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Gaussian Mixture Models for Parking Demand Data

Tanner Fiez

Abstract—To mitigate congestion caused by drivers cruising
in search of parking, performance-based pricing schemes have
received a significant amount of attention. However, several
recent studies suggest location, time-of-day, and awareness of
policies are the primary factors that drive parking decisions.
Harnessing data provided by the Seattle Department of Trans-
portation and considering the aforementioned decision-making
factors, we analyze the spatial and temporal properties of
curbside parking demand and propose methods that can improve
traditional policies with straightforward modifications by advanc-
ing the understanding of where and when to administer pricing
policies. Specifically, we develop a Gaussian mixture model based
technique to identify zones with similar parking demand as
quantified by spatial autocorrelation. In support of this technique,
we introduce a metric based on the repeatability of our Gaussian
mixture model to investigate temporal consistency.

Index Terms—Smart parking, clustering methods, geospatial
analysis, data mining.

I. INTRODUCTION

RIVERS cruising in search of parking is often touted

to be a major contributor to congested traffic [1].
Studies have shown that the costs associated with parking-
related congestion in terms of lost time, excess use of
fuel, and increased pollution can be significant [2]. To
combat such negative impacts, cities and researchers are
examining strategies to improve parking resource manage-
ment with the goal of redistributing demand more uniformly
in space. These efforts can predominantly be broken into
work on resource allocation and sensor management [3]-[5],
object classification methods [6], [7], performance based pric-
ing strategies [8]-[10], and behavioral models leveraging
data [11]-[13]. For a comprehensive overview of smart parking
solutions see [14].

The work in this paper is most closely related to that on
performance-based pricing and data-driven behavioral models.
However, in contrast to prior work investigating direct pricing
mechanisms, we study how mechanisms such as adjusting
the locations and time periods in which pricing schemes are
administered can improve policy.

To motivate this line of research, we remark that there
is mounting evidence supporting the basis that many factors
beyond price drive parking decisions. Survey results from Los
Angeles (LA) indicated that proximity to the intended des-
tination is a more important consideration than both parking

Manuscript received December 2, 2017; revised May 21, 2018, October 14,
2018, and April 24, 2019; accepted June 21, 2019. This work was supported
in part by the NSF Grant CSN-1646912 and Grant CNS-1634136. The work
of T. Fiez was supported in part by the National Defense Science and
Engineering Graduate (NDSEG) Fellowship. The Associate Editor for this
article was P. Kachroo. (Corresponding author: Tanner Fiez.)

The authors are with the Department of Electrical and Computer Engi-
neering, University of Washington, Seattle, WA 98195 USA (e-mail:
fiezt@uw.edu; ratliffl @uw.edu).

Digital Object Identifier 10.1109/TITS.2019.2939499

, Student Member, IEEE, and Lillian J. Ratliff

, Member, IEEE

cost and time spent searching for parking [15]. On average,
the respondents said the maximum distance they would be
willing to park from their intended destination was just 3.07
blocks. In a study conducted in Beijing, nearly 90% of those
surveyed said they chose where to park based on proximity to
their destination, with less than 1% saying low price was the
reason [16]. In fact, nearly 70% of respondents parked within
a five minute walk to their destination.

Studies on price elasticity reinforce these findings. For
example, an evaluation of the SFpark study [11] found elas-
ticity varied immensely with location, time-of-day, day-of-
week, and date of price change. Strikingly, in some cases the
price elasticity was positive, which provides further evidence
that price is often not the most important decision-making
factor.

The inadequate awareness of parking policy is also prob-
lematic. As an example, driver behavior did not change in
the SFpark study until there was an increase in marketing
and advertisement during the second price adjustment. Similar
outcomes are also observed in the aforementioned survey in
LA, which confirmed that driver awareness of parking-related
policy and technology is unquestionably low. Of those sur-
veyed, only 31%, 24%, and 25% were aware of price changes,
time-of-day pricing, and mobile applications, respectively [15].

