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TruckSTM: Runtime Realization of Operational State
Transitions for Medium and Heavy Duty Vehicles

SUBHOJEET MUKHERJEE, JEFFREY C. VAN ETTEN, NAMBURI RANI SAMYUKTA,
JACOB WALKER, INDRAKSHI RAY, and INDRAJIT RAY, Colorado State University

Embedded computing devices play an integral role in the mechanical operations of modern-day vehicles.
These devices exchange information containing critical vehicle parameters that reflect the current state of
operations. Such information can be captured for various purposes, such as diagnostics, fleet management,
and analytics. Although monitoring individual parameters can be useful for some applications, monitoring
distinct combinations of parameters can reveal more complex and higher-level states that may give useful
information. Existing monitoring systems either lack user configurability and control or present simple user
interfaces that make it difficult to monitor and collate different parameters to observe high-level vehicle states.
In this work, we present TruckSTM, a novel application that realizes user-defined states from messages seen
in the embedded networks of medium and heavy duty vehicles and displays state transitions on an interac-
tive user interface. We begin by symbolically formulating some of the in-vehicle networking concepts and
formally defining the concept of operational states and state transitions. We then elaborate on the opera-
tions performed by TruckSTM in mapping network-obtained vehicle parameters to states that can be defined
in standard JSON format. Finally, we evaluate TruckSTM’s asymptotic performance and present the results
for the worst-case scenario and demonstrate that in a real world scenario such high level state visualization
constraints of an operational truck.

CCS Concepts: • General and reference → Design; Performance; • Networks → Cyber-physical net-
works; • Human-centered computing → Visualization; • Software and its engineering → Designing
software; • Theory of computation → Design and analysis of algorithms;
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tion
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1 INTRODUCTION
Most existing transportation management systems lack sophisticated real-time monitoring capa-
bilities of “custom-defined high-level” states of a vehicle or a fleet that are the result of correlating
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and fusing different observable lower-level states. Examples of these custom-defined high-level
states include those related to mundane driving conditions, such as acceleration and braking, and
more complex ones such as those related to vehicular security and safety. Increasingly, various
stakeholders are perceiving the need for such capabilities. For example, with the growing interest
in heavy vehicle security [18], a fleet company is interested in monitoring potentially malicious
and intrusive actions like un-warranted disabling of engine brakes at low speeds [1]. State-based
systems and metrics have been identified as important in the vehicle security [4] and safety [19]
research communities. The ability to observe and act upon custom-defined high-level states en-
ables faster and better decision making. Observing states may allow users to create an intrusion
detection system that generates actionable alerts when specific security critical states occur. In this
work, we present TruckSTM, a novel application that realizes user-defined states from messages
seen in the embedded networks of medium and heavy duty vehicles and displays state transitions
on an interactive user interface.

Diagnostic and telematics data are collected from in-vehicle communication (bus) networks
that typically follow the CAN [6] protocol. Embedded computers, referred to as Electronic Con-
trol Units (ECUs), transmit and receive messages on the CAN buses. These computers control a
variety of operations ranging from critical ones, such as fine-tuning fuel injection, to non-critical
ones, such as comfort- and entertainment-related functions. To make better and more informed
decisions, ECU applications require timely and accurate information from other ECUs. This infor-
mation is received over the CAN network and can also be accessed by on-board devices connected
directly or indirectly to these networks. Medium and heavy duty vehicle information on the CAN
bus adhere to the specifications made in the SAE J1939 [11] standards. This allows for interoper-
ability of components supplied by different Original Equipment Manufacturers (OEMs). TruckSTM
is developed keeping the SAE J1939 standards in mind. In this work, we formalize the concepts
of heavy-vehicle states and identify the practical challenges associated with designing and imple-
menting a real-time system that realizes high-level user-defined states. To achieve this goal, we
have designed a Linux-based application that receives parameters (engine speed, torque, switch
states, etc.) from in-vehicle network traffic, maps them to user-defined states, and displays state
transitions—all in real-time. For example, our system can map the engine requested torque and the
current vehicle speed to the security critical state “disabling engine braking by commanding
0% engine torque at low vehicle speed” [1] and show the transitions to and from this state.

J1939 recommends the usage of the high-speed CAN protocol for physical communication. Al-
though high-speed CAN permits up to 1 Mbits/sec of transmission speed, J1939 standards recom-
mend a speed of 250 kbits/sec [14, 16]. In a real-time system, every message should be considered
for evaluation. On a 250-kbits/sec bus, a typical J1939 application message can be seen every 0.5
ms [11]. We refer to this time bound as the soft timing constraint as, in general, owing to several
factors like ECU processing capabilities, bus contention, J1939 standards, and mechatronic behav-
ior, the real message inter-arrival times are much higher. As a matter of fact, the soft constraint
on processing time is seldom realized. In one of our previous works [3], we used two real-world
heavy vehicle network logs for experimentation purposes. For both of these logs, we observed av-
erage message inter-arrival times of around 3 and 5 ms. For the purpose of this article, we consider
these time limits to be the hard timing constraints. TruckSTM’s real-time capabilities are designed
to operate appropriately within these timing constraints.

We make several contributions in this article. We present a detailed overview of the J1939 appli-
cation layer standards using symbolic formulation. We define the concept of an operational state1

for heavy vehicles and then realize the definition using a JSON schema. We present TruckSTM,

1The terms state and operational state refer to the same entity.
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which realizes vehicle states and transitions from in-vehicle network traffic. We demonstrate the
collaborative workflow of TruckSTM components and evaluate worst-case performance character-
istics using asymptotic analysis of individual components. We also perform a detailed evaluation
of TruckSTM’s runtime performance in the worst case.

The rest of the article is organized as follows. In Section 2, we describe related effort in this
area. In Section 3, we provide the relevant background information. In Section 4, we describe the
implementation and performance-related aspects of TruckSTM. In Section 5, we perform a detailed
performance evaluation that tests the ability of TruckSTM to meet the timing constraints in the
worst case. In Section 6, we conclude the article with pointers to future work.

2 RELATED WORK
Some works [5, 8] have been done on the design of systems and infrastructure for acquisition and
(remote) dissemination of information from in-vehicle networks. Some works also describe tech-
niques for visualization and intelligent utilization of acquired vehicle parameters [7, 20]. However,
existing literature does not address the problem of formalizing and realizing user-defined states
from in-vehicle network traffic. The definition for user-defined states presented in this article al-
lows users to visualize states as a combination of various parameter values, but also as single-
parameter instances. For example, one can visualize different states of the braking switch and
engine speed individually or in combination. Furthermore, states generated in this manner can be
readily used for further processing and visualization.

Vector’s2 CANOe tool [17] provides the State Tracker (ST) application that is closest to Truck-
STM. Vector provides a tutorial video3 that describes the operations supported on the ST window.
The ST application allows users to track active states and transitions for individual vehicle parame-
ters as pulses or rectangular blocks moving across an interactive user interface. Users can configure
the following in the user interface. (i) Set triggers on certain parameter values and pause/freeze the
window. Multiple triggers can be active in parallel, but only a single trigger pauses the window.
This means that states are not activated by parameter combinations but only by single-parameter
instances. (ii) Set colors to specific parameter ranges. For example, engine speed greater than 2,000
can be configured to be displayed using the color red. Since the ST window displays multiple pa-
rameters in one window, it is possible to display different colors and raise alarms when particular
color combinations occur. For example, if high engine speed and low gear are both displayed in red,
this can symbolize potential clutch damage. However, similar color combinations will also have to
be set for other states. The issue with this approach is that if every parameter range in a state is
displayed using the same color, the same parameter range cannot be included in two states, as in
that case multiple colors will correspond to the same state. In combination with the sheer speed
and volume of information flowing across the ST window, this can make it extremely difficult for
the human eye to perceive minute details in a timely fashion, thus resulting in possibly erroneous
judgments.

