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Gaussian Mixture Models for Parking Demand Data
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Abstract— To mitigate congestion caused by drivers cruising
in search of parking, performance-based pricing schemes have
received a significant amount of attention. However, several
recent studies suggest location, time-of-day, and awareness of
policies are the primary factors that drive parking decisions.
Harnessing data provided by the Seattle Department of Trans-
portation and considering the aforementioned decision-making
factors, we analyze the spatial and temporal properties of
curbside parking demand and propose methods that can improve
traditional policies with straightforward modifications by advanc-
ing the understanding of where and when to administer pricing
policies. Specifically, we develop a Gaussian mixture model based
technique to identify zones with similar parking demand as
quantified by spatial autocorrelation. In support of this technique,
we introduce a metric based on the repeatability of our Gaussian
mixture model to investigate temporal consistency.

Index Terms— Smart parking, clustering methods, geospatial
analysis, data mining.

I. INTRODUCTION

DRIVERS cruising in search of parking is often touted

to be a major contributor to congested traffic [1].

Studies have shown that the costs associated with parking-

related congestion in terms of lost time, excess use of

fuel, and increased pollution can be significant [2]. To

combat such negative impacts, cities and researchers are

examining strategies to improve parking resource manage-

ment with the goal of redistributing demand more uniformly

in space. These efforts can predominantly be broken into

work on resource allocation and sensor management [3]–[5],

object classification methods [6], [7], performance based pric-

ing strategies [8]–[10], and behavioral models leveraging

data [11]–[13]. For a comprehensive overview of smart parking

solutions see [14].

The work in this paper is most closely related to that on

performance-based pricing and data-driven behavioral models.

However, in contrast to prior work investigating direct pricing

mechanisms, we study how mechanisms such as adjusting

the locations and time periods in which pricing schemes are

administered can improve policy.

To motivate this line of research, we remark that there

is mounting evidence supporting the basis that many factors

beyond price drive parking decisions. Survey results from Los

Angeles (LA) indicated that proximity to the intended des-

tination is a more important consideration than both parking
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cost and time spent searching for parking [15]. On average,

the respondents said the maximum distance they would be

willing to park from their intended destination was just 3.07

blocks. In a study conducted in Beijing, nearly 90% of those

surveyed said they chose where to park based on proximity to

their destination, with less than 1% saying low price was the

reason [16]. In fact, nearly 70% of respondents parked within

a five minute walk to their destination.

Studies on price elasticity reinforce these findings. For

example, an evaluation of the SFpark study [11] found elas-

ticity varied immensely with location, time-of-day, day-of-

week, and date of price change. Strikingly, in some cases the

price elasticity was positive, which provides further evidence

that price is often not the most important decision-making

factor.

The inadequate awareness of parking policy is also prob-

lematic. As an example, driver behavior did not change in

the SFpark study until there was an increase in marketing

and advertisement during the second price adjustment. Similar

outcomes are also observed in the aforementioned survey in

LA, which confirmed that driver awareness of parking-related

policy and technology is unquestionably low. Of those sur-

veyed, only 31%, 24%, and 25% were aware of price changes,

time-of-day pricing, and mobile applications, respectively [15].

Despite new data sources that could potentially support

sophisticated management strategies, cities generally employ

simple policies that benefit from being easy to track and

understand. Existing policies customarily utilize static pric-

ing schemes with morning and evening rate periods that

are applied uniformly within zones containing an extensive

number of block-faces. Importantly, block-faces are often

grouped over long-existing regions selected prior to new tech-

nology integration or simply following existing neighborhood

boundaries.

It is informative to consider properties that must hold in

order for this policy form to be reasonable: (i ) demand for

parking needs to be similar within a zone and (i i ) the spatial

distribution of parking demand needs to be invariant within

rate periods, over each day of the week, and from week to

week. The reasons that these properties need to hold are quite

clear. Applying uniform pricing in a zone with unbalanced

demand induces congestion in sought-after locations, while at

the same time provides no incentive for drivers to explore

nearby blocks with open spots. Moreover, employing a fixed

policy within rate periods at each day-of-week relies on the

presumption that behavior is stationary within rate periods,

independent of the day-of-week, and consistent through time.

In this work, we demonstrate that traditional policies could

be improved with straightforward modifications designed to

optimize for the preceding criteria. Leveraging available data

sources to gain insights into the spatial and temporal properties
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of parking demand estimated from paid parking transactions,

we develop an approach to identify zones and time periods

with similar spatial and temporal demand. Such analysis

allows for simple, static pricing schemes to be more effective

by providing decision makers data-informed suggestions of

where and when to administer pricing schemes in terms of

zones encompassing groups of block-faces and rate periods.

Specifically, we show that a Gaussian mixture model

(GMM) can be used to identify groups of spatially close

block-faces which have a high degree of spatial autocorrelation

in observed occupancy patterns. The Bayesian information

criterion (BIC) is used to select the number of zones. We

supplement the model by providing a method based on the

repeatability of the GMM to metricize the temporal con-

sistency of spatial demand which governs the model, and

we demonstrate through experiments that spatial demand and

our model are indeed temporally consistent. We further show

that the GMM zoning is consistent even with price changes.

