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This paper presents a geometric formulation of the dynamics of a flapping wing aerial
vehicle and utilize it to study the flight dynamics of a Monarch butterfly. The proposed model
is essentially articulated rigid bodies, where two wings and an abdomen are connected to
a thorax via spherical joint. An intrinsic form of Lagrangian mechanics is developed to
study the inertial effects of the relative rotation between each part. Next, a quasi-steady
aerodynamic model is presented without relying on the common assumption that the flapping
frequency is sufficiently large. Consequently, it is suitable to study the flight of a butterfly
that is characterized by relatively large wings flapping in a lower frequency. The outcome of
the proposed model is compared with the captured motion of a live Monarch butterfly. It is
shown that the undulation of the abdomen increases the climb rate and the forward velocity,
and the motion of Monarch butterfly yields a stable period orbit.

I. Introduction

The Monarch butterfly is one of the most popular butterfly species in North America with wings of around 4 cm
featuring an easily recognizable black, orange, and white pattern. They exhibit remarkable flight characteristics [1],
migrating annually from North America to Mexico - up to 4000 km [2—4], the longest flight range among insects
[2, 5-7]. However, the physical mechanism enabling this long-range flight is not well understood. One theory is
that the Monarchs benefit from their high-altitude flight. Monarchs butterflies fly at high-altitudes during migration
(~1,250m) and overwinter (~3,000m) at high altitudes. At these altitudes, they can take advantage of the boundary
layer of the earth to conserve energy. Furthermore, aerodynamic drag is proportional to air density, which decreases
with altitude. A minimal aerodynamic drag is critical to enable the long-range migration, which is provided by flying
at high altitudes. However, the lift is also expected to decrease with lower density at higher altitudes. Unlike airplanes,
Monarchs must generate the propulsive forces with their flapping motion. How butterflies efficiently generate lift and
fly during migration is one of the unsolved mysteries.

Compared to the wealth of research on the flight of insects such as flies [8, 9], bees [10, 11], dragonflies [12—-16],
or birds and bats [17], butterfly flight remains inadequately understood due to their many unique characteristics.
Unlike most insects, the fore and hindwings of butterflies are relatively large and move in sync [18]. Butterflies are
extremely evasive with agile maneuvers [19—-22] and body undulations with closely coupled wing-body interaction
[21, 23, 24]. In particular, the butterfly body exhibits considerable vertical oscillation during flight due to the
instantaneous change in wing shape and inertia [23, 25], resulting in a “bumpy” flight trajectory. Flapping wings and
body move in unison as reported in our earlier work [24], suggesting that the butterfly flight is an outcome of closely
coupled wing-body interaction.

The main obstacle in discovering the long-range flight mechanisms in the Monarch flight is this highly coupled
dynamics of the slowly flapping motion and the body. The large wings continuously rotate during flight, which is also
affected by the body dynamics. Furthermore, the thorax of the Monarchs continuously pitches while their abdomen
moves relative to the thorax during flight. As a consequence, most flight dynamic equations of motion and control
schemes that have been derived in the literature cannot be used to study the butterfly flight. The conventional models
exploit the large disparity in the time scales of wingbeat frequency and body dynamics assuming smaller insects such
as fruit flies and bumblebees [26, 27]. Furthermore, many flapping wing dynamics models are based on the common
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simplified formulation where the nonlinear time-varying flapping dynamics are transformed into linear time-invariant
systems by considering small perturbations averaged over the period of flapping [28-31]. These approaches are not
suitable to analyze the low-frequency flapping dynamics of Monarch butterflies.

A key open research question associated with the butterfly flight is the effects of dynamics on the power
consumption. Whereas the pitching motion of smaller flying insects play a critical role in aerodynamic force
generation [8, 17], most butterfly wings are structurally restricted from pitching [25]. Instead, it is presumed that
the relatively large aerodynamic forces generated by the simple flapping wing motions affect the body attitude and
vertical displacement, which alter the effective angle of attack and, hence, the flapping wing aerodynamics. As such,
by adjusting the center of mass, a butterfly inspired ornithopter without a tail could fly forward passively without a
feedback controller [25]. If the forward flight of butterflies were indeed passive, the power consumption is expected
to be lower than an actively controlled flight. The power savings due to coupled wing-body motion can contribute
to our understanding of the long-range Monarch migration [32], which, in turn, can inform the development of
long-range micro flying robots. However, there are also reports that contradict these findings: butterfly’s flight under
periodic flapping motion is unstable because the butterfly cannot maintain its body pitch angle within a proper range
[33, 34]. The motion of the abdomen had to be actively controlled to stabilize the butterfly flight [34].

The objective of this paper is to derive, validate, and analyze a dynamic model that can characterize the Monarch
butterfly flight. We model a flapping wing aerial vehicle as articulated rigid bodies, where two wings and an abdomen
are connected to a thorax via spherical joint. An intrinsic form of Lagrangian mechanics is developed to include and
study the inertial effects of the relative rotation between each part. These are developed on the nonlinear configuration
manifold in a global fashion such that large angle rotational maneuvers can be analyzed without singularities and
ambiguities inherent to the common attitude parameterizations. Further, this yields an elegant, structured form of the
equations of motion that can be easily utilized in stability analysis and controller design.

Next, to model the flapping wing aerodynamics, a quasi-steady blade element model is formulated without relying
on the common assumption that the flapping frequency is sufficiently large. For butterfly flights, the aerodynamic
forces generated by the wing vary along the spanwise direction as the velocity generated by the flapping is comparable
to the velocity of the thorax. We find the expression for the angle of attack at each infinitesimal chord of the wing
as a function of the wing kinematics and the rotation and translation of the body, and it is utilized to compute the
aerodynamic forces and moments.

In short, the proposed dynamic model captures the unique characteristics of the butterfly flight dynamics where
the flapping of large wings are coupled with the thorax and the abdomen undulation. More specifically, it can
represent the effects of the mass distribution of the relatively large wing, the inertial coupling with the abdomen
undulation, and the low frequency flapping aerodynamics coupled with the body motion.