Despite new data sources that could potentially support
sophisticated management strategies, cities generally employ
simple policies that benefit from being easy to track and
understand. Existing policies customarily utilize static pric-
ing schemes with morning and evening rate periods that
are applied uniformly within zones containing an extensive
number of block-faces. Importantly, block-faces are often
grouped over long-existing regions selected prior to new tech-
nology integration or simply following existing neighborhood
boundaries.

It is informative to consider properties that must hold in
order for this policy form to be reasonable: (i) demand for
parking needs to be similar within a zone and (ii) the spatial
distribution of parking demand needs to be invariant within
rate periods, over each day of the week, and from week to
week. The reasons that these properties need to hold are quite
clear. Applying uniform pricing in a zone with unbalanced
demand induces congestion in sought-after locations, while at
the same time provides no incentive for drivers to explore
nearby blocks with open spots. Moreover, employing a fixed
policy within rate periods at each day-of-week relies on the
presumption that behavior is stationary within rate periods,
independent of the day-of-week, and consistent through time.

In this work, we demonstrate that traditional policies could
be improved with straightforward modifications designed to
optimize for the preceding criteria. Leveraging available data
sources to gain insights into the spatial and temporal properties
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of parking demand estimated from paid parking transactions,
we develop an approach to identify zones and time periods
with similar spatial and temporal demand. Such analysis
allows for simple, static pricing schemes to be more effective
by providing decision makers data-informed suggestions of
where and when to administer pricing schemes in terms of
zones encompassing groups of block-faces and rate periods.

Specifically, we show that a Gaussian mixture model
(GMM) can be used to identify groups of spatially close
block-faces which have a high degree of spatial autocorrelation
in observed occupancy patterns. The Bayesian information
criterion (BIC) is used to select the number of zones. We
supplement the model by providing a method based on the
repeatability of the GMM to metricize the temporal con-
sistency of spatial demand which governs the model, and
we demonstrate through experiments that spatial demand and
our model are indeed temporally consistent. We further show
that the GMM zoning is consistent even with price changes.
Likewise, while occupancy fluctuations can be significant from
season to season, the GMM zoning remains consistent. Both of
these results reaffirm that location is a primary driver of park-
ing choice. Finally, we remark that the GMM zoning agrees
with location features; e.g., blocks near tourist attractions are
clustered.

This paper builds on our prior work [17] by significantly
increasing the depth of analysis and experimental results. This
includes exploring the effects of price changes and seasonality
on both neighborhood-wide occupancy and spatial demand in
support of assessing the GMM zoning approach, comparisons
between GMM design choices and with auxiliary clustering
methods, and the inclusion of supplementary methods for
designing the spatial weight matrix when evaluating spatial
autocorrelation.

The paper is organized as follows. In Section II, we
describe our data sources and method for estimating demand.
In Section III, we explore the spatial and temporal properties
of demand as well as the effects of seasonality and price
adjustments. We describe our approach using a GMM to
identify zones with similar spatial demand and our method
to quantify this using spatial autocorrelation in Sections IV
and V, respectively. In Section VI, we present the results of
our analysis using parking data from the city of Seattle and
we conclude in Section VII.

II. DATA SOURCES AND DEMAND ESTIMATION

We use parking transaction data, block-face supply data, and
GPS location data of the block-faces from June, 2016—-August,
2017 obtained via the Seattle Department of Transportation
(SDOT) APL! We analyze a full year of data so we can
examine spatial demand changes through time with respect to
seasonality effects and price changes. During this time period
there is nearly 14 million paid parking transactions. The paid
parking transaction data includes both pay-station and mobile
app-based payment records for each block-face. Paid parking
is available 8AM-8PM Monday—Saturday. The supply data

IThese data sources are all publicly available at https://data.seattle.
govdata.seattle.gov.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Paid parking in Belltown is broken up into the North Zone (red)
and the South Zone (blue). In 2017, the North Zone was $1.00/hr between
8AM-11AM and $1.50/hr between 11AM-8PM with four hour time limits
and the South Zone was $2.50/hr between 8AM-5PM and 5PM-8PM with
two and three hour time limits, respectively.

consists of the estimated number of parking spaces for each
block-face”. The GPS location data includes the latitude and
longitude of both ends of a block-face.

