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Abstract

Parasitic plants steal sugars, water, and other nutrients from host plants
through a haustorial connection. Several species of parasitic plants such as
witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.)
are major biotic constraints to agricultural production. Parasitic plants are
understudied compared with other major classes of plant pathogens, but
the recent availability of genomic and transcriptomic data has accelerated
the rate of discovery of the molecular mechanisms underpinning plant
parasitism. Here, we review the current body of knowledge of how parasitic
plants sense host plants, germinate, form parasitic haustorial connections,
and suppress host plant immune responses. Additionally, we assess whether
parasitic plants fit within the current paradigms used to understand the
molecular mechanisms of microbial plant-pathogen interactions. Finally,
we discuss challenges facing parasitic plant research and propose the most
urgent questions that need to be answered to advance our understanding of
plant parasitism.
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Parasitic plant: plant
that receives all or part
of its nutrients
through a haustorial
connection to another
plant

Host plant: plant that
provides resources to
parasitic plants, likely
at a fitness cost

Hemiparasite:
parasitic plant that can
photosynthesize and
thus is not completely
dependent on the host
plant for sugars

Holoparasite:
parasitic plant that
lacks the capacity for
photosynthesis and
thus relies entirely on
uptake of sugars from
host plants

Facultative parasite:
a parasitic plant that
can complete its
lifecycle as an
autotrophic plant but
retains the capacity to
opportunistically
parasitize host plants.
Facultative parasitic
plants must be
hemiparasitic

Haustorium: organ
that invades the host
and forms a physical
and physiological
bridge between
parasite and host
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INTRODUCTION

Parasitic plants live by obtaining part or all of their nutritional needs from another plant. The evo-
lution of parasitism as a life strategy in angiosperms represents the transition of species from au-
totrophy to an association with—and, in many cases, obligate dependence on—other plant species.
This dependence is associated with parasitic plants evolving mechanisms that enable them to iden-
tify host plants, grow invasively into the hosts, and establish connections to withdraw water and
resources from the hosts. As such, parasitic plants illustrate some of the most exciting examples of
plant-plant interactions.

Parasitism as a life strategy is widespread among living species, and plants are no exception
(99). Indeed, the ability to form parasitic associations has evolved independently at least 12 times
in different plant families (136), and parasitic plants account for roughly 1% of angiosperm species.
Parasitism, therefore, can demonstrably provide a fitness benefit to plants in multiple ecological
contexts. One trait common among parasites is the need to obtain water and mineral nutrients
from their hosts, suggesting that access to water and nitrogen is a driving factor in this evolution
(52).In terms of dependency on host photosynthesis and metabolism, large differences exist among
parasitic plant species, spanning the spectrum from hemiparasite to holoparasite and facultative
to obligate parasites. Nevertheless, it is important to note that all parasitic plants evolved from
autotrophic ancestors, so at the cellular level, they retain the distinctive features of plants such as
plastids and cell walls.

At the whole-plant level, parasitic plants exhibit a wide range of different morphologies and
structurally different haustorial connections. The haustorium connects parasites to their hosts and
provides a conduit for extracting host resources. As a result, parasite species are freed from many
of the normal constraints of autotrophic plants; they may also have reduced or absent organs such
as roots or leaves and may lack chlorophyll. Some species exist primarily underground, attached to
host roots, emerging above the soil only to flower (e.g., Phelipanche and Orobanche). Other species
may pass substantial portions of their vegetative life cycle growing inside their hosts (e.g., Rafflesia,
mistletoes). For the latter, the shelter provided by living underground or within the host could
provide another advantage for parasitism. But given the diverse origins of parasitic plants, it is
difficult to generalize among the various types.

The Orobanchaceae and Cuscutaceae families have received the most research attention to date
(Figure 1) because they include some of the most economically important parasitic weed species.
Orobanchaceae are root parasites and include the genera Striga (witchweed) and Alectra, which
pose a great threat to cereal production in sub-Saharan Africa, India, and Asia (94). The related
species in Phelipanche and Orobanche (together commonly called broomrapes) destroy yields of
broad-leaved crops throughout North Africa, the Mediterranean, Europe, and the Middle East.
Although the hemiparasites Triphysaria versicolor and Phtheirospermum japonicum are not weedy,
they have been developed into model parasite species that can be readily cultured in the laboratory
and genetically transformed (54, 121). Besides the Orobanchaceae, Cuscuta species are important
stem parasites that cause substantial economic impact (94) and have increasingly become the sub-
ject of parasitic plant research. All these species have contributed to exciting developments in our
understanding of the mechanisms of parasite—host interactions.

The study of parasitic plants spans the disciplines of weed science and plant pathology. On
the one hand, these parasites are angiosperms and have the same basic biochemistry, genetics, and
physiology as do fully autotrophic plants. From an agronomic perspective, parasitic weeds may be
controlled in part by mechanical or chemical methods similar to those used on autotrophic weeds,
thus falling under the purview of weed science (4, 30, 37). On the other hand, parasitic plants
may deviate substantially from fully autotrophic plants in terms of physiology and morphology
because they behave like pathogens, with specific adaptations for acquiring resources from their
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Phelipanche Orobanche Striga Triphysaria Phtheirospermum Cuscuta
aegyptiaca crenata hermonthica versicolor japonicum campestris

Host root

. v
Obligate parasites

Facultative parasites Obligate
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Figure 1