Finally, the results of this model are compared to the detailed motion of the thorax, abdomen, and the pair of
wings of freely flying Monarch butterflies. The live Monarch butterfly flight is measured using a motion-tracking
system [24], and the corresponding wing kinematics and the body undulations are extracted. It is illustrated that
the simulation results constructed from the measured wing kinematics are consistent with the experimental results.
Further we perform several numerical simulations to study the butterfly flight dynamics. Our results show that the
trajectory of the velocity asymptotically converges to a periodic orbit, suggesting that the flapping motion captured by
the Monarch butterfly yields an asymptotically stable periodic solution. Furthermore, it is demonstrated that the
abdomen undulation as measured by the live Monarch butterfly increases the forward flight velocity and the climb
rate, against the other cases of fixed abdomen or undulation in the opposite phase. The role of abdomen undulation in
the stability of attitude dynamics has been presented in [35]. The presented results suggest that the abdomen may
have another desirable effects on the translational dynamics of butterfly flight.

I1. Flapping Wing Aerial Vehicle Model for Butterfly

In this section, we present a flapping wing aerial vehicle model that may characterize the flight of a butterfly. It is
composed of a head, a thorax, an abdomen, and two wings attached to the thorax via spherical joints. We assume that
the head and the thorax are coagulated into a single rigid body, which is referred to as body. Also, we assume that
hindwings move in unison with forewings.

Here we present a mathematical description for the kinematics of the proposed articulated rigid body model.
Define an inertial frame #; = {iy,ly,i.}, where the third axis points downward, and the first two axes span the
horizontal plane (Fig. 1). This is compatible to the NED (north-east-down) frame common in flight dynamics.
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A. Body

Define the body-fixed frame ¥z = {b,, by, b.}, whose origin is located at its mass center of the body (Fig. 1).
Following the common convention in flight dynamics, the first axis points toward the head, the second axis point
toward the right wing, and the third axis points toward the ventral (belly) side.
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Fig.1 The inertial frame #; = {i,,i,,i;} (black) and the body-fixed frame ¥z = {b,, by, b.} (blue).

The location of the mass center of the body is given by x € R? in 7. The attitude of the body is described by
R € SO(3) = {R € R¥3 | RTR = L1, det[R] = 1}, which represents the linear transformation of a representation of
a vector from Fp to F;. The attitude kinematics is written as

R=RQ, D

where Q € R3 is the angular velocity resolved in #z. In the above equation, the har map A : R® — so(3) is defined
such that £y = x x y for any x, y € R3, or equivalently

(=)
|
=
&
=
N

X = X3 0 —X1|» (2)

for x = (x1, X2, x3) € R3. The inverse of the hat map is denoted by the vee map, V : so(3) — R3.

B. Wing

Right Wing Let Fg = {r,, ry,r;} be the frame fixed to the right wing (Fig. 2). Its origin is located at the joint of
the right wing, or the wing root where the right wing is attached to the thorax. The vector from the origin of #p to
the origin of 7 is defined as ug € R3. As it is resolved in ¥ and the body is rigid, we have sz = 0. The first two
axes of F span the plane of the wing, where the first axis points toward the leading edge and the second axis points
toward the wing tip. Consequently, the third axis is normal to the wing plane, and it points toward the ventral side
when there is no rotation of the right wing.

Next, we introduce the stroke frame ¥s = {sx, sy, s; }, which is constructed by translating the origin of ¥ to the
center of the left wing root and the right wing root, and rotating it about by, by 8 € [—n, 7) (Fig. 3). The y—z plane of
Fs is referred to as the stroke plane.

The angle S can be considered as the angle between by, and s, that is normal to the stroke plane. Or equivalently,
it is the angle between y—z plane of Fp and the stroke plane. It is positive when s, - b, < 0. This angle is often
defined as the angle between the ground (horizontal plane) and the stroke plane, considering hovering flights with a
fixed attitude of the body. Here, it is defined relative to ¥ as the flapping motion is inherently relative to the body.

The motion of the right wing relative to Fg is described by 1-3-2 Euler angles (g, ¥r, Og) (Fig. 4). Consequently,
the orientation of the right wing relative to g, namely Qg € SO(3) is described by

ORr(1) = exp(Bé>) exp(¢r(t)é1) exp(—yr(t)é3) exp(6r(t)é2), (3)

which is the linear transformation of a representation of a vector from ¥ to ¥5. The Euler-angles are defined as
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by r,

Fig.2 The body-fixed frame 7z = {b,,b,, b.} (blue), the right wing frame 7z = {r,,r,,r;} (red)

stroke
plane

Fig.3 The body-fixed frame 7z = {b.,b,, b.} (blue), the stroke frame 75 = {s,,s,,s.} (green).

¢r € [-m, 7r) the flapping angle, which is positive when the wing is in the ventral side, i.e., ¢ > 0 corresponds to
downstroke and ¢ < 0 corresponds to upstroke (this is also referred to as the stroke angle or the
sweep angle in other papers)

Or € [-m, ) the pitch angle about the axis from the wing root to the wing tip, which is positive when the leading
edge of the wing is rotated toward the dorsal side (this is also referred to as the feathering angle or
the rotation angle in other papers)

YR € [-m, ) the deviation angle that governs the motion of the wing tip out of the stroke plane, which is positive
when the wing tip is rotated toward the head

As given by (3), the three-dimensional attitude of the right wing is parameterized by four angles, and as such there

is a redundancy in defining the stroke plane. In general, the deviation angle is relatively small for most of insects. In
particular, when Y is exactly zero, the stroke plane is defined such that it is spanned by the motion of the wing tip. If
the deviation angle is not zero, then the stroke plane can be chosen such that the distance between the wing tip and the

' \
R Sy
\ f i
ry J
a |
(a) flapping angle (b) pitch angle (c) deviation angle

Fig.4 Wing configuration when only one of (¢, 6, ) is non-zero.
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stroke plane, after integrated over a stroke, is minimized. This will be further discussed in Section V.
The time-derivative of Qp is given by

Or = QrQkr, 4

where Qg € R3 is the angular velocity of the right wing relative to ¥ resolved in Fz. One can show that the angular
velocity of the right wing is obtained from the time-derivatives of the Euler-angles as

cosyrcosfg 0 sinfgr ||dr
QR = sin !,l/R 1 0 éR . (5)
cosypsinfg 0 —cosOr| [v¥r

The determinant of the above 3 X 3 matrix is — cos g. Consequently, it is invertible when the deviation angle satisfies
Yr # =5 . This is not restrictive as the deviation angle is small in general.