Our system does not require any human intervention and deals with rapidly arriving network
traffic efficiently to realize state changes. Although some visual changes can be rapid, even acquir-
ing encoded but critical information like active states and transitions can be of great use to many
applications that require such information for further processing. Moreover, commercial tools are
expensive, and integration may require effort. It is also not possible to customize and extend the
tool due to the absence of source code. Our effort demonstrates how such a tool can be built and
the challenges associated with developing one.

2https://www.youtube.com/watch?v=QZfWD4wewV4.
3https://www.youtube.com/watch?v=ozp2up-UhcA&t=325s.
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Fig. 1. In-vehicle networking and external interfaces.

3 FORMALIZATION OF IN-VEHICLE COMMUNICATION
3.1 In-Vehicle Communication Overview
Figure 1 shows a typical J1939-based network organization [10, 11]. Information transmitted by
an ECU on a physical bus can be received by all other ECUs on the same segment. A single seg-
ment or multiple segments connected via bridges or gateways form a J1939 network. For heavy
duty trucks, trailer networks/sub-networks are often connected to the main tractor network using
bridges or gateways that can filter messages across different networks depending on bandwidth
and application requirements. For example, if the instrument cluster needs to show the status of
trailer lights, it may request (or receive) such information from the trailer network via a bridge or
gateway.

The powertrain network from Figure 1 includes an engine controller, a transmission controller,
and an anti-lock braking system (ABS). For example, in some systems, under a tire skid scenario,
the ABS may request retardation to be disabled by sending messages to the engine control module.
Since multiple ECUs communicate using the same physical media, timely delivery of such mes-
sages demands that messages are not delayed or lost due to collision. For this purpose, SAE J1939
standards prescribe the usage of the high-speed CAN protocol for physical transmission.

CAN [6] is a multi-master serial bus protocol that facilitates highly reliable message transmis-
sion over a two-wire physical medium (as shown in Figure 1). The CAN protocol operates using a
CSMA/CD-like scheme with priority-based arbitration. In such a scheme, ECUs transmit messages
when a bus is idle, and if two ECUs attempt to transmit at the same time (i.e., collision is detected),
the message with higher priority wins the arbitration process. The ECU transmitting the lower-
priority message waits until the next idle slot is available. For example, the ABS system transmits
messages with high priority, thereby ensuring necessary control of the bus during safety-critical
scenarios. Moreover, high-speed CAN allows significant transmission speeds of up to 1Mbits/sec.
ECUs can thus receive and react to critical alerts in a timely fashion. Additionally, CAN also fa-
cilitates efficient error management and recovery, thus making it the primary choice for modern
in-vehicular communication.

CAN ensures reliable message delivery across ECUs but does not specify how messages must be
interpreted. SAE J1939 fills this gap by specifying standards that may be opted by different manu-
facturers for reliable communication between heterogeneously manufactured ECUs. This common
set of standards also allows effective data logging and analysis (Figure 1). Such analysis can be per-
formed by logging J1939 network traffic and processing traffic data in either offline fashion using
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Fig. 2. SAE J1939 networking concepts.

onboard connectors like the OBD-II port or online via standardized Fleet Management System
(FMS4) interfaces and/or telematics units.

3.2 SAE J1939
3.2.1 A Layered Networking Paradigm. The SAE J1939 standards [11] are modeled on the seven-

layer ISO/OSI networking protocol stack. Currently, only four of the seven layers are documented
as shown in Figure 2(a). Unlike the ISO/OSI paradigm, messages are not strictly encapsulated with
new headers at each layer. Instead, functionalities at different layers are invoked when required.
For example, every node on the J1939 network has a unique address, and when nodes on the
network claim addresses, network layer functionalities are invoked.

Raw signal values switch states and other vehicle parameters are encoded and packaged in J1939
messages following specifications made in the application layer documentation (SAE J1939-71 [15])
and the J1939 Digital Annex (DA) [9]. The network-layer (SAE J1939-31 [12]) describes procedures
and devices (like bridges and gateways) that enable seamless networking within and across seg-
ments. The data-link-layer specifications (SAE J1939-21 [13]) enumerate the various message types
and describe protocols and algorithms that ensure reliable message delivery. The physical/CAN
layer is responsible for physical communication. It is at this layer that messages are structured as
CAN frames and transmitted on the bus.

3.2.2 Message Interpretation. J1939 messages are composed at the application layer. A sin-
gle CAN frame allows a maximum of 64 bits of data. J1939 allows larger messages by splitting
(Figure 2(a)) at the data-link layer into J1939 Protocol Data Units (PDUs) that are then transmitted
sequentially and reliably to the receiving ECU(s). PDUs can be split into 29-bit identifiers and 0-to-
64-bit data fields as shown in Figure 2(b). The identifier field can be further split into six distinct
fields, namely priority, extended data page (EDP), data page (DP), PDU format (PF), PDU specific
(PS), and source address (SA). The first 3 bits of a J1939 PDU denote the relative criticality of a
message and aid in the process of arbitration. EDP and DP are 1-bit values and can together as-
sume only a pair of standardized values 002 and 012 (we use the suffix to denote the base of the
number). We use lowercase letters to denote the values of these fields. For example, ps16 denotes
the value of the PS address in hexadecimal form. Table 1 shows a summary of the symbols used in
the article.

J1939 identifies each vehicle parameter using a unique identifier, the Suspect Parameter Num-
ber (SPN). Parameters can be grouped together according to one or more J1939 standardized con-
vention [11]. These groups are uniquely identified by an 18-bit number referred to as Parameter
Group Numbers (PGNs). Every message has a unique PGN. When a message is received, the PGN is

4http://www.fms-standard.com/.
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Table 1. Summary of Important Symbols

Symbol Explanation Reference
dp Data page field of message 3.2.2
edp Extended data page field of a message 3.2.2
p f PDU format field of a message 3.2.2
ps PDU-specific field of a message 3.2.2
pдn Parameter Group Number, a unique identifier for a message 3.2.2
da Destination address of a message 3.2.2
sa Source address of a message 3.2.2
spn Suspect Parameter Number, a unique id for a parameter encoded in a message 3.2.2
Pn Numeric parameter 3.2.2
VPn Value of a numeric parameter 3.2.2
VPn Universal J1939 numeric parameter range 3.2.2
Pa ASCII parameter 3.2.2
VPa Value of an ASCII parameter 3.2.2
VPa Universal J1939 ASCII parameter range 3.2.2
Pb Binary parameter 3.2.2
VPb Value of a binary parameter 3.2.2
VPb Universal J1939 binary parameter range 3.2.2
p A parameter (Pn or Pa or Pb), identified by the tuple (pдn,da, sa, spn) 3.3.1
pinst An instance of a parameter in a state definition 3.3.2
pinstSet A set of parameter instances 3.3.3
s A vehicle state ∈ S expressed as {⟨p,pinstSet⟩} 3.3.3
Mt Mode ∈ M of a vehicle at time t 3.3.3
T Set of all mode transitions, where a mode transition is (Mti ,Mti+1 ) 3.3.3

obtained from the PF and PS fields as follows:

pдn16 =
⎧⎪⎨⎪⎩

(edp2dp2)16p f160016 if p f < 240
(edp2dp2)16p f16ps16 otherwise

It must be noted that when p f < 240 and dp = 0, then pдn < 61440 and pдn16 < F000 as edp = 0.
If p f < 240 and dp = 1, then pдn < 126976 or pдn16 < 1F000 as edp = 0.

