on lower-level controllers and are computed on-line based on the optimal state trajectory of
upper-level controllers. To achieve the computational efficiency necessary for on-line calculation, waysets are represented as
constrained zonotopes. State and input constraint satisfaction is proven for a hierarchical controller with an arbitrary number
of levels and two numerical examples demonstrate the key features, performance, and scalability of the approach.
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1 Introduction

For the control of many complex systems, the ability
to satisfy both input and state constraints is critical to
maintaining safe and reliable system operation. Addi-
tionally, with increasing demand for performance and
efficiency, optimal system operation is characterized by
both transient and steady-state input and state trajecto-
ries that approach these constraints. Examples include
the control of aircraft power systems [1, 2], on- and off-
road hybrid vehicles [3–5], smart grids [6–8], and water
distribution networks [9, 10].

For the control of input and state constrained systems,
system operation is not always indefinite and the desired
behavior is not always characterized by driving the sys-
tem to steady-state or from one equlibrium to another.
This idea is discussed in [11] for vehicle maneuvering
problems where the notion of stability is replaced by the
notion of completion. Similarly, this work focuses on the
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control of systems under finite operation, with the goal
of guaranteeing state and input constraints during op-
eration and terminal state constraints at the end of op-
eration.

Model Predictive Control (MPC) is well-suited for the
control of constrained systems since input and state con-
straints are directly imposed in the underlying optimiza-
tion problem. Feasibility of these constraints and sta-
bility of the closed-loop system are well understood for
the case of a single centralized controller [12]. However,
for systems that require fast control update rates and
long prediction horizons, the time required to solve the
resulting large optimization problem may prevent real-
time implementation.

Alternatively, hierarchical MPC can be used to decom-
pose control decisions across multiple levels of con-
trollers [13]. Upper-level controllers use large time steps
to achieve long prediction horizons with fewer discrete
steps. Lower-level controllers with small time steps use
short prediction horizons to minimize computational
cost and enable real-time implementation. To handle
the timescale separation between the system and ac-
tuator dynamics, several two-level hierarchical MPC
formulations have been developed [14–20].

However, existing hierarchical formulations are not well
suited to maximize the performance of a system subject
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to input, state, and terminal constraints under finite
operation. Most hierarchical MPC approaches are for-
mulated with the goal of stabilizing the system to an
equilibrium in the interior of state and input constraint
sets. However, for systems with finite operation, such
equilibrium might not exist as in the case of systems
whose operation is based on the consumption of a fi-
nite resource (e.g. fuel in an aircraft [1, 2] or battery
state of charge in an electric vehicle [3–5]). Moreover,
existing approaches [14–20] are typically formulated
where upper-level controllers are robust to the control
decisions of lower-level controllers and overall control
authority is divided among each control level. Exist-
ing reference tracking based coordination mechanisms
require lower-level controllers to track state and input
trajectories determined by upper-level controllers, pre-
venting the hierarchical controller from utilizing the fast
system dynamics to maximize system performance. Fi-
nally, while most hierarchical MPC formulations are de-
signed to two controller levels, many systems have more
than two timescales and an M -level hierarchical MPC
would be more effective in controlling each timescale. To
date, there does not exist a M -level hierarchical MPC
framework that provides guaranteed state and input
constraint satisfaction, even for linear systems.

To develop a constructive hierarchical MPC framework
that guarantees input and state constraint satisfaction,
this paper focuses on a vertical hierarchy, with one con-
troller per level, for discrete-time linear systems. This
work replaces the conventional reference tracking based
coordination between controllers of the hierarchy with
a novel coordination mechanism using waysets. A way-
set defines a subset of states at a future point in time
from which there exist feasible state and input trajecto-
ries for the remainder of system operation. Thus, driving
the system states to a wayset provides a short-term con-
trol objective that guarantees long-term constraint sat-
isfaction. Within the proposed hierarchical MPC frame-
work, waysets are computed based on optimal state tra-
jectories determined by upper-level controllers and im-
posed as terminal constraints for lower-level controllers.
Wayset-based coordination overcomes the limitations of
existing hierarchical MPC frameworks by removing the
need for constraint-feasible equlibrium, removing the
conservatism that stems from requiring upper-level con-
trollers to be robust to the lower-level control decisions,
and allowing lower-level controllers to utilize the fast sys-
tem dynamics to further improve system performance.

Similar coordination mechanisms have been used in the
literature. For wastewater treatment systems, the hier-
archical controller in [21] uses “interlayer targets” to
achieve coordination between controllers at different lev-
els. These interlayer targets inspired the use of waypoints
as the coordination mechanism for a two-level hierarchy
in [22]. These waypoints are imposed as terminal con-
straints on lower-level controllers within the hierarchy.
For vehicle path-planning, waypoint tracking control is

used in [23] to split long planning horizons into multi-
ple shorter horizons by creating intermediate goals. This
idea was extended to wayset tracking in [24], where way-
sets represent a region of the state space instead of a sin-
gle point. However, in both cases the waypoint/wayset
generation is performed off-line in a feed-forward fash-
ion.

To enable on-line calculation of waysets, computational
efficiency is vastly improved by representing the way-
sets as constrained zonotopes [25]. Zonotopes are widely
used due to their computational efficiency in reach set
calculations for hybrid system verification, estimation,
and MPC [25–28]. As will be shown, the proposed way-
set calculations are similar to the computation of reach
sets and utilize linear transformation, Minkowski sum,
and intersection operations.

To achieve guaranteed input and state constraint satis-
faction, this paper develops a vertical hierarchical MPC
framework with a novel wayset coordination mechanism.
The specific contributions of this paper are 1) the de-
velopment of an M -level hierarchical MPC framework
that incorporates known disturbances and is robust to
bounded unknown disturbances, 2) the definition and
use of waysets to prove robust closed-loop constraint sat-
isfaction, 3) the representation and calculation of way-
sets as constrained zonotopes to achieve efficient on-line
calculation, and 4) the numerical demonstration of per-
formance and scalability of the hierarchical approach.
Note that the nominal version of this hierarchical MPC
formulation without accounting for disturbances was ini-
tially presented in [29].

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 present the class of constrained discrete-
time linear systems and the proposed M -level hierarchi-
cal MPC formulation. Section 4 defines a robust output
constraint tightening procedure and the wayset proper-
ties. Robust state and input constraint satisfaction is
proved in Section 5. Section 6 details the calculation of
waysets and the use of constrained zonotopes to achieve
computational efficiency. Two numerical examples are
provided in Section 7 to demonstrate the key features,
performance, and scalability of the approach. Finally,
Section 8 summarizes the conclusions of the paper.