Some of the most widely studied parasitic plant species. The top row shows a typical view of the parasite, and the bottom row shows
examples of parasite-host connections. Phelipanche aegyptiaca is shown on (2) tomato and (b) Arabidopsis, Orobanche crenata on (c) faba
bean and (d) lentil root, Striga hermonthica on (e,f) sorghum, Trriphysaria versicolor (g) in the field and (b) connected to the root of the
unknown host. Phtheirospermum japonicum is shown (7) in the field and (j) connected to rice root via two haustoria. Cuscuta campestris is
shown (k) on tomato and (J) as a close-up of the haustorial region on beet. Photos provided by (#,b,c,¢,k,}) James Westwood, (d) Rashid
Mentag, (f) Michael Timko, (g,#) John Yoder, and (i,/) Satoko Yoshida.

hosts. Researchers have described multiple levels of parasitic plant signaling, including the specific
triggering of germination of parasite seeds by host root exudates, tropic growth of the parasite
radicle/stem toward the host, and initiation of the haustorium as well as myriad chemical and
physical interactions that mediate the haustorial interaction with host tissues (Figure 2). This
review focuses on recent advances in parasitic plant biology that relate to these interactions and
support the consideration of parasitic plants as plant pathogens.

PARASITE IDENTIFICATION OF HOSTS
Germination

One of the most intriguing aspects of plant—plant communication is the ability of seeds of certain
obligate parasites of the Orobanchaceae family to coordinate their germination with the presence
of anearby host root. This feature is important because these seeds are extremely small and limited
to only a few millimeters of radicle growth before they must contact and attach to a host root ~ Obligate parasite:

for continued survival. Germination without a host, or in the presence of a nonhost, results in ~ Parasitic plant that
relies on host plant
parasitism to complete
its life cycle

death. The mechanisms underlying host-specific germination posed a long-standing challenge to
researchers, but recent breakthroughs have reshaped our knowledge of germination stimulants.
We briefly describe the process of host-specific germination, but several recent reviews provide
excellent coverage of this area (27, 83, 85, 87, 107, 109, 132, 148).
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Schematic of key aspects of parasite—host communication contrasting between the Orobanchaceae root parasite Striga (top) and the
stem parasite Cuscuta (bottonz). Communication is divided into five points in the life cycle in which prominent aspects of plant
interactions are recognized.

Strigolactones (SLs):
class of plant
hormones exuded
from plant roots to
foster interactions with
mycorrhizal fungi

Seeds of obligate parasites such as Orobanche, Phelipanche, and Strign may lie dormant in the
soil for years until they detect the chemical signature of an appropriate host root (Figure 24).
Strigolactones (SLs) are the best-characterized class of germination stimulants for members of
the Orobanchaceae. SLs are hormones produced by all green plants higher than algae (29). They
help regulate plant architecture through control of branching and recruit soil mycorrhizal fungi
via exudation into the rhizosphere (1, 38, 126). At least 20 different SL molecules have been iden-
tified in plants (138), and plant families produce varying forms such that parasite seeds are able to
differentiate among hosts on the basis of the identity of exuded SLs.

The structure of SLs is key to their function. Canonical SLs are carotenoid-derived compounds
(79) that have a four-ring structure consisting of fused ABC rings linked to a D ring by an enol-
ether bond. Critical to SL function, the D ring is cleaved and subsequently bound by a receptor in
SL signaling (148). Different SLs are distinguished by the presence or absence of methyl or hy-
droxyl groups on the A and B rings and by the stereochemistry of the BC ring conformation. Like
SLs, other compounds such as methyl carlactonoate can stimulate germination (132). A common
feature of such compounds is a butenolide ring similar to the D ring of SLs.

Recent advances in SL signaling have partially solved the long-standing mystery of how par-
asitic plants detect germination stimulants. Plants are able to perceive SLs through a family of
receptors related to DWARF 14 (D14), an o/3-hydrolase superfamily protein. For signaling of
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endogenous SLs, binding to D14 results in hydrolytic cleavage of the D ring from the ABC rings
and covalent binding of the D ring to D14, leading to a conformational change that promotes
physical association between D14 and MORE AXTILLARY GROWTH?2 (148). The latter is an
F-box protein that functions in signaling as part of a Skp1/Cullin/F-box E3 ubiquitin ligase com-
plex. Parasitic plants use a parallel and more ancient (16) mechanism that involves a protein re-
lated to D14 termed KARRIKIN INSENSITIVE 2 (KAI2; also known as HYPOSENSITIVE
TO LIGHT) (82). The KAI2 genes in parasitic Orobanchaceae appear to have undergone ex-
pansion and specialization to become a rapidly evolving family termed diverged KAI2 (22) that
provides parasites with a mechanism to recognize specific host SLs, adapt to changes in host SL
profiles, and shift to recognize new hosts. For example, Striga hermonthica has at least 11 KAI2
genes, although only ShTHL7 encodes a protein that is especially responsive to SLs (120), leav-
ing the remaining genes free to evolve to encode proteins that recognize different SLs or related
compounds.

Locating the Host

Chemotropic growth of the parasite radicle in Orobanchaceae has been postulated for years
(Figure 2b) (58). Without such a mechanism, the emerging radicle, which is already constrained
in terms of available resources for growth, would have a relatively low chance of contacting the
host root. Although no specific chemical signal has been identified, time-lapse video suggests that
the S. hermonthica radicle bends toward the host root as it elongates (143).

