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This paper presents a geometric formulation of the dynamics of a flapping wing aerial
vehicle and utilize it to study the flight dynamics of aMonarch butterfly. The proposedmodel
is essentially articulated rigid bodies, where two wings and an abdomen are connected to
a thorax via spherical joint. An intrinsic form of Lagrangian mechanics is developed to
study the inertial effects of the relative rotation between each part. Next, a quasi-steady
aerodynamicmodel is presentedwithout relying on the common assumption that the flapping
frequency is sufficiently large. Consequently, it is suitable to study the flight of a butterfly
that is characterized by relatively large wings flapping in a lower frequency. The outcome of
the proposed model is compared with the captured motion of a live Monarch butterfly. It is
shown that the undulation of the abdomen increases the climb rate and the forward velocity,
and the motion of Monarch butterfly yields a stable period orbit.

I. Introduction
The Monarch butterfly is one of the most popular butterfly species in North America with wings of around 4 cm

featuring an easily recognizable black, orange, and white pattern. They exhibit remarkable flight characteristics [1],
migrating annually from North America to Mexico - up to 4000 km [2–4], the longest flight range among insects
[2, 5–7]. However, the physical mechanism enabling this long-range flight is not well understood. One theory is
that the Monarchs benefit from their high-altitude flight. Monarchs butterflies fly at high-altitudes during migration
(∼1,250m) and overwinter (∼3,000m) at high altitudes. At these altitudes, they can take advantage of the boundary
layer of the earth to conserve energy. Furthermore, aerodynamic drag is proportional to air density, which decreases
with altitude. A minimal aerodynamic drag is critical to enable the long-range migration, which is provided by flying
at high altitudes. However, the lift is also expected to decrease with lower density at higher altitudes. Unlike airplanes,
Monarchs must generate the propulsive forces with their flapping motion. How butterflies efficiently generate lift and
fly during migration is one of the unsolved mysteries.

Compared to the wealth of research on the flight of insects such as flies [8, 9], bees [10, 11], dragonflies [12–16],
or birds and bats [17], butterfly flight remains inadequately understood due to their many unique characteristics.
Unlike most insects, the fore and hindwings of butterflies are relatively large and move in sync [18]. Butterflies are
extremely evasive with agile maneuvers [19–22] and body undulations with closely coupled wing-body interaction
[21, 23, 24]. In particular, the butterfly body exhibits considerable vertical oscillation during flight due to the
instantaneous change in wing shape and inertia [23, 25], resulting in a “bumpy” flight trajectory. Flapping wings and
body move in unison as reported in our earlier work [24], suggesting that the butterfly flight is an outcome of closely
coupled wing-body interaction.

The main obstacle in discovering the long-range flight mechanisms in the Monarch flight is this highly coupled
dynamics of the slowly flapping motion and the body. The large wings continuously rotate during flight, which is also
affected by the body dynamics. Furthermore, the thorax of the Monarchs continuously pitches while their abdomen
moves relative to the thorax during flight. As a consequence, most flight dynamic equations of motion and control
schemes that have been derived in the literature cannot be used to study the butterfly flight. The conventional models
exploit the large disparity in the time scales of wingbeat frequency and body dynamics assuming smaller insects such
as fruit flies and bumblebees [26, 27]. Furthermore, many flapping wing dynamics models are based on the common
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simplified formulation where the nonlinear time-varying flapping dynamics are transformed into linear time-invariant
systems by considering small perturbations averaged over the period of flapping [28–31]. These approaches are not
suitable to analyze the low-frequency flapping dynamics of Monarch butterflies.

A key open research question associated with the butterfly flight is the effects of dynamics on the power
consumption. Whereas the pitching motion of smaller flying insects play a critical role in aerodynamic force
generation [8, 17], most butterfly wings are structurally restricted from pitching [25]. Instead, it is presumed that
the relatively large aerodynamic forces generated by the simple flapping wing motions affect the body attitude and
vertical displacement, which alter the effective angle of attack and, hence, the flapping wing aerodynamics. As such,
by adjusting the center of mass, a butterfly inspired ornithopter without a tail could fly forward passively without a
feedback controller [25]. If the forward flight of butterflies were indeed passive, the power consumption is expected
to be lower than an actively controlled flight. The power savings due to coupled wing-body motion can contribute
to our understanding of the long-range Monarch migration [32], which, in turn, can inform the development of
long-range micro flying robots. However, there are also reports that contradict these findings: butterfly’s flight under
periodic flapping motion is unstable because the butterfly cannot maintain its body pitch angle within a proper range
[33, 34]. The motion of the abdomen had to be actively controlled to stabilize the butterfly flight [34].

The objective of this paper is to derive, validate, and analyze a dynamic model that can characterize the Monarch
butterfly flight. We model a flapping wing aerial vehicle as articulated rigid bodies, where two wings and an abdomen
are connected to a thorax via spherical joint. An intrinsic form of Lagrangian mechanics is developed to include and
study the inertial effects of the relative rotation between each part. These are developed on the nonlinear configuration
manifold in a global fashion such that large angle rotational maneuvers can be analyzed without singularities and
ambiguities inherent to the common attitude parameterizations. Further, this yields an elegant, structured form of the
equations of motion that can be easily utilized in stability analysis and controller design.

Next, to model the flapping wing aerodynamics, a quasi-steady blade element model is formulated without relying
on the common assumption that the flapping frequency is sufficiently large. For butterfly flights, the aerodynamic
forces generated by the wing vary along the spanwise direction as the velocity generated by the flapping is comparable
to the velocity of the thorax. We find the expression for the angle of attack at each infinitesimal chord of the wing
as a function of the wing kinematics and the rotation and translation of the body, and it is utilized to compute the
aerodynamic forces and moments.

In short, the proposed dynamic model captures the unique characteristics of the butterfly flight dynamics where
the flapping of large wings are coupled with the thorax and the abdomen undulation. More specifically, it can
represent the effects of the mass distribution of the relatively large wing, the inertial coupling with the abdomen
undulation, and the low frequency flapping aerodynamics coupled with the body motion.

Finally, the results of this model are compared to the detailed motion of the thorax, abdomen, and the pair of
wings of freely flying Monarch butterflies. The live Monarch butterfly flight is measured using a motion-tracking
system [24], and the corresponding wing kinematics and the body undulations are extracted. It is illustrated that
the simulation results constructed from the measured wing kinematics are consistent with the experimental results.
Further we perform several numerical simulations to study the butterfly flight dynamics. Our results show that the
trajectory of the velocity asymptotically converges to a periodic orbit, suggesting that the flapping motion captured by
the Monarch butterfly yields an asymptotically stable periodic solution. Furthermore, it is demonstrated that the
abdomen undulation as measured by the live Monarch butterfly increases the forward flight velocity and the climb
rate, against the other cases of fixed abdomen or undulation in the opposite phase. The role of abdomen undulation in
the stability of attitude dynamics has been presented in [35]. The presented results suggest that the abdomen may
have another desirable effects on the translational dynamics of butterfly flight.