Likewise, while occupancy fluctuations can be significant from

season to season, the GMM zoning remains consistent. Both of

these results reaffirm that location is a primary driver of park-

ing choice. Finally, we remark that the GMM zoning agrees

with location features; e.g., blocks near tourist attractions are

clustered.

This paper builds on our prior work [17] by significantly

increasing the depth of analysis and experimental results. This

includes exploring the effects of price changes and seasonality

on both neighborhood-wide occupancy and spatial demand in

support of assessing the GMM zoning approach, comparisons

between GMM design choices and with auxiliary clustering

methods, and the inclusion of supplementary methods for

designing the spatial weight matrix when evaluating spatial

autocorrelation.

The paper is organized as follows. In Section II, we

describe our data sources and method for estimating demand.

In Section III, we explore the spatial and temporal properties

of demand as well as the effects of seasonality and price

adjustments. We describe our approach using a GMM to

identify zones with similar spatial demand and our method

to quantify this using spatial autocorrelation in Sections IV

and V, respectively. In Section VI, we present the results of

our analysis using parking data from the city of Seattle and

we conclude in Section VII.

II. DATA SOURCES AND DEMAND ESTIMATION

We use parking transaction data, block-face supply data, and

GPS location data of the block-faces from June, 2016–August,

2017 obtained via the Seattle Department of Transportation

(SDOT) API.1 We analyze a full year of data so we can

examine spatial demand changes through time with respect to

seasonality effects and price changes. During this time period

there is nearly 14 million paid parking transactions. The paid

parking transaction data includes both pay-station and mobile

app-based payment records for each block-face. Paid parking

is available 8AM–8PM Monday–Saturday. The supply data

1These data sources are all publicly available at https://data.seattle.
govdata.seattle.gov.

Fig. 1. Paid parking in Belltown is broken up into the North Zone (red)
and the South Zone (blue). In 2017, the North Zone was $1.00/hr between
8AM–11AM and $1.50/hr between 11AM–8PM with four hour time limits
and the South Zone was $2.50/hr between 8AM–5PM and 5PM–8PM with
two and three hour time limits, respectively.

consists of the estimated number of parking spaces for each

block-face2. The GPS location data includes the latitude and

longitude of both ends of a block-face.

As a proxy for demand, we use estimated parking occu-

pancy, which is considered to be the number of active transac-

tions divided by the supply for each block-face at each minute.

Formally, the estimated occupancy of block-face i at time k

is given by

Occupancyi [k] =
# Active Transactionsi [k]

Supplyi [k]
. (1)

While ordinarily static, variations in supply can be caused by

construction, infrastructure changes, and peak hour periodic

closures. Since parking prices generally do not change at any

higher frequency than one hour, we aggregate the occupancies

up to an hour granularity. The estimated occupancy deviates

from the true occupancy because select vehicles can park for

free (e.g., disabled permits), vehicles leave before the end

of their paid time, and the estimated supply is inexact2,3.

Since our analysis is based on the relative relationship between

occupancies, the deviation has a negligible effect on our work.

III. EMPIRICAL INVESTIGATION OF DEMAND PROPERTIES

In this section, we analyze the spatial and temporal prop-

erties of parking demand as well along with the effects of

seasonality and price changes. We focus on the Belltown

neighborhood in Seattle, WA which is a rapidly growing

mixed-use area with both the highest population density [18]

and the most complete coverage of curbside parking across

Seattle neighborhoods. In total, the neighborhood contains

over 250 paid block-faces. These characteristics make Bell-

town an ideal for a case study. Belltown parking policy is

described in the caption of Fig. 1.

Since the data needed to facilitate empirical investigations of

demand trends resulting from the behavior of drivers looking

to park has only recently become available, there has been lim-

ited study of this matter. To that end, this section contributes

data-informed observations regarding demand trends. Notably,

we find evidence supporting the basis that the primary decision

factors influencing parking decisions are location, time-of-day,

and day-of-week. This conclusion provides motivation for our

2Parking spaces in Seattle are not marked; the number of spaces in a block-
face is estimated by dividing the legal parking zone into 25ft increments.

3These factors can cause the estimated occupancy to exceed 100%; we clip
the maximum estimated occupancy at 150% which occurs at less than 0.45%
of the hourly occupancy instances over all block-faces.
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Fig. 2. (a) Mean occupancies over Summer 2017 (June–August) in Belltown for a weekday (Wednesday) and the weekend day (Saturday). (b–c) Contours of
the mean occupancies in Belltown within Summer 2017 at Friday 7PM and Saturday 11AM, respectively. Each scatter point is the midpoint of a block-face.

focus on how these attributes can be further scrutinized to

improve simple policy with direct adaptations.

A. Temporal Properties

In Fig. 2a, the mean occupancy profiles over the entire

Belltown neighborhood are shown at each hour paid parking is

available for both Wednesday, a representative weekday, and

Saturday. Occupancy profiles for Monday–Friday are similar,

while the occupancy profile for Saturday follows a different

trend. During weekdays, occupancy increases from the start

of paid parking until demand peaks near lunch time. It then

decreases during the afternoon, until there is another peak

in the evening when people tend to have dinner. In contrast

to weekdays, on Saturday the demand for parking nearly

continuously increases throughout the day. These observations

highlight that a reasonable parking policy may use unique

weekday and weekend pricing schemes and consider the tem-

poral properties of demand that can be driven by neighborhood

features such as the presence of certain business types.