Left Wing Similarly, let 7. be the frame fixed to the left wing (Fig. 5). It can be obtained by translating ¥ to the
root of the left wing without any rotation. More specifically, its origin is located at the joint of the left wing, where
the left wing is attached to the thorax. The first two axes span the plane of the wing, where the first axis points toward
the leading edge and the second axis points toward the right wing, opposite to the left wing tip. Consequently, the
third axis is normal to the wing plane, and it points toward the ventral side when there is no rotation of the left wing.

b

Lx

Fig. 5 The body-fixed frame 75 = {b., by, b} (blue), the left wing frame 7; = {l,,1,,1;} (red).

Similar as the right wing, the motion of the left wing relative to the thorax is described by Q; € SO(3), which is
described by successive rotations as

Qr(t) = exp(Béz) exp(—pL(t)é1) exp(Yr(t)é3) exp(OL(1)ér), (6)

where the definition of the Euler-angles (¢, 61,y ) are consistent with those of the right wing. The wing kinematics
become symmetric when (¢g, Or, ¥r) = (d1, 01, ¥L).
The time-derivative of Qy is given by

0L =010 (7)
where Q; € R? is the angular velocity of the left wing relative to 5 resolved in 7. Also, we have

—cosyypcosfy O —sind||dL
Qp = sinyp, 1 0 6. ®)
—cosyyrsinfy, O cosép t//L

Wing Kinematics Let f € R be the frequency of the flapping in Hz. Thus, the period of the flapping is T = %
The variation of the Euler angles over the flapping period is often referred to as wing kinematics, and several models
have been presented to construct (¢(z), (¢), (¢)) [36]. These can substituted into (3) and (6) to describe the attitude
of the wing as a function of time.
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C. Abdomen

Consider an abdomen that is assumed to be a rigid body attached to the thorax via a spherical joint. Let
Fa = {ay, ay, a,} be the frame fixed to the abdomen. Its origin is located at the mass center of the abdomen, and
its orientation is identical to #p when there is no rotation relative to the body. The vector from the origin of ¥ to
the joint connecting the thorax and the abdomen is x4 € R3. As it is resolved in #3 and the body is rigid, we have
fta = 0.

The motion of the abdomen relative to the body is described by Q4 € SO(3), which is the linear transformation
of the representation of a vector from 74 to Fg. Its time-derivative is given by

Oa = 0aQ4, )

where Q4 € R? is the angular velocity of the abdomen relative to the body, resolved in 4.

II1. Quasi-Steady Aerodynamics
The quasi-steady assumption implies that the aerodynamic force and moment generated by the flapping wing are
equivalent to those for steady motion at the same instantaneous velocity and the angle of attack. In this section, we
propose a quasi-steady aerodynamic model for the butterfly flights characterized by relatively slow flapping of large
wings. Without relying on the common assumption that the flapping frequency is sufficiently large, an expression
for the translational forces and the rotational force is presented. This accounts the effects of the translational and
rotational motion of the body, and the wind gust in the aerodynamic force.

A. Wing Morphological Parameters

I'x

c(r)

dr
Fig. 6 Infinitesimal wing segment.

We first present several morphological parameters of the wing as formulated in to [37], after making a few changes
in the notation. More specifically, in [37], the symbol A is used to denote normalized variables. However, the same
symbol is used for the hat map in (2). Instead, we use the symbol ~ for the normalized variables to avoid conflict
with (2). Also, the morphological parameters are defined for a single wing as the aerodynamic force of the left wing
will be distinguished from the right wing for non-symmetric flapping.

Let dr be the infinitesimal wing segment located distanced at r from the wing root (Fig. 6). Let its chord
be defined as c¢(r). The wing segment is parallel to r, and the distance is measured along ry. Assume that the
aerodynamic center of the segment is along ry, i.e., the resultant force generated by the wing segment is located along
r, with zero moment. Consequently, it is located at e, when resolved in Fg.

The area of the right wing is given by

1
S:/ c(rydr, (10)
0

where [ > 0 is the wing span, i.e., the distance between the wing root and the wing tip measure along r,. The
non-dimensional aspect ratio is

R=—. (11)
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%, and the normalized wing chord is

e==< (12)
c
Also, the non-dimensional radius is defined as

F= % (13)

The k-th moment of wing area is defined as

l 1
S = / r*e(r)dr = SI¥ / Fédr, (14)
0 0

satisfying Sop = S. The non-dimensional radius of the k-th moment of wing area is defined as

(S - (e [ ) - /lm)i s
sk T\sik )y "€ “\J T

such that Sy = (7 )¥S, i.e., if all of the wing area is located at a distance 7/, the k-th moment of area is equal to Sk.

Next, when a wing is accelerated, it causes the motion of the surrounding air. The inertia of the wing is increased
by the mass of air that is accelerated, and therefore there is an increase in the wing mass. The normalized virtual
mass is defined as

1
7= / &dr. (16)
0
And the corresponding normalized radius of the k-th moment of virtual mass is
1
1 1 3
F(v) = (—/ 52fkdf) : (17)
v Jo

B. Blade-Element Theory
Angle of Attack of Right Wing When resolved in the inertial frame, the root of the right wing is located at x + Rug.
Thus, the aerodynamic center of the chord at the distance r from the wing root is

X+ Rugr + RQrre;.

Therefore, its velocity in 7 is
X+ RQur + RQQRrres + ROrQRres,
. . . . T pT

which is transformed to #r by left-multiplying O R" as

QITQRT)'C + Qﬁf),uR + QﬁQQRrQ + QRrez

= QR (RT% + QX ug) + r(QrQ + Qg) X 2,

where the first term corresponds to the velocity of the wing root and the second term corresponds to the velocity of
the aerodynamic center relative to the wing root. Both are resolved in Fx.

Assume that there is a uniform wind with the velocity vying € R3 resolved in #7. The velocity of the aerodynamic
center of ¢(r) relative to the wind is given by

OR(RT (% = Vyind) + Q X ug) + r(QrQ + Qg) X €2,

According to the blade-element theory [37], the aerodynamic force generated by the infinitesimal chord is independent
of the span-wise velocity component, i.e., the component of the above expression along ry, is irrelevant. Therefore,
we project the above velocity to the r,—r, plane as follows.