CAN is a broadcast medium, but J1939 also allows destination-specific communication. Thus,
every controller application connected to the bus must have a unique 8-bit address, some of which
are standardized by J1939. For example, the engine controllers are assigned standard addresses of
0016 and 0116. Source and destination addresses are also embedded in the identifier field of the
PDU. The address of the sending device is in the SA field. The destination address is obtained as
follows:

da16 =
⎧⎪⎨⎪⎩
ps16 if p f < 240
FF16 otherwise

In other words, an ECU can send a PGN with PF less than 240 by embedding the destination address
in the PS field. Otherwise, the message is a broadcast and all nodes on the network can process it.

Once a PGN is identified, SPNs grouped under that PGN can be used to interpret the contents
of the data field. Each SPN is assigned to a set of attributes, namely length, position, resolution,
and offset, for this purpose. Data bits are first extracted according to the given position and length.
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Extracted bits are then converted into parameter values using the resolution and offset factors and
expressed in units. The following example demonstrates one such scenario:

id → 110︸︷︷︸
p

pдn
︷%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%︸︸%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%︷

0︸︷︷︸
edp

0︸︷︷︸
dp

11111101︸%%%%%︷︷%%%%%︸
pf

11100001︸%%%%%︷︷%%%%%︸
ps

00110001︸%%%%%︷︷%%%%%︸
sa

data → 01100100︸%%%%%︷︷%%%%%︸
spn2609

111111 01︸︷︷︸
spn7853

11111111111111..

Since the value contained in the PF field is greater than 240, the PGN is calculated using all
EDP, DP, PF, and PS fields. In this case, the binary to hexadecimal conversion yields a PGN FDE1
(6499310), which denotes “Cab A/C Climate System Information” [9]. This PGN is associated with
two distinct SPNs [9]:

• 2609: “Cab A/C Refrigerant Compressor Outlet Pressure,” expressed in byte 1 (from left)
and calculated by multiplying the decimal equivalent with the scaling factor 16 (resolution
of “16kPa/bit”) and adding to it an offset of 0.

• 7853: “Air Conditioner Compressor Status,” expressed in byte 2 (from left) bits 0 to 1 and
used in binary form.

The actual value of the “Cab A/C Refrigerant Compressor Outlet Pressure” can thus be calculated
as 011001002 ∗ 1610 + 010 → 10010 ∗ 1610 → 1600 kPa. Similarly, the “Air Conditioner Compressor
Status” is set to 1, which denotes that the “Air Conditioner Compressor is ON” [9].

Application layer standardized parameter (spn) types and associated resolutions, scaling factors
(r ), and offsets (o) are as follows:

Numeric: Resolutions are expressed as “r unit /bit” (“r unit per bit”), where r ∈ R>0 (r is
a positive real number) and unit can be measurements like “rpm” and “kPa.” An exam-
ple resolution can be “16 kPa/bit.” Offset o ∈ R≤0 is used to express zero or negative
parameter values. We denote a numeric parameter by the notation Pn and its value by
VPn , where VPn = parameterBits10 ∗ r + o (also shown in the preceding example). Thus,
o ≤ VPn ≤ (2l − 1) ∗ r + o, where l is the number of bits in the parameter.

Finally, we define the universal numerical J1939 parameter range asVPn =
⋃

Pn VPn .
ASCII: Resolutions are expressed in “ASCII.” No scaling factor and offset are required. Pa-

rameter values are ASCII strings like VIN numbers. We use the notation Pa to an ASCII
parameter of bit length l .VPa , the value of Pa, is thus an l/8 characters long ASCII string
c1c2..cl/8, where c ∈ ISO Latin-1 character set. Finally, we define the universal ASCII J1939
parameter range asVPa =

⋃
Pa VPa .

Binary: Resolutions are expressed as “Binary” or “l bit bit-mapped,” where l is the parameter
bit length. No scaling factor and offset are required. Parameter values are bit strings of
length l and can be expressed as l-tupe bits. For example, “010” can be expressed as (0, 1, 0).
We denote a binary parameter as Pb and its value asVPb , whereVPb ∈ {0, 1}l . Finally, we
define the universal numerical J1939 parameter range asVPb =

⋃
Pb VPb .

3.3 Operational States, Modes, and Mode Transitions
3.3.1 Identifying Parameters. A parameter can be uniquely identified using the SPN number.

However, J1939 allows the same parameter to be transmitted by multiple sources [15]. The stan-
dards do not prevent a parameter from being assigned to multiple groups [10]. Moreover, pa-
rameters with the same PGN and transmitted by the same source can be targeted for different
destinations. This is especially true for control and command messages. Accordingly, a param-
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eter on a bus can be uniquely identified by the collection (pдn,da, sa, spn), and we denote it
using the symbol p. An example parameter on the CAN bus can thus be represented as p =
(61444, 255, 0, 190).

3.3.2 Parameter Values Discretization. A single state can be associated with different parameter
values. For example, in an idle situation, a very low engine speed or a very high speed can both
denote a state of malfunction. Thus, to define a state of malfunction, one has to include both low
and high RPM values. However, as already seen in Section 3.2.2, parameters can attain different
number of values (∈ VPn ∪VPa ∪VPb ) depending on their lengths. Parameters can have small bit
lengths if they are of an enumerated type, such as those expressing switch states. Other parameters
having continuous values, such as engine speed, require larger bit lengths. Thus, the term low
engine speed can signify a large number of values, which need to be discretized into ranges to
avoid state explosion [19]. We achieve this by allowing parameter values pinst to be expressed as
closed intervals:

pinst =

{
[k − l] if k, l ∈ VPn ∧ (k, l ! VPa ∪VPb )
k otherwise

Binary and ASCII parameters are discrete by their very nature. Numeric parameters are explicitly
discretized as earlier.

Note that every parameter value is associated with a parameter. In other words, pinst = [0.0 −
1100.0] is a range of values for some parameter, say p = (61444, 255, 0, 190).

3.3.3 Combining Parameters into Operational States. Zhang et al. [19] define a state as a cate-
gory or collection of discrete/discretized instances of a single parameter. Such a definition suits
the anomaly detection requirements from Zhang et al. [19] but fails to convey a more high-level
view of the vehicle’s behavior. For example, being at a state of “high RPM” alone does not con-
vey a state of “possible clutch damage” unless it co-exists with another state of “low gear.” Thus,
combining parameter instances from different parameters into a single state can help capture a
broader aspect of operations. A state definition that includes both “high RPM” and “low gear” can
be clearly termed as a state of “possible clutch damage.” With this view, we define operational
states as follows.

Definition 1 (Operational State). An operational state for medium and heavy duty vehicles de-
notes the behavior of the vehicle during a period of driving as a unique combination of the ve-
hicle’s operational parameter values. The operational state s consists of a set of pairs of the form
< p,pinstSet > as defined in the following.

s = {⟨p,pinstSet⟩},where pinstSet is the set of values of parameter p when the state is s .

We use S to denote the set of all operational states. Every defined state is thus a combination
of a set of parameter values where every parameter value can be expressed as a closed interval.
Note that we do not require individual intervals to be disjoint. Using the definition from earlier, the
state of “possible clutch damage” can possibly be represented using parameters (190 and 523) trans-
mitted by “engine” and “transmission,” respectively: {⟨(61444, 255, 0, 190), {[3000 − 6000], [6000 −
8000]}⟩, ⟨(61445, 255, 3, 523), {[0, [1 − 50]}⟩}.

Definition 2 (Active Parameter). A parameter pi with value vi is said to be active in some oper-
ational state s if ∃⟨p,pinstSet⟩ ∈ s such that pi = p and vi ∈ pinstSet .