Notation

For a discrete time system, the notation x(k) denotes
the state x at time step k. For MPC, the double index
notation x(k + j|k) denotes the predicted state at fu-
ture time k + j determined at time step k. The bracket
notation k ∈ [0, kF ] denotes all integer values of k from
0 to kF . The state trajectory over these time indices
is denoted {x(k)}kFk=0. The set of positive integers is
Z+. The weighted norm is defined as ‖x‖2Λ = xTΛx,
where Λ is a positive definite diagonal matrix. The
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subscript i is used to denote the ith controller in the
hierarchy, Ci, and i− = i − 1 is shorthand used to
reference the controller directly above, Ci− . For sets
Z,W ⊂ Rn, Y ⊂ Rm, and matrix R ∈ Rm×n, the linear
transformation of Z under R is RZ = {Rz | z ∈ Z},
the Minkowski sum of Z and W is Z ⊕ W =
{z + w | z ∈ Z, w ∈ W}, and the generalized intersec-
tion of Z and Y under R is Z ∩RY = {z ∈ Z | Rz ∈ Y}.
The standard intersection, corresponding to the iden-
tity matrix R = In, is simply denoted as Z ∩ W .
The Pontryagin difference is defined as Z 	 W =
{z ∈ Rn | z + w ∈ Z , ∀w ∈ W}. The Cartesian prod-
uct is defined as Z × Y =

{
[zT yT ]T | z ∈ Z, y ∈ Y

}
.

The projection of the set Y on the first n dimensions is
denoted πn (Y). The empty set is denoted as ∅.

2 Problem Formulation

Consider the discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) + d(k), (1)

with states x ∈ Rn, inputs u ∈ Rm, disturbances d ∈ Rn,
and where A ∈ Rn×n is invertible, B ∈ Rn×m, and the
pair (A,B) is stabilizable.

Assumption 1 With a fixed time step size ∆t, the sys-
tem operates for a finite length of time starting from t = 0
and ending at t = tF = kF∆t with discrete time steps
indexed by k ∈ [0, kF ].

Assumption 2 The disturbance is d(k) = d̂(k)+∆d(k),

where d̂(k) is known a priori for all k ∈ [0, kF ] and ∆d(k)
is unknown but bounded to a convex and compact set such
that ∆d(k) ∈ D ⊂ Rn.

Starting from an initial condition x(0), the goal is to de-
velop a vertical hierarchical MPC approach that plans
and executes an input trajectory {u(k)}kF−1

k=0 and cor-

responding state trajectory {x(k)}kFk=0 which i) satisfies
the system dynamics from (1); ii) satisfies the state and
input constraints

x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm, ∀k ∈ [0, kF − 1] ; (2)

iii) satisfies the terminal constraint

x(kF ) ∈ T ⊆ X ; (3)

and iv) minimizes the generic cost function

J∗ (x(0)) = min
{u(k)}kF −1

k=0

kF∑
j=0

` (x(j), u(j), r(j)) , (4)

where a pre-determined reference trajectory {r(k)}kFk=0
defines the desired system operation.

System

C3

C2

C1

t = 0
k = 0

t = tF = 27
k = kF = tF

∆t = 27
∆t = 1

∆t3 = ∆t = 1
N3 = 3

N2 = 3

N1 = tF
∆t1

= 3

∆t2 = N3∆t3 = 3

∆t1 = N2∆t2 = 9

Fig. 1. The relationship between prediction horizons Ni and
time step sizes ∆ti, i ∈ [1, 3], for a three-level, M = 3, hier-
archical controller operating a system for t ∈ [0, 27].

Assumption 3 Sets X ,U , T are compact and convex.

For notational simplicity, the state and input constraints
from (2) are represented as the output constraints

y(k) ,

[
x(k)

u(k)

]
= Cx(k) +Du(k) ∈ Y , X × U . (5)

3 Robust Vertical Hierarchical Control

The proposed hierarchical control formulation has M
levels of controllers Ci, i ∈ [1,M ], each with a predic-
tion horizon and time step size that satisfy the following
assumptions.

Assumption 4 For each controller Ci, i ∈ [1,M ], the
prediction horizon Ni ∈ Z+ and time step size ∆ti > 0
satisfy

i) ∆tM = ∆t;
ii) ∆ti− = Ni∆ti;

iii) ∆t1 = tF
N1

.

These assumptions indicate i) the lowest-level controller
CM and the system (1) have the same time step size,
ii) each controller Ci predicts state and input trajecto-
ries between consecutive updates of the controller Ci−
directly above in the hierarchical controller, and iii) the
highest-level controller C1 predicts to the end of sys-
tem operation. Additionally, let νi ,

∆ti
∆t ∈ Z+, be de-

fined as a time scaling factor for each controller. The
time steps for Ci are indexed by ki, where ki , k

νi
and

kM = k. Let ki,F , kF
νi

such that ki ∈ [0, ki,F ]. Fig. 1
shows how the conditions of Assumption 4 determine
the relationships between time step sizes and prediction
horizons for a three-level hierarchical controller.

Each controller Ci updates only when k = νiki (i.e. when
k mod νi = 0), by solving the constrained optimization
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problem Pi (x(k)) defined as

J∗i (x(k)) =min
x̂i(ki|ki)
Ûi(ki)

ki+Ni(ki)∑
j=ki

` (x̂i(j|ki), ûi(j|ki), ri(j)) , (6a)

s.t. ∀j ∈ [ki, ki +Ni(ki)]

x̂i(j + 1|ki) = Aix̂i(j|ki) +Biûi(j|ki) + d̂i(j), (6b)

ŷi(j|ki) = Cx̂i(j|ki) +Dûi(j|ki) ∈ Ŷi(j), (6c)

x̂i(ki +Ni(ki)|ki) ∈ Ŝi(ki +Ni(ki)), (6d)

x(k)− x̂i(ki|ki) ∈ E ∨ x̂i(ki|ki) = x̂∗i (ki|ki − 1). (6e)

First, note that Pi (x(k)) has a shrinking horizon, based
on the summation limits in (6a), with horizon length

Ni(ki) , Ni−(ki mod Ni) whereNi satisfies Assump-
tion 4ii. Thus, Ci predicts between the current time step
and the time step of the next update of Ci− , at which
point (ki mod Ni) = 0 and prediction horizon resets
back to Ni(ki) = Ni. The nominal input sequence over

this horizon is defined as Ûi(ki) = {ûi(j|ki)}ki+Ni(ki)−1
j=ki

,

with the optimal nominal sequence denoted as Û∗i (ki).
In (6b), the model used by Ci assumes a piecewise con-
stant nominal control input over the time step size ∆ti
and thus Ai = Aνi and Bi =

∑νi−1
j=0 AjB (as in [17]).

Since the known disturbance is time varying over the
time step size ∆ti, the known disturbance used in (6b) is

d̂i(ki) =

νi−1∑
j=0

Aνi−1−j d̂(νiki + j), (7)

which ensures that d̂i(ki) captures the accumulated ef-

fect of the known time-varying disturbances, d̂(k), k ∈
[νiki, νiki + νi − 1], during this slow time step. The nom-
inal outputs ŷi(j|ki) in (6c) are constrained to the time-

varying tightened output constraint set Ŷi(j), with de-
tails provided in Sections 4.1 and 4.2. The time-varying
terminal state constraint in (6d) corresponds to the way-

sets Ŝi(ki+Ni(ki)) used as the only coordination mech-
anism between controllers Ci and Ci− . The properties
of these waysets are defined in Section 4.3 and the calcu-
lation of the waysets is provided in Section 6.2. Finally,
(6e) provides Ci the choice of nominal initial condition,
x̂i(ki|ki), which is a decision variable following the tube-
based MPC formulation in [30]. The reasoning for this
specific treatment of the initial condition is detailed in
Section 4.4.