Ur(r) = (Iixs — e2es )OR(RT ( = vyina) + Q X ug) + r(QrQ + Qr) X e. (18)
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Fig. 7 Direction of the velocity and the lift in the r,—r, plane of the right wing.

where I3x3 — ezeg = diag[1,0, 1] € R¥3 corresponds to the projection operator. The second term is not affected by
the projection as it is already normal to e;. When the flapping frequency is sufficiently large, or equivalently Qg is
relatively large compared with other terms, it can be simply approximated by Ug(r) = rQg X e;. But, the flapping
frequency of a butterfly is about 10 Hz, and the contribution of the flapping to U is comparable to other terms caused
by the body velocity.

The angle of attack ag(r) is the angle between the chord line +e; and the above velocity Ug(r). Assuming that
the chord is a thin blade, when the angle is greater than 7, we flip the leading edge and the trailing edge of the chord.
This ensures that ag(r) € [0, 5] always. More explicitly,

le] Ur(r)|

or(r) = cos” (o)

19)

The above expression has a singularity when U(r) = 0. But, the value of a(r) does not matter when U(r) = 0, as the
resulting aerodynamic force and moment will vanish. Or equivalently, it can be written as

T Ur(r)
ag(r) = sin”! (——). (20)
5 1UR()I]
Angle of Attack of Left Wing For the left wing, (18) is changed into
UL(r) = (Iixs — €2¢5)Q% (RT (% = vyina) + @ X p11) = r(Q1.Q + Q1) X €. (21)
The angle of attack is given by
lel UL(r)] L 1esUL(r)]
ar(r) = cos™ (———-) = sin~! (——). (22)
- [ERGI AGI

C. Translational Forces
Right Wing Here we find the expression of the lift and the drag. The magnitude of the lift generated by the
infinitesimal wing segment c(r) is

2 PIUR)IPCL(ar(r)etr)dr,

where p € R is the atmospheric density, and Cy, € R is the lift coefficient given as a function of the angle of attack.

The direction of the lift is normal to both of the velocity Ugr(r) and the wing span-wise direction e;. As such, the
direction of the lift is along +e, X Ug(r) in Fg. The ambiguity of the sign can be resolved by the fact that when the
ry—T, plane is divided by the chord line r,, the velocity vector U(r) and the lift vector occupy the opposite side with
each other.
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More specifically, consider the four cases illustrated in Fig. 7. These show that the direction of lift is e; X Ug(r)
when elTUR(r) and egUR(r) have the same sign (Case 1 and Case 4), and it is —ep X Ug(r) when they have the

opposite sign (Case 2 and Case 3). Therefore, the infinitesimal lift vector resolved in ¥ is given by

ey X Ugr(r)

——— = dr
lle2 x U(r)ll

AL () = 3pURICL(@r)e(rIsen(e] Un(r)e] U(r)

= %pCL(a(r))C(r)Sgn(elTUR(r)eg Ur(r))(e2 X UR(r)|Ur(r)|ldr,

where the second equality is obtained by ||Ugr(r)|| = ||e2 X Ur(r)||.
The total lift of the right wing is obtained by integrating above span-wise for r € [0, [].

1
L = / dLz(r),
0

which is resolved in Fg.
Next, the drag is always opposite to Ugr(r). Similar with the above expressions,

1
dDg(r) = =5 pCp(a(r)en)|Ur(I|Ur(r)dr.
The total drag is obtained by integrating above span-wise for r € [0,/] as
l
Dg = / dDg(r),
0

which is resolved in Fg.
The lift and the drag also generate the moment about the wing root. When resolved in Fg, it is given by

1
Mg = / rey X (dLR + dDR)
0

Left Wing Similarly, the infinitesimal lift vector of the left wing resolved in 7, is given by

dLi(r) = %PCL((l(r))c(r)sgn(elTUL(V)egTUL(F))(ez x Up(r)I|UL(r)|dr,

which is integrated to obtain
!
LL = / dLL(I‘).
0
Also, the infinitesimal drag of the left wing is
1
dDL(r) = =5 pCp(a(r)e(r) UL UL(r)dr,
and
!
DL Z/ dDL(r),
0

which is resolved in Fg.
The lift and the drag also generate the moment about the wing root as

1
My Z/ —rer(dLL+dDL).
0

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

€Y

(32)
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D. Rotational Force

The wing’s own rotation may cause additional circulation about the chord that generate a normal force. This is
referred to as a rotational force [38]. The expression of the rotational force of the right wing is identical to that of the
left wing, except the flipped sign in the corresponding moment. As such, in this section, we do not distinguish the
right wing from the left wing with the subscript R.

According to [38], the magnitude of the rotational lift for the infinitesimal wing segment is given by

PlIU|Crotl@(r)|e*(r)dr, (33)

where the last part Crof|@(R)|c? corresponds to the rotational circulation. The time-derivative of the angle of attack
multiplied by ||U]| is given by

1 uro .
|U|l& = = {cosa Tl - sgn(elTU)(elTU)}

= —sina vty + sgn(el U)(el U) (34)
= cosa oy eEme PAe Hr

To avoid singularity caused by a, the first expression is used when a is close to 7, and the second expression is
used when « is close to 0. Also, to mitigate the singularity caused by |U|| < 1, we evaluate |U||¢ in the numerical
implementation, instead of computing & directly.

Next, we find the direction of the rotational lift. It is shown that the rotational lift is always perpendicular to
the chord line, and consequently it is +e3 in Fz. Consider the four cases of @ > 0 illustrated in Fig. 7. For the first
two cases of e3TU > 0, @ > 0 generates the rotational lift along —e3, and for the last two cases of e3T Ur)<0,&a>0
generates the rotational lift along e3. Therefore, when @ > 0, the direction of the rotational lift is —sgn(eg U)sgn(a)es.

4 Frot 1 Frot
e3TU(r)<O eSTU(r)<0
U(r) Ix chord B Ix chord Ix U (f ) Ix |
i U(r) chord i chord U(r)
e3TU(r) >0 rs rs rs e3TU(r) >0 rs
Frot Frot
(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 8 Direction of the rotational lift when o = 0 deg.

For the case of @ = 0, the direction of the rotational lift is illustrated in Fig. 8, where the rotational lift is always
opposite to ] U. Therefore, its direction is given by —sgn(e] U)es.
These two cases for the direction can be combined into

sig.o (r)es, (35)

where .
sigo, = sgn(a(r)){-sgn(e] U(r))sgn(c(r))} + (1 — sgn(e(r)){-sgn(e} U(r))}, (36)

which takes the value of £1. Thus, the rotational lift vector is the product of the above direction and the magnitude
(33).

dFrot = plU)||Crotl@(r)[sgn,o (r)esc? (r)dr, (37)

which is integrated to obtain the rotational force

1
Frot = / dFiot. (38)
0

10
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For the right wing, the above rotational force generate the moment about the wing root as follows.