Growth toward the host is more easily observed in Cuscuta. The seedling of this plant germi-
nates without the need for specific signals and emerges from the soil in spring along with other
plant seedlings. The challenge for Cuscuta is that the thread-like shoot must make contact with
a host plant so that it can coil and form haustorial attachments. The stems of Cuscuta seedlings
rotate in a counterclockwise rotation that is not entirely random as they explore their aerial en-
vironment for host plants (67, 68, 74, 125). One factor guiding the shoot toward a host is the
detection of volatile chemicals emitted from the host plant (105). Under carefully controlled con-
ditions, Cuscuta pentagona seedlings preferentially grew toward tomato plants or tomato volatiles
(an acceptable host) rather than to wheat (which will not sustain Cuscuta) or wheat volatiles. Cus-
cuta is also sensitive to light spectrum for coiling and haustoria formation (43, 61), and the tropism
of the Cuscuta shoot apex is a response to far-red light, which indicates nearby vegetation (49, 93).
Exposure to red light (660 nm) inhibits the induction of haustoria, suggesting the involvement of
phytochromes in haustorium initiation (36).

Cuscuta and Orobanchaceae use tactile signals in addition to chemical cues and light quality to
identify appropriate hosts. Although light quality is critical for coiling, haustorium development
is initiated only after coils come in contact with the host, indicating a further requirement for a
tactile signal (118). A true host is not essential for the tactile response because any solid surface
(e.g., glass rod or plastic stick) is sufficient for coiling and haustorium initiation. Tactile cues are
also stimulatory for haustorium development in Orobanchaceae, and haustoria form and attach to
inanimate surfaces such as rocks or petri dishes (75, 101, 137).

THE HAUSTORIUM AND ITS DEVELOPMENT
Haustorium Initiation

Haustoria are parasite-encoded, multifunctional organs that attach the parasite to the host, pene-
trate into host tissues, and ultimately establish the physiological conduit through which resources
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flow between parasite and host (9, 57, 142). There are two general types of haustoria: lateral haus-
toria, which develop on the sides of roots or stems, and terminal haustoria, which develop on
the tips of newly emerging radicles. Lateral haustoria are more common and are characteristic of
haustoria in Cuscuta and most Orobanchaceae (Figure 1). Terminal haustoria are more special-
ized. They are restricted to obligate parasites such as Striga, Orobanche, and Phelipanche, to which
they provide a mechanism for rapidly invading a host root within days of germination. Termi-
nal haustoria alter the tip meristem so no additional root growth occurs until the haustorium has
successfully invaded the host. In contrast, lateral haustoria develop on functioning roots without
altering the tip meristem so multiple haustoria can develop on a single root. Phylogenetic distri-
bution of haustorial types suggests lateral haustoria predate terminal haustoria (133). We focus
primarily on Orobanchaceae parasites, which dominate the literature.

Haustoria typically develop only in the presence of host plants, suggesting that parasitic plants
have mechanisms to locate and distinguish potential host plants (Figure 2¢). Orobanchaceae rec-
ognize potential host roots through a combination of chemical and tactile cues. Five general classes
of molecules have been identified as active haustoria-inducing factors (HIFs): flavonoids, phenolic
acids, quinones, cytokinins, and cyclohexene oxides (3, 20, 32, 101, 114). The redundancy in HIFs
may account for the broad range of host plants parasitized by Orobanchaceae species.

The first HIF identified from host root extracts was 2,6-dimethoxy-1,4-benzoquinone
(DMBQ). It is formed from the oxidation of syringic acid, which can be an oxidative degradation
product of lignin (20). This finding led to the model that parasite-encoded peroxidases, together
with hydrogen peroxide present at the parasite radical tip, convert host cell wall lignins into active
HIFs (69). Consistent with this model, the effects of lignin composition on haustorium induction
differ among parasites: P. japonicum and S. hermonthica develop haustoria in response to S- and
G-type lignins, respectively (24). However, nearly eliminating both of these lignins in the Ara-
bidopsis med5/5b mutant did not eliminate HIF activity, suggesting that additional HIF molecules
are present in Arabidopsis root exudates (24).

Because phenolic acids become active HIFs only after oxidization to their sister quinones, haus-
torium induction may depend on the redox state of the inducer (84, 111). Subsequent experiments
indicated that semiquinone intermediates formed during redox cycling between quinone and hy-
droquinone states of the HIF initiate a redox-sensitive signaling pathway leading to haustorium
development (70, 145). Redox cycling is catalyzed by quinone oxidoreductases, and transforming
T. versicolor or P. japonicum roots with inhibitory RNA molecules targeting specific quinone
oxidoreductases significantly reduces haustorium development (8, 55). Interestingly, different
quinone oxidoreductase enzymes are recruited in Tiiphysaria and P, japonicum, so multiple enzymes
may be involved in redox changes to the HIFs.

Not all Orobanchaceae respond to the same HIFs. For example, T versicolor forms haustoria
in response to DMBQ, but Triphysaria eriantba does not (56). Similarly, Orobanche and Phelipanche
do not form obvious haustorial structures in response to DMBQ (60), but they form haustoria
when treated with root exudates of Brassica napus (39). In the latter case, the HIF may be a host-
exuded cytokinin signal. Sphaeropsidone and episphaeropsidone, two phytotoxic cyclohexene ox-
ides isolated from the fungus Diplodia cupressi, induce haustorium development in S. bermonth-
ica, Orobanche crenata, and Orobanche cumana (32). Thus, there is redundancy among the types of
molecules capable of inducing haustorium development in Orobanchaceae.