As shown in Fig. 2, coordination is achieved among the
controllers through the use of waysets imposed as ter-
minal constraints (6d). Within this hierarchical control
framework, only the lowest level controller CM directly
affects the system. Once CM has solved for the optimal
nominal control input trajectory Û∗M (kM ) and optimal
nominal initial condition x̂∗M (kM |kM ), the input to the

C1

C2

CM

Ŝ2(k2 +N2(k2))

Ŝ3(k3 +N3(k3))

ŜM (kM +NM (kM ))
...

u(k) = û∗M (kM |kM ) +K(x(k)− x̂∗M (kM |kM ))

û∗M (kM |kM ), x̂∗M (kM |kM )

u(k)

x(k + 1) = Ax(k) +Bu(k) + d(k)
x(k)d(k)d̂(k)

∆d(k) ∈ D

+

+

d̂M (kM )

d̂2(k2)

d̂1(k1)

Fig. 2. The hierarchical MPC structure with M levels, where
controllers Ci, i ∈ [1,M ] are formulated based on (6), the

known disturbances d̂i(ki) are computed based on (7), the

waysets Ŝi(ki + Ni(ki)), i ∈ [2,M ], are used to coordinate
controllers Ci and Ci− , and the static feedback control law
(8) bounds the effect of the unknown disturbance ∆d(k) ∈ D.

system u(k) is calculated based on the control law

u(k) = û∗M (kM |kM ) +K[x(k)− x̂∗M (kM |kM )], (8)

where K ∈ Rm×n is a static feedback control gain. This
control law is used to bound the error between the nom-
inal and true system state trajectories created by the
unknown disturbances ∆d(k). Section 4.1 details the de-
sign of K and the resulting set E that bounds this error.

In summary, the M -level hierarchical controller is im-
plemented based on Algorithm 1. The constrained op-
timization problem Pi (x(k)) for each controller Ci, i ∈
[1,M ] is specifically designed with the nominal model
of (6b), the time-varying tightened output constraints
of (6c), the wayset terminal constraints of (6d), and the
initial state condition of (6e) to establish guaranteed ro-
bust satisfaction of output and terminal constraints as
proven in Section 5.

Remark 1 As discussed in [29], neither the references
nor the exact formulation of cost function in (6a) affect
the feasibility of any Pi (x(k)) in the hierarchical con-
troller.

Remark 2 While the focus of this paper is on hierarchi-
cal control for systems with finite operation per Assump-
tion 1, indefinite system operation can be achieved by re-
placing the shrinking prediction horizon, N1, of C1 with
a receding horizon of fixed length. To guarantee recursive
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Algorithm 1: M -level hierarchical MPC

1 initialize k, ki ← 0, ∀i ∈ [1,M ]
2 while k < kF do
3 for i = 1 to M − 1 do
4 if k mod νi = 0 then
5 solve Pi (x(k));

6 calculate Ŝi(ki +Ni(ki)) and
communicate to Pi+1 (x(k));

7 ki ← ki + 1;
8 end
9 solve PM (x(k)) and apply the input

u(k) to the system based on (8);
10 kM ← kM + 1;
11 k ← k + 1;
12 end
13 end

feasibility, the terminal set T must be a Robust Positive
Invariant (RPI) set based on pre-determined bounds of
d(k), as done in centralized MPC formulations [31].

4 Set Definitions

4.1 Output Constraint Tightening for CM

The proposed hierarchical MPC framework is robust to
unknown bounded disturbances using the tube-based
MPC formulation developed in [30]. For the lowest level
controller CM , the only difference between the true sys-
tem (1) and the model used for control (6b) is the un-
known bounded disturbance ∆d(k) ∈ D. Using the con-
trol law (8), and comparing (1) and (6b) for i = M , the
error e(k) = x(k)− x̂∗M (kM |kM ) satisfies

e(k + 1) = (A+BK)e(k) + ∆d(k). (9)

AssumingK is designed to stabilize A+BK and E ∈ Rn
is a disturbance invariant set for (9), then

(A+BK)E ⊕ D ⊆ E . (10)

Thus, if e(k) ∈ E , then e(k + 1) ∈ E for all ∆d(k) ∈ D.
As in [30], the constraint (6e) on the initial condition
allows CM to choose x̂M (kM |kM ) such that e(k) ∈ E .
The minimal disturbance invariant set [32] is

E =
∞⊕
i=0

(A+BK)iD, (11)

and should be as small as possible to reduce conservatism
of the controller. However, due to the infinite sum, com-
puting E is difficult and a outer approximation Ẽ is typ-
ically used where E ⊆ Ẽ , Ẽ satisfies (10), and Ẽ can be
represented as a polytope [31]. For the remainder of the

paper E and Ẽ are used interchangeably.

k = νi(ki − 1)

ki − 1

νiki

ki ki + 1

νi(ki + 1)

ŷ

t

Ŷ

ŷ

t

Ŷi(ki)

(a)

(b)

k = νi(ki − 1)

ki − 1

νiki

ki ki + 1

νi(ki + 1)

ŷ(k) /∈ Ŷ

ŷ(k) ∈ Ŷ ∀k

Fig. 3. (a) Controller Ci plans a feasible state trajectory
(large blue dots) at the slow time step ki but the result-
ing trajectory (small black dots) violates output constraints
(dashed black line) at the inter-sample system time steps.
(b) Tightening the output constraint set (dashed blue line)
for Ci ensures that any trajectory at the slow time index is
also feasible at the faster time indices.

From [30], when designing a robust MPC controller for
CM with the nominal system model (6b), tightened
state, input, and terminal constraint sets are used where

X̂ , X 	 E , Û , U 	KE , T̂ , T 	 E . (12)

It is assumed thatD, and thus E , are small relative to the
state and input constraint sets such that X̂ , Û , T̂ 6= ∅.
Based on (5), the tightened output constraint set is

Ŷ , Y 	 (E ×KE). (13)

Since CM has the same time step size as the system, i.e.
νM = 1, ŶM (kM ) = Ŷ for all kM . However, for Ci, i ∈
[1,M − 1], additional time-varying constraint tightening
is required to account for inter-sample behavior between
the slow updates of these upper-level controllers.

4.2 Output Constraint Tightening for Ci, i ∈ [1,M − 1]

As shown in Fig. 3(a), constraining the slow nominal out-

put trajectory ŷi(ki) ∈ Ŷ planned by Ci, i ∈ [1,M − 1]

does not guarantee that ŷ(k) ∈ Ŷ during the inter-
sample updates when k = [νiki + 1, νi(ki + 1)− 1].
Thus, it is important to further tighten the constraint
set Ŷ to account for transient state trajectories between
the slow updates, as shown in Fig. 3(b).
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Definition 1 The time-varying tightened nominal out-
put constraint set Ŷi(ki) is the set of all initial nominal
state and nominal input combinations that results in an
output trajectory satisfying (13) if the input is held con-
stant for νi steps, i.e.

