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Abstract We prove that the class of reflexive asymptotic-cy Banach spaces is coarsely rigid, meaning
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1. Introduction

The concept of rigidity for a class of mathematical objects has permeated mathematical
fields. A prime example of a rigidity problem arose in geometric group theory. Take a
finitely generated group I' which is an algebraic object. One can apprehend I' in the
category of metric spaces by looking at its Cayley graph. Then, a fundamental aspect
of Gromov’s geometric group theory program [10] is to understand how much of the
algebraic properties of a group one can recover knowing solely the large-scale shape of
its Cayley graph. A class G of groups is said to be quasi-isometrically rigid if every group
that is quasi-isometric to a group in G is actually virtually isomorphic to a group in G. A
quasi-isometric embedding is what we call a coarse-Lipschitz embedding in this paper (see
all the relevant definitions of non-linear embeddings in §2.3). It is quite remarkable that
many classes of groups are known to be quasi-isometrically rigid: free groups, hyperbolic
groups and amenable groups, and we refer to [15] for a detailed list.

In this work, we provide a Banach space analogue of this type of results. A class
C of Banach spaces is called coarsely rigid if it follows from Y being a member of
C and X being coarsely embedded into Y, that X is also in C. Let us insist on the
fact that coarse embeddings are very weak embeddings. Indeed, it is classical that L
coarsely embeds into £, (while it does not coarse-Lipschitz embed). On the other hand,
Nowak [20] showed that for any p € [1, 00), €2 coarsely embeds into £ p- This was extended
by Ostrovskii [22] who proved that € coarsely embeds into any Banach space with an
unconditional basis and of non-trivial cotype. On a more elementary level, note that
R coarse-Lipschitz embeds into Z. Therefore, coarsely rigid classes are rare. The class
of spaces that coarsely embeds into a fixed metric space (M, d) or the class of spaces
in which a fixed (M, d) does not coarsely embed is clearly coarsely rigid. It is, for
instance, rather simple to see that a Banach space X has dimension less than n € N
if and only if the integer grid Z" equipped with the £; metric does not coarsely embed
into X. Besides such simple coarsely rigid classes, very few rigidity results have been
obtained so far. Let us describe three important examples. Randrianarivony showed
in [23] that a quasi-Banach space X coarsely embeds into a Hilbert space if and only
if there is a probability space (€2, B, ) such that X is linearly isomorphic to a subspace
of Lo(S2, B, ). This clearly describes a class of quasi-Banach spaces that is coarsely
rigid. Then, a major achievement by Mendel and Naor [19] was a purely metric extension
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A new coarsely rigid class of Banach spaces 3

of the linear notion of Rademacher cotype. Using that notion of metric cotype, they
were able to show that within the class of Banach spaces with non-trivial type, the class
{X: inf{g’ > 2: X has Rademacher cotype g’} < ¢} is coarsely rigid. It is still unclear and
important to understand whether the non-trivial type restriction is necessary. Another
important rigidity result was obtained by Kalton [14]. Indeed, he showed that, within the
class of Banach spaces that do not have £;-spreading models (or, equivalently, spaces with
the alternating Banach—Saks property), the class of reflexive Banach spaces is coarsely
rigid. It then follows from an ultraproduct argument that, within the class of Banach
spaces with non-trivial type, the class of super-reflexive Banach spaces is coarsely rigid.
Since £ coarsely embeds into £;, we need at least to exclude spaces which contain £; to
obtain both conclusions. The last papers of N. Kalton ([14] among others, and see also the
survey [9] and references therein) show that asymptotic structures of Banach spaces often
provide linear properties that are invariant under coarse or coarse-Lipschitz embeddings.
Our work follows this program, studying the links between asymptotic structures and
large-scale geometry of Banach spaces.

In this article, we exhibit a new example of an unrestricted class of infinite-dimensional
Banach spaces which is coarsely rigid. The notion of an asymptotic-co space will be
recalled in § 3.

Theorem A. Let Y be a reflerive asymptotic-co Banach space. If X is a Banach space
that coarsely embeds into Y, then X is also reflexive and asymptotic-co.

Since there are reflexive asymptotic-cy spaces, like Tsirelson’s original space T* [24],
which will be recalled later, Theorem A immediately implies the main result from [3],
where the existence of an infinite-dimensional Banach space that does not coarsely contain
£3 is proved. Our proof of Theorem A, which is carried out in § 4, follows from the following
purely metric characterization of the linear property of being ‘reflexive and asymptotic-cq’
in terms of a concentration inequality for Lipschitz maps on the Hamming graphs (see
the definition and notation in §2.2).

Theorem B. A Banach space X is reflexive and asymptotic-co if and only if there exists
C > 1 such that for every k € N and every Lipschitz map f : ([N]¥, dg)) — X, there exists
M e [N]® so that

diam(f (IM1)) < C Lip(/).

This concentration inequality was introduced in [3] where it was shown to hold for
maps taking values into Tsirelson’s original space T*. The space T* is the prototypical
example of a separable reflexive asymptotic-cy Banach space, and the proof from [3] can
be generalized to show that the same concentration inequality holds for maps with values
into any reflexive asymptotic-co Banach space. The more conceptual approach undertaken
in this article to prove that any reflexive asymptotic-co Banach space satisfies the above
metric concentration inequality and requires the central notion of asymptotic structure
from [18] which is described in § 3. In order to prove the converse, the crucial step is to
show that if a Banach space X satisfies the metric concentration inequality, then all its
asymptotic models generated by weakly null arrays are isomorphic to ¢g. The notion of
asymptotic models was introduced by Halbeisen and Odell in [11]. Then the conclusion
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follows from an unexpected link between the notions asymptotic structure and asymptotic
models (see § 3). Indeed, it was proved by Freeman et al. [8] that a separable Banach space
which does not contain a copy of £; is asymptotic-co whenever all its asymptotic models
generated by weakly null arrays are isomorphic to cg.

The concentration inequality in Theorem B clearly prevents the equi-coarse
embeddability of the sequence of Hamming graphs. We show in §5 that the converse
is not true. More precisely, we provide an example of a non-reflexive Banach space in
which the Hamming graphs do not equi-coarsely embed.