Definition 3 (Affected State). An operational state s is said to be affected if it has one or more
active parameters in incoming messages during a given duration.
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Definition 4 (Active State). An operational state s is said to be active if all of its parameters are
active in incoming messages during a given duration.

A system can be in several active operational states at any given time. We formalize this using
the concept of mode.

Definition 5 (Mode). A mode Mt is a set of operational states that can be simultaneously active
at time t .

Mt = {s} where s ∈ S
We useM to denote all of the modes. Mode transitions occur with the passage of time. When

mode transitions occur, one or more operational states change and others remain the same.

Definition 6 (Mode Transition). A mode transition t for medium and heavy duty vehicles defines
a shift from an active set of states at a given time instance to a new set of states at the next time
instance. Mode transitions are defined as a pair of modes (Mti ,Mti+1 ) defined in the following.

(Mti ,Mti+1 ), where i ∈ Z and Mti ,Mti+1 ⊆ M and |Mti ∩Mti+1 | ≥ 0

According to the preceding definition, a vehicle can be in more than one active operational
state at any given time and transitions can involve overlapping states. Let us consider the simple
braking and anti-lock braking states. These are overlapping states—that is, when heavy braking
occurs, anti-lock braking also occurs. Furthermore, at the next time instant, ABS can co-exist with
some other state even though braking has been stopped. One important observation from this is
that modes and transitions can together form a mode transition graph G = ⟨M,T ⟩, where M
represents the set of all modes and T the set of all mode transitions. The mode transition graph
G is a directed graph. An edge (Mi ,Mj ) signifies that there is a transition from mode Mi to mode
Mj . Drawing graphs on the screen, especially determining correct layouts, is a difficult problem.
Thus, in TruckSTM, we represent edges using color combinations. We use the color cyan to denote
transitional or previously active states (Mi \Mj ) and the colors green or red (refer to Section 4.2.5)
to denote currently active states (Mj ). The inactive states at a given time (S \Mj ∪Mi ) are repre-
sented using the color grey.

4 SOLUTION METHODOLOGY
4.1 Overview of Solution and Challenges Addressed
We make use of two example vehicle operational states that are of interest to the user:

Sudden high acceleration demand: This is an abnormal state that reflects a sudden high
press on the accelerator pedal that activates the kickdown switch. The state is represented
using the following three parameter instances:
{⟨(61443, 255, 0, 91), {[70.0 − 90.0], 100.0}⟩} High pedal press percentages (70.0% to

90.0% and 100.0%) broadcasted by the engine controller in the SPN 91 from the PGN
61443.

{⟨(61443, 255, 0, 559), {1.0}⟩} Kickdown switch active (1.0) confirmation broadcasted by
the engine controller in the SPN 559 from the PGN 61443.

{⟨(65265, 255, 0, 84), {[0.0 − 40.0]}⟩} Low wheel-based vehicle speed (0.0 to 40.0 mph)
broadcasted by the engine controller in the SPN 84 from the PGN 61443.

Engine brake disable attack: This state is adopted from an attack described in Burakova
et al. [1]. The state represents malicious disabling of engine brakes by commanding a
0% torque when the vehicle is actively decelerating. The state is represented using the
following two parameter instances:

ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 1, Article 4. Publication date: October 2019.



4:10 S. Mukherjee et al.

Fig. 3. TruckSTM component interaction diagram.

{⟨(0, 0, 11, 518), {0.0}⟩} 0.0% torque commanded in the SPN 518 from the PGN 0 by a
malicious intruder masquerading as the brake controller (sa = 11).

{⟨(0, 0, 11, 695), {[1.0 − 3.0]}⟩} Engine control mode activated through the SPN 695 from
the PGN 0 by a malicious intruder masquerading as the brake controller (sa = 11).

{⟨(65265, 255, 0, 84), {[0.0 − 30.0]}⟩} Low wheel-based vehicle speed (0.0 to 30.0 mph)
broadcasted by the engine controller in the SPN 84 from the PGN 61443.

Figure 4 demonstrates an example case where user-defined states are realized from parameter
values. Figure 3 demonstrates the TruckSTM components and the interactions required to achieve
the goal mentioned previously. TruckSTM is not equipped with CAN transceivers and controllers
for interpreting raw signals. Consequently, we allow users to enqueue such messages as a string
of bits in the process input queue (which as seen in Figure 3 is also the input queue for the J1939
Message Interpreter (JMI)) using custom-built modules that can be easily integrated into TruckSTM.
The message source can thus be anything from real or virtual CAN interfaces to even network log
files. Once the messages are received in the input queue, they are delivered to JMI by a queue
controller. The queue controller is a special process that gets messages from an input queue, passes
the message to a module, waits for a module to complete processing the message, and puts the
output from the module in the output queue, which is then picked up by the next queue controller.
The queue controller blocks until messages are available in the queues and de-queues accordingly.
It is up to the system components like JMI to make sure properly formatted messages are delivered
to it. JMI converts the string of bits parameter-value pairs like the ones shown above the CAN bus
in Figure 4.

Once the parameter values are obtained from a message, the next challenge is to map them to
states and determine the current mode of the vehicle. We split this problem into two and desig-
nate separate modules, namely State Indexer (SI) and State Transition Visualizer (STV), to address
them in parallel. Distributing the problem to two parallel modules allows us to achieve increased
performance, as will be shown in Section 4.4.

We first discuss the operations performed by the SI (Section 4.2.4). The SI module essentially
decides which states are affected by an incoming message. For example, at time t1, the incoming
message with PGN 0 affects the first state s1 as values 0.0 and 2.0 match the corresponding state
definition. This, however, does not activate the state, as s1 still constitutes other parameters that
do not get affected. To decide if a state is affected, SI needs to map the incoming parameter value to
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Fig. 4. Mapping parameter values to states.

the appropriate parameter instance in a state definition. To achieve this, SI maintains two indexes
on the set of states. The first index is a hash map that assigns parameter instances to states that are
affected by it. For example, from Figure 4, the parameter ((0, 0, 11, 518)) instance (0.0) affects s1,
and hence this state (or a set of states) can easily be retrieved by querying the hash map,h(0.0) = s1.
However, parameter instances can also be intervals (Section 3.3.2). For a given parameter, finding
the number of interval instances that a value maps to can be a linear problem in the number of
intervals. However, we can use an interval tree [2] that allows O (logn + t ) query time (where n is
the total number of intervals on which the tree is built and t is the number of intervals that are
returned by the query) and returns all (including overlapping) intervals that contain a given query
point. In TruckSTM, we make use of interval trees to create a second index that maps intervals to
states. As an example, let us consider parameter (65265, 255, 0, 84) from Figure 4. This parameter is
associated with two overlapping interval instances ([0.0 − 30.0], [0.0 − 40.0]) that affect states s1
and s2, respectively. An interval tree can thus be constructed on these interval instances. At time
t2, when parameter (65265, 255, 0, 84) instance (15.0) is received from the bus, it can be queried on
the interval tree for that parameter and both intervals will be returned. For a given parameter, both
the hash map and the interval tree are mapped to the parameter in the parameter_state_map data
structure such that parameter_state_map[p] = (..,hashmap, intervaltree ). The affected states at
time t2 are thus s1 and s2, of which s1 is activated as all of its constituent parameters are activated.
At time t3, however, the value for parameter (0, 0, 11, 518) changes. This affects s1 negatively and
deactivates it.