Ŷi(ki) ,
{
ŷi(ki) =

[
x̂i(ki)
ûi(ki)

] ∣∣∣ ∀k ∈ [νiki, νi(ki + 1)− 1] ,

ŷ(k) =
[
x̂(k)
û(k)

]
∈ Ŷ, û(k) = ûi(ki),

x̂(k + 1) = Ax̂(k) +Bû(k) + d̂(k),

x̂(νiki) = x̂i(ki)
}
.

Similar to the procedure presented in [29], Ŷi(ki) is cal-

culated based on the tightened output constraint set Ŷ
represented in H-Rep as

Ŷ =
{

(x̂(k), û(k))
∣∣∣P̂ [C D]

[
x̂(k)
û(k)

]
≤ q̂
}
. (14)

For i ∈ [1,M − 1], Ŷi(ki) is time-varying due to the

dependence on d̂i(ki) and may be computed as

Ŷi(ki) = Ŷ ∩ Ŷ(νiki + 1) ∩ · · · ∩ Ŷ(νiki + νi − 1), (15)

where, for all j ∈ [1, νi − 1],

Ŷ(νiki + j) = (16){
(x̂(k), û(k))

∣∣∣P̂ [Cj Dj ]
[
x̂(k)
û(k)

]
≤ q̂(νiki + j)

}
,

with Cj = CAj , Dj = D + C
∑j−1
l=0 A

lB, and

q̂(νiki + j) = q̂ − P̂C
j−1∑
l=0

Aj−1−ld̂(νiki + l). (17)

Lemma 1 For all i < j, i, j ∈ [1,M ], at time step k =

νiki = νjkj, Ŷi(ki) ⊆ Ŷj(kj) ⊆ Ŷ.

PROOF. See [29]. 2

4.3 Waysets

Definition 2 The wayset S(k) ⊂ X denotes a set of
states at time step k such that for any x(k) ∈ S(k) there

exists a future input trajectory {u(k)}kF−1
k=k and corre-

sponding state trajectory {x(k)}kFk=k satisfying (1-3).

In this paper, the waysets imposed as terminal con-
straints in (6d) are the sole coordination mechanism be-
tween levels of the hierarchical controller. Since (6d) im-
poses a constraint on the nominal predicted state, nom-
inal waysets are used and denoted as Ŝ. Since the way-
sets are used to guarantee feasibility of constraints be-
yond the prediction horizon of lower-level controllers,

each controller Ci has a different wayset denoted as
Ŝi. Finally, the waysets are time-varying, denoted as
Ŝi(ki +Ni(ki)), where the time step always corresponds
to the time step of the next update of Ci− . Within the
context of Definition 2, there are many possible ways
to formulate Ŝi(ki +Ni(ki)). In this paper, waysets are
formulated to satisfy the following assumptions in order
to prove feasibility of theM -level hierarchical controller.

Assumption 5 The waysets Ŝi(ki+Ni(ki)) in (6d) sat-
isfy the following:

(1) for C1, Ŝ1(k1 +N1(k1)) = T̂ ,
(2) for Ci, i ∈ [2,M ],

(a) Ŝi(ki+Ni(ki)) is only recomputed at updates of
Ci− per Algorithm 1 ,

(b) x̂∗i−(ki− + 1|ki−) ∈ Ŝi(ki +Ni(ki)),
(c) if x̂∗i−(ki− + 2|ki−) exists, for each state in

Ŝi(ki + Ni(ki)) there exists a trajectory satis-
fying (6b) and (6c) that drives the system to
x̂∗i−(ki− + 2|ki−),

(d) if x̂∗i−(ki− + 2|ki−) does not exist, Ŝi(ki +

Ni(ki)) = Ŝi−(ki− +Ni−(ki−)),

(e) if ki +Ni(ki) = ki,F , Ŝi(ki +Ni(ki)) = T̂ .

Conceptually, these assumptions state: 1) for the high-
est level controller, the wayset equals the terminal con-
straint set, since C1 always predicts to the final time step
per Assumption 4iii; 2a) since the wayset for Ci de-
pends on the state trajectory determined by Ci− , way-
sets for Ci are only recomputed when Ci− updates; 2b)
noting that the time index of the wayset for Ci corre-
sponds to the time index for the second optimal nominal
state in the trajectory determined by Ci− , this optimal
state exists in the wayset; 2c) since the prediction hori-
zon for each controller shrinks over time, if the third op-
timal nominal state in the trajectory determined by Ci−

exists, then the wayset for Ci is defined as all the nom-
inal states such that there exists feasible nominal input
and state trajectories that drive the nominal system to
this state; 2d) if the third optimal nominal state in the
trajectory determined by Ci− does not exist, then the
wayset for Ci is set equal to the wayset for Ci− ; and 2e)
if Ci predicts to the final time step, the wayset is set
equal to the tightened terminal constraint set.

4.4 Initial Conditions

In the formulation of Pi (x(k)), (6e) provides Ci with
two options for the choice of nominal initial condition,
x̂i(ki|ki). The first option, x(k) − x̂i(ki|ki) ∈ E , comes
from the tube-based MPC formulation presented in [30].
The second option, x̂i(ki|ki) = x̂∗i (ki|ki − 1), similar
to [33] allows the nominal initial condition to equal the
optimal nominal state for this time step determined by
Ci at the previous time step. To understand the role

6
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Fig. 4. Schematic showing the need for the initial condi-
tion option in (6e) where x(3) satisfies the wayset constraint

x(3) ∈ Ŝ2(3) but x(3) /∈ X(2)
T .

of this initial condition option, consider the following
definition and assumption.

Definition 3 [34] The feasible set X(N1)
T ⊂ X denotes

the set of states such that P1 (x(k)) admits a solution,
with prediction horizon N1 and terminal set T .

Assumption 6 The initial condition satisfies x(0) ∈
X(N1)
T and thus there exists a feasible solution to P1 (x(0))

at time step k = k1 = 0.

For clarity of exposition, Fig. 4 demonstrates the need
for the initial condition option in (6e) for the case where
M = 2 and ∆d(k) = 0. With a prediction horizon of

N1 = 3, Fig. 4 shows how x(0) ∈ X(3)
T by Assump-

tion 6. Therefore, C1 has a feasible state trajectory
{x̂∗1(j|0)}3j=0. The feasibility of this trajectory implies

x̂∗1(1|0) ∈ X(2)
T and x̂∗1(2|0) ∈ X(1)

T . Per Assumption

5, Ŝ2(3) denotes the set of states such that there exists
a trajectory satisfying (6b) and (6c) which drives the
system to x̂∗1(2|0). As proven in the following section,
the lower-level controller(s) will drive the system from

x(0) to x(3) ∈ Ŝ2(3), however there is no guarantee that

x(3) ∈ X(2)
T . If x(3) /∈ X(2)

T , then the second initial con-
dition option in (6e) is required to maintain feasibility
of P1(x(3)). The following section details how the initial
condition option and properties of the waysets defined
in Assumption 5 establish feasibility of all controllers.