II. Flapping Wing Aerial Vehicle Model for Butterfly
In this section, we present a flapping wing aerial vehicle model that may characterize the flight of a butterfly. It is

composed of a head, a thorax, an abdomen, and two wings attached to the thorax via spherical joints. We assume that
the head and the thorax are coagulated into a single rigid body, which is referred to as body. Also, we assume that
hindwings move in unison with forewings.

Here we present a mathematical description for the kinematics of the proposed articulated rigid body model.
Define an inertial frame FI = {ix, iy, iz}, where the third axis points downward, and the first two axes span the
horizontal plane (Fig. 1). This is compatible to the NED (north-east-down) frame common in flight dynamics.
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A. Body
Define the body-fixed frame FB = {bx, by, bz}, whose origin is located at its mass center of the body (Fig. 1).

Following the common convention in flight dynamics, the first axis points toward the head, the second axis point
toward the right wing, and the third axis points toward the ventral (belly) side.

ix
iy

iz

bx

by

bz

Fig. 1 The inertial frame FI = {ix, iy, iz} (black) and the body-fixed frame FB = {bx, by, bz} (blue).

The location of the mass center of the body is given by x ∈ R3 in FI . The attitude of the body is described by
R ∈ SO(3) = {R ∈ R3×3 | RT R = I3×3, det[R] = 1}, which represents the linear transformation of a representation of
a vector from FB to FI . The attitude kinematics is written as

ÛR = RΩ̂, (1)

where Ω ∈ R3 is the angular velocity resolved in FB. In the above equation, the hat map ∧ : R3 → so(3) is defined
such that x̂y = x × y for any x, y ∈ R3, or equivalently

x̂ =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (2)

for x = (x1, x2, x3) ∈ R
3. The inverse of the hat map is denoted by the vee map, ∨ : so(3) → R3.

B. Wing
Right Wing Let FR = {rx, ry, rz} be the frame fixed to the right wing (Fig. 2). Its origin is located at the joint of
the right wing, or the wing root where the right wing is attached to the thorax. The vector from the origin of FB to
the origin of FR is defined as µR ∈ R3. As it is resolved in FB and the body is rigid, we have ÛµR = 0. The first two
axes of FR span the plane of the wing, where the first axis points toward the leading edge and the second axis points
toward the wing tip. Consequently, the third axis is normal to the wing plane, and it points toward the ventral side
when there is no rotation of the right wing.

Next, we introduce the stroke frame FS = {sx, sy, sz}, which is constructed by translating the origin of FB to the
center of the left wing root and the right wing root, and rotating it about by by β ∈ [−π, π) (Fig. 3). The y–z plane of
FS is referred to as the stroke plane.

The angle β can be considered as the angle between bx , and sx that is normal to the stroke plane. Or equivalently,
it is the angle between y–z plane of FB and the stroke plane. It is positive when sx · bz < 0. This angle is often
defined as the angle between the ground (horizontal plane) and the stroke plane, considering hovering flights with a
fixed attitude of the body. Here, it is defined relative to FB as the flapping motion is inherently relative to the body.

The motion of the right wing relative to FS is described by 1–3–2 Euler angles (φR, ψR, θR) (Fig. 4). Consequently,
the orientation of the right wing relative to FB, namely QR ∈ SO(3) is described by

QR(t) = exp(βê2) exp(φR(t)ê1) exp(−ψR(t)ê3) exp(θR(t)ê2), (3)

which is the linear transformation of a representation of a vector from FR to FB. The Euler-angles are defined as
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rxbx

ry

by

Fig. 2 The body-fixed frame FB = {bx, by, bz} (blue), the right wing frame FR = {rx, ry, rz} (red)

sx bx

sz

bz

β > 0

stroke
plane

Fig. 3 The body-fixed frame FB = {bx, by, bz} (blue), the stroke frame FS = {sx, sy, sz} (green).

φR ∈ [−π, π) the flapping angle, which is positive when the wing is in the ventral side, i.e., Ûφ > 0 corresponds to
downstroke and Ûφ < 0 corresponds to upstroke (this is also referred to as the stroke angle or the
sweep angle in other papers)

θR ∈ [−π, π) the pitch angle about the axis from the wing root to the wing tip, which is positive when the leading
edge of the wing is rotated toward the dorsal side (this is also referred to as the feathering angle or
the rotation angle in other papers)

ψR ∈ [−π, π) the deviation angle that governs the motion of the wing tip out of the stroke plane, which is positive
when the wing tip is rotated toward the head

As given by (3), the three-dimensional attitude of the right wing is parameterized by four angles, and as such there
is a redundancy in defining the stroke plane. In general, the deviation angle is relatively small for most of insects. In
particular, when ψR is exactly zero, the stroke plane is defined such that it is spanned by the motion of the wing tip. If
the deviation angle is not zero, then the stroke plane can be chosen such that the distance between the wing tip and the

φ > 0

sy

ry

(a) flapping angle

θ > 0

rx

sx

(b) pitch angle

ψ > 0 ry

sy

(c) deviation angle

Fig. 4 Wing configuration when only one of (φ, θ, ψ) is non-zero.

4

D
ow

nl
oa

de
d 

by
 C

ha
ng

-K
w

on
 K

an
g 

on
 Ja

nu
ar

y 
9,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

20
-1

96
2 



stroke plane, after integrated over a stroke, is minimized. This will be further discussed in Section V.
The time-derivative of QR is given by

ÛQR = QRΩ̂R, (4)

where ΩR ∈ R
3 is the angular velocity of the right wing relative to FB resolved in FR. One can show that the angular

velocity of the right wing is obtained from the time-derivatives of the Euler-angles as

ΩR =


cosψR cos θR 0 sin θR

sinψR 1 0
cosψR sin θR 0 − cos θR



ÛφR
ÛθR
ÛψR

 . (5)

The determinant of the above 3× 3 matrix is − cosψR. Consequently, it is invertible when the deviation angle satisfies
ψR , ±

π
2 . This is not restrictive as the deviation angle is small in general.

Left Wing Similarly, let FL be the frame fixed to the left wing (Fig. 5). It can be obtained by translating FR to the
root of the left wing without any rotation. More specifically, its origin is located at the joint of the left wing, where
the left wing is attached to the thorax. The first two axes span the plane of the wing, where the first axis points toward
the leading edge and the second axis points toward the right wing, opposite to the left wing tip. Consequently, the
third axis is normal to the wing plane, and it points toward the ventral side when there is no rotation of the left wing.

bxlx

ly

by

Fig. 5 The body-fixed frame FB = {bx, by, bz} (blue), the left wing frame FL = {lx, ly, lz} (red).

Similar as the right wing, the motion of the left wing relative to the thorax is described by QL ∈ SO(3), which is
described by successive rotations as

QL(t) = exp(βê2) exp(−φL(t)ê1) exp(ψL(t)ê3) exp(θL(t)ê2), (6)

where the definition of the Euler-angles (φL, θL, ψL) are consistent with those of the right wing. The wing kinematics
become symmetric when (φR, θR, ψR) = (φL, θL, ψL).