B. Spatial Properties

In Fig. 2b, the occupancy at 7PM on Friday is nearly

uniformly distributed throughout Belltown, with the exception

that there is an area of much higher occupancy in the center

of the neighborhood that we conjecture is driven by the high

density of bars and restaurants present there. Interestingly, this

area also appears to be up against the divide of the north

and south paid parking zones—denoted by the red and blue

block-faces respectively in Fig. 1—which have a $1.00/hr

price difference at this time. One could posit that an improved

division of paid parking zones, such that this area was solely

encompassed by a zone, could reduce the congestion there.

In Fig. 2c, the occupancy at 11AM on Saturday has a more

diverse distribution, but most importantly the areas of high

occupancy, with the exception of a few block-faces in the

center of the neighborhood, are in very different locations. The

source of the high occupancy areas is immediately clear, as the

top and bottom of the neighborhood are the closest parking to

famous weekend tourist attractions in Seattle. Just above the

top of the neighborhood is the Space Needle, and just below

the bottom of the neighborhood is Pike Place Market.

The important takeaway from this example is that depending

on the time-of-day and day-of-week, certain areas are more

desirable than others; consequently, demand is not uniform

within the neighborhood. Yet, by and large, these areas are

being priced identically to locations that are not nearly as

coveted. Hence, the properties we outlined in Section I that

must hold for a static policy to be effective are being violated.

Namely, uniform pricing is being applied to zones with dis-

similar spatial demand, and invariant policy is being employed

within rate periods and at each day of the week despite the fact

that the behavior is neither stationary within the rate periods

nor is it independent of the day-of-week.

C. Effects of Seasonality

Parking demand does indeed exhibit fluctuation between

seasons as indicated in Fig. 3. We find that on average the

occupancy of block-faces increases or decreases by approxi-

mately 10% between all seasons. Yet, the percentage of block-

faces that increase between seasons is heavily dependent on

the seasons being transitioned between. From Summer to Fall

2016, and similarly between Fall 2016 to Winter 2017, more

block-faces decrease in occupancy than do increase at the

majority of time periods. Intuitively, this makes sense. During

the day people follow their regular routines—e.g., parking for

work—while in the evening, shorter days and worse weather

have the effect of causing people to become less likely to go

out to businesses and participate in activities.

There is an analogous trend between Winter to Spring

2017 and Spring to Summer 2017. Between these seasons,

at most of the paid parking times, more block-faces increase in

occupancy than do decrease. During the morning hours when

people follow their normal routines, the percentage of block-

faces whose occupancy increases is often at or just above 50%.

At times in which demand may be driven more by businesses,

such as near lunch and in the evening, a higher percentage of

block-faces increase in occupancy. The intriguing property of

these observations, which we discuss further in Section VI-E,

is that despite variations between seasons, the way occupancy

is distributed (spatial demand) does not vary significantly. This

suggests that static policy schemes considering location can be

robust to the effects of seasonality.

D. Effects of Price Changes

In Seattle, parking prices change each year after an annual

parking study is conducted. In July, 2016 the price to park

in the North Zone of Belltown (red block-faces in Fig. 1)

decreased from $1.50/hr to $1.00/hr in 8AM–11AM. To inves-

tigate the impact the price change had on parking behavior,

we examine the month before the price change, June, 2016,

and the month one year following the price change, June, 2017.
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Fig. 3. Seasonality effects on demand in Belltown: each bar indicates an hour of the active paid parking times in a day between 8AM—8PM. The bars
above the x-axis indicate the mean percentage increase in occupancy at each hour of available paid parking for the block-faces that saw increased occupancy
between seasons. Similarly, the hatched bars below the x-axis indicate the mean percentage decrease. The mean variation between seasons in either direction
is 10%. The blue squares indicate the percentage of block-faces that increased in occupancy between seasons.

Fig. 4. Occupancy change in North Zone (Fig. 4a) and South Zone (Fig. 4b)
from before (June, 2016) to after (June, 2017) the Belltown price change.

Fig. 4 shows the relative change in occupancy from before

the price change to a year after the price change in the North

Zone (Fig. 4a) and the South Zone (Fig. 4b). Interestingly,

the times that see an increase in occupancy in the North

Zone primarily occur within the time interval in which the

price was decreased. However, the shift is rather insignificant.

Occupancy went down consistently in the South Zone4. It is

worth noting though that the least significant declines in

occupancy occur in the time interval of the price change in

the North Zone. This indicates that the price change is likely

4Historically in Seattle utilization of on-street parking has consistently risen.
The decline in demand is a new trend (per personal communication with
SDOT). A possible cause of this may be the recently expanded light rail
system and notable increase in use of ride- and bike-sharing services.

not the primary factor causing the demand to rise in the North

Zone. It also confirms prior work showing elasticity to price is

mixed and further reaffirms that pricing alone may be limited

in its efficacy to change driver behavior.