As a proxy for demand, we use estimated parking occu-
pancy, which is considered to be the number of active transac-
tions divided by the supply for each block-face at each minute.
Formally, the estimated occupancy of block-face i at time k
is given by

# Active Transactions; [k]
Occupancy; [k] =
Supply; [k]

While ordinarily static, variations in supply can be caused by
construction, infrastructure changes, and peak hour periodic
closures. Since parking prices generally do not change at any
higher frequency than one hour, we aggregate the occupancies
up to an hour granularity. The estimated occupancy deviates
from the true occupancy because select vehicles can park for
free (e.g., disabled permits), vehicles leave before the end
of their paid time, and the estimated supply is inexact®3.
Since our analysis is based on the relative relationship between
occupancies, the deviation has a negligible effect on our work.

ey

III. EMPIRICAL INVESTIGATION OF DEMAND PROPERTIES

In this section, we analyze the spatial and temporal prop-
erties of parking demand as well along with the effects of
seasonality and price changes. We focus on the Belltown
neighborhood in Seattle, WA which is a rapidly growing
mixed-use area with both the highest population density [18]
and the most complete coverage of curbside parking across
Seattle neighborhoods. In total, the neighborhood contains
over 250 paid block-faces. These characteristics make Bell-
town an ideal for a case study. Belltown parking policy is
described in the caption of Fig. 1.

Since the data needed to facilitate empirical investigations of
demand trends resulting from the behavior of drivers looking
to park has only recently become available, there has been lim-
ited study of this matter. To that end, this section contributes
data-informed observations regarding demand trends. Notably,
we find evidence supporting the basis that the primary decision
factors influencing parking decisions are location, time-of-day,
and day-of-week. This conclusion provides motivation for our

2Parking spaces in Seattle are not marked; the number of spaces in a block-
face is estimated by dividing the legal parking zone into 25ft increments.

3These factors can cause the estimated occupancy to exceed 100%; we clip
the maximum estimated occupancy at 150% which occurs at less than 0.45%
of the hourly occupancy instances over all block-faces.
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(a) Mean occupancies over Summer 2017 (June—August) in Belltown for a weekday (Wednesday) and the weekend day (Saturday). (b—c) Contours of

the mean occupancies in Belltown within Summer 2017 at Friday 7PM and Saturday 11AM, respectively. Each scatter point is the midpoint of a block-face.

focus on how these attributes can be further scrutinized to
improve simple policy with direct adaptations.

A. Temporal Properties

In Fig. 2a, the mean occupancy profiles over the entire
Belltown neighborhood are shown at each hour paid parking is
available for both Wednesday, a representative weekday, and
Saturday. Occupancy profiles for Monday—Friday are similar,
while the occupancy profile for Saturday follows a different
trend. During weekdays, occupancy increases from the start
of paid parking until demand peaks near lunch time. It then
decreases during the afternoon, until there is another peak
in the evening when people tend to have dinner. In contrast
to weekdays, on Saturday the demand for parking nearly
continuously increases throughout the day. These observations
highlight that a reasonable parking policy may use unique
weekday and weekend pricing schemes and consider the tem-
poral properties of demand that can be driven by neighborhood
features such as the presence of certain business types.

B. Spatial Properties

In Fig. 2b, the occupancy at 7PM on Friday is nearly
uniformly distributed throughout Belltown, with the exception
that there is an area of much higher occupancy in the center
of the neighborhood that we conjecture is driven by the high
density of bars and restaurants present there. Interestingly, this
area also appears to be up against the divide of the north
and south paid parking zones—denoted by the red and blue
block-faces respectively in Fig. 1—which have a $1.00/hr
price difference at this time. One could posit that an improved
division of paid parking zones, such that this area was solely
encompassed by a zone, could reduce the congestion there.