2. Preliminaries

2.1. Trees

For keN, we put [NJS*={({ScN:|S|<k}, [INf={SCN:|S|=k}, [N]=®=
UkenINISK, [N]? = {S C N: S infinite} and [N]={S:S CN}. We always list the

elements of some m € [N]=* or in [N]® in increasing order, i.e., if we write m =
{my,mo,...,m}orm = {my, my, ms, ...}, we tacitly assume that m; < my < ---. Form =
{my,my,...,m;} € [N]SKF and 7 = {ni,no,...,n5} € [N]gk, we write m < n, if r <s <k
and m; =n;, fori =1,2,...,r, and we write m < n if m < n or m = n. Note that [N]gk,

k € N with <, are rooted trees, i.e., partial orders with a unique minimal element, namely
@, and the property that for each 7 € [N]S¥, the set of predecessors of in {m :m < i} is
finite and linearly ordered.

In this paper, we will only consider trees of finite height. For a set X, we will call a
family (xi : 71 € [N]SY), for k € N, a tree of height k. Sometimes we are also considering
unrooted trees of height k, which are families of the form (x; : i1 € [N]SF\ ). We call

(x7 = 1 € [N]SK\ {#}). Sequences of the form (X70(i})i>max(i), Where n € N (for a
tree of height k), are called nodes of the tree (x; : 71 € NS5y,

If (xf:n € [N]gk) isatreein X and M = {m, mo, ...} € [N]?, we call (x5 : m € [M]gk)
a refinement of (xj : i € [N]SX). By relabeling %7 = Xim;ien), for n e [N]S, the family
(% : 71 € [N]SY) is a tree which we also call a refinement of (xjz : 1 € [N]SF).

If X is a Banach space, we call a tree (xj : 71 € [N]S¥) in X normalized if x; € Sy, for
all 7 € [N]SK, and weakly convergent or weakly null if all its nodes are weakly converging
or weakly null, respectively. Here Sy denotes the unit sphere in X, while Bx denotes the
closed unit ball.

2.2. Hamming graph on [N]¢
For ke N and m ={m|,my,...,my} and n={ni,ny,...,n} in [N]k7 we define the
Hamming distance by

A o,y = (i € (1,2, ...k}t m; # ni}| (1)

and put HY = (IN7K, dﬂ(_[][()).
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2.3. Embeddings
Let (X, dx) and (Y, dy) be two metric spaces and f : X — Y. One defines

py @) =infldy (f(x), f(y)) 1 dx(x,y) = 1}

and
wy(t) = sup{dy (f(x), f(y)) 1dx(x,y) <t}
Note that for every x, y € X,

prldx(x, y)) <dy(f(x), f(¥) < f(dx(x,y)). 2)

The moduli py and wy will be called the compression modulus and the expansion
modulus of the map f, respectively. We adopt the convention sup(¥) = 0 and inf(0) =
+o0c. The map f is a coarse embedding if lim;_, oo ps(t) = 00 and ws () < oo for all ¢ > 0.
A map f: X — Y is said to be a uniform embedding if lim; ,ows(t) =0 and ps(t) > 0
for all r > 0, i.e., f is an injective uniformly continuous map whose inverse is uniformly
continuous.

If one is given a family of metric spaces (X;)ier, one says that (X;);es equi-coarsely (resp.
equi-uniformly) embeds into Y if there exist non-decreasing functions p, ®: [0, co) —
[0, 00) and for all i € I, maps fi: X; — Y such that p < py, wp < w, and lim;_ 00 p(1) =
oo and w(r) < oo for all t > 0 (resp. lim;—,gw(t) =0 and p(z) > 0 for all 7 > 0).

We call a map f : X — Y Lipschitz continuous if

d(f(x), fF(»)

Lip(f) = Sup{ 1 y) ix,yeX,dx,y) > o} < o0,

continuous.
A coarse-Lipschitz embedding is a map f : X — Y, for which there are numbers 6 > 0,
and 0 < ¢ < ¢, so that

crdx(x,y) <dy(f(x), f(») < cadx(x,y), whenever x,y € X and d(x,y) 2 6. (3)

3. Asymptotic properties of Banach spaces and their interplay

For two basic sequences (x;) and (y;) in some Banach spaces X and Y, respectively, and
C > 1, we say that (x;) and (y;) are C-equivalent, and we write (x;) ~¢ (y;) if there are
positive numbers A and B, with C = A - B, so that for all (a;) € cqp, the vector space of
all sequences x = (£;) in R for which the support supp(x) = {j : &§; # 0} is finite, we have

1 oo oo oo
XHZ%’X:’ < HZ“:’)’Z‘ < BHZ%’X;‘
i=1 i=1 i=1

In that case, we say that % is the lower estimate and B the upper estimate of (y;) with
respect to (x;). Note that (x;) and (y;) are C-equivalent if and only C > ||T| - |T !,
where the linear operator 7 : span(x; : i € N) — span(y; : i € N) is defined by T (x;) = i,
ieN
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If (e;) is a Schauder basis of a Banach space X, we recall that (x;) is a block sequence
in X with respect to the basis (¢;) if max(supp(x;)) < min(supp(x2)) < max(supp(x2)) <
-+ < max(supp(x;—1)) < min(supp(x,)) < ---.

For k € N, we denote by & the set of all norms on R¥, for which the unit vector basis
(ei)f: | is a normalized monotone basis. With an easily understood abuse of terminology,
this can also be referred to as the set of all pairs (E, (ej)]]‘.zl), where E is a k-dimensional

Banach space and (e j)];:l is a monotone basis of E.

We define a metric 8 on & as follows: for two spaces E = (RX, || - | g) and F = (R, | -
IlF), we let 8k (E, F) =log(||lg Fll - ||IEIF||)7 Ig r: E— F, be the formal identity. It is
also well known and easy to show that’(c‘,’k, 81) is a compact metric space. The following
definition is due to Maurey et al. [18].