The mean variation in occupancy over the entire year for

block-faces is approximately 20%, whereas between seasons

we observed approximately a 10% mean variation (see Fig. 3).

Commensurate with variation between seasons, we find (and

show in Section VI-E) that spatial demand does not vary

significantly before and after the price change.

IV. GAUSSIAN MIXTURE MODEL

The preliminary data analysis of the previous section

reinforces that demand for parking is guided by location,

time-of-day, and day-of-week. With this in mind, we focus

on the question of how to zone block-faces at each hour-of-

day and day-of-week to reflect the spatial demand. Specifi-

cally, we model spatial demand with a GMM by using it as

an unsupervised clustering method to find zones containing

block-faces that are spatially close and have similar demand

at a given time. Then, by observing the variation in the GMM

across each time point, we are able to determine a relationship

between the zones discovered by the GMM at each hour-of-

day and day-of-week as described in Section VI-D.

Alternative methods such as k-means clustering, spectral

clustering, and hierarchical clustering [19] may be considered;

however, with respect to the problem at hand, we believe a

GMM is a natural choice since it is a probabilistic method

that has simple design choices with principled approaches.

We do not desire an exact recovery of an underlying

clustering since one does not exist; rather, we seek a clustering

that best explains the data with the understanding that the data

points corresponding to block-faces are not clearly separable.

This is to say that we would like to capture some of the
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uncertainty inherent to the problem. Probabilistic clustering

methods naturally lend themselves to such a task as they make

soft-assignments that provide a notion of confidence that a data

point belongs to a cluster and they incorporate information

from all data points in forming clusters rather than from only

data points contained within a cluster.

GMMs also support application-informed design choices.

Paramount of which to our task is that the structure of the

covariance matrix can be selected to reflect the geometry

of the underlying problem. Moreover, there are principled

approaches to select the number of clusters (see Section IV-B).

On the other hand, spectral and hierarchical clustering both

require several design choices that can significantly impact the

learned model and accepted methods for selecting the number

of clusters rely on arguably inferior heuristics.

We provide a method in Section IV-C to assess the feasibil-

ity of GMM zone-based policy that evaluates whether demand

is comparable from week to week and if a model learned from

historical data is reasonable for the future bearing in mind

demand variations. This method relies on the GMM being an

inductive clustering algorithm, meaning a function on the input

space is induced that can map any data point to a label.

A. Model Description

The GMM is a probabilistic method to model a distribution

of data with a mixture of multivariate Gaussian distributions,

each with weight π j , mean vector µ j , and covariance matrix

6 j . The probability distribution of each sample data point xi

in a GMM with k mixture components is given by

p(xi |π,µ,6) =
∑k

j=1 π jN (xi |µ j ,6 j ). (2)

Each sample xi =
[

xi,latitude xi,longitude xi,occupancy

]

∈ R
3

is a vector containing both location and demand features for

a block-face at a certain time, or an aggregated time period

for demand (e.g., mean demand at an hour-of-day and day-

of-week over a period of weeks). The data provided to the

model is a matrix of n samples, corresponding to the number

of block-faces input, stacked as x =
[

x1 · · · xn

]⊤
∈ R

n×3.

In our implementation we normalize features column-wise to

be in [0, 1]. A motivation for the features we choose is their

simplicity and the availability of data; they exactly capture

the spatial demand aspects of the data we have and work to

trade-off grouping block-faces that are close and that have

similar demand. It is also possible that these features capture

unobserved information or effects of latent variables such

as the price, type of area (residential, commercial), type of

parking (parallel, angled), etc.

Let z =
[

z1 · · · zn

]

be a n–dimensional vector of indicator

variables which are the latent component labels for samples.

The prior on the probability of a sample belonging to a mixture

component can then be expressed as p(zi = j) = π j . The

parameter π must satisfy the restrictions that π j ∈ [0, 1] and
∑k

j=1 π j = 1. The likelihood of a sample belonging to a

mixture component is given by p(xi |zi = j) = N (xi |µ j ,6 j ),

where the multivariate Gaussian distribution is

N (xi |µ j ,6 j ) =
exp

(

− 1
2 (xi−µ j )

⊤6−1
j (xi−µ j )

)

(2π)
3
2 |6 j |

1
2

. (3)

The form of the covariance matrix 6 determines the shape

of the Gaussian level set ellipses, and is the primary design

choice. It may be desirable to enforce that the zones proposed

from a model reflect the city grid when it has a regular

structure since such a constraint can lead to an easier to

understand policy. To learn a model guaranteed to reflect the

geometry of the underlying problem and follow a parametric

structure, we can consider a diagonal covariance matrix. The

diagonal covariance structure constrains the ellipses to be

independent in each dimension and aligned with the axes of

the data. To align the spatial axes of our data with a city

grid, we can apply a simple coordinate transformation using

a rotation matrix since our coordinate axes are the cardinal

directions. This means we obtain updated spatial coordinates

as follows:

[

x ′
i,latitude

x ′
i,longitude

]

=

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

] [

xi,latitude

xi,longitude

]

, (4)

where θ is the angle counter-clockwise of north that a grid is

aligned. We transform the spatial coordinates this way with an

estimated angle of θ = 35 when using the diagonal covariance

structure in our experiments for Belltown.