1
MrotR = / rez X dFio,
0

which is resolved in ¥g. For the left wing, the chord is located at —re; in #7,, and consequently

1
My, = —/ rey X dFyo;.
0

IV. Dynamics of Flapping Wing Aerial Vehicle for Butterfly
In this section, we construct the equations of motion for the dynamics of the proposed flapping wing aerial
vehicle model. To objective is to capture the inertial coupling between the thorax, the abdomen, and the wings such
that the dynamics of butterfly is properly represented. It is based on the geometric formulation of the multibody
dynamics [39] to describe the dynamics in an intrinsic, elegant fashion.

A. Lagrangian Mechanics on a Lie Group

We first present the Lagrangian mechanics for an arbitrary mechanical system evolving on a Lie group. The
Euler-Lagrange equations are developed when the Lagrangian is composed of a kinetic energy with a configuration-
dependent inertia and a potential energy. This result will be utilized later for the proposed flapping wing aerial
vehicle.

Consider a dynamic system evolving on an abstract Lie group G. The kinematics equation on G is given by

g =8¢ (39)

for £ € g corresponding to the left-trivialized velocity. Consequently the tangent bundle TG is identified with G X g.
LetJ: G x g — g* be a symmetric, positive-definite inertia tensor, i.e.,

Jg(€) &) 20,
Je().6) =0 & £=0,
Jg(&1) &2) = Jg(&2) &),
forany g € G and &, &1, & € g. Also, define (Kg(£))(-) : G X g — g™ such that

Tolg - Dl () - x = (Kg(@))(x) = Kg(&)x. (40)

It is straightforward to K, () is a linear operator. Therefore, by selecting a basis of g, K¢ (&) can be represented by a
matrix. Intuitively, it is the left-trivialize derivative of Jg (&) with respect to g.
Suppose that the Lagrangian L : G X g — R is given by

1
L(g.£) = 5(3¢(€1.6) = Ulg),
for a configuration dependent potential U : SO(3) — R. We have

DeL(s.£) = J,(6),
d .
LD 10,8 = 1,6) + Ky (OO
1
TiLy DL(5.6) x = 5 (K€ ) - ToL,Ule) - x
1
- {06 - iU} - x

where g* is identified with g with the pairing. Substituting these into [39, equation (8.45)], the Euler-Lagrange
equations are given by

. 1
Jo(8) + K, (€)6 —ad; - Jo (&) = 5K, ()6 + TeLgU(g) = 0. (41)

11
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B. Lagrangian Mechanics of Flapping Wing Aerial Vehicle

The configuration of the given flapping wing vehicle model is described by g = (x, R, Or, O, Q). Consequently,
the configuration space is a Lie group G = R3 xSO(3)*. Asitisa product of R3 and four copies of SO(3), the Lie algebra
is simply g = R x s0(3)* =~ R? x (R?)*. The kinematics equation is identical to (39) with & = (X, Q, Qg, Q7,Q4) € q.

Kinetic Energy The kinetic energy of the body is given by

Tp = 1mB||x||2 + lQTJBQ. (42)
2 2
where mp € R is the mass of the body, and Jg € R¥3 is the inertia matrix of the body about 5.

Next, we find the expression for the kinetic energy of the wings and the abdomen. The contribution of the left
wing is identical to the right wing and the abdomen, as all of them are essentially a rigid body connected to the thorax
via a spherical joint. Therefore, we use the subscripti € {R, L, A} to denote the variables related to a particular wing
or the abdomen, which is referred to as B;.

Consider a mass element dm in B;, whose location is given by v € R3 in 7, i.e., v is the vector from the joint to
the mass element resolved in ;. Thus, its location from the origin of the inertial frame, resolved in the inertial frame
1 is x + Ry; + RQ;v, and its velocity is

%+ RQ(ui + Qiv) + RO: Qv

Therefore, the kinetic energy is

1 1, . A N
=g [ 1+ ROGa + Q) + ROy P,
2.J)g 2
Let m; € R be the mass of $;, and let
1
Vi=— vdm, 43)
n; B;

Ji (44)

Il
g
<>
ﬁ
é:
3

Thus v; € R3 is the vector from the origin of ¥; to the mass center of B; resolved in 7;, and J; € R33 is the inertia
matrix of B; about the origin of 7; resolved in ;. After rearranging, one can show

. T .
X X
Ti=|Q| Ji(RQ)|Q
Q; Q;

where the configuration-dependent inertia for $B;, namely J;(R, Q;) € R*? is

m;I3x3 —m;R(Q; + Qivi) —m;RQ;V;
A =~ A A A =~ AT A A A
Ji(R, Qi) = |mi(fi; + Qvi)RT  mifi] pi + QiJiQF +mi(a] Qivi + Qivi fii)  Qidi + mift] Qi¥; | - (45)
m;v;QF RT JiOF +mpT OF gy Ji

From (40), the derivative of the inertia can be expressed with the following matrix K; € R,

0 mR(( + Qivi)Q + Qi 9; )" m; R(-=Q0;; + Qim)
0 mi(fi; + Qivi)RT miRTxQ;9; — 0:(J;0T Q)" + 0;4;,07Q
Ki(R, Qi Q Q) = —m; ;90 V; — m; (1;QQ;V; . (46)
—Qifﬁi + miﬂiQim
0 m; %07 RT mi%:(QF R )" + J;07Q — m;#(Q ;)"

The total kinetic energy is the sum of the contributions of the body, the wings and the abdomen, as given by

T=Tg+Tr+Ts +T4. 47)

12
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Potential Energy The gravitational potential energy of the body is
Up = —mBge3Tx.
The gravitational potential energy of B; is
U; = —m;ge} (x + Ry; + RQ;v).
The total potential energy is
U=Up+Ugr+Up+Uj,. (48)
The negative derivatives of the potential energy, namely f, € R!3 corresponds to the gravitational force and moment
given by
(mp + mg + mp + mp)ges
mrg(ur + Orvr) "R e3 + mpg(ur + Qrve) R  e3 + mag(ua + Qava) R e3
f, e -T,L,U = ngﬁR(QﬁRTeg) , (49)
mp gV (QF R e3)
magVa(Q R e3)
where the total mass is denoted by m € R,

m=mpg+mgr+mp +mu. (50)