SI only keeps track of affected states. Whether an affected state is active is decided by the STV.
After every message is processed, SI outputs a data structure affected_state_map that maps the
individual states to the number of parameters currently active in it. STV maintains a different data
structure state_visualizer_map that maps all defined states to the total number of parameters
in their respective definitions. If the number of parameters currently active is equal to the total
number of parameters, a state is considered active, otherwise not. For example, at time t2, since
both parameters of s1 are active, the state is considered to be active. For a parameter with more
than one instance belonging to the same state, if a match is found with any one of the instances,
the parameter is considered to be active for that state. This can be seen in Figure 4, where, at time
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Fig. 5. State definition JSON schema.

Fig. 6. State definition JSON example.

t4, parameter (61443, 255, 0, 91) is activated by the incoming parameter value that falls within
the range [70.0 − 90.0]. A state remains active until one of the constituent parameters becomes
inactive. STV displays the mode of operation. In Figure 4, at time t2, the vehicle is in modeM2 = {s2}
and is in mode M3 = ϕ at time t3.

4.2 Component Design and Interaction
4.2.1 State-def Interpreter. State definitions are an integral part of this project. As noted in Sec-

tion 3.3, states are defined as a set of parameter instances where instances may be closed intervals
or discrete values corresponding to the parameter (pдn,da, sa, spn). To simplify the syntax for
state definitions, we use a simple JSON schema as shown in Figure 5. For reference, we also show
a simple state definition file with two states (used in the previous section) in Figure 6.
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Along with the schema, we also show two example states in the state-definition file from Figure 6:
High Acceleration Demand, expressed in terms of the amount of accelerator pedal press, state of
the accelerator kickdown switch, and the engine speed, whereas Engine Brake Disable Attack
is expressed in terms of the engine requested torque and vehicle speed [1]. The schema from
Figure 5 describes some of the constituent key-value pairs. For example, name represents a user-
provided string that describes the state and type can be either Normal or Abnormal, thus denoting a
user-specified criticality for the state. Our visualizer displays Normal states using the color green
and Abnormal states using the color red (Section 4.2.5). The definition property presents the
actual state definition as a set of (p,pinstSet) in accordance with Definition 1. Additionally, a
comment property is also available to provide some additional information about the parameter
instances. The property pinst is a set that can contain either ASCII elements or binary elements
or a set of closed intervals of numeric elements or single-valued numeric elements.

Algorithm 1 shows the operations of the State-def Interpreter (SDI). This component is respon-
sible for generating some of the most critical data structures to be used at runtime. As shown in
Figure 3, it retrieves the state definition from the state-definition file and parses the JSON content to
obtain a list of user-defined states. It then traverses through each state and populates four critical
data structures:

pgmask_map: Updating the pgmask_map data structure begins by generating a pgmask. A
pgmask is essentially a bit mask that represents the fields pgn, da, and sa (Figure 2) for
a parameter in the state definition. The logic for obtaining these fields is shown in Sec-
tion 3.2.2. The pgmask is generated using the reverse logic as shown in lines 13 through 19
of Algorithm 1. The pf is first obtained from the pgn, and if it is less than 240, the pgmask
is composed using the edp, dp, pf, da, and sa bits. Otherwise, it is composed of the pgn
and sa bits. The first 6 bits (from the left) of the pgmask are always kept to 0 to mask out
those bits. Individual parameters are then put into a list that is mapped to the pgmask.

state_parameter_map: The state_parameter_map maps individual states to a parame-
ter_active _map and the active_state_counter. The parameter_active_map maps a param-
eter to a bit that indicates whether that parameter is active. The active_state_counter de-
notes the number of active parameters for the state.

parameter_state_map: The parameter_state_map maps individual parameters to a 2-tuple.
The first element of the tuple assigns a single bit to the state being processed. Setting the
bit to 1 implies that the state is affected by the parameter. The second element of the tuple
is a map from parameter instances to a set of states that they affect. The SI module treats
the second element of the tuple as the hash map index and builds the interval tree index
from intervals in its keys (refer to Section 4.1).

state_visualizer_map: The state_visualizer_map associates states with their types obtained
from the state definition file and the total number of parameters in the state that will be
used later to evaluate if a state is active.

4.2.2 DA Interpreter. To interpret a parameter embedded in a J1939 message, it needs to be ex-
tracted from the data field (refer to Section 3.2.2). Every SPN included in the J1939 DA is assigned to
a position and length that determines the data bits that correspond to that parameter. The extracted
bits can then be transformed into their appropriate data representation (∈ VPn ∪VPa ∪VPb ) using
the resolution and offset factors. As seen in Figure 3, the SDI forwards the pgmask_map. The DA
interpreter (DI) then generates a bit mask for every parameter using the information that it obtains
from the DA. The bit mask can then be used to extract the parameter bits from the 64-bit data field.
Algorithm 2 shows the process of mask generation in detail.
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ALGORITHM 1: State-def Interpreter
Input: state definition
Output: pgmask_map, state_parameter_map, parameter_state_map, state_visualizer_map

1 pos ← 0, active_parameter_counter ← 0
2 pдmask_map ← ∅ ◃ Data structure for J1939 Message Interpreter
3 state_parameter_map ← ∅, parameter_state_map ← ∅ ◃ Data structures for State Indexer startup
4 state_visualizer_map ← ∅ ◃ Data structure for State Visualizer startup
5 foreach state do
6 s ← (state[name],pos ) ◃ adding the monotonically increasing pos makes s unique
7 pos ← pos + 1
8 ps ← set of parameters in this state definition
9 parameter_active_bit_map ← ∅

10 for p ∈ ps do
11 parameter_active_bit_map[p] ← 0
12 ◃ Update pgmask_map
13 p f ← pдn ∧ 00FF0000
14 if p f < 240 then
15 pдmask ← (000000 edp2 dp2 p f2 da2 sa2)10
16 end
17 else
18 pдmask ← (000000 pдn2 sa2)

19 end
20 if pдmask ! keys (pдmask_map) then
21 pдmask_map[pдmask] ← ∅
22 end
23 pдmask_map[pдmask] ← pдmask_map[pдmask] ∪ p

24 ◃ Update parameter_state_map
25 if p ! keys (parameter_state_map) then
26 p_tup ← (∅, ∅)
27 end
28 else
29 p_tup ← parameter_state_map[p]
30 end
31 p_tup[0][s] ← 0
32 for pinst ∈ pinst ′ do
33 if pinst ! keys (p_tup[1]) then
34 p_tup[1][pinst] ← ∅
35 end
36 p_tup[1][pinst] ← p_tup[1][pinst] ∪ s

37 end
38 parameter_state_map[p] ← p_tup
39 end
40 ◃ Update state_parameter_map
41 state_parameter_map[s] ← (parameter_active_bit_map,active_parameter_counter )
42 ◃ Update state_visualizer_map
43 state_visualizer_map[s] ← (type, |ps |)
44 end
45 return pgmask_map, state_parameter_map, parameter_state_map, state_visualizer_map
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ALGORITHM 2: DA Interpreter
Input: pдmask_map
Output: parameter_mask_map

1 parameter_mask_map ← ∅
2 for pдmask ∈ keys (pдmask_map) do
3 parameter_masks ← ∅
4 for p ∈ pдmask_map[pдmask] do
5 (position, lenдth, resolution,o f f set ) ←

πposit ion,lenдth,r esolution,of f set (σPGN=pдn∧SP N=spn J1939DA)

6 parse string representations to obtain critical numbers. ◃ refer to Section 4.2.2
7 convert length in bytes to length in bits as lenдthin bit ← lenдthin byte ∗ 8
8 ◃ position ← R.x r S .w
9 mask ← 00....02, s.t. |mask | = 64 andmask[i] denotes bit i from the least significant side