Furthermore, we consider a full covariance structure, which

allows the ellipses to be arbitrarily oriented. This choice is

of interest since it can provide the best representation of

the data as it is unconstrained. It can also be a reasonable

selection when a city grid is highly non-regular or if there is

no requirement on the zones reflecting the city grid precisely.

The spatial coordinates do not need to be transformed for this

method. We explore the impact of the covariance structure on

the GMM and our evaluation metrics in Section VI.

The objective function of the GMM is the log likelihood of

the data given by

LL � log p(x |π,µ,6) =
∑n

i=1 log
∑k

j=1 π jN (xi |µ j ,6 j ).

We employ the expectation-maximization (EM) algorithm [20]

to optimize this objective. The EM algorithm consists of an

initialization of the unknown parameters and two steps—

the expectation step (E-step) and the maximization step

(M-step)—which are repeated until convergence as determined

by checking at each iteration if the change in the log likelihood

(ensured to be positive [21]) between iterations is smaller than

some sufficiently small �: 1LL � LLi − LLi−1 ≤ �.

In the E-step, given the current parameter values,

the expected values of the unobserved component labels are

computed. These are the posterior probabilities which capture

the responsibility that component j takes for data point i [19].

Formally, we denote this term as

ri, j � p(zi = j |xi , π j , µ j ,6 j ) =
π jN (xi |µ j ,6 j )

∑k
j ′=1

π j ′N (xi |µ j ′ ,6 j ′ )
. (5)

In the M-step, the parameter values are updated to maximize

the log likelihood. Hence, for 1 ≤ j ≤ k, we update
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π j , µ j ,6 j as follows:

π j =
1

n
r

µ j =
1

r

n
∑

i=1

xiri, j

6 j = 1
r

(

n
∑

i=1

(xi − µ j )
⊤(xi − µ j )ri, j

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(6)

where r =
∑n

i=1 ri, j .

Once the convergence criteria is met, we make assignments

of each sample xi to the component label j which maximizes

the responsibility ri, j , meaning z∗
i = arg max j ri, j .

The objective function is non-convex, which only guarantees

that we find local minima. Hence, we run the algorithm for

several random initializations and retain the model from the

iteration that resulted in the highest log likelihood.

B. Model Selection

The model selection problem for a GMM is to determine

the number of mixture components in the model. We use

the Bayesian information criterion (BIC) score [22] for this

purpose. It is given by

BIC = −2LL + log(n)ν, (7)

where n is the number of data points and ν is the number of

degrees of freedom in the GMM. For a GMM containing k

components with d dimensional data, ν = k(2d + 1) and ν =

k(d + d2 + 1) for diagonal and full covariances, respectively.

To determine the number of components in our experiments,

we performed a search over k and evaluated the mean BIC

of the GMMs learned on each day of the week and hour of

the day combination paid parking is available using the mean

occupancies at each instance. We then selected the value of k

that minimized the mean BIC.

C. Consistency Metric

Given that in Sections III-C and III-D we observed there is

a non-trivial variation in the demand at block-faces through

time, we want to find how consistently spatial demand is

distributed. As alluded to in our introduction, stationary policy

relies on the premise that spatial demand is consistent from

week to week at a given time-of-day and day-of-week. Indeed,

weekly variations in spatial demand should not radically alter

what the best zoning of block-faces is according to learning

method used to determine such a zoning. This can hold if

the variations in spatial demand are reasonable and when

the learning method is not overly sensitive to perturbations.

In consideration of this, we propose a consistency metric to

assess the feasibility of GMM zone-based policy that evaluates

whether demand is comparable through time and if a model

learned from past data can be reasonable for the future. The

procedure to determine the consistency metric value under the

GMM at a day of the week and hour of the day is as follows:

Step 1 : For the chosen day of the week and hour of the

day, select a specific date and learn a GMM using the

occupancy data at this instance.

Step 2 : Assign component labels to each block-face for all

other instances with the same day of the week and hour

of the day using the learned model.

Step 3 : Determine the percentage of block-faces which were

assigned to the same component as they were in the

original GMM that was learned.

Step 4 : Repeat Step 1–Step 3 switching the date on which

the GMM is learned, and then average over the percentages

computed at each iteration.

We explore this method and discuss the results in Section VI.

V. SPATIAL AUTOCORRELATION

For the simple policy form we have been discussing to be

effective, it is imperative that parking demand is similar and

correlated between block-faces within zones. The reason is that

if demand bears no spatial similarity or relation, then it would

be misguided to carry out policy uniformly through space.

We use a standard measure of spatial autocorrelation known

as Moran’s I [23] to quantify the degree of spatial simi-

larity or relation present in the demand data. Moran’s I is

defined by

I = n
∑

i

∑

j wi, j

∑

i

∑

j wi j (oi−ō)(o j−ō)
∑

i (oi−ō)2 , (8)

where n denotes the number of block-faces, oi denotes the

occupancy for block-face i , ō denotes the mean occupancy

over all block-faces, and W = (wi, j )
n
i, j=1 is a matrix of spatial

weights with zeros along the diagonal.