Attachment via Haustorial Hairs

The first contact between certain Orobanchaceae parasites and hosts is made by haustorial hairs,
which cement the parasite to the host. Both haustorial and root hairs are of epidermal origin, and
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their development entails rapid tip growth (101, 108). However, haustorial hairs are also distinct
from root hairs. Whereas root hairs develop at multiple locations on the root, haustorial hair pro-
liferation is highly localized to the area of the root that develops into a haustorium. Screening of
a mutagenized population of P, japonicum yielded three recessive mutations defective in haustorial
hair formation, two of which are allelic (25). These lines formed haustoria but neither root nor
haustorial hairs, suggesting a genetic connection between the two hair types. When host and para-
site roots were forced to grow closely together, haustorial hair mutants produced similar numbers
of haustoria as do wild-type P, japonicum. Thus, haustorial hairs may play a role in host—parasite
associations but not in haustorium initiation.

Hormone Action

As growth regulators of plant organogenesis, hormones play multiple roles in the development
of haustoria. Whereas exogenous auxin stimulated haustorium development in 7. versicolor
seedlings, both auxin efflux inhibitors (2,3,5-triiodobenzoic acid) and auxin activity inhibitors
(p-chlorophenoxyisobutyric acid) did the opposite (122). Transgenic Tiiphysaria roots bearing
reporter constructs driven by auxin or ethylene-responsive promoters reacted positively when
exposed to DMBQ), suggesting these two hormones are differentially abundant at the sites of
haustorium development.

The YUCCA (YUC) family of flavin monooxygenases catalyzes the rate-limiting step of
indole-3-acetic acid formation (86). In P, japonicum, YUCS3 is highly upregulated specifically in the
parasite epidermal cells around the host contact site (53). Transgenic P, japonicum roots expressing
YUC3-silencing constructs formed significantly fewer haustoria than did nontransgenic controls.
Furthermore, transgenic P. japonicum roots expressing YUC3 ectopically induced the formation of
haustorium-like structures at the root epidermal cells. Thus, YUC3 expression in epidermal cells
near the site of host contact may play a role in haustorium development.

In addition to Orobanchaceae, auxin is associated with haustorium development in Cus-
cuta and Thesium chinense, a facultative root hemiparasite in Santalaceae. In both Cuscuta and
T. chinense, auxin-related genes are upregulated in haustoria (100, 146). Metabolite analysis of
T: chinense haustoria indicated the presence of very-long-chain fatty acids that are often associated
with cell proliferation, tissue patterning, and roles in polar auxin transport that determine cell
polarity in Arabidopsis lateral root development (104).

Cytokinins also contribute to haustorium function. Parasite-synthesized cytokinins that are
transported from P, japonicum into Arabidopsis cause hypertrophic swelling near the site of infec-
tion (113). P, japonicum—induced host swelling required the host cytokinin signaling genes AHK3
and AHK4 but not the cytokinin biosynthesis genes IPT1, IPT3, IPTS, or IPT7. Host plants
with hypertrophic swelling were smaller than were AHK3 mutants, which did not swell, suggest-
ing that the movement of cytokinin from parasite into hosts is a factor in successful parasitism
(113).

Evolutionary Origins of Haustoria

There are two general theories for the evolutionary origins of the haustorium. The first model
proposes that genes involved in haustorium development have an exogenous origin and were in-
troduced into parasitic lineages through pathogen infection or horizontal gene transfer (7). Re-
cently, 52 high-confidence horizontally transferred genes were identified in the transcriptomes of
T. versicolor, S. hermonthica, and Phelipanche aegyptiaca (140), and 64 such transfers were detected
in Cuscuta campestris (130). Most of these genes in the Orobanchaceae family are preferentially
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expressed during haustorial formation, suggesting that horizontal gene transfer contributed to
the evolution of their haustoria.

The second model indicates that genes for haustorium development are endogenous to para-
sitic lineages where they fulfill functions unrelated to parasitism. Subsequent mutations in these
genes or their regulation machinery resulted in altered functions or ectopic expression used for
parasitic purposes. Orobanchaceae haustoria are formed on roots, and gene expression in hausto-
ria is most similar to that of roots (139). Development of both haustoria and lateral roots requires
localized auxin accumulation, and inhibiting auxin flux reduces haustorium development (53,122,
142). Thus, the molecular developmental machinery used for lateral root formation in nonparasitic
plants may have been co-opted into the developmental reprogramming of haustorial formation in
parasitic plant lineages.

In Cuscuta, the KNOTTED-like homeobox transcription factor SHOOT MERISTEMLESS
is upregulated during haustorium formation, and inhibition of its RNA through host-
induced gene silencing reduced the ability of haustoria to connect and establish (2). SHOOT
MERISTEMLESS is also associated with stem phenotypes in other plants, and its elimination
has no effect on Arabidopsis roots. These results suggest the evolutionary origin of haustoria in
Cuscuta contains elements of both root and shoot developmental programs (2).

PARASITE-HOST EXCHANGE OF RNAs

Parasites exchange proteins and RNAs with their hosts that could contribute to shaping inter-
actions between species (Figure 2¢). Host mRNAs can move into Cuscuta, often traveling long
distances (30 cm) from a haustorium (26, 103). There appears to be selectivity for the uptake of
certain mRINAs (73), and different host-derived mRNAs have different decay rates once inside
Cuscuta (77). Thus, delivery or uptake of host mRINAs by Cuscuta is at least partially directed, al-
though random bulk acquisition may also occur (19). Cuscuta mRINAs can also be found in the host,
and large numbers of mRNAs are transferred (72). To date, it has not been conclusively shown
that mobile mRINAs are functional after transfer across Cuscuta haustoria. Mobile mRNAs could
be functional in recipient plants as templates for translation, thus delivering foreign proteins. Al-
ternatively, mobile mRNAs could serve as templates for the production of small silencing RINAs
once they move into the recipient species.