Definition 3.1 (The kth asymptotic structure of X [18]). Let X be a Banach space. For
k € N, we define the kth asymptotic structure of X to be the set, denoted by {X}i, of
spaces E = (R¥, || - ||) € & for which the following is true:

Ve > 0VX; € cof(X)3x; € Sy, VX2 € cof(X)3xy € Sx, -+ - VX € cof(X) Ixx € Sx, (4)
Sy ~1ge (€5

For 1 < p < oo and ¢ > 1, we say that X is c-asymptotically €,, if for all k € N and all

spaces E € {X}r, with monotone normalized basis (e j)’]‘.:l, (e J')];':l is c-equivalent to the

Ell‘, unit vector basis. We say that X is asymptotically £,, if it is c-asymptotically £,

for some ¢ > 1. In case that p = oo, we say that the space X is c-asymptotically cg or
asymptotically cq.

We denote by T* the Banach space originally constructed by Tsirelson in [24]. It was
the first example of a Banach space that does not contain any isomorphic copies of £,
nor c¢g. Since it is the archetype of a reflexive asymptotic-cg space, we explain shortly its
construction (we will also use it at the end of §5). Soon after, in [7], it became clear that
the more natural space to define is T, the dual of T*, because the norm of this space
is more conveniently described. It has since become common to refer to T as Tsirelson
space instead of T*. Figiel and Johnson in [7] gave an implicit formula that describes the
norm of T as follows. For E, F € [N]=® and n € N, we mean by n < E that n < min E
and by E < F that max(E) < min(F). We call a sequence (Ej);f:l of finite subsets of N
admissibleifn < E; < E; <--- < E,. For x = Z;‘;l Ajej € cop and E € [N]=?, we write
Ex = ZjeE Ajej. As it was observed in [7], if || - |7 denotes the norm of T, then for every
X € €0,

n
lxlz :max{”x”om%SUPZ”ij”T}a (5)
j=1

where the supremum is taken over all n € N and admissible sequences (E j)7:1' The space
T is the completion of cgp with this norm and the unit vector basis is a 1-unconditional
basis. Then it was proven in [7] that T does not contain a subspace isomorphic to £,
which, together with the easy observation that T certainly does not contain a subspace
isomorphic to ¢, yields by James’ theorem [12, Theorem 2| that T must be reflexive.
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The following property of T* (see [24, Lemma 4]) is essential:
n
2%
j=1

The fact that T* is 2-asymptotic-cg is an easy consequence of the above estimate. This
well-known fact is hard to track down in the literature and follows from the fact that
every weakly null tree admits a refinement for which all branches are arbitrary small
perturbations of blocks.

<2 121;12 llxj I+ if ()cj)'}:1 is a block sequence, with n < supp(x;).  (6)
T* NYA Y

Remarks 3.2. Let us recall some easy facts about the asymptotic structure of a Banach
space which can be found in [16, 18] or [21].

(a) Let E = (RX, |- 1), with || - || being a norm on R¥, for which (ej) is a normalized basis
(but not necessarily monotone). If (e;) satisfies (4) for some infinite-dimensional
Banach space X, then (e j)l;zl is automatically a monotone basis of E (by using
the ideas of Mazur’s proof that normalized weakly null sequences have basic
subsequences with a basis constant which is arbitrarily close to 1). Therefore, the
above-introduced definition of asymptotic structure coincides with the original one
given in [18].

(b) For any infinite-dimensional Banach space X and k € N, {X}; is a closed and thus
compact subset of & with respect to the above-introduced metric 8; on &.

(c¢) For a k-dimensional space E with a monotone normalized basis (e j)];= | to be in the
k-asymptotic structure can be equivalently described by having a winning strategy
in the following game between two players: We fix & > 0. Player I (the ‘space
chooser’) chooses a space X € cof(X), then player IT (the ‘vector chooser’) chooses
a vector xi € Sx,, and then player I and player II repeat these moves to obtain
spaces X1, X2, ..., Xy in cof(X) and vectors x1, x2, ..., x¢, with x; € Sx,. The space
E being in {X}; means that for every ¢ > 0, player II has a winning strategy, if his
or her goal is to obtain a sequence (xj)l;zl which is (1 + ¢)-equivalent to (ej)l;zl.
For E € & with monotone basis (e j)];:1 and ¢ > 0, a winning strategy for the vector
chooser can then be defined to be a tree family

F=xX1,Xo,..., X)) : 1 <1<k, X1,X2,...,X; €cof(X)) C Sy

with the property that for any choice of Xi, X, ..., X; € cof(X), and any [ <
k, x(X1,X2,..., X)) € Sy, so that the sequence (x(Xi, Xo,..., Xl))f‘=1 is (1+
&)-equivalent to (ej)l;zl.

Since the game has finitely many steps, it is determined, meaning that either the
vector chooser or the space chooser has a winning strategy. Using the language of
the game and its determinacy, it is then easy to see that the set {X}; is the smallest
compact subset for which the space chooser has a winning strategy if for a given
e > 0, his or her goal is the resulting sequence (x j)];:l at a distance at most € to
{X}r (with respect to the metric 8 ). In particular, a Banach space is asymptotically
£y, 1 < p < oo or asymptotically cp if and only if there is a ¢ > 0 so that for each

Downloaded from https://www.cambridge.org/core. Texas A&M University Evans Libraries, on 22 Jan 2020 at 15:10:28, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51474748019000732


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748019000732
https://www.cambridge.org/core

8 F. Baudier, G. Lancien, P. Motakis and Th. Schlumprecht

k € N, the space chooser has a winning strategy to get a sequence (x j)l;':1 which is
c-equivalent to the unit vector basis in E’,‘, or E’;o, respectively.

(d) Assume that X is a space with a separable dual. Then we can replace in the
definition of {X}; the set cof(X) by a countable subset of cof(X), namely by the set

(F+:FcC {x7:j € N} finite}, ~where {x7:j € N} C Sx~ is dense.

In that case, normalized weakly null trees in X indexed by [N]S¥ can be used to
describe the kth asymptotic structure: if X* is separable and k € N, a space E € &
with monotone basis (ej)I;:1 is in {X}; if and only if for every ¢ > 0, there is an
unrooted weakly null tree 7 = (x; : 71 € [N]SF\ {#}) in Sx for which all branches
are (1 + ¢)-equivalent to (ej)’;zl.