Values of I range from −1 (indicating perfect dispersion)

to 1 (indicating perfect clustering of similar values). The

Moran’s I value can be used to find a z−score and then a

p−value to determine whether the null hypothesis, that the

data is randomly disbursed, can be rejected.

We are interested in assessing the spatial autocorrelation

locally and globally in a neighborhood or region, within

currently designated paid parking areas, and within the zones

we find with the GMM. The spatial weight matrix W can be

designed to evaluate each of these objectives as we describe

in the following subsections. Several of these methods require

a distance metric to determine the spatial relationship between

block-faces and we employ the Manhattan (`1) distance met-

ric. Importantly, we transform our spatial coordinate system to

align with the city grid as in (4) so that the distance reflects

a path that can be followed along the grid.

In Section VI, we evaluate each method of creating the

spatial weight matrix by determining whether the p-values

are significant using a two-sided p-value with a significance

measure of .01. We report the percentage of instances—given

by the occupancy at a date and time—that are significant.

A. Assessing Local and Global Spatial Autocorrelation

As indicated in Section III, parking demand displays spatial

diversity when considering broad neighborhoods. A logical

follow-up question is whether there is (at least) local similar-

ity or relation. To evaluate this objective, we create the weight

matrix by setting values of wi j to one if block-face j is of the

k nearest neighbors to block-face i in terms of the Manhattan

distance in the rotated GPS coordinate space and zero if it is
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not. We experiment using a range of values for k in order to

evaluate what size of local neighborhood contains significant

spatial autocorrelation. In order to take a more global view

of the spatial demand we also experiment creating the weight

matrix by using a distance based metric. That is, we set values

of wi j to be the Manhattan distance between block-face i and

j in terms of the rotated GPS coordinates, normalized in [0, 1]

with weight one given to the closest block-face to i and weight

zero given to the furthest block-face from i .

B. Assessing Spatial Autocorrelation in Current Zones

We are also interested in the spatial autocorrelation within

the currently designated paid parking zones by the city of

Seattle. This will help us assess current policies and provide a

means to make comparisons with our method of selecting paid

parking zones. To measure the spatial autocorrelation within

the current zones we create the weight matrix by setting values

of wi j to one if block-faces i and j are in the same parking

zone and zero if they are not.

We also investigate a distance based metric within the paid

parking zones in a similar manner as described in Section V-A.

In this method we set values of wi j to be the Manhattan

distance between block-face i and block-face j in terms of the

rotated GPS coordinates, normalized in [0, 1] with weight one

given to the closest block-face to i in the same paid parking

zone and weight zero given to the furthest block-face from i

in the same paid parking zone. Block-faces in different paid

parking zones are given a weight of zero.

C. Assessing Spatial Autocorrelation in GMM Components

One of the goals of the GMM approach is to identify

groups of block-faces that are spatially close and have similar

demand patterns. This can also be interpreted as finding zones

of connected block-faces where there is significant spatial

autocorrelation. To gauge our success in doing so, we create

W by setting values of wi j to one when block-faces i and j

are in the same GMM component and zero otherwise.

We also use a distance based metric for this objective.

We set values of wi j to be the Manhattan distance between

block-face i and block-face j in terms of the rotated GPS

coordinates, normalized in [0, 1] with weight one given to

the closest block-face from i assigned to the same mixture

component and weight zero given to the furthest block-face

from i assigned to the same mixture component. Block-faces

assigned to different mixture components are given a weight

of zero.

VI. EXPERIMENTS AND RESULTS

In this section, we present consistency and spatial autocor-

relation results for the GMM, provide insights into the spatial

and temporal properties of demand, and examine the impact

of seasonality and price adjustments on the GMM.

A. Modeling Belltown With a GMM

In Fig. 5, we provide a representative comparison between

the GMM learned when using a diagonal (Fig. 5a) and full

Fig. 5. Comparison of GMM in Belltown with diagonal and full covariance
structures using mean occupancies within Summer 2017 at Wednesday 9AM.

(Fig. 5b) covariance matrix, respectively. The results of our

evaluation criteria, in terms of the consistency metric and

spatial autocorrelation, are similar for the diagonal and full

covariance designs. The confidence ellipses in the case of

the diagonal covariance structure are more aligned with the

city grid than from the full covariance structure as we would

expect since they are constrained this way. However, we find

that in general the GMM with the full covariance structure

does manage to produce zones that reflect the city grid to a

reasonable approximation. This is to say that the GMM with

the full covariance structure that has a maximum amount of

freedom ends up uncovering some of the structure present

in the problem, providing support for approaches that are

more data-driven. We find this to be an interesting result

that underlies the role the grid structure plays in shaping

spatial demand. Depending on the policy maker, each choice

of covariance may be considered and therefore we present

examples and evaluation results for each method. In general,

we find that the full covariance method produces zones that

appear to be more reasonable owing to the flexibility it has

compared to the diagonal covariance method.

Notably, it is clear that with each covariance structure

we are able to find separable zones in which block-faces

spatially close are included in the same mixture components.

This is important due to the fact that while there may be

spatial demand diversity in Belltown, we are able to find

zones in which block-faces have similar demand thereby

validating that zone-based pricing is viable. In experimental

comparisons, k-means tended to exhibit the highly undesirable

property of discovering zones composed of spuriously located

block-faces rather than contiguous groups. Fig. 6c provides a

representative example of this observation.