Functional RNA-interference signals also move across parasitic plant haustoria. Hairpin trans-
genes in host plants trigger effective RNA interference in both 7. versicolor (10, 123) and C. pentag-
ona (2). This host-induced gene silencing can be used to target parasite genes critical for parasite
growth and is therefore a potential strategy for crop improvement. It also implies that small RNAs,
which are the effectors of RNA interference, may be able to enter the parasite through haustoria.
Furthermore, naturally occurring small RNAs, which are very numerous in plants, might also be
transiting haustoria.

In C. campestris, there is clear evidence that naturally occurring small RNAs transit haustoria
and are functional in recipient host plants (110). A large number of C. campestris microRNAs are
strongly expressed specifically at haustorial junctions. Molecular evidence shows that several of
these microRINAs are active against host mRNAs. Confirmed host targets of C. campestris mi-
croRNAs include mRNAs encoding auxin receptors, developmental regulators, pathogen defense
signaling, and phloem function (Table 1). Host plants mutated in two different targets (4FB3 en-
coding an auxin receptor and SEORI encoding a phloem protein) support increased growth of C.
campestris (110). This is consistent with the hypothesis that C. campestris microRNAs silence host
genes to increase parasite fitness. Therefore, C. campestris microRINAs act as virulence factors. C.
campestris has a very broad host range, so parasite-derived microRINAs should be active in multiple
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Table 1 Host mRNAs targeted by Cuscuta campestris microRNAs and their functions

Target mRINA family microRNA family Confirmed species Target functions

SEORI ccm-miR12480 Avrabidopsis thaliana Major phloem protein that reduces loss of sugar
upon wounding

TIR/AFB ccm-miR12497 A. thaliana, Nicotiana | Auxin receptors

benthamiana
BIK1 ccm-miR12495, A. thaliana, Kinase involved in signaling during defense
cem-miR12463 N. benthamiana responses to multiple pathogens

SCZ/HSFB4 cem-miR12494 A. thaliana Transcription factor controlling stem-cell identity in
roots

Ran BP2/NZF ccem-miR12486 N. benthamiana Unknown

hosts. Indeed, similar sets of C. campestris microRNAs are induced when either Arabidopsis thaliana
(Brassicaceae) or Nicotiana benthamiana (Solanaceae) is used as a host. Additionally, homologs of
the same mRNAs in different host species are targeted by C. campestris microRNAs, and bioinfor-
matic predictions suggest that targeting of these gene families is feasible across the host range of
C. campestris (110).

PARASITIC PLANTS AND THE ACTIVATION AND SUBVERSION
OF HOST PLANT IMMUNITY

Haustoria and Host Defense Interactions

Parasitic plants affect a wide range of hosts, with some species showing high levels of host selec-
tion and specialization. We think of host range as the total number of different species that can
be parasitized by a given parasite species, whereas host preference refers to which host the para-
site may be best adapted to parasitize. The battle between host innate immunity (resistance) and
parasite virulence occurs across a number of developmental stages.

Host resistance to attack by parasitic Orobanchaceae (and to some extent Cuscuta) can be
categorized as occurring at two different time points: either pre- or post-attachment resistance
(Figure 2) (52, 119). Pre-attachment resistance includes all mechanisms that allow a potential
host plant to avoid or prevent parasite attachment, including (#) no or reduced production of ger-
mination stimulant(s); (b)) production of germination inhibitors; (¢) delay, reduction, or complete
inhibition of haustorium formation leading to attachment incompetence; and (d) development of
preformed mechanical or structural barriers on the host surface to impede attachment. The latter
could include evolved enhanced cell wall lignification, suberinization, or other modifications and
structures (hairs or other outgrowths) that retard attachment to the host.

Post-attachment resistance operates when the attached parasite haustorium at the host surface
attempts to penetrate host tissues to make connections with the vascular system. During these
developmental stages, cells within a palisade layer at the leading tip of the haustorium differ-
entiate to form a penetration peg and begin the process of traversing the host cortex. Little is
known about the exchange of molecular information that cues the transition to the penetration
peg, although studies currently underway looking at the host—parasite interface could shed light
on this process (50, 139). Because successful penetration and vascular linkup are crucial to para-
site reproductive success, parasite post-attachment strategies may have been fine-tuned through
evolution.

In fact, substantial experimental evidence demonstrates that parasitic plants activate expres-
sion of genes encoding various cell wall degrading/softening enzymes (e.g., pectate lyases, pectin
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methylesterase, polygalacturonase, endocellulase, 3-glucosidase or 3-xylanase, expansins) to help
breach the host epidermis and cortex and allow penetration through and past the endodermis
(11, 71, 81, 92, 96, 100, 128). In addition to breaking down the pectin-rich apoplastic layers be-
tween the cells and fabric of host cell walls, mechanical pressure exerted by the parasite penetra-
tion peg assists in creating a path for parasite invasion (95). Comparative transcriptomic analysis
of pre- and post-attachment haustoria from three Orobanchaceae species (S. bermonthica, P. ae-
gyptiaca, and T. versicolor) has also shown that gene duplication during haustorial evolution and
subsequent repurposing may have led to the recruitment of genes from other invasive structures
such as pollen tubes (139) to be expressed in the haustorium, allowing the parasite haustorium to
function as an intrusive organ.