It follows, therefore, from (c) and Ramsey’s theorem that X is asymptotically £,
for 1 < p < oo, or asymptotically cq if there is a C > 1 so that for every k € N, every
unrooted normalized weakly null tree of height k has a refinement (as introduced
in §2.1) all of whose branches are C-equivalent to the E’;,—unit vector basis.

The following observation will reduce the proof of the main results to the separable
case.

Proposition 3.3. Let X be a reflexive Banach space. Then there exists a separable subspace
Y of X so that for all k € N, we have {X}r = {Y}k.

We will need the following two lemmas first.

Lemma 3.4. Let X be an infinite-dimensional Banach space and let E be a k-dimensional
Banach space with a normalized monotone Schauder basis (ei)i.‘zl. If for every e > 0, there
exists a weakly null tree {x; : 1 € [N]SK\{#}} C Sx so that for every m = {my, ..., my} €
[N]k, the sequence (x{,,,l,_,_,,,,l.})f,‘:1 is (1 4 €)-equivalent to (e,-)ﬁ.‘zl. Then (e,-)i.‘:1 18 m { X k.

Proof. Recall that if ¥ € cof(X) and (z;){2, is a normalized weakly null sequence, then
lim; dist(z;, Sy) = 0. Fixing ¢ > 0 and k € N, we will show that the vector player can
choose a sequence that is (1 + ¢)-equivalent to (ei)f.‘zl. Take a weakly null tree (x :
m € [N]SK) © Sy so that for all m = {my, ..., my}, the sequence is Xy, ..., m[})fle is (1+
8)-equivalent to (ei)f.‘:l, where we will choose § > 0 later. For each turn 1 <i < k of the
game when the subspace player chooses Y; € cof(X), the vector player picks m; > m;_
(where mo = 0) so that there is x; € Sy, with [|x; — X{m,,...m;} |l < 8. For § sufficiently small,
this strategy for choosing x; in Sy, ensures that the sequence ()c,-)f:1 is (1 + &)-equivalent
to (ei)f?zl. O
Lemma 3.5. Let X be a reflexive Banach space, k € N, (ei)f,‘:1 € {X}k, and let ¢ > 0.
Then there exists a countably branching weakly null tree {x; : n € [N]SK\ {#}} in Sx, all
of whose branches are (1 + g)-equivalent to (e,-)i.‘zl.

Proof. We recall that the Eberlein-Smulyan theorem ensures that if W is a relatively
weakly compact set in a Banach space and xg € Ww, then there exists a sequence (x;)72;
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in W with x; = xo. Let ¢ > 0 and let (x(Y1,Ya,...,Y):i=1,2,..., kY, Ys,....Y; €
cof(X)) be a normalized tree with x(¥71, Y», ..., Y;) € Sy, and whose branches approximate
(ej)’;.:1 up to (1 + ¢)-equivalence (see Remarks 3.2 (c)). By reflexivity, the set {x(Y):
Y € cof(X)} (the first level of the tree) is relatively weakly compact. Also, 0 €
x(¥) 1Y e cofX)}". Indeed, if fi. ..., fa are in X*, then ¥ = (I_, ker(f;) is in cof(X)
and, hence, f;(x(¥)) =0for 1 < j < d. We may thus pick a sequence (¥;); in cof(X) with

x(Y) 2 0.

Assume that for some i € N, we have assigned for each {my,...,m;} € [N]', a vector
Ximy,...m;)} of the form x (¥, Yy, ..., Yin,). As before, we may pick a sequence (Yl(l+1))1
so that x(Yu,, Yimys - -+ Y, Yl(’H)) 2 0. For j > m;, we define

i+1
X{my,...mj,j} =x(Ym1,Ym2,...,Ymi’Yl(l+ ))’

for some large enough /. Thus, every (x{m,,..., mi})le is of the form (x(Yq, ..., Y,-))f?:17 and,
thus, (14 &)-equivalent to (ej)l;zl. 0

Proof of Proposition 3.3. Since for every k € N, the k-asymptotic structure {X}; is
separable (with respect to the metric introduced in §3 (b)), we can find a countable
set {(ey))l;:1 1l € N} C {X}x which is dense in {X}; and, using Lemma 3.5, a countable

collection of weakly null trees {(x,%r) :71 € [N]SK . r e N} in Sy so that for each & > 0
and each I € N, there is a r € N, so that for all 7 € [N]¥, the sequence (xn(-:) im =< n)is
(1 + e)-equivalent to (e;-l))l;zl. We define Y} to be the closed linear span of {x,%” :reN,ne
[N]SK). Since {Yi}x and {X}; are compact (see (b) in §3), it follows that {¥;}x = {X}i.
Finally, we conclude our proof by setting ¥ to be the closed linear span of |,y Y& and

deduce our claim. O

We now turn to ‘sequential asymptotic properties’ of Banach spaces. These are
properties which involve sequences and their subsequences, as opposed to trees and their
refinements. .

Let X be a Banach space and k € N. A family (xj.l) i=1,2,...,k,j e N) C Xiscalled

an array of height k in X. An array of infinite height in X is a family (x;i) 1i,jeN) CX.

For (finite or infinite) arrays (x;i) i=1,2,...,k,jeN), or (xj.i) 11, j €N,
respectively, we call the sequence (x](.i)) jeN the ith row of the array. We call an array
weakly null if all rows are weakly null. A subarray of a finite array (xj(.i) i=1,2,...,k, j€
N) C X, or an infinite array (x](i) :ie€N,jeN)C X, is an array of the form (x;.i) =

1,2,...,k,s eN) or (x](i) :i € N,s € N), respectively, where (j;) C N is a subsequence.
Thus, for a subarray, we are taking the same subsequence in each row.
The following notion was introduced by Halbeisen and Odell [11].