In Fig. 2c, the occupancy at 11AM on Saturday has a more
diverse distribution, but most importantly the areas of high
occupancy, with the exception of a few block-faces in the
center of the neighborhood, are in very different locations. The
source of the high occupancy areas is immediately clear, as the
top and bottom of the neighborhood are the closest parking to
famous weekend tourist attractions in Seattle. Just above the
top of the neighborhood is the Space Needle, and just below
the bottom of the neighborhood is Pike Place Market.

The important takeaway from this example is that depending
on the time-of-day and day-of-week, certain areas are more
desirable than others; consequently, demand is not uniform
within the neighborhood. Yet, by and large, these areas are

being priced identically to locations that are not nearly as
coveted. Hence, the properties we outlined in Section I that
must hold for a static policy to be effective are being violated.
Namely, uniform pricing is being applied to zones with dis-
similar spatial demand, and invariant policy is being employed
within rate periods and at each day of the week despite the fact
that the behavior is neither stationary within the rate periods
nor is it independent of the day-of-week.

C. Effects of Seasonality

Parking demand does indeed exhibit fluctuation between
seasons as indicated in Fig. 3. We find that on average the
occupancy of block-faces increases or decreases by approxi-
mately 10% between all seasons. Yet, the percentage of block-
faces that increase between seasons is heavily dependent on
the seasons being transitioned between. From Summer to Fall
2016, and similarly between Fall 2016 to Winter 2017, more
block-faces decrease in occupancy than do increase at the
majority of time periods. Intuitively, this makes sense. During
the day people follow their regular routines—e.g., parking for
work—while in the evening, shorter days and worse weather
have the effect of causing people to become less likely to go
out to businesses and participate in activities.

There is an analogous trend between Winter to Spring
2017 and Spring to Summer 2017. Between these seasons,
at most of the paid parking times, more block-faces increase in
occupancy than do decrease. During the morning hours when
people follow their normal routines, the percentage of block-
faces whose occupancy increases is often at or just above 50%.
At times in which demand may be driven more by businesses,
such as near lunch and in the evening, a higher percentage of
block-faces increase in occupancy. The intriguing property of
these observations, which we discuss further in Section VI-E,
is that despite variations between seasons, the way occupancy
is distributed (spatial demand) does not vary significantly. This
suggests that static policy schemes considering location can be
robust to the effects of seasonality.

D. Effects of Price Changes

In Seattle, parking prices change each year after an annual
parking study is conducted. In July, 2016 the price to park
in the North Zone of Belltown (red block-faces in Fig. 1)
decreased from $1.50/hr to $1.00/hr in 8AM~11AM. To inves-
tigate the impact the price change had on parking behavior,
we examine the month before the price change, June, 2016,
and the month one year following the price change, June, 2017.
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Seasonality effects on demand in Belltown: each bar indicates an hour of the active paid parking times in a day between 8AM—S8PM. The bars

above the x-axis indicate the mean percentage increase in occupancy at each hour of available paid parking for the block-faces that saw increased occupancy
between seasons. Similarly, the hatched bars below the x-axis indicate the mean percentage decrease. The mean variation between seasons in either direction
is 10%. The blue squares indicate the percentage of block-faces that increased in occupancy between seasons.
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Fig. 4. Occupancy change in North Zone (Fig. 4a) and South Zone (Fig. 4b)
from before (June, 2016) to after (June, 2017) the Belltown price change.

Fig. 4 shows the relative change in occupancy from before
the price change to a year after the price change in the North
Zone (Fig. 4a) and the South Zone (Fig. 4b). Interestingly,
the times that see an increase in occupancy in the North
Zone primarily occur within the time interval in which the
price was decreased. However, the shift is rather insignificant.
Occupancy went down consistently in the South Zone®. It is
worth noting though that the least significant declines in
occupancy occur in the time interval of the price change in
the North Zone. This indicates that the price change is likely

4Historically in Seattle utilization of on-street parking has consistently risen.
The decline in demand is a new trend (per personal communication with
SDOT). A possible cause of this may be the recently expanded light rail
system and notable increase in use of ride- and bike-sharing services.

not the primary factor causing the demand to rise in the North
Zone. It also confirms prior work showing elasticity to price is
mixed and further reaffirms that pricing alone may be limited
in its efficacy to change driver behavior.