During this intrusive process, the host can succumb passively, rely on constitutively expressed
general defense responses, or activate specific innate immune response cascades to fend off para-
sitic ingress (45,47, 88,91, 117, 119). Innate immunity can present as (#) abiosis, the synthesis and
release of cytotoxic compounds (e.g., phenolic acids, phytoalexins), by the challenged host root
cells; (b) rapid formation of physical barriers to prevent possible pathogen ingress and growth
(e.g., lignification and other forms of cell wall modification at the host-parasite interface);
(¢) release of reactive oxygen species and activation of programmed cell death in the form of a
hypersensitive response at the point of parasite attachment to limit parasite development and re-
tard its penetration; and (d) prevention of the parasite establishing the essential functional vascular
continuity (i.e., xylem-to-xylem and/or phloem-to-phloem connections) with the host, delaying
parasite growth followed by parasite developmental arrest and eventual death (15, 91).

At each stage of parasite ingress, the challenged host has an opportunity to mount a resistance
response such that measures of parasite success (e.g., rate of parasite establishment or tubercle
development, final number of emerged shoots) more properly reflect the ability of the parasite to
overcome the various resistance mechanisms activated. We often think of susceptibility (compat-
ible host—parasite interactions) as a null situation where the apparent lack of host response belies
the inability of hosts to recognize the invading haustorial penetration peg and activate the cascade
of defense-related signaling events. Host susceptibility to parasite attack could also result from
active suppression of the host defense mechanism by parasite-derived/-secreted molecules (6).
Indeed, the parasite could have evolved mechanisms to bypass surveillance or limit host defense
activation (discussed below).

The exchange of potential defense signaling molecules across the host—parasite haustorial in-
terface is well established. For example, in Cuscuta, defense signals mediated by small molecules
clearly pass through haustoria. Glucosinolates, which are typical secondary metabolites made by
Brassicales plants, move from host to Cuscuta and affect aphid feeding (112). Insect feeding trig-
gers jasmonic acid-dependent transcriptome responses in hosts that are bridged by a Cuscuta vine
(46), thereby affecting subsequent insect feeding (147). Thus, jasmonic acid or a related compound
likely moves through Cuscuta haustoria in response to herbivory.

Most interactions between Striga species (e.g., S. bermonthica, Striga asiatica, Striga aspera) and
members of the Poaceae appear to elicit resistance responses controlled in a polygenic fashion;
each quantitative trait locus contributes a small effect, and hosts often exhibit high phenotypic
variations when challenged by different parasite populations (5, 40, 41, 44, 102, 117). In contrast,
resistance to Striga gesnerioides in legumes and other dicots appears to be monogenically inher-
ited, and, in some cases, the resistance genes are highly parasite-race specific. The one reported
exception is resistance to the biotype found in Mali and Niger (SG2/SG3) in cultivar IT82D-849
that is conferred by a single recessive gene (124). Resistance to Orobanche and Phelipanche spp. in
legumes is polygenic (33, 34), whereas it is monogenically conditioned with a number of epistatic
environmentally conditioned modifiers in sunflower (Helianthus spp.) (35, 97).
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A Place for Parasitic Plants in the Current Model of Plant-Pathogen
Interactions?

The above discussion suggests that parasitic plants are more similar to microbial plant pathogens
than to weeds. Parasitic plants, like microbial plant pathogens, must interact closely with host
plants to extract nutrients and suppress defense responses. For example, parasitic plants form haus-
torial connections with host plants that are functionally similar to haustoria formed by oomycete
and fungal plant pathogens (98, 141). It is likely that knowledge of host immune responses against
other plant pathogens can be used to develop testable hypotheses about the roles of the host im-
mune system in interactions with parasitic plants. Although the mechanisms of host immunity
against microbial plant pathogens are being elucidated at an increasing rate, these insights have
not been systematically applied toward understanding interactions between host plants and para-
sitic plants.

The leading paradigm for host plant-microbial pathogen interactions is known as the zigzag
model (62). In this model, plants and pathogens are locked in a perpetual arms race. The plant
immune system surveils for conserved microbe-associated molecular patterns (MAMPs) of micro-
bial invaders using pattern-recognition receptors and, upon detection, elicits an immune response
known as pattern-triggered immunity (66), which is sufficient to fend off the vast majority of
would-be microbial pathogens. Successful pathogens rely on their own deployment of immunity-
suppressing effector proteins leading to effector-triggered susceptibility—a compatible interac-
tion resulting in disease.

The immune response of host plants to parasitic plants is also likely multifaceted. To date,
layered immunity against parasitic plants is best demonstrated in the resistance of diverse mono-
cot and dicot species against Striga species (143) and the resistance of sunflower to O. cumana
(89). In both of these parasitic plant-host plant interactions, the host plant activates immune re-
sponses at multiple stages of parasite development, limiting the severity of parasitization. The spe-
cific molecular actions that underpin most parasitic plant-host plant immune interactions, how-
ever, remain largely unknown. We hypothesize that many aspects of the models used to describe
host plant-microbial pathogen interactions provide a valuable framework for understanding host
plant—parasitic plant interactions, specifically post-attachment.

Because parasitic plants and host plants are much closer relatives than are microbial pathogens
and host plants, detection of nonself molecular patterns (such as MAMPs) is likely less common in
interactions between the former than the latter. However, a parasite-associated molecular pattern
(ParAMP) was recently identified in Cuscuta reflexa, and heterologous expression of its cognate
pattern-recognition receptor, CuRel, in host tomato increases resistance to parasitism (45). This
discovery demonstrated that pattern-triggered immunity can be an important component of the
host plant immune response against parasitic plants. ParAMPs must be present in only the par-
asitic plant. Therefore, we hypothesize that many ParAMPs are related to structures specifically
associated with the development of the haustorium, the primary parasite-specific structure. A fun-
damental concept in plant pathology is that, owing to a robust innate immune system, most plants
are actively resistant to most pathogenic organisms. If most host—parasite interactions are likewise
incompatible, detection of ParAMPs may play a critical role, similar to detection of MAMPs in
host plant-microbial pathogen interactions.