Definition 3.6 [11]. A basic sequence (¢;) is called an asymptotic model of a Banach space

X if there exist an infinite array (x;.i) 11, j € N) C Sx and a null sequence (g,) C (0, 1) so
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10 F. Baudier, G. Lancien, P. Motakis and Th. Schlumprecht
that for all n, all (¢;)7_; C[~1,1] and n < k; <ky <--- < ky, it follows that

n n
} : (@) } :
H' a,-xkl_ a;e;
i=1 i=1

< &p.

In [11], the following was shown.

Proposition 3.7 [11, Proposition 4.1 and Remark 4.7.5]. Assume that (x;i) 1i,jeN) C Sy
is an infinite array, all of whose rows are normalized and weakly null. Then there is a
subarray of (x;-l) 11, j € N) which has a 1-suppression unconditional asymptotic model

(ei).

We call a basic sequence (e;) c-suppression unconditional, for some ¢ > 1, if for any

(a;) C cop and any A C N,
o0
S aes] < e
icA i=1

We call (e;) c-unconditional if for any (a;) C cop and any (o;) € {1}V,

o0 o0
E ae;j E o;ia;e;
i=1 i=1

Note that a c-unconditional basic sequence is c-suppression unconditional.
The following important result was shown in [8] and it is an integral ingredient of the
proof of Theorem B.

<c

<c

Theorem 3.8 [8, Theorem 4.6]. If a separable Banach space X does not contain any
isomorphic copy of €1 and all the asymptotic models generated by normalized weakly null
arrays are equivalent to the co unit vector basis, then X is asymptotically cop.

Asymptotic models can be seen as a generalization of spreading models, a notion
which was introduced much earlier by Brunel and Sucheston [6]. Spreading models are
asymptotic models for arrays with identical rows.

Definition 3.9 [6]. Let E be a Banach space with a normalized basis (¢;) and let (x;) be
a basic sequence in a Banach space X. We say that E with its basis (e¢;) is a spreading
model of (x;) if there is a null sequence (e,) C (0, 1) so that for all n, all (a;)!_, C [-1, 1]
and n < k; <ky <--- < ky, it follows that

n
X,
i=1

n
§ ae;
i=1

- < &y
X E
or, in other words, if
n n

lim lim --- lim aixg | = ae;

JAkj J€J
k1— 00 kp—>00 kp—o00 || 4 X N E

j=1 Jj=1
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A new coarsely rigid class of Banach spaces 11

Using Ramsey’s theorem, it is easy to see that every normalized basic sequence has
a subsequence which admits a spreading model, which, of course, also follows form the
above cited result in [11]. A spreading model E with basis (e;) generated by a normalized
weakly null sequence is 1-suppression unconditional [4, Proposition 1, p. 24].

Let k € N and let (x(.i) i=1,2,...,k, j € N) C Sx be a normalized weakly null array

of height k. We extend this array to an infinite array (x(l) i €N, jeN) by letting

x;SkH) = x;i), forseNandi=1,2,...,k.
By Proposition 3.7, we can pass to a subarray (z(i) :ieN,jeN)of (x}i) :ieN,jeN)

(@)

which admits an asymptotic model (e;). Now letting € = e(j—k+is fori=1,2,...,k

and j € N, we observe that the array (e )1 jeN 18 the joint spreading model of (z(’)
i € N, j e N), a notion introduced and dlscussed in [1]. We recall the definition of jomt

spreading models and will first recall the definition of plegmas.

Definition 3.10 [2, Definition 3]. Let k,m € N and s; = (sf’),sél), ...,s,(,f)) CN for i =
1,..., k. The family (s,) _, is called a plegma if

k)'

s§1> @ ® _ D _ @ *) D o

<s)7T < <s <8, <8y <<, <~-~<s,(”1) <s,(n
Definition 3.11 [1, Definition 3.1]. Let (xjf') :1<i<k, jeN)and (ey) 1<i<k jeN)
be two normalized arrays in the Banach spaces X and E, respectlvely, whose rows are
normalized and basic. We say that (x(’) 1 <i <k, jeN) generates (e 1<i<k, je

N) as a joint spreading model if there exists a null sequence of posmve real numbers
(em);y— so that for every m € N, every plegma (s,)l_], i (s j=1,2,...,m) for

1 <i <k, with min(s;) = sf ) > m, and scalars ((a(’))m 1) _; in [=1, 1], we have

Zzao)x%‘ i

j=1li=1 j=1li=

k

)¢
a]
1

< &m.

Remark 3.12. Note that if (x(i) : < k, j € N) generates (e(') 1 <i<k, jeN)asa
joint spreading model, then (e( ))°° | is a spreading model of (x(’)) Ry fori =1,2,...,k.
In the next remark, we discuss the differences between asymptotic and sequential

asymptotic properties.

Remark 3.13. Assume that X is a separable reflexive space. Then, by observation (d) in
Remarks 3.2, the property that X is asymptotically £,, for some 1 < p < oo (as usual
replace £oo by ¢ if p = 00), is equivalent to the property that there is a C > 1 so that for
every k € N, every weakly null tree (xj : 71 € [N]S¥) of height k can be refined (as defined
in §2.1) to a tree (x5 : m € [M]SK), M € [N]®, which has the property that each branch
is C-equivalent to the E’;, unit vector basis.
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12 F. Baudier, G. Lancien, P. Motakis and Th. Schlumprecht

Second, we consider the property of a Banach space X that every asymptotic model
generated by a weakly null array is C-equivalent to the £,-unit vector basis, for some

1 < p < 00, or the cp-unit vector basis. For a normalized weakly null array (x;i) 11, j €N),

we put x; = x® for m € [N] and call for k € N, the tree (x; :n € [N]gk), the tree

max(m)

of height k generated by the array (x](.i) :i,j € N). Note that x; for i € [N]S¥ only
depends on max(n) and the cardinality of n but not on the predecessors of n. Then,
by a straightforward diagonalization argument, one shows that the property that every
asymptotic model generated by a weakly null array is C-equivalent to the £,-unit
vector basis for some C > 1 is equivalent with the property that every tree of height
k, generated by a normalized weakly null array, has a refinement, all of whose branches
are C-equivalent to the Elz‘,-unit vector basis, for some C > 1.