5 Hierarchical Control Feasibility

The following lemmas establish feasibility of individ-
ual controllers within the hierarchy starting with the
highest-level controller C1.

Lemma 2 If P1 (x(k)) is feasible at k = ν1k1, then
P1 (x(k)) is feasible at k = ν1(k1 + 1).

PROOF. As discussed in [29], the optimal solution at
k = ν1(k1 + 1) is the tail of trajectories determined at

the previous time step k = ν1k1. To show that this can-
didate solution satisfies the constraints in (6), first note
that the nominal system model is time-invariant and

that while d̂1(k1) is time-varying, the trajectory of d̂1(k1)
is known per Assumption 2 and does not change dur-
ing system operation. Thus, the candidate solution sat-
isfies (6b). Similarly, while Ŷ1(k1) varies with k1, Ŷ1(k1)
at a particular k1 remains constant since the time step
dependency only comes from the dependence of Ŷ1(k1)

on d̂(k) per (15)-(17). Thus, the candidate solution sat-

isfies (6c). Since Ŝ1(k1 +N1(k1)) = T̂ is time-invariant,
the candidate solution satisfies (6d). Finally, (6e) pro-
vides the option to let x̂1(k1|k1) = x̂∗1(k1|k1 − 1). Note,
this candidate solution at k = ν1(k1 + 1) is optimal if
x(k) − x̂1(k1 + 1|k1 + 1) ∈ E does not admit a feasible
solution. 2

Next, if Ci is feasible at the time step of the upper-level
controller Ci− update, then Ci remains feasible for all
time steps until the next update of Ci− .

Lemma 3 If Pi (x(k)) is feasible at k = νiki, where k
mod νi− = 0 (i.e at the time of a Ci− update), then
Pi (x(k)) is feasible at each time step k = νi(ki + 1)
through k = νi(ki +Ni − 1).

PROOF. See [29]. 2

Finally, at the time step of the upper-level controller Ci−

update, feasibility of Ci− guarantees feasibility of Ci.

Lemma 4 If Pi− (x(k)) has a feasible solution at k =
νi−ki− and PM (x(k − 1)) had a feasible solution at the
previous time step k − 1, then Pi (x(k)) has a feasible
solution at this time step.

PROOF. The proof for the robust case presented in
this paper is similar to the nominal case presented in
[29] where two cases must be considered based on

1) x(k)− x̂∗i−(ki− |ki−) ∈ E or,
2) x∗i−(ki− |ki−) = x∗i−(ki− |ki− − 1).

For 1), the feasible solutions to Pi (x(k)), comes directly
from the feasible solutions determined by Pi− (x(k)) as
shown in [29].

For 2), a feasible solution to Pi (x(k)) exists with a nom-
inal state trajectory satisfying x(k) − x̂i(ki|ki) ∈ E . If
PM (x(k − 1)) had a feasible solution at the previous
time step k− 1, then x(k− 1)− x̂∗M (kM − 1|kM − 1) ∈ E
due to (6e) and x(k)−x̂∗M (kM |kM−1) ∈ E due to the in-
variance of E under control law (8).Thus, x̂∗M is a feasible

7
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Fig. 5. Schematic showing how Assumption 6 and Lem-
mas 2-4 are used to establish feasibility of each controller
at every time step for a three-level hierarchical controller.

initial condition for Pi (x(k)) that satisfies constraints
(6b)-(6e) as shown in [29]. 2

The main results of this paper guarantees constraint sat-
isfaction for the M -level hierarchical controller.

Theorem 1 Following Algorithm 1 for an M -level hi-
erarchical controller, all control problems Pi (x(k)) , i ∈
[1,M ] are feasible when solved at k mod νi = 0, result-
ing in system state and input trajectories satisfying con-
straints (2) and (3).

PROOF. Using Assumption 6 and Lemmas 2-4,
Fig. 5 shows how feasibility is established for each
Ci, i ∈ [1,M ]. Due to the constraint tightening pre-
sented in Section 4.1, feasibility of PM (x(k)) and the
use of control law (8) guarantees the satisfaction of (2).
By the wayset properties defined in Assumption 5.2e,
Ŝi(ki + Ni(ki)) = T̂ once ki + Ni(ki) = ki,F and thus
feasibility of PM (x(k)) also guarantees the satisfaction
of (3). 2

Remark 3 With all states and inputs constrained in (2),
the constraint satisfaction established in Theorem 1 also
provides bounded input bounded output (BIBO) stability.
For many applications, BIBO stability is preferred over
asymptotic stability so that the dynamics of the system
can be used to maximize performance as in the case of
completion-based MPC [11].

6 Set Computations

6.1 Tightened Output Constraints

The tightened output constraints are calculated as in
(15) and can be computed off-line prior to system opera-
tion. Thus, computational cost is not a primary concern.
However, redundant constraints should be removed to
minimize the number of constraints, nh.

6.2 Waysets

Inspired by the iterative approach to feasible set calcula-
tion in [34], Algorithm 2 generates waysets that satisfy
Assumption 5. First, the if statement handles the case
when x∗i−(ki− + 2|ki−) does not exist, due to the shrink-
ing horizon, by setting the wayset for Ci equal to way-
set for Ci− , satisfying Assumption 5.2d. If x∗i−(ki− +
2|ki−) does exist, then the iterative approach computes
the wayset by starting at this optimal nominal state
x∗i−(ki− +2|ki−) at time step ki+2Ni and working back-
wards to compute sets of states and inputs at previous
time steps that drive the nominal system to this optimal
state. The iterations end once the wayset is calculated
for the time step ki + Ni. The intersection operation is
used to ensure that these state and input trajectories
also satisfy the tightened output constraints from (6c).
Finally, since waysets define a set of states, the projec-
tion operation is used to project the calculated output
wayset into the first n dimensions.

Algorithm 2: Wayset Ŝi(ki +Ni(ki)) computa-
tion for i ∈ [2,M ] at time step k = νi−ki− .