Virtual Work Consider an infinitesimal aerodynamic force dF(v) € R? acting at the location of v € R? of the wing
or the abdomen. In the inertial frame, the location of the force is given by x + Ru; + RQ;v. Thus, the corresponding
virtual work due to the aerodynamic force is

/ 6(x + Ru; + RQ;v) - RQ;dF(v)dv = (6x + Riju;) - RQ; / dF(v) +n; - / v X dF(v).
B; . )

i Bl

Let the resultant aerodynamic force and the moment about the wing root or the joint connecting the abdomen be

F = / dF(v), M, = / v X dFy(v).
B B

Also, let 7; € R3 be the control torque exerted to the wing root or at the joint connecting the abdomen, resolved in the
body-fixed frame. As it is an internal torque, there will be a reactive torque, namely —7; exerted to the body.
The total virtual work due to the aerodynamic force and the control torque can be written as

SW = > 6x-ROF; +1n- (X QiFs = 7) + i - (M; + Q7 17)
ie{R,L,A}
= (f, +£) - &, (51)

where f,, f; € RS denote the contributions of the aerodynamic forces and the control torque, respectively. They are
given by

RORFR + ROLFL + ROAFA
ARQORFR + ALQLFL + 1aQAFA
f, = Mg . (52)
My,
My
0
~TR = TL = Ta
f,=| Ol | (53)
oz
g

13
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Euler-Lagrange Equations The inertia tensor for the complete flapping wing aerial vehicle, namely J,(£) € RI1>X15
is written as

mp 33 +JR11 +JL11 +JA11 JRIZ +JL12 +JA12 JR13 JL13 JA13
Jp+ IRy Iy +Jay Jry Jip Jay
Jq(8) = : : Jryy O 0, (54)
. 0 J; O
0 0 Ja,

where the subscript ij refers to the 3 x 3, i, j-th block of the corresponding matrix, and the unspecified blocks
are chosen such that J, becomes symmetric. The derivatives of the inertia are expressed by the following matrix
K, € R1¥15 according to (40),

0 KR12+KL12+KA12 KR13 KL13 KA13
0 KR22 +KL22 +KA22 KR23 KL23 KA23

K, =10 Kg;, Kg;; 0 0 |- (55)
0 K., 0 K, O
0 Ka,, 0 0 K,

The co-adjoint operator corresponds to the following matrix,
ad; = diag[03x3, —Q, —Qg, —Qr, —Qal. (56)

The Euler-Lagrange equations are given according to (41) as
Jo(€) —ad; - Jg(€) + Lg(6)é =+, +£-. (57)

The matrix Lg(¢) = Kg(¢) — 3KE(£) € RIS represents the effects of the dependency of the inertia on the
configuration, and it is more explicitly given in the appendix.

The above Euler-Lagrange equations are driven by the control torque acting on the joint of the wings and the
joint of the abdomen, and they can be simulated by any ODE solver with the initial condition (g(0), £(0)) and the
trajectory of (7g(z), T.(¢), TA(2)).

C. Prescribed Wing Kinematics and Abdomen Attitude

In case the flapping motion of the wings and the relative motion of the abdomen are prescribed, i.e.,
ORr(1), Qp(t), Qa(t) are given as a function of time, a reduced set of equations for (x, R) can be constructed
as follows.

Let the configuration variables be decomposed into two parts, g = (g1, g2) and & = (£, &) with

81 = (-x’ R)’ é:l = [X, Q]’ (58)
g2 = (Or,01,04), & =[Qr, QL. Qal. (59

According to the assumption (g2, &, &) are already known. We construct differential equations for £; as follows. The
Euler-Lagrange equation (57) can be decomposed accordingly as

Juéi +Jné —adg - (Jué +J0é&) + Liér + Liné = fo, + £, + £, (60)
Jo1é1 + Inés - ady, - (Jo1é1 +J2282) + Loty + Lnéy = £, + g, + 17, (61)

where the matrices Jg, L € R>*!5 are decomposed after the first six rows and columns. For example, J;; € R%® is
the first 6 X 6 diagonal block of J, and the remaining parts of the first 6 rows are defined as Ji» € R*°, We cannot
integrate (60) separately, as it is coupled with (61) through the unknown (7g, 72, T4)-

From (53),

0 0 0
fT 1 = ng é CfT29
-Or —0r —0Qa

14
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(a) Example butterfly specimen (b) Leading/Trailing edge ¢ g(r), crE(r) (c) Chord c(r)

Fig. 9 Monarch wing shape and chord.

for C(Qr, Qr,0Q4) € R, Multiply C to (61), and subtract it from (60) to obtain

Ji1 = CIo)ér — (ady, Ji1 — Cady, Jar)ér + (Liy — CLay)é
= —(J12 = CIn)és + (ady, J12 — Cady, Jn)ér — (Lia - CLn)é
+o, + 1y, — C(fy, +1,,). (62)

Now, the unknown (7, 77, T4) is eliminated, and for given (g2, &, &) the above can be simulated to construct (g1, £1).
Once (g1, £1) is obtained, it can be substituted into (61) to compute (g, 77, T4) that the torque at the thorax required
to rotate the wings and the abdomen as described.

D. Prescribed Wing Kinematics and Abdomen/Body Attitude

Next, we consider the case where the attitude of the thorax is prescribed additionally. As such all of
(R(t), Or(t), OQ(t), 0 a(r)) are given as a function of time. We construct a equation of motion for the position
X.

The first block of (57) is written as

mx + Z {Jile + J,']3Qi + Kilzg + Ki]3Qi} =R Z O F; + mges, (63)
ie{R,L,A} ie{R LA}

which can be numerically integrated to construct (x, ). The corresponding control torque (7g, Tz, 7T4) can be
computed by (61).