Thus, the property that the asymptotic models generated by normalized weakly null
arrays are C-equivalent to the £,-unit vector basis is a property of specific weakly null
trees. Theorem 3.8 is, therefore, a surprising result, and its proof relies on the fact
that the co-norm is somewhat extremal. Usually, it is not possible to deduce from a
sequentially asymptotic property of a Banach space an asymptotic property. For example,
in a forthcoming paper, we build a reflexive space X, all of whose asymptotic models are
isometrically equivalent to the £;-unit vector basis, but for a given 1 < p < o0, p #2, X
has E’I’, in its nth asymptotic structure.

4. Proof of Theorems A and B

This section is devoted to proving Theorem B and then obtaining Theorem A as a
corollary. The proof is based on the main argument of [3] and on the above cited result
in [8] (see Theorem 3.8 in our paper) that connects asymptotic properties with properties
of arrays.

The following lemma includes a well-known refinement argument which is crucial for
the proof of the main result. For completeness, we include a proof.

Lemma 4.1. Let X be a reflexive Banach space, k € N, and f : [N]* — X have a bounded
image. Then there exist M € [N]* and a weakly null tree (y; :m € [M]S%) s0 that f@m) =
yg + Zf:l Vimy....m;), for all m € [M]¥.

Moreover, if we equip [N]* with dg), then for all m € [MISA\ {#}, we have |yq| <
Lip(f).

Proof. We prove the claim by induction for all k € N. If k = 1, we can take a subsequence
(x,) of (f({n}))nen which converges to some yy € X. Then put ypy = x, — yg.

Assume our claim to be true for k — 1, with k € N, and let f : [N]* — X have a bounded
image. We put [; =i, for i =1,2,...,k—1, and choose Ly € [{k,k+1,...}] so that

xX(1,2,. k=1 = w—limy o0 e, f({1,2,...,k—=1}U{l}) exists. Then we can recursively
choose for each n >k, I, e N, L, € [LL,,_1]®, with [, € L,_1 and [, < min(LL,), so that
foreach m C {l1, 0o, ..., 1y}, with #m =k — 1, x5 = w —limj_, o0 1c1, (1 U {l}) exists. Let

L={l;:jeN}and put yu = f(n) = Xpm,ms,...my_q} for m ={my,mo, ... ,my} € [L1%.
Finally, we apply the induction hypothesis to f’ : [L]*~! — X, + x,;, which provides
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A new coarsely rigid class of Banach spaces 13

us with an infinite M C L and a weakly null tree (y; :m € [MJ*!) so that x; =
Zf:o Yimimo,..m;) for all m = {my, my, ... ,mp_1} € [M]*~!, and, thus,
k
f(n_/l) = Ym +x{m1,m2,..‘,mk71} = Zy{ml,mz,.“,mi} for all m = {mlv ma, ..., mk} € [M]k
i=0
To prove the second part of the statement, let mn = {my, my, ..., m;} in [M]*\ {#} and

put m’ = {my,my,...,m;_1}. It follows from the lower semicontinuity of the norm with
respect to the weak topology that

yall = Jw- fim fim e lim (£ Ui ) = £ (i, )|
ni—>00 nj41—>00 ni— 00
< limsup limsup - - - imsup | £ (7 U {1, ..., m}) — £OR' U {ni, mign, - )|
ni—>0o0 nj41—>00 ni— 00
< limsup lim sup - - - limsup Lip(f)d (7 U {ni g1, - . ., neds i’ Udng, nigr, . i)
ni—>0o0 nj41—>00 ni—> 00
= Lip(f). O

For the proof of Theorem B, a slightly weaker version of the next result would be
sufficient, but its proof would not be significantly easier.

Lemma 4.2. Let X be a C-asymptotic-co Banach space for some C > 1, k € N, and let
also (xj : i1 € [N]S¥) be a bounded weakly null tree. Then for every e > 0, there exists
L € [N]? so that for every m = {m1,...,my} € [LI* and every F C {1, ..., k}, we have

Hzx{m],.,.,m,-}

ieF

.....

Proof. We will just find one such m. This is sufficient by Ramsey’s theorem since such
a set m could be found in each infinite subset of N. Let us play a k-round vector game
in which the subspace player follows a winning strategy to force the vector player to
choose a sequence (C + €)-equivalent to the unit vector basis of E’;o. In each step i, the
subspace player picks a subspace Y; of finite codimension according to his or her winning
strategy. The vector player picks y; € ¥; according to the following scheme: recursively
pick m; < --- < my so that one of the following holds:

(a) If imsup, 1X(m,,...m;_,,my|l > 0, pick m; (with m; > m;_; if i > 1) and y; in the unit
sphere of Y; so that

< g27".

H)’i -
”x{ml ..... m;} I

In the above argument, we have used the following corollary of the Hahn—Banach
Theorem. If Y € cof(X) and (z;);2, is a weakly null sequence, then lim; dist(z;, ¥) =
0. If, in particular, (z;); is normalized, then lim; dist(z;, Sy) = 0.

(b) If imy [|Xgn,,....m;_y,n ]l = 0, we distinguish between the following subcases:

(bl) ifi =1or X(m,....m;} = 0, for all 1 < j < i, pick arbitrary m; so that m; > m;_;
if i > 1 and arbitrary y; in the unit sphere of Y;, and
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(b2) if i > 1 and x, m;} # 0, for some 1 < j <, pick m; > m;_y so that

||x{m1,...,m,-}|| < (82_I)min{”x{m1 ..... m_,~}|| 11 < j <i with Xmy,...m } # 0}
and pick an arbitrary y; in the unit sphere of ¥;.

It follows that the sequence (y,)k | is (C +¢)-equivalent to the unit vector basis of Kk
Let now F C {1,2,...,k}. Set

Fi={i € F: (a) is satisfied} and F> = {i € F : (b) is satisfied and Xim,,...m;} 7 0}.