10 pos ← (R − 1) ∗ 8 + x
11 shi f t_back ← pos − 1
12 k ← 1, ◃ base case is where lenдth ← 1
13 for k ≤ lenдth do
14 mask[pos] ← 12
15 k ← k + 1
16 pos ← pos + 1
17 if pos = (S − 1) ∗ 8 + 1 then
18 pos ← (S − 1) ∗ 8 +w
19 end
20 end
21 parameter_masks ← parameter_masks ∪ (p,mask, resolution,o f f set , shi f t_back )
22 end
23 parameter_mask_map[pдmask] ← parameter_masks ◃ Note that |parameter_masks | > 0, always
24 end
25 return parameter_mask_map

As seen in lines 2 through 6 of Algorithm 2, for every parameter, the interpreter first obtains
the position, length, resolution, and offset factors by querying the DA database. The obtained string
representations are mostly written as semi-structured text and hence are subjected to further text
processing to extract critical entities. The following four bullets describe the representation and
extraction procedure for the aforementioned factors. In the process, we also make use of some
formulation to describe the structure of individual textual representations:

Length: Length is represented as “n u,” wheren ∈ Z andu ∈ {bit ,bits,byte,bytes}. The actual
length is thus the first token n. If the unit of length is in “byte” or “bytes,” we convert the
length into bits by multiplying by 8 as shown in line 7 of Algorithm 2.

Position: Position is represented as “R.x d S.w,” where 0 ≤ R ≤ 8, d ∈ {“ − ”, “, ”} if d " λ and
R ≤ S ≤ 8, 0 ≤ x ,w ≤ 8 when S , x , or w " λ, where λ denotes the empty string. Here, R
and S are byte positions and x and w are bit positions in the 64-bit data field. d denotes
a range operator. An example position representation from the DA can thus be “5.6 -
6.7.” Two constraints hold on this representation: ((S = λ) ⇐⇒ (d = λ)) ∧ ((S = λ) ⇒
(w = λ)) and (x ,w = λ) indicates that the default values x ,w = 1. The first constraint
implies that if S is an empty string, then d and w are also empty. However, w can be
empty irrespective of S . For example, “5.6” and “5.6 - 7” are both valid representations.
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Fig. 7. Parameter mask generation.

The second constraint implies that empty values for w and x mean the first bit position
in a byte boundary. For example, the representation “5 - 6” is equivalent to “5.1 - 6.1.”
The extraction procedure therefore involves splitting “R.x d S.w” and generating two end
points R.x and S .w or just R.x in which case we set S .w ← R.x .

Resolution: As mentioned earlier (Section 3.2.2), resolution is generally expressed as “r
unit/bit,” “ASCII,” and “Binary”/“l-bit bit-mapped” (l is the length of the parameter) for
numerical, ASCII, and binary parameters, respectively. For numerical parameters, only
the first token denoted by r is extracted. The rest (“ASCII,” “Binary,” “Bit-mapped”) are
kept unprocessed.

Offset: For numerical parameters, offset is generally expressed as “o unit,” where o is either 0
or a negative number and is not used for ASCII or binary parameters. We therefore simply
extract the first token (i.e., o) for usage in message interpretation of numeric parameters.

Having successfully extracted the position and length factors, we now demonstrate the process
of mask generation in lines 8 through 21 of Algorithm 2. The purpose of the mask is to extract
the parameter bits from the 64 (or less)-bit data field. Accordingly, we generate a 64-bit mask by
setting only those bits to 1 that correspond to the positions of the parameter in the data field and
later (in Section 4.2.3) bitwise AND this mask with the data bits to obtain the parameter bits.
Let the parameter position obtained from the DA be R.x - S.w. We use the parameter placement
specification from the SAE J1939 application layer documentation [15] to set bits of an all-0 64-bit
mask as shown in Figure 7. We start by setting the x th bit of the Rth byte (i.e., bit ((R − 1) ∗ 8 + x )
from LSB) and incrementally set every bit until the final (8th ) bit of the (S − 1)th byte. The total
number of bits thus set is (S − 1) ∗ 8 − ((R − 1) ∗ 8 + x ) + 1. The remaining l − ((S − 1) ∗ 8 − ((R ∗
8 − 1) + x ) + 1) bits are set incrementally starting from the wth bit of byte S . The eventual 64-
bit mask resembles the bit pattern 0...1111000011111.....1111000...0. Once the parameter bits are
masked out by ANDing with the data fields, the result needs to bit shifted back (right) by (R ∗ 8 −
1) + x − 1 bit before being interpreted.

4.2.3 J1939 Message Interpreter. The JMI is the first in the chain of three components that par-
ticipate in the process of realizing operational states at runtime. This component plays two critical
roles. First, it filters messages which do not satisfy any state definitions and it does this in constant
time. This can be seen in lines 2–4 of Algorithm 3 where it only processes those messages whose
pgmasks match the ones received from SDI. Second, it transforms 64 bit J1939 Data into a list of
parameter-value pairs which it then forwards to SI.

The conversion process shown in line 5–17 of Algorithm 3 is basically an algorithmic repre-
sentation of the conversion logic shown in Section 3.2.2. The parameter bits are first extracted by
masking with the parameter mask pm[1] received from SDI. Then, depending on the data type
i.e numeric, ASCII or binary the appropriate resolution and offset values are used to produce the
final output. After all the parameters in a message have been processed, the list of parameter-value
pairs is forwarded to SI for further processing.
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ALGORITHM 3: J1939 Message Interpreter
Input: parameter_mask_map,msд
Output: parameter_value_pair_list

1 msg contains ID and Data

2 pдmask ← ID ∧ 03FFFFFF16
3 parameter_value_pair_list ← ∅
4 for pm ∈ parameter_mask_map[pдmask] do
5 raw_parameter_value2 ← (Data & pm[1]) ≫ pm[4] ◃ pm[1] : parameter_mask, pm[4] :

shift_back
6 value ← NULL

7 if pm[2] = “ASCII” then
8 value ← raw_parameter_value8
9 reverse value ◃ ASCII data is transmitted in reverse byte order

10 end
11 else if (pm[2] = “Binary” )∨ (pm[2] = “Bit-mapped” ) then
12 value ← raw_parameter_value10
13 end
14 else
15 value ← raw_parameter_value10 ∗ pm[2] + pm[3]
16 end
17 parameter_value_pair_list ← parameter_value_pair_list ∪ (pm[0],value )

18 end
19 return parameter_value_pair_list

4.2.4 State Indexer. The SI’s role in TruckSTM is to determine all states affected by the param-
eters in the input list of parameter-value pairs. To do this, it first forms two indexes at startup.
While the SDI sent parameter_state_map contains the hash map–based index, the interval tree–
based index is generated and added to the parameter_state_map in lines 2 and 3 of Algorithm 4.

At runtime, SI traverses through the list of parameter-value pairs forwarded by JMI, and for
each parameter value it attempts to obtain to set of affected states by querying the two indexes
(lines 7 through 16). It only queries the interval tree if it contains at least one interval node. For
each successful query, it traverses the list of states obtained and sets the corresponding bit in the
parameter_state_map to denote that the state has been affected by that parameter.

Until this point, the algorithm only finds those states that have been positively affected by a
parameter value. However, there may be other states affected previously by a different value for
that same parameter. When the value changes, these states should get affected negatively—that is,
they should move closer to being deactivated. Accordingly, we traverse all states mapped to the
parameter in lines 17 through 30. If we find that this state was previously positively affected by
this parameter and is now negatively affected or vice versa, we alter the bit (lines 20 through 25).
Finally, if the altered bit is a 0, we decrease the active_parameter_counter by 1 or else we increase
it by 1. When a state is affected, SI puts it in a separate data structure (active_state_map) to be
processed by STV. This data structure also stores the previously affected states, thus allowing STV
to switch any previously active (transitional) states to inactive. By sending only the previously and
currently affected states, SI effectively reduces the load on STV.