Not included in the original formulation of the zigzag model is the important role of the host
plant immune system in detecting so-called damage-associated molecular patterns (DAMPs).
These endogenous components are present only following the effects of pathogens (42). Many
DAMPs are likely released during haustorial formation, when large-scale remodeling of host
cells occurs (discussed above), and may be critical determinants of the compatibility of parasite
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interactions. To our knowledge, DAMPs in host—parasite interactions have not yet been identified
or functionally characterized for any parasitic plants.

Microbial plant pathogens subvert immunity elicited following the detection of MAMPs and
DAMPs through either the diversification of MAMPs to evade detection (129) or the secretion of
immunity-suppressing effector proteins (13). Parasitic plants likely employ a number of distinct
strategies to suppress host plant immunity, but the deployment of effectors is a reasonable hypoth-
esis considering that bacteria, oomycetes, fungi, nematodes, and aphids all independently evolved
this strategy to deceive host plant immune systems (14, 28, 31, 48, 64, 90). Fungi and oomycetes
both rely on their haustorial connections to secrete effectors into host plants (80). However, this
mechanism is likely distinct in parasitic plants given the stark structural differences in the corre-
sponding haustoria.

Owing to the increased availability of genomic and transcriptomic data sets, the potential role
of effector proteins in mediating plant—plant parasitism is beginning to be elucidated. Transcrip-
tome analyses of S. hermonthica, S. gesnerioides, T. versicolor, and P. aegyptiaca haustoria before and
after host interaction allowed for the identification of novel developmentally expressed transcripts
associated with compatible and incompatible interactions as well as of transcripts encoding pu-
tative secreted effector proteins that may serve to manipulate host immunity (51, 115, 135, 139,
143, 144). Functional characterization of candidate effector proteins was recently performed for
race-specific putative effectors from S. gesnerioides and many haustorial upregulated putative P, ze-
gyptiaca effectors (115) (C.R. Clarke, S.-Y. Park, Z. Yang, X. Jia, E. Wafula, L. Honaas, C. Yang,
C.W. dePamphilis, J.H. Westwood, unpublished results). Surprisingly, from both of these inde-
pendent screens, short proteins with three leucine-rich repeat motifs emerged as top candidate
effectors. The candidate effectors are homologous to the leucine-rich repeat domain of SERK
family proteins involved in plant immunity and development (21), suggesting that translocation of
these parasite-derived proteins into host cells may perturb host development or immunity through
molecular mimicry. Additionally, analysis of the S. asiatica genome has identified several-hundred
putative uncharacterized secreted proteins whose functional characterization as effectors requires
further demonstration (142).

An additional zag in the zigzag model is effector-triggered immunity (23). In this phase, host
plants evolved Resistance (R) genes capable of detecting pathogen-derived effector proteins and
initiating a robust immune response. Effector-triggered immunity has yet to be directly demon-
strated in parasitic plants. However, a nucleotide-binding site-leucine-rich repeat immune sensor
protein, typical of classical R genes, confers resistance against the parasite in cowpea—S. gesnerioides
interactions (78). Identification of a cognate S. gesnerioides effector for this R gene would provide
an unambiguous demonstration of effector-triggered immunity in parasitic plants. Whether such
immunity is mediated by R genes per any of the current leading models (63) or through novel
mechanisms is currently unknown.

Also not expressed in the zigzag model are the host-derived susceptibility factors that are re-
quired for the pathogen to complete its life cycle (127). Although they have not been robustly
characterized in parasitic plant-host plant interactions, potential susceptibility factors include
(@) host-derived germination stimulants and HIFs, () components of the cell wall and cell mem-
brane that must be modified to form successful haustoria, (¢) regulators of the plantimmune system
that are affected by parasitic plants, and (d) metabolic or nutrient transport genes that are hijacked
by parasitic plants to meet their nutritional needs. Recently, screening for the ability of P. aegypri-
aca to parasitize a large collection of Arabidopsis mutants, researchers found that perturbations to
the jasmonic acid biosynthetic or signaling pathway led to less compatible interactions, suggesting
that components of these pathways may represent potential susceptibility factors (C.R. Clarke, S.
Park, R. Tuosto, X. Jia, A. McGough, J.H. Van Mullekom, J.H. Westwood, unpublished results).
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Figure 3

Parasitic plant interactions with host defenses. Parasite-derived components are shaded light blue, and host
plant—derived components are shaded green. Components of the model that have not been validated in
parasitic plants are indicated with question marks. Abbreviations: DAMPs, damage-associated molecular
patterns; ETT, effector-triggered immunity; HIFs, haustoria-inducing factors; ParAMPs, parasite-associated
molecular patterns; PRR, pattern-recognition receptor; PTI, pattern-triggered immunity.

An additional virulence strategy employed by some lineages of parasitic plants is the translo-
cation of small interfering RNA molecules to alter host gene expression (see the section titled
Parasite—Host Exchange of RNAs). For example, C. campestris transfers microRINA with sequence
homology to BIK1 (110), a conserved component of the plant immune system central to pattern-
triggered immunity responses (76). Transfer of this microRNA is expected to reduce expression
of BIK1 in host plants and thereby attenuate the immune response of host plants. Although this
virulence strategy is not broadly part of the molecular plant-microbe interactions paradigm, it is
employed by the fungal pathogen Botrytis cinerea, which translocates several microRNA molecules
into host plants to silence host immunity-related genes (131, 134).