The time-derivative of QL is given by

ÛQL = QLΩ̂L, (7)

where ΩL ∈ R
3 is the angular velocity of the left wing relative to FB resolved in FL . Also, we have

ΩL =


− cosψL cos θL 0 − sin θL

sinψL 1 0
− cosψL sin θL 0 cos θL



ÛφL
ÛθL
ÛψL

 . (8)

Wing Kinematics Let f ∈ R be the frequency of the flapping in Hz. Thus, the period of the flapping is T = 1
f .

The variation of the Euler angles over the flapping period is often referred to as wing kinematics, and several models
have been presented to construct (φ(t), θ(t), ψ(t)) [36]. These can substituted into (3) and (6) to describe the attitude
of the wing as a function of time.
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C. Abdomen
Consider an abdomen that is assumed to be a rigid body attached to the thorax via a spherical joint. Let

FA = {ax, ay, az} be the frame fixed to the abdomen. Its origin is located at the mass center of the abdomen, and
its orientation is identical to FB when there is no rotation relative to the body. The vector from the origin of FB to
the joint connecting the thorax and the abdomen is µA ∈ R3. As it is resolved in FB and the body is rigid, we have
ÛµA = 0.

The motion of the abdomen relative to the body is described by QA ∈ SO(3), which is the linear transformation
of the representation of a vector from FA to FB. Its time-derivative is given by

ÛQA = QAΩ̂A, (9)

where ΩA ∈ R
3 is the angular velocity of the abdomen relative to the body, resolved in FA.

III. Quasi-Steady Aerodynamics
The quasi-steady assumption implies that the aerodynamic force and moment generated by the flapping wing are

equivalent to those for steady motion at the same instantaneous velocity and the angle of attack. In this section, we
propose a quasi-steady aerodynamic model for the butterfly flights characterized by relatively slow flapping of large
wings. Without relying on the common assumption that the flapping frequency is sufficiently large, an expression
for the translational forces and the rotational force is presented. This accounts the effects of the translational and
rotational motion of the body, and the wind gust in the aerodynamic force.

A. Wing Morphological Parameters

rx

ry

c(r)

dr

r

Fig. 6 Infinitesimal wing segment.

We first present several morphological parameters of the wing as formulated in to [37], after making a few changes
in the notation. More specifically, in [37], the symbol ∧ is used to denote normalized variables. However, the same
symbol is used for the hat map in (2). Instead, we use the symbol ˜ for the normalized variables to avoid conflict
with (2). Also, the morphological parameters are defined for a single wing as the aerodynamic force of the left wing
will be distinguished from the right wing for non-symmetric flapping.

Let dr be the infinitesimal wing segment located distanced at r from the wing root (Fig. 6). Let its chord
be defined as c(r). The wing segment is parallel to rx and the distance is measured along ry . Assume that the
aerodynamic center of the segment is along ry , i.e., the resultant force generated by the wing segment is located along
ry with zero moment. Consequently, it is located at re2 when resolved in FR.

The area of the right wing is given by

S =
∫ l

0
c(r)dr, (10)

where l > 0 is the wing span, i.e., the distance between the wing root and the wing tip measure along ry . The
non-dimensional aspect ratio is

ÆR =
l2

S
. (11)
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The mean chord is the area divided by the span, i.e., c̄ = S
l , and the normalized wing chord is

c̃ =
c
c̄
=

cl
S
. (12)

Also, the non-dimensional radius is defined as

r̃ =
r
l
. (13)

The k-th moment of wing area is defined as

Sk =
∫ l

0
rkc(r)dr = Slk

∫ 1

0
r̃k c̃dr̃, (14)

satisfying S0 = S. The non-dimensional radius of the k-th moment of wing area is defined as

r̃k =
(

Sk
Slk

) 1
k

=

(
1

Slk

∫ l

0
rkc(r)dr

) 1
k

=

(∫ 1

0
r̃k c̃dr̃

) 1
k

, (15)

such that Sk = (r̃k l)kS, i.e., if all of the wing area is located at a distance r̃k l, the k-th moment of area is equal to Sk .
Next, when a wing is accelerated, it causes the motion of the surrounding air. The inertia of the wing is increased

by the mass of air that is accelerated, and therefore there is an increase in the wing mass. The normalized virtual
mass is defined as

ṽ =

∫ 1

0
c̃2dr̃ . (16)

And the corresponding normalized radius of the k-th moment of virtual mass is

r̃k(v) =
(

1
ṽ

∫ 1

0
c̃2r̃kdr̃

) 1
k

. (17)

B. Blade-Element Theory
Angle of Attack of RightWing When resolved in the inertial frame, the root of the right wing is located at x+RµR.
Thus, the aerodynamic center of the chord at the distance r from the wing root is

x + RµR + RQRre2.

Therefore, its velocity in FI is
Ûx + RΩ̂µR + RΩ̂QRre2 + RQRΩ̂Rre2,

which is transformed to FR by left-multiplying QT
RRT as

QT
RRT Ûx +QT

RΩ̂µR +QT
RΩ̂QRre2 + Ω̂Rre2

= QT
R(R

T Ûx +Ω × µR) + r(QRΩ +ΩR) × e2,

where the first term corresponds to the velocity of the wing root and the second term corresponds to the velocity of
the aerodynamic center relative to the wing root. Both are resolved in FR.

Assume that there is a uniform wind with the velocity vwind ∈ R
3 resolved in FI . The velocity of the aerodynamic

center of c(r) relative to the wind is given by

QT
R(R

T ( Ûx − vwind) +Ω × µR) + r(QRΩ +ΩR) × e2,

According to the blade-element theory [37], the aerodynamic force generated by the infinitesimal chord is independent
of the span-wise velocity component, i.e., the component of the above expression along ry is irrelevant. Therefore,
we project the above velocity to the rx–rz plane as follows.

UR(r) = (I3×3 − e2eT2 )Q
T
R(R

T ( Ûx − vwind) +Ω × µR) + r(QRΩ +ΩR) × e2. (18)
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α
chord

�

?

rx

rz

(d) Case 4

Fig. 7 Direction of the velocity and the lift in the rx–rz plane of the right wing.

where I3×3 − e2eT2 = diag[1, 0, 1] ∈ R3×3 corresponds to the projection operator. The second term is not affected by
the projection as it is already normal to e2. When the flapping frequency is sufficiently large, or equivalently ΩR is
relatively large compared with other terms, it can be simply approximated by UR(r) = rΩR × e2. But, the flapping
frequency of a butterfly is about 10 Hz, and the contribution of the flapping to UR is comparable to other terms caused
by the body velocity.