The mean variation in occupancy over the entire year for
block-faces is approximately 20%, whereas between seasons
we observed approximately a 10% mean variation (see Fig. 3).
Commensurate with variation between seasons, we find (and
show in Section VI-E) that spatial demand does not vary
significantly before and after the price change.

IV. GAUSSIAN MIXTURE MODEL

The preliminary data analysis of the previous section
reinforces that demand for parking is guided by location,
time-of-day, and day-of-week. With this in mind, we focus
on the question of how to zone block-faces at each hour-of-
day and day-of-week to reflect the spatial demand. Specifi-
cally, we model spatial demand with a GMM by using it as
an unsupervised clustering method to find zones containing
block-faces that are spatially close and have similar demand
at a given time. Then, by observing the variation in the GMM
across each time point, we are able to determine a relationship
between the zones discovered by the GMM at each hour-of-
day and day-of-week as described in Section VI-D.

Alternative methods such as k-means clustering, spectral
clustering, and hierarchical clustering [19] may be considered;
however, with respect to the problem at hand, we believe a
GMM is a natural choice since it is a probabilistic method
that has simple design choices with principled approaches.

We do not desire an exact recovery of an underlying
clustering since one does not exist; rather, we seek a clustering
that best explains the data with the understanding that the data
points corresponding to block-faces are not clearly separable.
This is to say that we would like to capture some of the
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uncertainty inherent to the problem. Probabilistic clustering
methods naturally lend themselves to such a task as they make
soft-assignments that provide a notion of confidence that a data
point belongs to a cluster and they incorporate information
from all data points in forming clusters rather than from only
data points contained within a cluster.

GMMs also support application-informed design choices.
Paramount of which to our task is that the structure of the
covariance matrix can be selected to reflect the geometry
of the underlying problem. Moreover, there are principled
approaches to select the number of clusters (see Section IV-B).
On the other hand, spectral and hierarchical clustering both
require several design choices that can significantly impact the
learned model and accepted methods for selecting the number
of clusters rely on arguably inferior heuristics.

We provide a method in Section I'V-C to assess the feasibil-
ity of GMM zone-based policy that evaluates whether demand
is comparable from week to week and if a model learned from
historical data is reasonable for the future bearing in mind
demand variations. This method relies on the GMM being an
inductive clustering algorithm, meaning a function on the input
space is induced that can map any data point to a label.

A. Model Description

The GMM is a probabilistic method to model a distribution
of data with a mixture of multivariate Gaussian distributions,
each with weight 7 ;, mean vector u;, and covariance matrix
2 ;. The probability distribution of each sample data point x;
in a GMM with k& mixture components is given by

pGrilm, 1, £) = 25y N (il X)) @)

Each sample x; = [xi,latitude Xi,longitude xi,occupancy] e R3
is a vector containing both location and demand features for
a block-face at a certain time, or an aggregated time period
for demand (e.g., mean demand at an hour-of-day and day-
of-week over a period of weeks). The data provided to the
model is a matrix of n samples, corresponding to the number
of block-faces input, stacked as x = [xj --- xn]T e R"<3,
In our implementation we normalize features column-wise to
be in [0, 1]. A motivation for the features we choose is their
simplicity and the availability of data; they exactly capture
the spatial demand aspects of the data we have and work to
trade-off grouping block-faces that are close and that have
similar demand. It is also possible that these features capture
unobserved information or effects of latent variables such
as the price, type of area (residential, commercial), type of
parking (parallel, angled), etc.