4.2.5 State Transition Visualizer. The STV serves two purposes. First, it determines the cur-
rent mode of operation by classifying affected states into active, inactive, and transitional.
It does so by traversing the active_state_map received from SI and comparing the state’s
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ALGORITHM 4: State Indexer
Input: state_parameter_map, parameter_state_map, parameter_value_pair_list
Output: af f ected_state_map

1 ◃ At startup
2 active_state_map ← ∅
3 parameter_state_map[p][2] ← construct_interval_tree(intervals ∈ keys (parameter_state_map[p][1])
4 ◃ At runtime
5 current_state_map ← ∅
6 for (p,v ) ∈ parameter_value_pair_list do
7 for s ∈ parameter_state_map[p][1][v] do
8 parameter_state_map[p][0][s] ← 1
9 end

10 if parameter_state_map[p][2]| has nodes then
11 for interval ∈ search(parameter_state_map[p][2],v ) do
12 for s ∈ parameter_state_map[p][1][interval] do
13 parameter_state_map[p][0][s] ← 1
14 end
15 end
16 end
17 for s ∈ keys (parameter_state_map[p][0]) do
18 if state_parameter_map[s][0][p] " parameter_state_map[p][0][s] then
19 state_parameter_map[s][0][p] ← parameter_state_map[p][0][s]
20 if state_parameter_map[s][0][p] = 0 then
21 state_parameter_map[s][1] ← state_parameter_map[s][1] − 1
22 end
23 else
24 state_parameter_map[s][1] ← state_parameter_map[s][1] + 1
25 end
26 active_state_map[s] ← state_parameter_map[s]
27 current_state_map[s] ← state_parameter_map[s]
28 end
29 parameter_state_map[p][0][s] ← 0
30 end
31 end
32 current_previous_af f ected ← active_state_map
33 active_state_map ← current_state_map
34 return current_previous_affected

active_parameter_counter with the total parameter counter received from the state_visualizer_map.
This process is shown in Figure 8. If the active_parameter_counter is equal to the total parameter
counter, a state is active; otherwise, it is inactive or transitional depending on whether it was tran-
sitional or active previously. An additional pop-up text, which denotes the currently active and
inactive constituent parameters, is also provided on the visual_object. Clicking on a state button
displays the pop-up form.

As an example, Figure 9 shows three instances of STV’s display window at runtime. The states
exhibited in this example follow the same definition and activation timing as seen in Figures 4
and 6. Initially, both states are off (grey). At time t2, state 1 (“Engine brake disable attack”)
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Fig. 8. State visualizer.

Fig. 9. State visualizer window.

becomes active (red denoting “abnormal” state), and at t3, state 1 switches off again, thus showing
a transition from mode M2 to mode M3.

The algorithms demonstrate that they can perform high-level state visualization in real time.
We verify the correctness of our algorithms by validating them against test cases and observing
their behavior. We provide no soundness or completeness proof because we experimented with
only a few states to demonstrate the feasibility of the approach.

4.3 Implementation, Extensibility, and Adaptability
TruckSTM is implemented in Python and can be run on different platforms. Individual modules ex-
ecute as separate processes communicating using the FIFO data structures. For this, we use publicly
available libraries. However, these libraries can have inherent processing delays that sometimes
can vary as a function of the input. Accordingly, processing time can be dependent on the under-
lying library’s performance. TruckSTM currently includes commercial and standard information
like the DA and some recorded logs. The code will be provided to an interested party if requested.

TruckSTM, however, is designed modularly—that is, individual modules can be modified or re-
placed without requiring to make extensive changes to other modules. This means that TruckSTM
can be extended in the future to provide enhanced functionality. TruckSTM can also be easily in-
tegrated with other Python modules. For example, a researcher willing to plot J1939 interpreted
messages can read from the corresponding output queue and plot signal values.

TruckSTM can be adapted to other systems and networks, as it is not dependent on the underly-
ing networking hardware’s capability. Furthermore, modifying the JMI and SDI logic to suit other
application layer standards (like those seen in passenger cars) can result in the same functional-
ity. The state definition format can be used in other domains, possibly with different parameter
identifiers.
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4.4 Performance Analysis
In this section, we will attempt to analyze TruckSTM’s asymptotic performance in processing
a single message. Because TruckSTM modules are piped, the time required to process a single
message is dependent on the maximum of the time required by any of the three modules working in
parallel. In addition, TruckSTM has two input sources, namely the state definition file and message
source. Thus, TruckSTM’s performance can be affected by the characteristics of a message and that
of the state definition file. However, factors such as bus load or message frequency do not affect
performance, as incoming messages are always stored in a queue and filtered significantly by JMI.

Let us assume that ns = the number of states in a arbitrary state definition file, npmsд = the
number of parameters in an arbitrary received message, and npinst = the number of parameter
instances (intervals and discrete values) that correspond to an arbitrary parameter in the message.
Let the number of states affected by a parameter be nsp and the number of states affected by an
arbitrary parameter instance be nspinst . Finally, let the number of parameter instances matching
a given value be npinstv and the number of states affected after a message is processed be nsmsд .
According to the J1939 standards [9], npmsд is upper bounded at a value of 32. Consequently, we
assume it to be equal to a non-varying quantity c .

Asymptotic time complexity for JMI. As seen from Algorithm 3, JMI loops through the number
of parameters in a message. Since npmsд = c , its time complexity is constant (i.e., O (1)).

Asymptotic time complexity for SI. From Algorithm 4, we calculate SI’s time complexity in a
line-by-line fashion to demonstrate the detailed calculations:

Lines 7 through 9: O (nspinst )
Line 11: Search operation on interval tree: O (loд(npinst ) + npinstv )

Lines 11 through 15: O (
∑npinstv

1 nspinst )
Lines 17 through 30: O (nsp )

Lines 6 through 31: O (nspinst ) + loд(npinst ) + npinstv +
∑npinstv

1 nspinst + nsp ), neglecting
the total number of npmsд or c loops.

In the best case, if no state is positively affected and the interval tree is an empty leaf (i.e.,nspinst = 0
and npinst = 1), complexity is stillO (nsp ). This is because states may be negatively affected, even if
no state has been positively affected. For negatively affected states, the concerned parameter will
have to be deactivated. In the worst case, npinstv = npinst , nspinst ,nsp = ns , implying a worst-case
time complexity ofO (ns ∗ npinst ). This means that when all parameter instances are intervals and
correspond to all states in a definition, the performance of SI decreases rapidly as the number of
states and the number of parameter instances increase.

Asymptotic time complexity for STV. STV only traverses the list of states returned by SI. Let
this number be denoted as nsaf f . Because affected states from two consecutive messages at time
instances ti and tj can overlap, nsaf f ≤ nsmsдti

+ nsmsдtj
. The asymptotic time complexity of STV

is this O (nsaf f ). In the best case, if no state is affected at time tj , STV still traverses all nsmsдti
messages. In the worst case, nsaf f = ns , implying a worst-case time complexity of O (ns ). This
means that in the worst case when all parameters affect all states in a definition, the performance
of STV decreases as fast as the number of states increases.

5 PERFORMANCE TESTING
We now focus on the testing of TruckSTM’s performance when subjected to worst-case conditions
so that we can set upper bounds on our application’s performance.
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Fig. 10. Worst-case experiment inputs.

5.1 Worst-Case Analysis
5.1.1 Experiment Setup. As per Section 4.4, the performance of SI and STV is affected by the

number of states in a state definition file ns and the maximum number of parameter instances for
all parameters in a message, npinst . Given this, we decided to conduct our experiments varying
the ns and npinst values and keeping the number of parameters per message fixed at the maximum
32. TruckSTM relies on external modules that may slow down the process if it becomes complex.
Consequently, we decided to vary the experiment independent factors ns and npinst within the
range of 1 to 100. PGN 64692 is associated with 32 different SPNs and hence could form 32 different
parameters.