The angle of attack αR(r) is the angle between the chord line ±e1 and the above velocity UR(r). Assuming that
the chord is a thin blade, when the angle is greater than π

2 , we flip the leading edge and the trailing edge of the chord.
This ensures that αR(r) ∈ [0, π2 ] always. More explicitly,

αR(r) = cos−1(
|eT1 UR(r)|

‖UR(r)‖
). (19)

The above expression has a singularity when U(r) = 0. But, the value of α(r) does not matter when U(r) = 0, as the
resulting aerodynamic force and moment will vanish. Or equivalently, it can be written as

αR(r) = sin−1(
|eT3 UR(r)|

‖UR(r)‖
). (20)

Angle of Attack of Left Wing For the left wing, (18) is changed into

UL(r) = (I3×3 − e2eT2 )Q
T
L(R

T ( Ûx − vwind) +Ω × µL) − r(QLΩ +ΩL) × e2. (21)

The angle of attack is given by

αL(r) = cos−1(
|eT1 UL(r)|

‖UL(r)‖
) = sin−1(

|eT3 UL(r)|

‖UL(r)‖
). (22)

C. Translational Forces
Right Wing Here we find the expression of the lift and the drag. The magnitude of the lift generated by the
infinitesimal wing segment c(r) is

1
2
ρ‖UR(r)‖2CL(αR(r))c(r)dr,

where ρ ∈ R is the atmospheric density, and CL ∈ R is the lift coefficient given as a function of the angle of attack.
The direction of the lift is normal to both of the velocity UR(r) and the wing span-wise direction e2. As such, the

direction of the lift is along ±e2 ×UR(r) in FR. The ambiguity of the sign can be resolved by the fact that when the
rx–rz plane is divided by the chord line rx , the velocity vector U(r) and the lift vector occupy the opposite side with
each other.
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More specifically, consider the four cases illustrated in Fig. 7. These show that the direction of lift is e2 ×UR(r)
when eT1 UR(r) and eT3 UR(r) have the same sign (Case 1 and Case 4), and it is −e2 × UR(r) when they have the
opposite sign (Case 2 and Case 3). Therefore, the infinitesimal lift vector resolved in FR is given by

dLR(r) =
1
2
ρU2

R(r)CL(α(r))c(r)sgn(eT1 UR(r)eT3 UR(r))
e2 ×UR(r)
‖e2 ×U(r)‖

dr

=
1
2
ρCL(α(r))c(r)sgn(eT1 UR(r)eT3 UR(r))(e2 ×UR(r))‖UR(r)‖dr, (23)

where the second equality is obtained by ‖UR(r)‖ = ‖e2 ×UR(r)‖.
The total lift of the right wing is obtained by integrating above span-wise for r ∈ [0, l].

LR =

∫ l

0
dLR(r), (24)

which is resolved in FR.
Next, the drag is always opposite to UR(r). Similar with the above expressions,

dDR(r) = −
1
2
ρCD(α(r))c(r)‖UR(r)‖UR(r)dr . (25)

The total drag is obtained by integrating above span-wise for r ∈ [0, l] as

DR =

∫ l

0
dDR(r), (26)

which is resolved in FR.
The lift and the drag also generate the moment about the wing root. When resolved in FR, it is given by

MR =

∫ l

0
re2 × (dLR + dDR). (27)

Left Wing Similarly, the infinitesimal lift vector of the left wing resolved in FL is given by

dLL(r) =
1
2
ρCL(α(r))c(r)sgn(eT1 UL(r)eT3 UL(r))(e2 ×UL(r))‖UL(r)‖dr, (28)

which is integrated to obtain

LL =

∫ l

0
dLL(r). (29)

Also, the infinitesimal drag of the left wing is

dDL(r) = −
1
2
ρCD(α(r))c(r)‖UL(r)‖UL(r)dr, (30)

and

DL =

∫ l

0
dDL(r), (31)

which is resolved in FR.
The lift and the drag also generate the moment about the wing root as

ML =

∫ l

0
−re2 × (dLL + dDL). (32)
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D. Rotational Force
The wing’s own rotation may cause additional circulation about the chord that generate a normal force. This is

referred to as a rotational force [38]. The expression of the rotational force of the right wing is identical to that of the
left wing, except the flipped sign in the corresponding moment. As such, in this section, we do not distinguish the
right wing from the left wing with the subscript R.

According to [38], the magnitude of the rotational lift for the infinitesimal wing segment is given by

ρ‖U(r)‖Crot | Ûα(r)|c2(r)dr, (33)

where the last part Crot | Ûα(R)|c2 corresponds to the rotational circulation. The time-derivative of the angle of attack
multiplied by ‖U‖ is given by

‖U‖ Ûα =
1

sinα

{
cosα

UT ÛU
‖U‖

− sgn(eT1 U)(eT1 ÛU)
}

=
1

cosα

{
− sinα

UT ÛU
‖U‖

+ sgn(eT3 U)(eT3 ÛU)
}
. (34)

To avoid singularity caused by α, the first expression is used when α is close to π
2 , and the second expression is

used when α is close to 0. Also, to mitigate the singularity caused by ‖U‖ � 1, we evaluate ‖U‖ Ûα in the numerical
implementation, instead of computing Ûα directly.

Next, we find the direction of the rotational lift. It is shown that the rotational lift is always perpendicular to
the chord line, and consequently it is ±e3 in FR. Consider the four cases of α > 0 illustrated in Fig. 7. For the first
two cases of eT3 U > 0, Ûα > 0 generates the rotational lift along −e3, and for the last two cases of eT3 U(r) < 0, Ûα > 0
generates the rotational lift along e3. Therefore, when α > 0, the direction of the rotational lift is −sgn(eT3 U)sgn( Ûα)e3.

�

6

?

U(r)

eT3
ÛU(r) > 0

Frot

chord�

?

rx

rz

(a) Case 1

�

?

6

U(r)

eT3
ÛU(r) < 0

Frot

chord�

?

rx

rz

(b) Case 2

-

6

?

U(r)

eT3
ÛU(r) > 0

Frot

chord
�

?

rx

rz

(c) Case 3

-

?

6

U(r)

eT3
ÛU(r) < 0

Frot

chord
�

?

rx

rz

(d) Case 4

Fig. 8 Direction of the rotational lift when α = 0 deg.

For the case of α = 0, the direction of the rotational lift is illustrated in Fig. 8, where the rotational lift is always
opposite to eT3 ÛU. Therefore, its direction is given by −sgn(eT3 ÛU)e3.

These two cases for the direction can be combined into

sigrot(r)e3, (35)

where
sigrot = sgn(α(r)){−sgn(eT3 U(r))sgn( Ûα(r))} + (1 − sgn(α(r))){−sgn(eT3 ÛU(r))}, (36)

which takes the value of ±1. Thus, the rotational lift vector is the product of the above direction and the magnitude
(33).

dFrot = ρ‖U(r)‖Crot | Ûα(r)|sgnrot(r)e3c2(r)dr, (37)

which is integrated to obtain the rotational force

Frot =

∫ l

0
dFrot. (38)
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For the right wing, the above rotational force generate the moment about the wing root as follows.

MrotR =

∫ l

0
re2 × dFrot,

which is resolved in FR. For the left wing, the chord is located at −re2 in FL , and consequently

MrotL = −

∫ l

0
re2 × dFrot.

IV. Dynamics of Flapping Wing Aerial Vehicle for Butterfly
In this section, we construct the equations of motion for the dynamics of the proposed flapping wing aerial

vehicle model. To objective is to capture the inertial coupling between the thorax, the abdomen, and the wings such
that the dynamics of butterfly is properly represented. It is based on the geometric formulation of the multibody
dynamics [39] to describe the dynamics in an intrinsic, elegant fashion.