Whether a host plant—parasitic plant interaction ultimately results in either a susceptible or
resistant interaction likely depends on a balance of the various factors discussed above (65). Some
paradigmatic host plant-microbial pathogen interaction mechanisms have already been elucidated
for parasitic plant-host plant interactions, but others are in early stages of research or still unknown
(Figure 3). A successful parasitic plant likely must evade or suppress pattern-triggered immunity
induced by ParAMPs and DAMPs released during haustorial penetration, possibly through the
secretion of immunity-interfering effector proteins. Additionally, if a parasitic plant secretes effec-
tors into host plants that encode cognate R genes, then the interaction may become incompatible
owing to effector-triggered immunity. A successful parasitic plant also needs to encounter a host
that is actively producing the correct combination of susceptibility factors to induce and enable a
successful haustorial connection and metabolic rewiring to meet its nutritional needs.

The extent to which these immunity-subversion strategies are deployed across the phylogeny
of parasitic plants remains to be determined. Because parasitism independently evolved at least
12 times in parasitic plants, we hypothesize that different clades of parasitic plants likely employ
divergent strategies to suppress or otherwise evade host plant immunity. Elucidation of the con-
served and lineage-specific molecular tools employed by parasitic plants to subvert host plant
immunity may enable the development of novel agricultural control strategies.
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CHALLENGES TO AND FUTURE OUTLOOK FOR PARASITIC
PLANT RESEARCH

The study of parasitic weeds and the underlying genetic factors that govern post-attachment re-
sistance responses lags behind progress in understanding other plant—pathogen interactions. The
slower rate of research progress with parasitic plants is partially due to (#) the inherent problems
that exist with growing and manipulating parasites free of hosts, (4) the fact that both the host and
parasite are angiosperms, (c) the relatively limited and only recently available high-quality para-
sitic plant genomes and transcriptomes, and (d) the difficulty or impossibility of transforming most
species of parasitic plants. As more omic data sets and functional genomics tools, such as methods
for transformation, become available for parasitic plants, research progress will accelerate.

Despite these challenges, the outlook for research on parasitic plant-host plant interactions is
promising. Parasitic plants are likely to provide examples of novel variations on familiar patho-
genesis mechanisms such as the discovery of parasitic plant-derived microRNAs that target host
genes. Knowing how widespread this truns-species microRINA delivery is in Cuscuta and other par-
asitic plant lineages will be interesting. Because the functionally relevant exchange of small RINAs
between fungal pathogens and plant hosts has been described in several systems (17), this deliv-
ery system could also be more widespread. The available genome assemblies from C. campestris
(110, 130) and Cuscuta australis (116) will facilitate further studies.

Another pressing issue is the molecular mechanism by which C. campestris microRNAs are
delivered to host cells. Parasitic plants may have direct connections to host cells, including joint
plasmodesmata (12, 128), but other mechanisms are possible. One attractive hypothesis is that
they are delivered via extracellular vesicles, which are enriched in proteins involved in pathogen
defense and stimulated by pathogen invasion (106), and have been shown to carry small RINAs that
can be delivered to the fungal pathogen B. cinerea and target Botrytis mRNAs (18). Considering
these pathways for exchange and the documented transfer of mRNA and proteins (12, 72, 73),
we hypothesize that effectors may move as gene transcripts or as small soluble proteins that do
not need to fit profiles of canonical secreted effectors. Thus, given current knowledge, parasitic
plants may have solved the same essential problems solved by other pathogens. Understanding
the precise mechanisms by which host defenses have been defeated and host resources redirected
will add additional perspectives to the diversity of plant pathology.

1. Research on parasitic plants has surged in recent years, describing how different lineages
of parasitic plants have evolved to detect and parasitize their hosts.

2. Strigolactone receptors and their signaling mechanisms have been identified, and their
role in parasite identification of hosts is being elucidated.

3. Development of the haustorium and its interactions with the host plant are becoming
exciting areas of research, and new insights have emerged into its role in the exchange
of hormones, nutrients, and macromolecules, including RINAs.

4. Transfer of mRNA and microRINA between host and parasite appears to be an important
virulence and host adaptation strategy in Cuscuta, although the mechanism regulating
mobility is currently unknown.

5. Parallels are emerging between the molecular mechanisms mediating parasitic plant—
host interactions and other plant—pathogen interactions, including the elicitation of host
innate immunity.
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. Sequencing of additional parasitic plant transcriptomes and genomes will lead to better

characterization of the evolution and mechanisms of parasitism.

The processes by which germination factors and haustoria-inducing factors (HIFs) are
secreted from host roots as well as their fate in the microbial-rich rhizosphere need to
be better understood.

To clarify the importance of this novel virulence and adaptation strategy, researchers
need to determine whether the transfer of microRNA and mRNA enhances parasite
fitness and whether it is restricted to Cuscuta or widespread in parasitic species.

It is important to determine which damage- and parasite-associated molecular patterns
as well as other elicitors of host plant immunity are present during host—parasite inter-
actions and during which stages of parasitism the elicitors are present.

The presence and function of putative parasitic plant effector proteins should be studied
across a wide range of parasitic plants to elucidate their host targets and the pathways
they disrupt.

Identification of additional host plant signaling pathways on which parasitic plants rely
for successful perturbation of host plant development (susceptibility factors) may be a
valuable tool for increasing resistance in host plants. Host plant—derived germination
stimulants and HIFs may also function as susceptibility factors altering control of
parasites.

A critical issue—as yet unrealized—is to translate our gains in fundamental knowledge
of parasitism toward deployment of effective parasitic weed control strategies.
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