1 initialize j ← Ni
2 if Ni−(ki−) < 2 then

3 Ŝi(ki +Ni(ki)) = Ŝi−(ki− +Ni−(ki−));
4 else

5 Ŝi(j) = x̂∗i−(ki− + 2|ki−);
6 while j ≥ 1 do

7 Ỹ Ŝi(j)i =
{

(x̂i, ûi) | x̂+
i ∈ Ŝi(j),

x̂+
i = Aix̂i+Biûi+ d̂i(ki+Ni+ j−1)

}
;

8 Ŝi(j−1) = πn(Ỹ Ŝi(j)i ∩I Ŷi(ki+Ni+j−1));
9 j ← j − 1;

10 end

11 Ŝi(ki +Ni(ki)) = Ŝi(j)
12 end

While the steps in Algorithm 2 conceptually define the
wayset calculations, these steps can be simplified using
the notion of generalized intersection. Note that line 7
is equivalent to

[Ai Bi] ŷi ∈ Ŝi(j)	 d̂i(ki +Ni + j − 1), (18)

where the Pontryagin difference simply shifts the center

of Ŝi(j) since d̂i(ki + Ni + j − 1) is a vector and not a
set. This condition and the tightened output constraint
condition from (6c), ŷi ∈ Ŷi(ki + Ni + j − 1)) must
be satisfied. The generalized intersection can be used to
enforce both conditions as

ŷi ∈ Ŷi(ki +Ni + j − 1))∩[Ai Bi] (19)(
Ŝi(j)	 d̂i(ki +Ni + j − 1)

)
.
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Projection can then be used to transform this output
constraint set to a state constraint set.

As discussed in [34], the iterative approach provides im-
proved computational efficiency compared to projection-
based methods. However, when polytopic constraint sets
and waysets are represented in H-Rep or as a convex hull
of vertices (V-Rep), on-line wayset calculation may still
be limited by computational cost. As discussed in [25]
and the references therein, the worst-case complexity of
linear transformation, Minkowski sum, and generalized
intersection scales exponentially in the set dimension.
Therefore, Algorithm 2 is likely to be very computa-
tionally expensive and potentially numerically unstable
for n,m greater than about five (potentially less than 5
if the number of halfspaces or vertices defining the poly-
topes is large). In fact, the numerical examples in [34]
are restricted to n ≤ 4, m ≤ 2, and less than ten itera-
tion steps.

Under Algorithm 1 1, Ŝi(ki + Ni(ki)) is recomputed
on-line at every update of Ci− . Thus, efficient set com-
putations are critical to the wayset-based hierarchical
control. The following section demonstrates how zono-
topes can be used to significantly reduce the cost of com-
puting waysets, enabling the proposed approach.

6.3 Zonotope-based Set Calculation

A zonotope is the Minkowski sum of a finite set of
line segments or, equivalently, the image of a hyper-
cube under an affine transformation [35, 36] . Using
the generator-representation (G-Rep), the zonotope
Z ⊂ Rn is defined by its center c ∈ Rn and ng gen-
erators gi that form the columns of G ∈ Rn×ng , such
that Z = {Gξ + c | ‖ξ‖∞ ≤ 1}. The complexity of a
zonotope is captured by its order, o =

ng

n .

Zonotopes have been widely used due to their computa-
tional efficiency in reach set calculations for hybrid sys-
tem verification, estimation, and MPC [25–28]. As with
the iterative algorithm in [34], computing these reach
sets utilizes linear transformation and Minkowski sum
operations. Zonotopes are closed under these operations
(i.e. the Minkowski sum of two zonotopes is a zono-
tope) and the number of generators grows linearly with
the number of Minkowski sum operations, compared to
the potential exponential growth with H-Rep. Unfortu-
nately, zonotopes in general are not closed under inter-
section and the conversion from G-Rep to H-Rep for in-
tersection operations is inefficient.

Constrained zonotopes were developed in [25] to
overcome this limitation. Using the constrained
generator-representation (CG-Rep), the constrained
zonotope has nc equality constraints on ξ such that
Z = {Gξ + c | ‖ξ‖∞ ≤ 1, Aξ = b}, where A ∈ Rnc×ng

and b ∈ Rnc . The complexity of a constrained zonotope
is captured by the degrees-of-freedom order, od =

ng−nc

n .

Using the shorthand Z = {G, c,A, b}, [25] shows that
constrained zonotopes are closed under linear transfor-
mation, Minkowski sum, and generalized intersection
where

RZ = {RGz, Rcz, Az, bz} , (20)

Z ⊕W =

{
[Gz Gw] , cz + cw,

[
Az 0

0 Aw

]
,

[
bz

bw

]}
, (21)

Z ∩R Y =

[Gz 0] , cz,


Az 0

0 Ay

RGz −Gy

 ,


bz

by

cy−Rcz


 .

(22)

To perform the wayset calculations using zonotopes,
it is necessary to convert sets from H-Rep to CG-
Rep. For a set defined via box constraints such as
Z = {z ∈ Rn | z ≤ z ≤ z̄}, the corresponding CG-Rep
is

Z =

{
diag

(
z̄ − z

2

)
,
z̄ + z

2
, [ ] , [ ]

}
. (23)

More generally, any convex polytope defined in H-Rep
can be represented in CG-Rep using the following pro-
cedure from [25]. If Z =

{
z ∈ Rn | Hz ≤ f̄

}
is a con-

vex polytope, there exists a bounding zonotope Z0 =
{G, c} ⊂ Rn such that Z ⊂ Z0. Additionally, there ex-
ists f ∈ Rn such that Hz ∈

[
f, f̄

]
for all z ∈ Z. Note

that the set F =
[
f, f̄

]
is defined via box constraints

and can be written in CG-Rep based on (23). Thus, Z is
defined as the generalized intersection of two zonotopes
Z = Z0 ∩H F with CG-Rep from (22).

Note the following details when executing Algo-
rithm 2 using constrained zonotopes. Line 5 ini-
tializes the wayset as a point from the optimal
nominal state trajectory determined by Ci− as
Ŝi(j) =

{
[ ] , x̂∗i−(ki− + 2|ki−), [ ] , [ ]

}
. As discussed in

Section 6.2, Line 7 and the intersection operation in
Line 8 are expressed as the generalized intersection in
(19). The projection operation in Line 8 is equivalent to
a linear transformation in CG-Rep where R from (20)
is R = [In 0n×m].

Based on Algorithm 2, the number of generators ng and

number of constraints nc required to represent Ŝi(ki +
Ni(ki)) grows linearly with the prediction horizon Ni.

Assuming n states and that the CG-Rep of Ŷi(ki+Ni+
j − 1)) has ng,Ŷi

generators and nc,Ŷi
constraints, the

generalized intersection in (19) adds ng,Ŷi
generators

and n+nc,Ŷi
constraints to the CG-Rep of Ŝi(j). Thus,

for a prediction horizon of Ni, the wayset Ŝi(ki+Ni(ki))
has ng,Ŷi

Ni generators and (n+ nc,Ŷi
)Ni constraints.

9



As shown in the following numerical examples, CG-Rep
reduces the time required to compute waysets by several
orders-of-magnitude compared to H-Rep.

7 Numerical Examples

To demonstrate the formulation and use of waysets in
hierarchical MPC, this section presents two numerical
examples. The first example is the same vehicle system
from [22, 29] and highlights the wayset and tightened
output constraint set calculations, the resulting robust
constraint satisfaction, and the overall closed-loop per-
formance and computational cost of the two-level hierar-
chy compared to centralized MPC. The second example
presents a three-level hierarchy for a linearized thermal
system to demonstrate the scalability of the approach.
All results were generated using MATLAB on a desk-
top computer with a 3.6 GHz i7 processor and 16 GB of
RAM and all MPC optimization problems were formu-
lated and solved with YALMIP [37] and Gurobi [38].