Set ig = min(F>) and F» = P>\ {ip} if F» is non-empty, otherwise, let F» = . We now

calculate
Zx{ml,...,m, Z X{my,...,m;} ‘ + ||x{m1 m,O}” + Z Ximy,...,m;} ‘
ieF ieF; iek
Z ”x{ml ..... m; }“)’l Z Ximy,...,m;} — ||x{m1,‘..,m,~}||yi '
ieF) i€F]
+ 15y} | Z [ETE|
lGFz
< (€ 40) max [y ...mp | + Z N I L )Xy )
zeF1
< (CH+ 1+ 3e) max [lxqm,,..m) |-
ieF
An adjustment of ¢ yields the desired estimate. O

The following is one of the main statements presented in this paper.

Theorem 4.3 (Theorem B). A Banach space X is reflexive and asymptotic-co if and
only if there exists C > 1 satisfying the following: for every k € N and Lipschitz map
f: (IN]%, dg)) — X, there exists L. € [N]® so that

diam(f (L)) < CLip(f). (7

Proof. We first assume that X is reflexive and B-asymptotically cg. Let k € N and let f :
(IN]%, dﬂ(ﬁ()) — X be a Lipschitz map. By Lemma 4.1, there exist M € [N]® and a weakly
null tree (v : m € [M]SY) so that f(n) = Y ;. vy, for all m € [MI¥, and [y | < Lip(f),
for all m e [M]SF\ {#}. By Lemma 4.2, we find L € [M]® so that

geensI

ieF
for all m = {my, ma, ..., my} € [LIF and F c {1, ..., k}. Thus, for /i, i in [L]¥, we have
LFem) — @ = > yva—Y vo| <| D va|+| D yo| <2B+2)Lip(f)
u=<m V=i H=<u=<m A=<v=<n

and so for C = 2(B + 2), the conclusion is satisfied.
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A new coarsely rigid class of Banach spaces 15

To prove the converse, we show that if either X is not reflexive or X is reflexive and
not asymptotic-co, then there exists a sequence (fx), fi : ([N, dﬂ(f)) — X, Lip(fx) < 1,

for k € N, and

inf diam(fk([M]k)) S oo, itk /S oo. (8)
Me[N]®
Assume first that X is non-reflexive. By James’ characterization of reflexive spaces [13],
there exists a sequence (x,) C Bx such that for all k > 1 and m = {m,mo,...,mo} €
[N,
2k
k
— Z )le. > E (9)
i=k+1

Define fi(m) = %Zle Xm;, for m = {my,...,m} in [N]*. This map is 1-Lipschitz with
respect to d(k) and (9) implies (8).

Second, assume that X is reflexive and not asymptotically-co. By Proposition 3.3, there
is a separable subspace of X that is not asymptotically-cg, so we can assume that X is
separable. By Theorem 3.8, there exists a 1-suppression unconditional sequence (e;); that
is not equivalent to the unit vector basis of ¢g, and, hence, Ay = ||Zf-{=1 ei|l S ooifk 7 oo,

and that is generated as an asymptotic model of a normalized weakly null array (x}i)
i,j €N)in X. Fixing k € N and § > 0 and after passing to appropriate subsequences of
the array, we may assume that for any £ < j; < --- < j; and any ay,...,a; in [—1, 1],

we have
‘ E a;e;

Define now fi(m) = 5 Z, 1xm) for m = {m1, ..., my} € [N]F. Note that f is 1-Lipschitz
for the metric dﬂ(ﬂ).

k

Z (l)

i=1

<. (10)

Then, if m = {my,...,m}, n ={ny,...,ng} and F = {i : m; # n;}, we have
- Sl o 1y o
Fielm) = fie@) = 53 il = 5> Tl
ieF ieF

Using the fact that the array is weakly null and the Hahn-Banach theorem, for all
M € [N]®, all m in [M]k, we can find x* € Sy« and 71 € [M]¥ such that

<Zx<z) me) 30 -

ieF ieF ieF

Using equation (10), we deduce that

Il fic () — fie(m)|l = /\k—8

If § was chosen small enough, we obtain that for all M € [N]®, diam( fk([M]k)) Tk which

proves our claim. O
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Corollary 4.4 (Theorem A). Let Y be a reflexive asymptotic-co Banach space. If X is a
Banach space that coarsely embeds into Y, then X is also reflexive and asymptotic-cg.

Proof. Let g : X — Y be a coarse embedding with moduli p,, w, : [0, 00) — [0, 00). By
Theorem 4.3, the space Y satisfies (7), for some constant C > 1. It is enough to show
that the same is true for X and some D > 1 such that pg(D) > Cwg(1).

Let f:[N]¥ - X be a non-constant Lipschitz map. Take h : [N]* — ¥ with h(m) =
g(Lip(f)~! f(m)). Because d]g ) is an unweighted graph metric, it follows that

Lip(h) = 5 (1) < wg(Lip(f) '@y (1)) = wg (Lip(f) ™" Lip(f)) = w,(1).

Pick L € [N]® so that for all /i, 7 € [L]¥, we have ||h(m) — h(7)| < Cwg(1). On the other
hand,

Cag(1) = |h0n) — (@l = IgLip(f)~" f () — gLip(/)~" F@)I
> pe(Lip(f) ™Il f () — F@D.

Th;ls, Lip(f)MIf0n) = fFI < D or |f0m) = f@)| < DLip(f), for any m, e
[L]*. O

A simple re-scaling argument (see the end of [3, §4]) allows us to adapt the above
proofs in order to show the following.

Corollary 4.5. Let Y be a reflexive asymptotic-co Banach space. If X is a Banach space
such that Bx uniformly embeds into Y, then X is also reflexive and asymptotic-cg.

Remark 4.6. For k € N, the Johnson graph of height k is the set [N]* equipped with the
metric defined by djgk) (m,n) = %ji(nﬁAﬁ) for m, i € [N]¥. Tt is proved in [3] that there is a
constant C > 1 such that for any k € N and f: ([NJ¥, djgk)) — T* Lipschitz, there exists
M e [N]? so that diam(f([M]¥)) < C Lip(f). It is easily seen that the same is true if T*
is replaced by any reflexive asymptotic-co space. It is also clear that this concentration
property for Lipschitz maps from the Johnson graphs implies the reflexivity of the target
space. We do not know if it implies that it is asymptotic-co. We do not know either
whether the equi-coarse embeddability of the Johnson graphs and of the Hamming graphs
are equivalent conditions for a Banach space. The reason is that canonical embeddings of
the Johnson graphs are built on sequences and not arrays. This confirms the qualitative
difference between asymptotic models and spreading models.