A. Lagrangian Mechanics on a Lie Group
We first present the Lagrangian mechanics for an arbitrary mechanical system evolving on a Lie group. The

Euler–Lagrange equations are developed when the Lagrangian is composed of a kinetic energy with a configuration-
dependent inertia and a potential energy. This result will be utilized later for the proposed flapping wing aerial
vehicle.

Consider a dynamic system evolving on an abstract Lie group G. The kinematics equation on G is given by

Ûg = gξ, (39)

for ξ ∈ g corresponding to the left-trivialized velocity. Consequently the tangent bundle TG is identified with G × g.
Let J : G × g→ g∗ be a symmetric, positive-definite inertia tensor, i.e.,

〈Jg(ξ), ξ〉 ≥ 0,
〈Jg(ξ), ξ〉 = 0 ⇔ ξ = 0,
〈Jg(ξ1), ξ2〉 = 〈Jg(ξ2), ξ1〉,

for any g ∈ G and ξ, ξ1, ξ2 ∈ g. Also, define (Kg(ξ))(·) : G × g→ g∗ such that

T∗eLg · DgJg(ξ) · χ = (Kg(ξ))(χ) = Kg(ξ)χ. (40)

It is straightforward to Kg(ξ) is a linear operator. Therefore, by selecting a basis of g, Kg(ξ) can be represented by a
matrix. Intuitively, it is the left-trivialize derivative of Jg(ξ) with respect to g.

Suppose that the Lagrangian L : G × g→ R is given by

L(g, ξ) =
1
2
〈Jg(ξ), ξ〉 −U(g),

for a configuration dependent potential U : SO(3) → R. We have

DξL(g, ξ) = Jg(ξ),
d
dt

DξL(g, ξ) = Jg( Ûξ) +Kg(ξ)ξ,

T∗eLg · DgL(g, ξ) · χ =
1
2
〈Kg(ξ)χ, ξ〉 − T∗eLgU(g) · χ

=

{
1
2

K∗g(ξ)ξ − T∗eLgU(g)
}
· χ,

where g∗ is identified with g with the pairing. Substituting these into [39, equation (8.45)], the Euler–Lagrange
equations are given by

Jg( Ûξ) +Kg(ξ)ξ − ad∗ξ · Jg(ξ) −
1
2

K∗g(ξ)ξ + T∗eLgU(g) = 0. (41)
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B. Lagrangian Mechanics of Flapping Wing Aerial Vehicle
The configuration of the given flapping wing vehicle model is described by g = (x, R,QR,QL,QA). Consequently,

the configuration space is a Lie groupG = R3×SO(3)4. As it is a product ofR3 and four copies of SO(3), the Lie algebra
is simply g = R3 × so(3)4 ' R3 × (R3)4. The kinematics equation is identical to (39) with ξ = ( Ûx,Ω,ΩR,ΩL,ΩA) ∈ g.

Kinetic Energy The kinetic energy of the body is given by

TB =
1
2

mB ‖ Ûx‖2 +
1
2
Ω
T JBΩ. (42)

where mB ∈ R is the mass of the body, and JB ∈ R3×3 is the inertia matrix of the body about FB.
Next, we find the expression for the kinetic energy of the wings and the abdomen. The contribution of the left

wing is identical to the right wing and the abdomen, as all of them are essentially a rigid body connected to the thorax
via a spherical joint. Therefore, we use the subscript i ∈ {R, L, A} to denote the variables related to a particular wing
or the abdomen, which is referred to as Bi .

Consider a mass element dm in Bi , whose location is given by ν ∈ R3 in Fi , i.e., ν is the vector from the joint to
the mass element resolved in Fi . Thus, its location from the origin of the inertial frame, resolved in the inertial frame
FI is x + Rµi + RQiν, and its velocity is

Ûx + RΩ̂(µi +Qiν) + RQiΩ̂iν.

Therefore, the kinetic energy is

Ti =
1
2

∫
Bi

1
2
‖ Ûx + RΩ̂(µi +Qiνi) + RQiΩ̂iνi ‖

2dm.

Let mi ∈ R be the mass of Bi , and let

νi =
1

mi

∫
Bi

νdm, (43)

Ji =
∫
Bi

ν̂T ν̂dm. (44)

Thus νi ∈ R3 is the vector from the origin of Fi to the mass center of Bi resolved in Fi , and Ji ∈ R3×3 is the inertia
matrix of Bi about the origin of Fi resolved in Fi . After rearranging, one can show

Ti =


Ûx
Ω

Ωi


T

Ji(R,Qi)


Ûx
Ω

Ωi

 .
where the configuration-dependent inertia for Bi , namely Ji(R,Qi) ∈ R

9×9 is

Ji(R,Qi) =


mi I3×3 −miR(µ̂i + Q̂iνi) −miRQi ν̂i

mi(µ̂i + Q̂iνi)RT mi µ̂
T
i µ̂i +Qi JiQT

i + mi(µ̂
T
i Q̂iνi + Q̂iνi

T
µ̂i) Qi Ji + mi µ̂

T
i Qi ν̂i

mi ν̂iQT
i RT JiQT

i + mi ν̂
T
i QT

i µ̂i Ji

 . (45)

From (40), the derivative of the inertia can be expressed with the following matrix Ki ∈ R
9×9,

Ki(R,Qi,Ω,Ωi) =



0 miR((µ̂i + Q̂iνi)Ω +Qi ν̂iΩi)
∧ miR(−Ω̂Qi ν̂i +Qi

̂̂νiΩi)

0 mi(µ̂i + Q̂iνi)R̂T Ûx mi R̂T ÛxQi ν̂i −Qi(JiQT
i Ω)

∧ +Qi JiQ̂T
i Ω

−mi µ̂iΩ̂Qi ν̂i − mi
̂̂µiΩQi ν̂i

−Qi ĴiΩi + mi µ̂iQi
̂̂νiΩi

0 mi ν̂iQT
i R̂T Ûx mi ν̂i(QT

i RT Ûx)∧ + JiQ̂T
i Ω − mi ν̂(QT µ̂iΩ)

∧


. (46)

The total kinetic energy is the sum of the contributions of the body, the wings and the abdomen, as given by

T = TB + TR + TL + TA. (47)
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Potential Energy The gravitational potential energy of the body is

UB = −mBgeT3 x.

The gravitational potential energy of Bi is

Ui = −migeT3 (x + Rµi + RQiνi).