7.1 Vehicle Example

Consider the simplified vehicle system model

x(k + 1) =
[

1 1 0
0 1 0
0 0 1

]
x(k) +

[
0 0 0
1 −1 0
−1 −1 −1

]
u(k) + d(k),

where the states x(k) ∈ R3 represent position, velocity,
and on-board stored energy, and the inputs u(k) ∈ R3

represent acceleration, deceleration, and power to an on-
board load, all of which deplete the stored energy. Per
Assumption 2, the disturbances d(k) ∈ R3 with d(k) =

d̂(k) + ∆d(k).

The system and lowest level controller have time step
sizes of ∆t = ∆tM = 1 second. Finite operation is de-
fined for 100 seconds, thus kF = 100. Choosing ∆t1 = 10
seconds results in ν1 = 10 and maximum prediction hori-
zons of N1 = N2 = 10 steps. The output constraints
defining Y and T are −1
−20

0
0
0
0

 ≤ y(k) ≤

 105
20
100
1
1
1

 , [−1
−1
0

]
≤ x(kF ) ≤

[
1
1

100

]
.

Given an initial state of x(0) = [0 0 100]T , the desired

operation, defined by {r(k)}kFk=0, is shown in Fig. 6 for
the first state (position), and third input (load power).
References for the first and second inputs (acceleration
and deceleration) are 0 for the entire operation, and thus
are not shown in Fig. 6. These references are used to
define (4) as the weighted quadratic cost function

` (x(j), u(j), r(j)) = ‖r(j)− yr(j)‖2Λ, (24)

where yr(j) =
[
[1 0 0]x(j)

u(j)

]
, Λ = diag ([102 100 100 102]).
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Fig. 6. References for state and load power.

0 20 40 60 80 100

0

0.5

1

1.5

Fig. 7. Disturbance profile consisting of a large known pulse
and small unknown deviations.

Fig. 8. Example of constraint tightening with projections
of various output constraint sets on the position and veloc-
ity states to the left and the acceleration and deceleration
inputs to the right. Black denotes the original output con-
straints Y while gray denotes the robust output constraints

Ŷ = Ŷ2(k2), ∀k2. Blue denotes the time-varying tightened

output constraint set Ŷ1(k1), ∀k1 6= 5, while semi-transpar-

ent red denotes Ŷ1(k1), k1 = 5.

The disturbances d(k) are shown in Fig. 7, which con-
sist of a known pulse to the second state of magnitude
1.5 from 45 to 55 seconds. Note that the known distur-
bances are permitted to change between updates of the
upper level controller. This unique feature of the pro-
posed approach is enabled by calculating the equivalent
known disturbances in (7) and the time-varying con-
straint tightening in (15). The unknown disturbances are
independently generated from a uniformly distributed
random signal bounded such that ‖∆d(k)‖∞ ≤ 0.01.
The static feedback control gain K ∈ Rm×n from (8)
compensates for these unknown disturbances and was
designed as a discrete-time linear-quadratic regulator
with weighting matrices Q = In, R = Im.

Fig. 8 provides an example of the constraint tighten-
ing used by the two controllers of the hierarchy. Given
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Table 1
Complexity and Computation Time of Waysets

Complexity

Wayset CG-Rep H-Rep min H-Rep

nc × ng nh nh

Maximum 30× 60 6913 197

Mean 30× 60 3120 108

Minimum 30× 60 38 21

Approximate Computation Time (seconds)

CG-Rep H-Rep min H-Rep

Maximum 0.006 393 353

Mean 0.002 120 114

Minimum 0.0006 0.51 0.38

the output constraint set Y, the time-invariant tight-
ened output constraint set Ŷ = Ŷ2(k2), ∀k2, used by the
lower-level controller C2, is calculated based on (13),
where an outer approximation of E is calculated using
the results from [31]. Two examples of Ŷ1(k1) are shown

to demonstrate Lemma 1 and the dependency of Ŷ1(k1)
on the time-varying known disturbance.

Fig. 9 shows simulation results using the proposed
wayset-based hierarchical controller compared to a
shrinking horizon centralized controller that predicts
to the end of system operation and a receding horizon
centralized controller (Cent Short) with a short predic-
tion horizon of 10 time steps. Since tracking a desired
position of 100 meters from 10 to 90 seconds is a major
objective for the operation of the system, the first sub-
plot in Fig. 9 highlights this part of operation. Both the
centralized and hierarchical controllers track the desired
reference while compensating for the known and un-
known disturbances and satisfy the output constraints,
shown here by keeping position below 105 meters. Al-
ternatively, the optimization problem for the 10-step
receding horizon centralized controller becomes infeasi-
ble at t = 11 seconds when the velocity of the vehicle is
too high to avoid violating the position constraint. The
second and third subplots show that the wayset-based
hierarchy satisfies the terminal constraint while main-
taining a positive amount of stored energy. Finally, the
fourth subplot shows the trajectory for input 3, from 30
to 70 seconds. Due to the limited amount of on-board
energy, neither controller is able to track the desired
load power and must shed some of the load to satisfy
the terminal constraint. Centralized MPC evenly dis-
tributes this load shedding while C2 of the hierarchy is
more greedy and only load sheds once it is required to
satisfy the wayset constraint determined by C1.

Table 1 shows the maximum, mean, and minimum com-
plexity of the waysets for this example simulation using
CG-Rep and H-Rep along with the computation time.
Both H-Rep and min H-Rep calculations were performed
using the Multi-Parametric Toolbox (MPT) [39]. For
CG-Rep and H-Rep, no attempt was made to remove
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1 Reference

Centralized

Hierarchy

Cent Short

Fig. 9. Simulation results comparing the shrinking horizon
centralized controller, receding horizon centralized controller
with a short prediction horizon, and a two-level hierarchical
controller.

redundant constraints. Overall, the CG-Rep achieves
three to five orders-of-magnitude reduction in computa-
tion time, enabling on-line calculation of waysets. Note
that 60 generators and 30 equality constraints were used
to represent each wayset in CG-Rep regardless of the
shape of each wayset. For scalability of the CG-Rep way-
set calculations, it will be important to maintain a de-
sired degree-of-freedom order, od ≤ odesd . In [25], gener-
ator and constraint reduction techniques are presented
that result in outer-approximations. However, for way-
set calculations, complexity reduction must create inner-
approximations. The development of these techniques is
the focus of future work.

7.2 Thermal Example

To evaluate the scalability of the hierarchical approach,
consider the thermal system shown in Fig. 10, where
Ti, i ∈ [1, n] are the temperatures of n thermal elements
arranged in a chain, each with a thermal capacitance Ci.
Heat transfer, Qi between thermal elements Ti and Ti+1

is controlled by the coolant mass flow rate ṁi resulting
in Qi = ṁicp(Ti − Ti+1), where cp is the specific heat
of the coolant. Disturbances consist of the heat input
Q0 and the ambient temperature T∞. From conservation
of energy, the nonlinear, continuous-time dynamics are
CiṪi = Qi−1 −Qi, ∀i ∈ [1, n]. For the following results,
Ci = 104 J/K and cp = 4181 J/(kg K) are assumed.