V. Dynamic Simulation for Monarch Butterfly

A. Monarch Morphological Parameters
The wing shape and chord are determined from an example butterfly specimen shown in Fig. 9. The location of
the leading edge and the trailing edge are measured along the span-wise direction, and they are fitted by sixth-order
polynomials. The resulting measurements and the fitted curve are illustrated in Fig. 9. From the fitted chord, we
determine the morphological dimensions related to the wing shown in Table 1. The mass of the wing and body
segments and dimensions related to the butterfly body were calculated based on avergage values from six butterfly
specimens and are shown in Table 1.
For the calculation of the inertia matrix, the head/thorax is considered as a cylinder with the height /5 and the
diameter wg. The moment of inertia of the body about its center of gravity is
1 , 1

.1
Jp =mp dlag[gwé, TeWs* Eh%,

1
16"

1

2

2
BT
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Table 1 Monarch parameters.

Head/Thorax Abdomen Right Wing
mp | 1.485x 107*kg ma | 1.092x 107*kg mg | 2.5100 x 107> kg
hg | 1.463x1072>m ha 1.738 x 107> m ¢ 2.0905 x 1072 m
wg | 5.680x 103 m wa | 3.710x103m l 6.0996 x 1072 m

5.9887 x 10710kgm? | J, | 1.8788 x 107 0kgm? | Jg 2.7568 x 1078 kgm?
Jp,, | 2.9481x10kgm? | Ja, | 1.1089x 10¥kgm® | Jg , | 2.4957 x 10~ kgm?
2.9481 x 102 kgm? | Ju 1.1089 x 108 kgm?* | Jg,, | 2.5799 x 10~ kgm?
Jr., | 3.0148 x 1078 kgm?
VR, | —4.4378x 103 m
vr, | 1.5176x1072m
S 1.2751 x 1073 m?
R 2.9178
7 4.9761 x 107!
I 5.4332x 107!
7 5.8030 x 107!
Fep | 6.5148x 102 m
7 1.2496
7 (v) | 4.8750 x 107!
A(v) | 5.1653 x 107!
ot | 3.3383x1072m

(The properties of the left wing are identical to the right wing, except VL, = VR, Jny = —Jny )

The abdomen is also considered as a cylinder. Its moment of inertia about the joint is

1 1 1 1
Ja =my diag[gwf‘, EW% + §h%, EW% + ghi]

Next, the right wing is considered as a thin plate with a uniform, negligible thickness. The mass element is written as

dm = @dxdy,
S
where % corresponds to the area density in the unit of kg/m>. Thus, the mass center of the right wing is located at
1 1 rl opeLe®) 1 rt ) 5
5 oy 5, gy ¥ =5 ) 20~ o0y

1 1 I pcLe®y) 1 l
v = [ ydn=g [ Vyaxay = 5 [ e - eretiyay,
MR J8x S Jo Jerew) SJo

Thus, the moment of inertia about the wing root is given by

I pcLe(y) l
m m
TRy, = / Yidm =~ / / Yidxdy = “X / Y (cLe(y) = ere(y))dy,
Br S Jo Je S Jo

TE(Y)
I pcLe®y) l
mg mg 1
Jr,, = / —xydm = —— / / —xydxdy = — / —=(ci () = G (y)ydy.
Br S Jo cre(y) S Jo 2
I pcLe(y) I
mg mpg
IRy, = / x>dm = —/ xzdxdy = —/ —(czE(y) - C%E(y))dy,
Br S Jo Jerem S Jo 3
Jr.. = IR, +JR,,-

16



Downloaded by Chang-Kwon Kang on January 9, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-1962

R -0.05 -

0
LW3 RW3

0.05 - ) 0.05

B o S 7 ) O

-0.0 T
. 0 0.05
LHW1 RHW1 0.05
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Fig. 10 Monarch motion capture.

Similarly, for the left wing, we have

-l pcLe(-y)
o = 228 yidxdy = I,
S Jo crE(-Y)
-l pcLe(-Y)
Jr,, = TR —xydxdy = —Jg,,
S Jo crE(-Y)
-l pcLe(-Y)
JL,, = MR / xzdxdy =Jr,,
S Jo crE(-Y)
Ji.. =Jr

ZZ zz*

Finally, it is assumed that the root of the wing and the joint of the abdomen are located at

wB

,uR = [O’ 79 0],
w
ML = [0’ _737 0]’
h
MHA = [_739 0, 0]

B. Flight Characteristics of Monarch

The flight of an actual Monarch butterfly is studied by a motion capture system. The twelve markers are attached
to a Monarch as illustrated in Fig. 10(a), and the position of each marker is measured by a VICON motion capture
system at 200 Hz.

These are converted into (x, R, Qr, O, Q) as follows. It is considered that the origin of the body, namely x, is
located at the center of 77 and 75. For the body attitude R, it is assumed that the first axis is along 77 — 7> and the
second axis is parallel to the ground, i.e., there is no body roll. This is reasonable as the measured flight trajectory is
almost straight. For the attitude of the abdomen, the first axis points from the center of A; and A, toward 7>, and the
second axis is parallel to the ground. The resulting rotation matrix is left multiplied by R” to obtain the relative
attitude Q4.

For the right wing attitude, it is assumed that the wing root is located at the center of 77 and 7>. The wing plane
always passes through the wing root exactly, and it is spanned by the three markers on the right wing. However, due
to the measurement errors and the flexibility of the wing, those points do not exactly lie on a single plane. Instead, we
find the normal vector of the plane such that the sum of the squared distance between each marker and the plane is
minimized. The normal vector yields the third axis of ¥z. For the second axis, the vector from the wing root to RW;
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Fig. 11 Monarch wing kinematics. The wing kinematics angles are in degrees.

is projected on to the fitted plane. The first axis is determined by the cross product of the second axis and the third
axis. These yield the rotation matrix of the right wing from the inertial frame, and by left multiplying R” , we obtain
ORr. The attitude of the left wing, namely Qy is constructed similarly.