Recall Figs. 2b and 2c, which illustrate the mean spatial

demand in Belltown within Summer 2017 at Friday 7PM

and Saturday 11AM. Figs. 6a and 6b provide an example

use of the GMM with full and diagonal covariance matrix

structures respectively using the same data. The examples

indicate that the model we learn is related to the time-of-day

and day-of-week. For example, the model we learn for Friday

night is quite different from the model we learn for Saturday

morning. This observation asserts that the spatial component

of demand depends on the temporal component. We discuss

further spatial and temporal insights in Section VI-D.

Using the BIC described in Section IV-B, we find four

mixture components—corresponding to four paid parking

zones—to be optimal. Yet, at present, Belltown has two paid
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Fig. 6. GMMs with four components learned using the mean occupancies in Belltown within Summer 2017 at Friday 7PM with a full covariance matrix in
(a), and at Saturday 11AM with a diagonal covariance matrix in (b). Block-faces are colored by the mixture component label. The ellipses indicate the first
and second standard deviations of the component’s GPS coordinates, with the red scatter points indicating their centers. (c) Block-face labels designated via
k-means for Saturday 11AM in Summer 2017; zones from this method fail to contain contiguous groups of block-faces. (d) Clustering of the spatial centers
of the mixture components from the GMMs with full covariance structures learned on all Fridays at 11AM in Summer 2017.

TABLE I

MEAN CONSISTENCY METRIC RESULTS FOR BELLTOWN PAID PARKING HOURS OVER EACH PAID PARKING DAY FOR SUMMER 2017. UNITS ARE %

TABLE II

MEAN CONSISTENCY METRIC RESULTS FOR BELLTOWN PAID

PARKING DAYS OVER EACH PAID PARKING HOUR FOR

SUMMER 2017. UNITS ARE %

parking zones, suggesting there is potential to improve the

existing policy design methods for selecting the number of

zones. However, we mention that with two mixture compo-

nents the GMM does learn zones similar to those designated

by SDOT.

B. Consistency Metric Results

The results in Tables I and II establish that spatial demand

is reasonably consistent from week-to-week at a fixed time,

and that the GMM is robust to modest demand variations.

With the exception of the first hour of paid parking, the con-

sistency value for each hour of the day is high, ranging

from 80.8%–88.2% for the GMM with a diagonal covari-

ance matrix and from 83.0%–88.4% for the GMM with a

full covariance matrix. Furthermore, on a given day of the

week, the consistency values range from 80.1%–86.8% with

a mean of 84.6% for the GMM with a diagonal covariance

matrix and from 82.2%–86.7% with a mean of 85.4% for

the GMM with a full covariance matrix. The mean daily

consistency values at each other season we analyze were nearly

the same for the GMM with a diagonal covariance matrix,

which had corresponding values of 86.2%, 85.0%, 84.3%,

and 84.5% for Summer 2016, Fall 2016, Winter 2017, and

Spring 2017, respectively. Similarly, for the GMM with a full

covariance matrix, the values were 84.5%, 83.1%, 84.0%,

and 85.1%. In comparison, k-means is significantly more

sensitive to spatial demand variations with nearly 10% lower

consistency on average. The GMM consistency results suggest

that using historical trends with our model for policy design

is reasonable.

Focusing on the GMM, we investigate how the spatial

centers of the mixture components change each week; e.g.,

given a day-of-week and hour-of-day, we use k-means clus-

tering on the spatial centers that were found at each date

with the same corresponding day-of-week and hour-of-day.

Fig. 6d shows an example of clustering the centers from full

covariance GMMs learned on each Friday at 11AM in Summer

2017. The centers are tightly clustered with limited change

in location. By finding the centroids of each of the k-means

clusters, and calculating the mean distance from each centroid

to the points in that respective cluster, we can describe this

change in terms of distance. In Fig. 6d, we find the mean

distance of the points to their respective centroids to be just

61 meters (m). The mean of the values at each hour-of-day

and day-of-week is 92m. In Summer 2016, Fall 2016, Winter

2017, Spring 2017 the results are comparable with values

of 88m, 83m, 77m, and 77m, respectively. For the diagonal

covariance matrix, the matching values are 77m, 79m, 73m,

74m, and 67m.

C. Spatial Autocorrelation Results

The spatial autocorrelation results provide a way of quan-

tifying improvement of the GMM approach over current

paid parking zones. Using spatial autocorrelation as a metric

allows for assessment of spatial consistency and thus how

reasonable it is to implement a spatially uniform policy in

a particular area. Table III summarizes the results of the

spatial autocorrelation analysis in Belltown for each season

and method of creating the spatial weight matrix. The results

are reported as follows: (rows 1–4) assessing the local and

global spatial autocorrelation as described in Section V-A;

(rows 5–6) assessing the spatial autocorrelation in the current

paid parking zones as described in Section V-B; (rows 7–10)

assessing the spatial autocorrelation in the GMM components

with diagonal (rows 7, 9) and full (rows 8, 10) covariance

structures as described in Section V-C.