To represent this system in the form of (1), these dy-
namics are linearized about a nominal mass flow rate
ṁi = ṁo = 0.25 kg/sec and temperature difference
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Q0

T1 Tn
Q1 Qn−1

...
Qn

T∞

Fig. 10. Thermal system comprised of a disturbance heat
input Q0 and controllable heat transfer Qi, i ∈ [1, n], be-
tween n thermal elements of temperature Ti and ambient
surroundings of temperature T∞.
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Fig. 11. Known disturbance profile for the heat input Q0.

Ti−Ti+1 = ∆T o = 50K and discretized with a time step
size of 1 second. The corresponding steady-state heat
input is Qo0 = ṁocp∆T

o. From this linearization, the
states x(k) ∈ Rn represent temperature deviations from
nominal and the inputs u(k) ∈ Rn represent mass flow
rate deviations from nominal. The disturbances d(k) =

d̂(k) + ∆d(k) ∈ R2 represent deviations from the nom-
inal heat input and nominal ambient temperature, sat-
sifying Assumption 2. Finite operation is defined for
1000 seconds (kF = 1000) with the known ambient tem-
perature remaining at nominal and the known heat in-
put consisting of four pulses as shown in Fig. 11. The un-
known disturbances are independently generated from a
uniformly distributed random signal bounded such that

|∆d(k)| ≤ [0.1Qo0 5]
T

. As with the previous vehicle ex-
ample, the static feedback control gain K from (8) was
designed as a discrete-time linear-quadratic regulator
with weighting matrices Q = R = In.

For a three-level hierarchical controller, the system
and lowest level controller have time step sizes of
∆t = ∆tM = 1 second while the middle and upper
level controllers have time step sizes of ∆t2 = 5 and
∆t1 = 40 seconds, respectively. As a result, ν1 = 40,
ν2 = 5, and the maximum prediction horizons are
N1 = 25, N2 = 8, and N3 = 5 steps. The output con-
straints Y are defined such that ‖x(k)‖∞ ≤ 100 and
‖u(k)‖∞ ≤ 0.25 , ∀k ∈ [0, kF − 1]. The terminal con-
straint simply enforces ‖x(kF )‖∞ ≤ 100. Given an ini-
tial state of x(0) = 0, the desired operation is to satisfy
the output and terminal constraints while minimizing
the control inputs to their lower bounds (u(k) = −0.25).
A quadratic cost function is used as in (24) with Λ = In.

Fig. 12 shows the state trajectories for a three element
system (n = 3) under the proposed wayset-based hier-
archical controller compared to a shrinking horizon cen-
tralized controller that predicts to the end of system
operation and a receding horizon centralized controller
with a short prediction horizon of 5 time steps. For the
disturbances shown in Fig. 11, the heat pulses are so
large that there does not exist a steady state under these
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Fig. 12. Simulation results comparing the shrinking hori-
zon centralized controller (top), receding horizon centralized
controller with a short prediction horizon (middle) and a
three-level hierarchical controller (bottom).

heat loads that satisfies the specified output constraints.
Thus, the controller needs to pre-cool each thermal el-
ement to take advantage of the thermal capacitance in
the system. Both the shrinking horizon controller and
the hierarchical controller achieve this pre-cooling effec-
tively, demonstrating that waysets can effectively con-
strain short-term system operation to guarantee long-
term output constraint satisfaction beyond the predic-
tion horizon of the lower-level controllers. Alternatively,
the receding horizon centralized controller becomes in-
feasible at t = 157 seconds where, given the short pre-
diction horizon, the controller cannot pre-cool the sys-
tem enough prior to the heat load to avoid violating the
temperature constraint.

The value of the proposed hierarchical control approach
is the scalability with respect to prediction horizon and
system order. For the results shown in Fig. 12 with n = 3
states and kF = 1000 steps, the average computation
time is 5.96 seconds for the centralized controller while
the average computation times, including wayset calcu-
lations, for the hierarchical controller C1, C2 and C3 are
0.12, 0.03, and 0.02 seconds, respectively. To demon-
strate scalability with respect to prediction horizon, Fig.
13 shows average computation times for the centralized
and hierarchical controllers for prediction horizons rang-
ing from kF = 200 to kF = 1000 steps for a three ele-
ment system (n = 3). As indicated by the dashed line,
the centralized controller is able to maintain real-time
calculation speed, tcalc ≤ ∆t, for prediction horizons of
kF ≤ 360 steps. In these cases, a centralized approach
is practical and preferable to the hierarchical controller.
However, for longer prediction horizons, kF > 360, a cen-
tralized approach is no longer viable under the available
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Fig. 13. Average computation time for the centralized and
hierarchical controller as a function of operating duration.

computational resources, warranting the proposed hier-
archical approach with two orders-of-magnitude faster
computation times. For these results, only the predic-
tion horizon N1 of the upper level controller was varied
to accommodate the change in kF . For the hierarchi-
cal MPC formulation, real-time execution only requires
tcalc,i ≤ ∆ti for each controller, and thus the upper-level
controllers are allotted more time to solve their optimiza-
tion problems. Extending the proposed theoretical hier-
archical MPC formulation to directly account for com-
putational delay, as in [40], is the focus of future work.

To demonstrate scalability with respect to system order,
Fig. 14 shows average computation times for the central-
ized and hierarchical controller for system orders rang-
ing from n = 3 to n = 10 with kF = 360 steps. While
the complexity of the waysets grows linearly with system
order, the computation times of the controllers within
the hierarchy remain significantly faster than that of the
centralized controller. However, for the tenth order sys-
tem, the waysets used by C2 in CG-Rep had 800 gen-
erators and 720 constraints, thus motivating future re-
search in lower-complexity inner approximations of way-
sets for improved scalability of the proposed hierarchical
approach.

8 CONCLUSIONS

A multi-level vertical hierarchical MPC formulation was
presented for constrained linear systems. A robust MPC
formulation was used for each controller to guarantee
state and input constraint satisfaction in the presence
of known and unknown disturbances. Waysets were
developed as a novel coordination mechanism between
controllers at different levels of the hierarchy. These
waysets served as terminal constraints for lower-level
controllers, providing flexibility in short-term opera-
tion of the system while guaranteeing long-term ability
to satisfy output and terminal constraints. Using a
constrained zonotope representation, waysets were effi-
ciently computed on-line based on the state trajectories
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Fig. 14. Average computation time for the centralized and
hierarchical controller as a function of system order.

determined by upper-level controllers. Numerical ex-
amples demonstrated the performance and scalability
of the wayset-based hierarchy compared to centralized
MPC approaches. Future work will focus on the efficient
calculation of lower complexity inner-approximations of
the waysets for improved scalability and the extension
of this work to hybrid and nonlinear systems.
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