5. Quasi-reflexive asymptotic-cy spaces

Let us first recall that a Banach space is said to be quasi-reflexive if the image of its
canonical embedding into its bidual is of finite codimension in this bidual. For an infinite
subset M of N, we denote I (M) the set of strictly interlaced pairs in [M]¥, namely

Iy(M) = {(m,n) € [M]k X [M]k,m] <np<my<ng<---<mg<ng}.

Note that for (m,n) € I;(M), dﬂ(_]?(rh,ﬁ) = k. Our next result mixes arguments from
Lemma 4.2 of this paper and of [17, Theorem 2.2].
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Theorem 5.1. Let C > 1 and X be a quasi-reflexive C-asymptotic-co Banach space. Then,
for any Lipschitz map f : (IN]¥, dg)) — X, there exists Ml € [N]® such that

V(m,n) € (M), || f(m)— f@m)| < 3(C+1)Lip(f).
In particular, the family ((N]X, d]gf))keN does not equi-coarsely embed into X.

Proof. Let us write X** = X@® E, where E is a finite dimensional space. Let f :
(IN7F, dﬂ(f )) — X be a Lipschitz map. Since f is countably valued and X is quasi-reflexive,
we may as well assume that X and, therefore, all its iterated duals are separable. We
may also assume that Lip(f) > 0. Then mimicking the proof of Lemma 4.1 and using
weak* compactness instead of weak compactness, we infer the existence of M € [N]* and
of a weak* null tree (z;; : m € [M]SF) in X** so that f(m) = zp + ZLI Zimy,...m;}, for all
m e [M]F and ||z | < Lip(f), for all m € [M]SF\ {#}. For any m € [M]SK\ {#}, we write
Zm = Xy +e; with x;; € X and ¢; € E.

Fix now n > 0. Since E is finite-dimensional, using Ramsey’s theorem, we may assume
after further extractions that

Vie{l,....,k} Vm,ie[M,|en—enll <n. (11)

It follows from another Ramsey argument that it is enough to construct one pair (m, i) €
I (M) such that || f(m) — f(n)|| < 3(C+ 1) Lip(f). We shall build m; <ny <--- <m; <
n; inductively as follows. Since X is C-asymptotic ¢, we shall play our usual k-round
game. At each step i, the subspace player follows, as she may, a winning strategy to
force the vector player to build a sequence which is (C + 1)-equivalent to the canonical
basis of ¢X.. So she picks X; in cof(X) according to her winning strategy. Then the
vector player picks x; € Sy;, and ‘we’ choose m; < n; in M according to the following
scheme. The subspace player picks X; according to her strategy, the vector player picks
x1 € Sx, and we just pick m; < n in M. Assume now that Xy, ..., X;_1; x1, ..., x;—1 and
mp <njp <---<mj—| <n;—1 have been chosen for 2 < i < k. For n > n;_;, denote y, =
X{my,...,mi_1,n} — X{ny,...nj_1,n+1} and v, = Zmy,...mi_1.n} — Z{ny,....ni_1,n+1}- The space player
picks X; € cof(X) according to her strategy. Note that X lJ‘ is a finite-dimensional weak™
closed subspace of X*.
(a) Assume first that liminf,_, o [|ynll < 7z Lip(f).

Then we pick n > n;_1 such that | y,| < ﬁ Lip(f), the vector player picks any x; € Sx;
and we set m; =n and n; =n+1.
(b) Assume now that liminf,_, ||y, || > ﬁ Lip(f).

Since (v,) is weak*-null, we have that (v,) tends uniformly to 0 on bounded subsets
of XiJ-. It follows from (11) and the standard identification of (X/X;)* with X,.J‘ that

limsup,,_, o, d(yn, Xi) <n. So we can pick n > n;—1 such that |y, > ﬁLip(f) and

d(yn, Xi) < 25, which implies the existence of x; € Sy, so that ||ﬁ — x| < %. We

set mj =nand n; =n+1.
This concludes the description of our procedure and we recall that it ensures that
(xi)f.‘zl is (C + 1)-equivalent to the canonical basis of E’éo. We now denote A as the set
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of i’s such that procedure (a) has been followed and B as the complement of A. For

simplicity, denote u; = Xpmu,,....m;} — X{ny,...n;}- We clearly have
|
> ui| < S Lip(f).
i€A

On the other hand, we have

>

Z i i

Z””"”(

)|

Z s |
< (C+ 1)y max g | 4k max g | 16kn
Lip(f)
< (2Lip(f)+n)<C+1+ 1.6k2" >
Lip(f)

Note that since f takes values in X, we also have that f(m)— f(n) = Zle u;. Then,
combining the above estimates with an initial choice of a small enough n, we get that
I f(m)— f(m)| < 3(C+1)Lip(f). 0

We deduce the following.

Corollary 5.2. There exists a Banach space X which is not reflexive but such that the
family (INJ*, d]](-]?))kEN does not equi-coarsely embed into X.

Proof. We only need to give an example of a quasi-reflexive, but not reflexive,
asymptotic-co Banach space. It is based on a construction due to Bellenot et al. [5].
For a given Schauder basis (u;) of a Banach space X, the space J[(u;)] is defined to be
the completion of cop (the space of finitely supported sequences (;)72, of real numbers)
under the norm

sup{

”Za,ez

where s1, ..., s, are intervals in N and (e;);2, is the canonical basis of cqp.

It is proved in [5] that if (u;) is the basis of a reflexive space, then J[(u;)] is
quasi-reflexive of order one. Let now (u;) be the unit vector basis of T* (see the description
of T* in §3). Since T* is reflexive, J[(u;)] is quasi-reflexive of order one and, therefore,
not reflexive. This particular space was first considered in [8] and estimates similar to
those given in the proof of [8, Proposition 3.2] show that J[(u;)] is asymptotic-cg. O

> (o

i=1 “jes;

, n €N, s <~~-<sn,mins,-=p,~},
X

)OO
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