The total potential energy is
U = UB +UR +UL +UA. (48)

The negative derivatives of the potential energy, namely fg ∈ R15 corresponds to the gravitational force and moment
given by

fg , −T∗eLgU =



(mB + mR + mL + mA)ge3

mRg(µR +QRνR)
∧RT e3 + mLg(µL +QLνL)

∧RT e3 + mAg(µA +QAνA)
∧RT e3

mRgν̂R(QT
RRT e3)

mLgν̂L(QT
LRT e3)

mAgν̂A(QT
ART e3)


, (49)

where the total mass is denoted by m ∈ R,

m = mB + mR + mL + mA. (50)

Virtual Work Consider an infinitesimal aerodynamic force dF(ν) ∈ R3 acting at the location of ν ∈ R3 of the wing
or the abdomen. In the inertial frame, the location of the force is given by x + Rµi + RQiν. Thus, the corresponding
virtual work due to the aerodynamic force is∫

Bi

δ(x + Rµi + RQiν) · RQidF(ν)dν = (δx + Rη̂µi) · RQi

∫
Bi

dF(ν) + ηi ·
∫
Bi

ν × dF(ν).

Let the resultant aerodynamic force and the moment about the wing root or the joint connecting the abdomen be

Fi =

∫
Bi

dFi(ν), Mi =

∫
Bi

ν × dFi(ν).

Also, let τi ∈ R3 be the control torque exerted to the wing root or at the joint connecting the abdomen, resolved in the
body-fixed frame. As it is an internal torque, there will be a reactive torque, namely −τi exerted to the body.

The total virtual work due to the aerodynamic force and the control torque can be written as

δW =
∑

i∈{R,L,A}

δx · RQiFi + η · (µi ×QiFi − τi) + ηi · (Mi +QT
i τi)

= (fa + fτ) · ξ, (51)

where fa, fτ ∈ R15 denote the contributions of the aerodynamic forces and the control torque, respectively. They are
given by

fa =



RQRFR + RQLFL + RQAFA

µ̂RQRFR + µ̂LQLFL + µ̂AQAFA

MR

ML

MA


, (52)

fτ =



0
−τR − τL − τA

QT
RτR

QT
LτL

QT
AτA


. (53)
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Euler–Lagrange Equations The inertia tensor for the complete flapping wing aerial vehicle, namely Jg(ξ) ∈ R15×15

is written as

Jg(ξ) =



mB I3×3 + JR11 + JL11 + JA11 JR12 + JL12 + JA12 JR13 JL13 JA13

· JB + JR22 + JL22 + JA22 JR23 JL23 JA23

· · JR33 0 0
· · 0 JL33 0
· · 0 0 JA33


, (54)

where the subscript i j refers to the 3 × 3, i, j-th block of the corresponding matrix, and the unspecified blocks
are chosen such that Jg becomes symmetric. The derivatives of the inertia are expressed by the following matrix
Kg ∈ R

15×15 according to (40),

Kg =



0 KR12 +KL12 +KA12 KR13 KL13 KA13

0 KR22 +KL22 +KA22 KR23 KL23 KA23

0 KR32 KR33 0 0
0 KL32 0 KL33 0
0 KA32 0 0 KA33


. (55)

The co-adjoint operator corresponds to the following matrix,

ad∗ξ = diag[03×3,−Ω̂,−Ω̂R,−Ω̂L,−Ω̂A]. (56)

The Euler–Lagrange equations are given according to (41) as

Jg( Ûξ) − ad∗ξ · Jg(ξ) + Lg(ξ)ξ = fa + fg + fτ . (57)

The matrix Lg(ξ) = Kg(ξ) −
1
2 KT

g (ξ) ∈ R
15×15 represents the effects of the dependency of the inertia on the

configuration, and it is more explicitly given in the appendix.
The above Euler–Lagrange equations are driven by the control torque acting on the joint of the wings and the

joint of the abdomen, and they can be simulated by any ODE solver with the initial condition (g(0), ξ(0)) and the
trajectory of (τR(t), τL(t), τA(t)).

C. Prescribed Wing Kinematics and Abdomen Attitude
In case the flapping motion of the wings and the relative motion of the abdomen are prescribed, i.e.,

QR(t),QL(t),QA(t) are given as a function of time, a reduced set of equations for (x, R) can be constructed
as follows.

Let the configuration variables be decomposed into two parts, g = (g1, g2) and ξ = (ξ1, ξ2) with

g1 = (x, R), ξ1 = [ Ûx,Ω], (58)
g2 = (QR,QL,QA), ξ2 = [ΩR,ΩL,ΩA]. (59)

According to the assumption (g2, ξ2, Ûξ2) are already known. We construct differential equations for ξ1 as follows. The
Euler–Lagrange equation (57) can be decomposed accordingly as

J11 Ûξ1 + J12 Ûξ2 − ad∗ξ1
· (J11ξ1 + J12ξ2) + L11ξ1 + L12ξ2 = fa1 + fg1 + fτ1, (60)

J21 Ûξ1 + J22 Ûξ2 − ad∗ξ2
· (J21ξ1 + J22ξ2) + L21ξ1 + L22ξ2 = fa2 + fg2 + fτ2, (61)

where the matrices Jg, L ∈ R15×15 are decomposed after the first six rows and columns. For example, J11 ∈ R
6×6 is

the first 6 × 6 diagonal block of Jg, and the remaining parts of the first 6 rows are defined as J12 ∈ R
6×9. We cannot

integrate (60) separately, as it is coupled with (61) through the unknown (τR, τL, τA).
From (53),

fτ1 =

[
0 0 0
−QR −QL −QA

]
fτ2 , Cfτ2,
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(a) Example butterfly specimen
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(b) Leading/Trailing edge cLE (r), cTE (r)
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0

1

2

3

4

(c) Chord c(r)

Fig. 9 Monarch wing shape and chord.

for C(QR,QL,QA) ∈ R
6×9. Multiply C to (61), and subtract it from (60) to obtain

(J11 − CJ21) Ûξ1 − (ad∗ξ1
J11 − Cad∗ξ2

J21)ξ1 + (L11 − CL21)ξ1

= −(J12 − CJ22) Ûξ2 + (ad∗ξ1
J12 − Cad∗ξ2

J22)ξ2 − (L12 − CL22)ξ2

+fa1 + fg1 − C(fa2 + fg2 ). (62)

Now, the unknown (τR, τL, τA) is eliminated, and for given (g2, ξ2, Ûξ2) the above can be simulated to construct (g1, ξ1).
Once (g1, ξ1) is obtained, it can be substituted into (61) to compute (τR, τL, τA) that the torque at the thorax required
to rotate the wings and the abdomen as described.

D. Prescribed Wing Kinematics and Abdomen/Body Attitude
Next, we consider the case where the attitude of the thorax is prescribed additionally. As such all of

(R(t),QR(t),QL(t),QA(t)) are given as a function of time. We construct a equation of motion for the position
x.

The first block of (57) is written as

m Üx +
∑

i∈{R,L,A}

{
Ji12
ÛΩ + Ji13

ÛΩi + Ki12Ω +Ki13Ωi

}
= R

∑
i∈{R,L,A}

QiFi + mge3, (63)

which can be numerically integrated to construct (x, Ûx). The corresponding control torque (τR, τL, τA) can be
computed by (61).