The k-nearest neighbor method from Section V-A reveals

that within Belltown there is almost always significant local
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TABLE III

SPATIAL AUTOCORRELATION RESULTS FOR BELLTOWN IN EACH SEASON AND METHOD OF CREATING THE SPATIAL WEIGHT MATRIX. THE VALUES

INDICATE THE PERCENTAGE OF INSTANCES IN OUR DATA SET IN WHICH THE p-VALUE OF MORAN’S I WAS SIGNIFICANT

Fig. 7. GMM zoning (full covariance) for Summer 2017 weekdays at 9AM using mean occupancies. Each figure corresponds to a day Monday–Friday.

spatial autocorrelation, indicating block-faces adjacent to each

other see similar demand properties. The distance based

method from Section V-A confirms our previous observations

that there is neighborhood-wide diversity of demand within

Belltown as the frequency of significant spatial autocorrelation

is much lower. The methods assessing the current paid parking

zones from Section V-B demonstrate that it is often not the

case that there is significant spatial autocorrelation within

these zones which suggests that static pricing policies can be

improved by considering location. The methods assessing the

zones learned using the GMM from Section V-C demonstrate

that our approach provides meaningful improvement. The

results show that at nearly all times the spatial autocorre-

lation within the mixture components is significant. Finally,

we remark that the results are similar for each covariance

design choice with the GMM.

The zones we find also have lower variance in the demand

than the current paid parking zones in Belltown. The mean

occupancy variance in the GMM zones over each paid parking

time ranges from 4.9% to 6.3% with a mean of 5.5% over

the seasons with the diagonal covariance matrix, and from

5.9% to 6.7% with a mean of 6.1% over the seasons with the

full covariance matrix. This is in contrast to the occupancy

variance in the current paid parking zones, which ranges from

9.0% to 10.1% with a mean of 9.5% over the seasons.

D. Spatial and Temporal Insights

The GMM serves as a means to determine how to zone

block-faces at a given time to reflect the spatial demand.

However, the relationship between the zones discovered at

each hour-of-day and day-of-week is important to guide rate

periods and give insights into the how spatial demand evolves

over each day and the week. As it turns out, visually examining

the zones suggested from the GMM at each given time

provides us with this information. The following insights are

with respect to the GMM with a full covariance structure.

We can draw vaguely similar conclusions for the diagonal

covariance structure, but the relations are not as clear.

Notably, we find that Monday–Friday (weekdays) from

8AM–4PM similar models are learned. Likewise, we find that

weekdays from 4PM–8PM similar models are learned, which

are different from those learned weekdays from 8AM–4PM.

We observe that models we learn for Saturday are unique

and need to be considered on their own. Fig. 7 serves to

show what we observe by considering a specific hour in

the 8AM–4PM interval at each day of the week. To give

an idea of what the model generally is like weekdays from

4PM–8PM we refer the reader to Fig. 6a. The preceding

observations indicate that, based off of our model, it would

make the most sense to have two weekday pricing periods—

8AM–4PM and 4PM–8PM—for the zones we commonly find

at these respective time periods, and a unique Saturday pricing

scheme. Interestingly, these observations mirror much of what

we discovered in Section III-A and III-B. The results are

also compelling because they are quite different than the

policies in place now, while still being surprisingly simple.

Currently, the pricing periods in Belltown are 8AM–11AM and

11AM–8PM; no individual consideration is given to Saturdays.

In comparing our model to the zones in place at present, we

note key similarities and differences. At nearly all paid parking

times during weekdays, we learn a mixture component that

covers a zone similar to that of the South Zone in Belltown.

Yet in the North Zone of Belltown, our model typically learns

to divide up what is now the North Zone into three distinct

zones. This implies that the South Zone may be simple enough

to consider as is, while improvements can be made to policies

in the North Zone.

E. Seasonal and Price Changes

In previous sections, we have seen that the consistency,

spatial autocorrelation, and variance results in Belltown are

similar between seasons. Likewise we find that the GMM
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Fig. 8. Full covariance GMM analysis before (Fig. 8a) and after (Fig. 8b)
the price change in Belltown using the mean occupancies in the respective
months.

we learn within the different seasons coincide. These results

indicate that in terms of the spatial demand, the variation

between seasons is insignificant, despite that in Section III-C

we showed the variation in occupancy is non-negligible. Thus,

we conclude that demand does indeed fluctuate over time,

but the fluctuation in the relative levels of demand between

block-faces is inconsequential, implying static policies can be

robust to seasonal variation effects. Analyzing the price change

in 2016 in Belltown we draw similar conclusions. While

occupancy decreased from the month before the price change

to the month one year following the price change, the models

we learn using data from the two time periods hardly change.

Fig. 8 shows an example of this. These results corroborate

studies of SFPark suggesting price control methods may not

produce the desired behavior changes [11].

VII. DISCUSSION AND FUTURE WORK

We provide an in depth analysis of the spatial and temporal

properties of parking demand using real data, as well as an

interpretable way to find zones of connected block-faces which

exhibit a high degree of spatial autocorrelation using a GMM.

Furthermore, we establish that the GMM are not sensitive to

modest variations in the spatial distribution of demand and as

a result are consistent through time. Our analysis focused on

Belltown as a case study, however we provide analysis for a

broader area in [24].
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