Let z = [z1 e zn] be a n—dimensional vector of indicator
variables which are the latent component labels for samples.
The prior on the probability of a sample belonging to a mixture
component can then be expressed as p(z; = j) = w;. The
parameter 7 must satisfy the restrictions that z; € [0, 1] and
z];-zl mj = 1. The likelihood of a sample belonging to a
mixture component is given by p(x;|zi = j) = N(xiluj, Z;),
where the multivariate Gaussian distribution is

exp (— =)’ Zj_' (xi_ﬂj))

3.1
@r)21%;12

Nilpj, £j) = : 3)

The form of the covariance matrix X determines the shape
of the Gaussian level set ellipses, and is the primary design
choice. It may be desirable to enforce that the zones proposed
from a model reflect the city grid when it has a regular
structure since such a constraint can lead to an easier to
understand policy. To learn a model guaranteed to reflect the
geometry of the underlying problem and follow a parametric
structure, we can consider a diagonal covariance matrix. The
diagonal covariance structure constrains the ellipses to be
independent in each dimension and aligned with the axes of
the data. To align the spatial axes of our data with a city
grid, we can apply a simple coordinate transformation using
a rotation matrix since our coordinate axes are the cardinal
directions. This means we obtain updated spatial coordinates
as follows:

x;,latitude _ cos(d)) —sin(9) Xij latitude 4
x;lon i ~ sin(9) cos(0) Xi,longitude | “)

,longitude ,long
where 6 is the angle counter-clockwise of north that a grid is
aligned. We transform the spatial coordinates this way with an
estimated angle of # = 35 when using the diagonal covariance
structure in our experiments for Belltown.

Furthermore, we consider a full covariance structure, which
allows the ellipses to be arbitrarily oriented. This choice is
of interest since it can provide the best representation of
the data as it is unconstrained. It can also be a reasonable
selection when a city grid is highly non-regular or if there is
no requirement on the zones reflecting the city grid precisely.
The spatial coordinates do not need to be transformed for this
method. We explore the impact of the covariance structure on
the GMM and our evaluation metrics in Section VI.

The objective function of the GMM is the log likelihood of
the data given by

LL 2 log p(x|z, u, £) = 0 log 35y 7N (xiluj, ).

We employ the expectation-maximization (EM) algorithm [20]
to optimize this objective. The EM algorithm consists of an
initialization of the unknown parameters and two steps—
the expectation step (E-step) and the maximization step
(M-step)—which are repeated until convergence as determined
by checking at each iteration if the change in the log likelihood
(ensured to be positive [21]) between iterations is smaller than
some sufficiently small e: ALL £ LL' — LLI~! <e.

In the E-step, given the current parameter values,
the expected values of the unobserved component labels are
computed. These are the posterior probabilities which capture
the responsibility that component j takes for data point i [19].
Formally, we denote this term as

N (il 2 )
Sy N il

j'=1

rij = p(ai = jlxi w1y, ) = oz O
JT

In the M-step, the parameter values are updated to maximize
the log likelihood. Hence, for 1 < j < k, we update
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mj, 1j, X as follows:
1

Ti=-r
)

n
1
P Xiri
Hj P 2 iri,j !
i=1

T = }(Zn:(xz' — ) (i = Mj)’”i,j)

i=1

(6)

where r =37 rij.

Once the convergence criteria is met, we make assignments
of each sample x; to the component label j which maximizes
the responsibility r; j, meaning z = argmax; r; ;.

The objective function is non-convex, which only guarantees
that we find local minima. Hence, we run the algorithm for
several random initializations and retain the model from the
iteration that resulted in the highest log likelihood.

B. Model Selection

The model selection problem for a GMM is to determine
the number of mixture components in the model. We use
the Bayesian information criterion (BIC) score [22] for this
purpose. It is given by

BIC = —2LL + log(n)v, 7

where n is the number of data points and v is the number of
degrees of freedom in the GMM. For a GMM containing k
components with d dimensional data, v = k(2d + 1) and v =
k(d 4+ d* + 1) for diagonal and full covariances, respectively.

To determine the number of components in our experiments,
we performed a search over k and evaluated the mean BIC
of the GMMs learned on each day of the week and hour of
the day combination paid parking is available using the mean
occupancies at each instance. We then selected the value of k&
that minimized the mean BIC.