V. Dynamic Simulation for Monarch Butterfly

A. Monarch Morphological Parameters
The wing shape and chord are determined from an example butterfly specimen shown in Fig. 9. The location of

the leading edge and the trailing edge are measured along the span-wise direction, and they are fitted by sixth-order
polynomials. The resulting measurements and the fitted curve are illustrated in Fig. 9. From the fitted chord, we
determine the morphological dimensions related to the wing shown in Table 1. The mass of the wing and body
segments and dimensions related to the butterfly body were calculated based on avergage values from six butterfly
specimens and are shown in Table 1.

For the calculation of the inertia matrix, the head/thorax is considered as a cylinder with the height hB and the
diameter wB. The moment of inertia of the body about its center of gravity is

JB = mB diag[
1
8
w2
B,

1
16

w2
B +

1
12

h2
B,

1
16

w2
B +

1
12

h2
B].
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Table 1 Monarch parameters.

Head/Thorax Abdomen Right Wing
mB 1.485 × 10−4 kg mA 1.092 × 10−4 kg mR 2.5100 × 10−5 kg
hB 1.463 × 10−2 m hA 1.738 × 10−2 m c̄ 2.0905 × 10−2 m
wB 5.680 × 10−3 m wA 3.710 × 10−3 m l 6.0996 × 10−2 m
JBxx 5.9887 × 10−10 kgm2 JAxx 1.8788 × 10−10 kgm2 JRxx 2.7568 × 10−8 kgm2

JByy 2.9481 × 10−9 kgm2 JAyy 1.1089 × 10−8 kgm2 JRxy 2.4957 × 10−9 kgm2

JBzz 2.9481 × 10−9 kgm2 JAzz 1.1089 × 10−8 kgm2 JRyy 2.5799 × 10−9 kgm2

JRzz 3.0148 × 10−8 kgm2

νRx −4.4378 × 10−3 m
νRy 1.5176 × 10−2 m
S 1.2751 × 10−3 m2

ÆR 2.9178
r̃1 4.9761 × 10−1

r̃2 5.4332 × 10−1

r̃3 5.8030 × 10−1

rcp 6.5148 × 10−2 m
ṽ 1.2496
r̃1(v) 4.8750 × 10−1

r̃2(v) 5.1653 × 10−1

rrot 3.3383 × 10−2 m
(The properties of the left wing are identical to the right wing, except νLy = −νRy , JLxy = −JRxy .)

The abdomen is also considered as a cylinder. Its moment of inertia about the joint is

JA = mA diag[
1
8
w2

A,
1
16

w2
A +

1
3

h2
A,

1
16

w2
B +

1
3

h2
A].

Next, the right wing is considered as a thin plate with a uniform, negligible thickness. The mass element is written as

dm =
mR

S
dxdy,

where mR

S corresponds to the area density in the unit of kg/m2. Thus, the mass center of the right wing is located at

νRx =
1

mR

∫
BR

xdm =
1
S

∫ l

0

∫ cLE (y)

cTE (y)

xdxdy =
1
S

∫ l

0

1
2
(c2

LE (y) − c2
TE (y))dy,

νRy =
1

mR

∫
BR

ydm =
1
S

∫ l

0

∫ cLE (y)

cTE (y)

ydxdy =
1
S

∫ l

0
(cLE (y) − cTE (y))ydy.

Thus, the moment of inertia about the wing root is given by

JRxx =

∫
BR

y2dm =
mR

S

∫ l

0

∫ cLE (y)

cTE (y)

y2dxdy =
mR

S

∫ l

0
y2(cLE (y) − cTE (y))dy,

JRxy =

∫
BR

−xydm =
mR

S

∫ l

0

∫ cLE (y)

cTE (y)

−xydxdy =
mR

S

∫ l

0
−

1
2
(c2

LE (y) − c2
TE (y))ydy,

JRyy =

∫
BR

x2dm =
mR

S

∫ l

0

∫ cLE (y)

cTE (y)

x2dxdy =
mR

S

∫ l

0

1
3
(c3

LE (y) − c3
TE (y))dy,

JRzz = JRxx + JRyy .
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(a) Marker location (b) Monarch object reconostructed by markers

Fig. 10 Monarch motion capture.

Similarly, for the left wing, we have

JLxx =
mR

S

∫ −l

0

∫ cLE (−y)

cTE (−y)

y2dxdy = JRxx

JLxy =
mR

S

∫ −l

0

∫ cLE (−y)

cTE (−y)

−xydxdy = −JRxy

JLyy =
mR

S

∫ −l

0

∫ cLE (−y)

cTE (−y)

x2dxdy = JRxx

JLzz = JRzz .

Finally, it is assumed that the root of the wing and the joint of the abdomen are located at

µR = [0,
wB

2
, 0],

µL = [0, −
wB

2
, 0],

µA = [−
hB

2
, 0, 0].

B. Flight Characteristics of Monarch
The flight of an actual Monarch butterfly is studied by a motion capture system. The twelve markers are attached

to a Monarch as illustrated in Fig. 10(a), and the position of each marker is measured by a VICON motion capture
system at 200 Hz.

These are converted into (x, R,QR,QL,QA) as follows. It is considered that the origin of the body, namely x, is
located at the center of T1 and T2. For the body attitude R, it is assumed that the first axis is along T1 − T2 and the
second axis is parallel to the ground, i.e., there is no body roll. This is reasonable as the measured flight trajectory is
almost straight. For the attitude of the abdomen, the first axis points from the center of A1 and A2 toward T2, and the
second axis is parallel to the ground. The resulting rotation matrix is left multiplied by RT to obtain the relative
attitude QA.

For the right wing attitude, it is assumed that the wing root is located at the center of T1 and T2. The wing plane
always passes through the wing root exactly, and it is spanned by the three markers on the right wing. However, due
to the measurement errors and the flexibility of the wing, those points do not exactly lie on a single plane. Instead, we
find the normal vector of the plane such that the sum of the squared distance between each marker and the plane is
minimized. The normal vector yields the third axis of FR. For the second axis, the vector from the wing root to RW3
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(a) wing tip locations
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-10
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0
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left wing
average

(b) wing kinematics angles

Fig. 11 Monarch wing kinematics. The wing kinematics angles are in degrees.

is projected on to the fitted plane. The first axis is determined by the cross product of the second axis and the third
axis. These yield the rotation matrix of the right wing from the inertial frame, and by left multiplying RT , we obtain
QR. The attitude of the left wing, namely QL is constructed similarly.

Next, the computed (QR(t),QL(t)) are converted into wing kinematics angles as follows. First, we determine the
wing stroke plane. In the absences of the deviation angle ψ, the second column of QR(t) and QL(t) over multiple time
instances span the stroke plane. We find the stroke plane such that the sum of the squared distance for QR(t)e2 and
QL(t)e2 for varying t over the experiment period is minimized. It turns out that the normal vector to the stroke plane
is not in the bx–bz plane. More explicitly, it is given by [−0.8948,−0.1222, 0.4294], i.e., it is rotated by −7.77 deg
when observed the dorsal side, or the right wing tip is ahead of the left wing tip (Fig. 11(a)). This might have
been caused by the asymmetry of the particular Monarch butterfly used in the experiment, or the bias in the marker
attachment. Instead of dealing with the asymmetry in the left wing and the right wing, we multiply exp(7.77ê3) to QR

and QL such that they become symmetric in the least square sense. The resulting normal vector of the stroke plane
lies in the bx–bz plane, and the stroke plane angle is β = 25.42 deg. From the given β, and rotated QR(t),QL(t),
we can determine the wing kinematics angles (φR(t), θR(t), ψR(t), and (φL(t), θL(t), ψL(t)) according to (3) and (6),
respectively. These are illustrated in Fig. 11(b). The wing kinematics angles for the right wing are mostly consistent
with the the left wing, except the small deviation angle. Assuming the symmetric wing kinematics, we take the
average between the right wing and the left wing, and they are fitted with Fourier series to be used in the subsequent
dynamic simulation.