Next, the computed (Qr(¢), Q1 (¢)) are converted into wing kinematics angles as follows. First, we determine the
wing stroke plane. In the absences of the deviation angle i, the second column of Qg(¢) and Qy () over multiple time
instances span the stroke plane. We find the stroke plane such that the sum of the squared distance for Qg(t)e; and
Q1 (t)e for varying t over the experiment period is minimized. It turns out that the normal vector to the stroke plane
is not in the b,—b, plane. More explicitly, it is given by [-0.8948, —0.1222,0.4294], i.e., it is rotated by —7.77 deg
when observed the dorsal side, or the right wing tip is ahead of the left wing tip (Fig. 11(a)). This might have
been caused by the asymmetry of the particular Monarch butterfly used in the experiment, or the bias in the marker
attachment. Instead of dealing with the asymmetry in the left wing and the right wing, we multiply exp(7.77¢3) to Qg
and Q7 such that they become symmetric in the least square sense. The resulting normal vector of the stroke plane
lies in the by—b, plane, and the stroke plane angle is 8 = 25.42 deg. From the given S, and rotated Qg (), Q1 (),
we can determine the wing kinematics angles (¢ (¢), Or(t), Wr(t), and (¢ (t), 01 (¢), w1 (t)) according to (3) and (6),
respectively. These are illustrated in Fig. 11(b). The wing kinematics angles for the right wing are mostly consistent
with the the left wing, except the small deviation angle. Assuming the symmetric wing kinematics, we take the
average between the right wing and the left wing, and they are fitted with Fourier series to be used in the subsequent
dynamic simulation.

C. Dynamic Simulation

From the above wing kinematics angles and the body/abdomen attitude obtained by the actual Monarch butterfly,
we numerically integrate the quasi-steady position dynamics, namely (63). The corresponding results are compared
against the experimental data. These are illustrated in Fig. 12. In general, the downstrokes generate the lift upward,
and the upstrokes generate thrust forward, while yielding a climbing trajectory with oscillation.

The proposed quasi-steady aerodynamic model generates greater lift and thrust, and consequently causing higher
climb rate and forward velocity. However, it is consistent with the experimental data in a qualitative manner, thereby
validating the proposed model.

D. Effects of Abdomen

It turns out that for Monarch butterfly flights, the abdomen oscillate at the same frequency of the wing flapping
angle with the opposite phase, i.e., the abdomen rotates downward during the wing upstrokes.

To test the effects of abdomen undulation with the proposed model, we simulate the above Monarch model for 50
strokes while fixing the abdomen pitching angle to the averaged value. These results are illustrated at Fig. 13. While
the difference is not substantial, it is shown that the abdomen undulation slightly increases the climb rate and the
forward velocity.
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Fig. 12 Comparison between the QS model (blue) and the experimental data (red); shaded area corresponds
to downstroke; the resultant force of the experiment is constructed by the acceleration of the thorax, multiplied
by the total mass and subtracted by the gravity. The position is shown in m, velocity in m/s, forces in N, and
angles in degrees.
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Furthermore, we consider another case when the abdomen undulate in the opposite phase to the measured vales.
Interestingly, this yields the worst results, where the forward velocity and the climb rate are smaller than the case of
fixed abdomen. This suggests that the abdomen undulation has a coupling effect to the translational dynamics of the
thorax, as represented by the additional force in (63),

~Ja; Q4 —Ka,, Q4.

It is interesting to notice that the Monarch butterfly undulates its abdomen such that the above terms become beneficial
to the flight.

E. Asymptotic Stability

Another interesting results of Fig. 13(c) is that the trajectory of the velocity asymptotically converges to a
periodic orbit, while the initial condition does not belong to the periodic orbit exactly. This suggests that the flapping
motion captured by the Monarch butterfly yields an asymptotically stable periodic solution. This should be further
investigated by dynamic system theory such as Floquet’s theorem.

VI. Conclusions

This paper presents a dynamic model for a flapping wing aerial vehicle that can characterize the flight of a
butterfly. It is composed of articulated rigid bodies such that the dynamic effects of the inertial coupling between
multiple parts can be studied. A quasi-steady aerodynamic model is also constructed without assuming that the
flapping frequency is sufficiently large. Consequently, the proposed model is particularly useful for the butterfly flight
that is characterized by relatively large wings flapping at a low frequency and body/abdomen undulation coupled with
the flapping motion.

This proposed model is compared with the data obtained by a live Monarch butterfly. It is shown that the abdomen
undulation increases the flight velocity, and the flapping of the Monarch butterfly yields an asymptotically stable
periodic orbit. For future study, the effects of the abdomen undulation should be quantitatively evaluated to compare
its undulation, and the stability should be rigorously analyzed.

Appendix

A. Effects of Configuration-Dependency in Inertia

| 0 KR12 +K{-‘12+KA]2 KR113 KL113 KA]13
T T T T T
—2(Krpy + Ky +Kaypy) KRy, +Kiyy +Kay, = 2(Kry + Ky, +Kay) KRry; = iKRn Kiy; = EKng Kay - iKAn
1T 1 T 1T
Lg = _fKRH KRry, - ZKR23 KRy - QKRB 0 0
_1kgT _ 1T _lgT
2KL,3 Kis, 2KL23 0 Kiy 2KL33 0
_1kgT _ 1T _1lgT
2KA13 Kas, 2KA23 0 0 Kaz ZKA33
(64)

B. Open-Source Software Package

A software package for the proposed quasi-state dynamic model has been developed in Matlab, and it is shared as
an open-source library at https://github.com/fdcl-gwu/FWUAV.

This is composed of the following components.

* Morphological parameters of Monarch butterfly are defied at morp_MONARCH.m

* The raw data from VICON are processed by the following three files under /exp_data.

[ VICON DATA.x1s )—»[ load_VICON_data.m )—»[ fit_VICON_data.m )—»[ ani_VICON_data.m J

* For given torque at the wing and the abdomen, the complete dynamics (57) are simulated as follows.

TR, TL>,TA

wing_QS_
aerodynamics.m
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Fig. 13 Comparison between flight with abdomen undulation (blue), without abdomen undulation (green),
with abdomen undulation in the opposite phase (purple); the simulation is for 50 strokes, and the results of
the first 5 strokes are illustrated for the subfigure (d) and (e). The position is shown in m, velocity in m/s, and

angles in degrees.
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* For given wing Euler angles and the abdomen attitude, the position and the attitude dynamics of the thorax,

namely (62) are simulated as follows.
(%, R), (TR, TL, TA)

sim_QS_xR.m

i &, 0,4 i
t , Wwing— wing_ attitude.m w1ng_Q§_
kinematics.m aerodynamics.m
abdomen_ Qa

attitude.m

* For given wing Euler angles, the thorax attitude, and the abdomen attitude, the position dynamics (63) are

simulated as follows.
i ¢, 0,4 ORr, 0L ; Fp
wing_ . : wing_QS_ .
@—' aerodynamics.m simQS.x.m
R

body_ attitude.m

abdomen_ Qa
attitude.m
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