C. Consistency Metric

Given that in Sections III-C and III-D we observed there is

a non-trivial variation in the demand at block-faces through
time, we want to find how consistently spatial demand is
distributed. As alluded to in our introduction, stationary policy
relies on the premise that spatial demand is consistent from
week to week at a given time-of-day and day-of-week. Indeed,
weekly variations in spatial demand should not radically alter
what the best zoning of block-faces is according to learning
method used to determine such a zoning. This can hold if
the variations in spatial demand are reasonable and when
the learning method is not overly sensitive to perturbations.
In consideration of this, we propose a consistency metric to
assess the feasibility of GMM zone-based policy that evaluates
whether demand is comparable through time and if a model
learned from past data can be reasonable for the future. The
procedure to determine the consistency metric value under the
GMM at a day of the week and hour of the day is as follows:
Step 1 : For the chosen day of the week and hour of the
day, select a specific date and learn a GMM using the

occupancy data at this instance.
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Step 2 : Assign component labels to each block-face for all
other instances with the same day of the week and hour
of the day using the learned model.

Step 3 : Determine the percentage of block-faces which were
assigned to the same component as they were in the
original GMM that was learned.

Step 4 : Repeat Step 1-Step 3 switching the date on which
the GMM is learned, and then average over the percentages
computed at each iteration.

We explore this method and discuss the results in Section VI.

V. SPATIAL AUTOCORRELATION

For the simple policy form we have been discussing to be
effective, it is imperative that parking demand is similar and
correlated between block-faces within zones. The reason is that
if demand bears no spatial similarity or relation, then it would
be misguided to carry out policy uniformly through space.

We use a standard measure of spatial autocorrelation known
as Moran’s I [23] to quantify the degree of spatial simi-
larity or relation present in the demand data. Moran’s [ is
defined by

n > 2 wij(0i=0)(0;—0)

I'= 22 Wi JZ;’ (0i—0)? ? ®)

where n denotes the number of block-faces, o; denotes the

occupancy for block-face i, o denotes the mean occupancy

over all block-faces, and W = (wi,j)?,j:l is a matrix of spatial
weights with zeros along the diagonal.

Values of I range from —1 (indicating perfect dispersion)
to 1 (indicating perfect clustering of similar values). The
Moran’s I value can be used to find a z—score and then a
p—value to determine whether the null hypothesis, that the
data is randomly disbursed, can be rejected.

We are interested in assessing the spatial autocorrelation
locally and globally in a neighborhood or region, within
currently designated paid parking areas, and within the zones
we find with the GMM. The spatial weight matrix W can be
designed to evaluate each of these objectives as we describe
in the following subsections. Several of these methods require
a distance metric to determine the spatial relationship between
block-faces and we employ the Manhattan (¢;) distance met-
ric. Importantly, we transform our spatial coordinate system to
align with the city grid as in (4) so that the distance reflects
a path that can be followed along the grid.

In Section VI, we evaluate each method of creating the
spatial weight matrix by determining whether the p-values
are significant using a two-sided p-value with a significance
measure of .01. We report the percentage of instances—given
by the occupancy at a date and time—that are significant.

A. Assessing Local and Global Spatial Autocorrelation

As indicated in Section III, parking demand displays spatial
diversity when considering broad neighborhoods. A logical
follow-up question is whether there is (at least) local similar-
ity or relation. To evaluate this objective, we create the weight
matrix by setting values of w;; to one if block-face j is of the
k nearest neighbors to block-face i in terms of the Manhattan
distance in the rotated GPS coordinate space and zero if it is
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not. We experiment using a range of values for k in order to
evaluate what size of local neighborhood contains significant
spatial autocorrelation. In order to take a more global view
of the spatial demand we also experiment creating the weight
matrix by using a distance based metric. That is, we set values
of w;; to be the Manhattan distance between block-face i and
J in terms of the rotated GPS coordinates, normalized in [0, 1]
with weight one given to the closest block-face to i and weight
zero given to the furthest block-face from i.