C. Dynamic Simulation
From the above wing kinematics angles and the body/abdomen attitude obtained by the actual Monarch butterfly,

we numerically integrate the quasi-steady position dynamics, namely (63). The corresponding results are compared
against the experimental data. These are illustrated in Fig. 12. In general, the downstrokes generate the lift upward,
and the upstrokes generate thrust forward, while yielding a climbing trajectory with oscillation.

The proposed quasi-steady aerodynamic model generates greater lift and thrust, and consequently causing higher
climb rate and forward velocity. However, it is consistent with the experimental data in a qualitative manner, thereby
validating the proposed model.

D. Effects of Abdomen
It turns out that for Monarch butterfly flights, the abdomen oscillate at the same frequency of the wing flapping

angle with the opposite phase, i.e., the abdomen rotates downward during the wing upstrokes.
To test the effects of abdomen undulation with the proposed model, we simulate the above Monarch model for 50

strokes while fixing the abdomen pitching angle to the averaged value. These results are illustrated at Fig. 13. While
the difference is not substantial, it is shown that the abdomen undulation slightly increases the climb rate and the
forward velocity.
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(a) Position trajectory (b) Position x

(c) Velocity Ûx (d) Resultant force in the body-fixed frame

(e) Wing kinematics angles (f) Body pitch / Abdomen relative pitch

Fig. 12 Comparison between the QSmodel (blue) and the experimental data (red); shaded area corresponds
to downstroke; the resultant force of the experiment is constructed by the acceleration of the thorax, multiplied
by the total mass and subtracted by the gravity. The position is shown in m, velocity in m/s, forces in N, and
angles in degrees.
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Furthermore, we consider another case when the abdomen undulate in the opposite phase to the measured vales.
Interestingly, this yields the worst results, where the forward velocity and the climb rate are smaller than the case of
fixed abdomen. This suggests that the abdomen undulation has a coupling effect to the translational dynamics of the
thorax, as represented by the additional force in (63),

−JA13
ÛΩA −KA13ΩA.

It is interesting to notice that the Monarch butterfly undulates its abdomen such that the above terms become beneficial
to the flight.

E. Asymptotic Stability
Another interesting results of Fig. 13(c) is that the trajectory of the velocity asymptotically converges to a

periodic orbit, while the initial condition does not belong to the periodic orbit exactly. This suggests that the flapping
motion captured by the Monarch butterfly yields an asymptotically stable periodic solution. This should be further
investigated by dynamic system theory such as Floquet’s theorem.

VI. Conclusions
This paper presents a dynamic model for a flapping wing aerial vehicle that can characterize the flight of a

butterfly. It is composed of articulated rigid bodies such that the dynamic effects of the inertial coupling between
multiple parts can be studied. A quasi-steady aerodynamic model is also constructed without assuming that the
flapping frequency is sufficiently large. Consequently, the proposed model is particularly useful for the butterfly flight
that is characterized by relatively large wings flapping at a low frequency and body/abdomen undulation coupled with
the flapping motion.

This proposed model is compared with the data obtained by a live Monarch butterfly. It is shown that the abdomen
undulation increases the flight velocity, and the flapping of the Monarch butterfly yields an asymptotically stable
periodic orbit. For future study, the effects of the abdomen undulation should be quantitatively evaluated to compare
its undulation, and the stability should be rigorously analyzed.

Appendix

A. Effects of Configuration-Dependency in Inertia

Lg =



0 KR12 +KL12 +KA12 KR13 KL13 KA13
− 1

2 (KR12 +KL12 +KA12 )
T KR22 +KL22 +KA22 −

1
2 (KR22 +KL22 +KA22 )

T KR23 −
1
2 KT

R32
KL23 −

1
2 KT

L32
KA23 −

1
2 KT

A32
− 1

2 KT
R13

KR32 −
1
2 KT

R23
KR33 −

1
2 KT

R33
0 0

− 1
2 KT

L13
KL32 −

1
2 KT

L23
0 KL33 −

1
2 KT

L33
0

− 1
2 KT

A13
KA32 −

1
2 KT

A23
0 0 KA33 −

1
2 KT

A33


.

(64)

B. Open-Source Software Package
A software package for the proposed quasi-state dynamic model has been developed in Matlab, and it is shared as

an open-source library at https://github.com/fdcl-gwu/FWUAV.
This is composed of the following components.
• Morphological parameters of Monarch butterfly are defied at morp_MONARCH.m
• The raw data from VICON are processed by the following three files under /exp_data.

VICON DATA.xls load_VICON_data.m fit_VICON_data.m ani_VICON_data.m

• For given torque at the wing and the abdomen, the complete dynamics (57) are simulated as follows.
t control torque sim_QS_all.m (x, R,QR,QL,QA)

wing_QS_
aerodynamics.m

τR, τL, τA

FB

20

D
ow

nl
oa

de
d 

by
 C

ha
ng

-K
w

on
 K

an
g 

on
 Ja

nu
ar

y 
9,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

20
-1

96
2 



0 2 4 6 8 10

-3

-2.5

-2

-1.5

-1

-0.5

0

(a) Position trajectory
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(b) Position x
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-1
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-0.4
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0

0.2

0.4

(c) Velocity trajectory (d) Velocity Ûx (for the first 5 strokes)

(e) thorax pitch / abdomen pitch (for the first 5 strokes)

Fig. 13 Comparison between flight with abdomen undulation (blue), without abdomen undulation (green),
with abdomen undulation in the opposite phase (purple); the simulation is for 50 strokes, and the results of
the first 5 strokes are illustrated for the subfigure (d) and (e). The position is shown in m, velocity in m/s, and
angles in degrees.
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• For given wing Euler angles and the abdomen attitude, the position and the attitude dynamics of the thorax,
namely (62) are simulated as follows.

(x, R), (τR, τL, τA)

t
wing_

kinematics.m
wing_ attitude.m wing_QS_

aerodynamics.m
sim_QS_xR.m

abdomen_
attitude.m

φ, θ, ψ QR,QL FB

QA

• For given wing Euler angles, the thorax attitude, and the abdomen attitude, the position dynamics (63) are
simulated as follows.

x, (τR, τL, τA)

t
wing_

kinematics.m
wing_ attitude.m wing_QS_

aerodynamics.m
sim_QS_x.m

body_ attitude.m

abdomen_
attitude.m

φ, θ, ψ QR,QL FB

R

QA
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