TruckSTM receives data from the state definition file and the message source. We need to ma-
nipulate both of these sources to demonstrate worst-case scenarios. The worst-case performance
is achieved if all parameters in a state definition file are included in all states and all parameter
instances are parts of all states. This can be seen in Figure 10(b), where all 32 parameters from PGN
64692 are included in all states. Furthermore, all parameters are assigned to the same number of
instances such that every instance includes the value 0.0. This is done to ensure that if all param-
eter values are set to 0, all parameter instances match, thereby affecting all states. The message
stream used for this purpose is shown in Figure 10(a). A sequence of 10 alternating messages is
transmitted onto a virtual CAN interface in rapid succession. The alternating sequence allows all
states to be affected for every single message. If a sequence of same messages is used, all states
will be activated for the message and never deactivated. Using this technique, every module par-
ticipates in processing every message, and that switches states on and off. For every experiment, a
new state definition file is generated by varying the number of states and the number of parameter
instances. We conducted our experiments on a 64-bit Fedora Linux machine with two quad-core
Intel Xeon @2.6 GHz processors. Messages were read from the virtual CAN interface and replayed
onto the input queue.

5.1.2 Analysis and Discussion. From Section 4.4, it was shown that JMI’s worst-case perfor-
mance is constant in time, SI’s worst-case performance was linear with both ns and npinst , and
STV’s worst-case performance depended linearly only on ns . These characteristics can be clearly
observed in Figures 11 and 12. The red curve represents the performance characteristics on JMI,
which is not affected by increasing ns or npinst values. Next, the green curve shows the charac-
teristic of SI. This curve is linear with respect to both ns and npinst . Finally, the blue curve shows
the performance of the visualizer, which although considerably more fluctuating is unaffected by
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Fig. 11. TruckSTM worst-case performance curves for increasing ns .

Fig. 12. TruckSTM worst-case performance curves for increasing npinst .

increasing npinst values (Figure 12) but linearly affected by the number of states. In general, STV
consumes more time than SI. This is because STV is responsible for painting and repainting visual
objects, which is a fairly resource-intensive operation even on most modern-day computers. The
other important observation from both the figures is that in most cases only JMI performs within
both the hard and soft timing constraints introduced in Section 1. The other modules are generally
over both constraints.

Note that we do not evaluate the runtime complexity of the queue controller (Section 4.1) be-
cause enqueue and dequeue operations are constant time in theory. Implementers must make sure
that the near to constant time, complexity is maintained to avoid clogged queues and performance
bottlenecks. One way to achieve this would be to implement custom queue controllers that work
on a publish-subscribe basis. In such a model, an incoming queue controller dequeues a message
only when its corresponding TruckSTM component is done processing the previous message and
enqueues the output (if available) only when the current message is done processing.
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Fig. 13. Real-world performance analysis.

5.2 Real-World Application Analysis
The worst-case analysis shown earlier is highly pessimistic with respect to the real-world appli-
cation of TruckSTM. First, these tests are performed under the worst-case test scenario. This is
practically impossible, as replicating the same state definitions is unrealistic and will only hamper
system performance. Second, it is highly unlikely that the same parameter instance or even the
same parameter will be present in and/or affect all states. This will not only reduce the load on STV
but also require SI to perform a lesser number of traversals. Finally, it is highly unlikely that all
parameter instances will be intervals and an incoming value will match all. As an example, close
to 50% of the SPNs defined in the J1939 DA are switch states that assume only a very small set of
values. Thus, in most cases, instances for switch states will not be expressed as intervals. This is
also true for ASCII and binary parameters. In most cases, the parameter will not have overlapping
intervals. This will reduce the number of intervals returned by the interval tree and hence speed
up SI’s performance significantly. Thus, when used in a real-world scenario, we expect TruckSTM
to perform much faster than what has been shown in Figures 11 and 12. To validate this statement,
we perform a real-world (average case) analysis in this section.

5.2.1 Experiment Setup. We have simulated a scenario by using a previously collected CAN
trace [3] from a Paccar MX–powered Kenworth tractor driven around a parking lot. The trace
reflects approximately 6 minutes of driving activity including three hard-braking scenarios dur-
ing which PGN 0 was transmitted naturally by the ABS. This same trace was used to generate
the TruckSTM snapshots from Figure 9. The recorded trace was then replayed on a virtual CAN
network with the same message inter-arrival delays. This simulated a real-world driving scenario,
although a remote telematics server would typically experience additional network communica-
tion delays. Figure 13 shows the critical bus statistics and parameter values in the first seven rows
from the top. The state definitions from Figure 6 are used in this case. To better visualize the “En-
gine Brake Disable Attack,” we manually inserted PGN 0 to override engine control toward the
end of the trace (from 330 seconds onward). The message rate doubled as a result of the injection.

Based on parameter values obtained from the trace, we simulated the ideal scenario by manually
tagging the states using the theoretical descriptions from Section 3. The manually tagged states
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(shown in row 8) are placed at the exact time instances when the constituent parameters attained
the triggering values. When TruckSTM is run on the replayed traffic, states are visualized and
shown in row 9 from the top along with the delays (in seconds) in reflecting the transitions in the
bottom-most row.

5.2.2 Analysis and Discussion. There are two critical observations from Figure 13. First, all man-
ually labeled states/modes and transitions are displayed correctly by TruckSTM. Second, the time
delay is significantly low (less than 5 ms) and does not vary with the message rate or the number
of parameters in a message that fluctuates between one and two throughout the replay. Both the
hard and soft timing constraints are met in the real-world scenario. It must, however, be noted
that the timing constraints may not be the same for all modules in TruckSTM. This is because
the message filtering and state indexing functions performed by the SI and STV modules are not
required to function as fast, as messages may be sent on the network. For example, if we as-
sume that in 10% of the messages/PGNs on the network are used in state definitions, SI gets a
10 times larger window for processing every message. Moreover, not all interpreted messages af-
fect states. If we assume that only 10% of the incoming parameter values affect states, STV gets a
100 times larger window for processing every message, thereby relaxing its hard timing constraint
significantly.

Another observation from Figure 13 is that the “Engine Brake Disable Attack” is enabled on
some occasions before the 330-second mark even though it was not performed explicitly. This
necessitates that state definitions are chosen correctly or other criteria, like period of activity of a
state, be used to infer some high-level information from TruckSTM outputs.

6 CONCLUSION AND FUTURE WORK
In this work, we presented TruckSTM, a visual system that allows users to configure high-level
states like braking, accelerating, driving, cranking, or even complicated security states using vehi-
cle parameters that can be obtained from in-vehicle traffic. Most medium and heavy duty vehicles
support the SAE J1939 standards5 that ensure interoperability across multiple vendors. This work
thus has wide applicability. We developed a prototype that demonstrates the feasibility of our ap-
proach and demonstrated that the performance constraints are satisfied in general. The design
of TruckSTM is modular and hence can easily be extended or adapted to suit other systems and
networks like passenger cars.

In the future, we plan to improve the performance and the user interface. We plan to enhance
STV to display the mode and state transitions in a more intuitive manner using visible edges
instead of color combinations. We plan to integrate TruckSTM into a Web-based system so that
it can be used by fleet managers, vehicle vendors, and independent researchers. We plan to verify
correctness of the TruckSTM states in the future using knowledge from automotive engineers. We
also plan to adapt TruckSTM so that it can read multi-packet messages.
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