B. Assessing Spatial Autocorrelation in Current Zones

We are also interested in the spatial autocorrelation within
the currently designated paid parking zones by the city of
Seattle. This will help us assess current policies and provide a
means to make comparisons with our method of selecting paid
parking zones. To measure the spatial autocorrelation within
the current zones we create the weight matrix by setting values
of w;; to one if block-faces i and j are in the same parking
zone and zero if they are not.

We also investigate a distance based metric within the paid
parking zones in a similar manner as described in Section V-A.
In this method we set values of w;; to be the Manhattan
distance between block-face i and block-face j in terms of the
rotated GPS coordinates, normalized in [0, 1] with weight one
given to the closest block-face to i in the same paid parking
zone and weight zero given to the furthest block-face from i
in the same paid parking zone. Block-faces in different paid
parking zones are given a weight of zero.

C. Assessing Spatial Autocorrelation in GMM Components

One of the goals of the GMM approach is to identify
groups of block-faces that are spatially close and have similar
demand patterns. This can also be interpreted as finding zones
of connected block-faces where there is significant spatial
autocorrelation. To gauge our success in doing so, we create
W by setting values of w;; to one when block-faces i and j
are in the same GMM component and zero otherwise.

We also use a distance based metric for this objective.
We set values of w;; to be the Manhattan distance between
block-face i and block-face j in terms of the rotated GPS
coordinates, normalized in [0, 1] with weight one given to
the closest block-face from i assigned to the same mixture
component and weight zero given to the furthest block-face
from i assigned to the same mixture component. Block-faces
assigned to different mixture components are given a weight
of zero.

V1. EXPERIMENTS AND RESULTS

In this section, we present consistency and spatial autocor-
relation results for the GMM, provide insights into the spatial
and temporal properties of demand, and examine the impact
of seasonality and price adjustments on the GMM.

A. Modeling Belltown With a GMM

In Fig. 5, we provide a representative comparison between
the GMM learned when using a diagonal (Fig. 5a) and full

RSN

4
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(a) Diagonal Covariance

(b) Full Covariance

Fig. 5. Comparison of GMM in Belltown with diagonal and full covariance
structures using mean occupancies within Summer 2017 at Wednesday 9AM.

(Fig. 5b) covariance matrix, respectively. The results of our
evaluation criteria, in terms of the consistency metric and
spatial autocorrelation, are similar for the diagonal and full
covariance designs. The confidence ellipses in the case of
the diagonal covariance structure are more aligned with the
city grid than from the full covariance structure as we would
expect since they are constrained this way. However, we find
that in general the GMM with the full covariance structure
does manage to produce zones that reflect the city grid to a
reasonable approximation. This is to say that the GMM with
the full covariance structure that has a maximum amount of
freedom ends up uncovering some of the structure present
in the problem, providing support for approaches that are
more data-driven. We find this to be an interesting result
that underlies the role the grid structure plays in shaping
spatial demand. Depending on the policy maker, each choice
of covariance may be considered and therefore we present
examples and evaluation results for each method. In general,
we find that the full covariance method produces zones that
appear to be more reasonable owing to the flexibility it has
compared to the diagonal covariance method.

Notably, it is clear that with each covariance structure
we are able to find separable zones in which block-faces
spatially close are included in the same mixture components.
This is important due to the fact that while there may be
spatial demand diversity in Belltown, we are able to find
zones in which block-faces have similar demand thereby
validating that zone-based pricing is viable. In experimental
comparisons, k-means tended to exhibit the highly undesirable
property of discovering zones composed of spuriously located
block-faces rather than contiguous groups. Fig. 6¢ provides a
representative example of this observation.

Recall Figs. 2b and 2c, which illustrate the mean spatial
demand in Belltown within Summer 2017 at Friday 7PM
and Saturday 11AM. Figs. 6a and 6b provide an example
use of the GMM with full and diagonal covariance matrix
structures respectively using the same data. The examples
indicate that the model we learn is related to the time-of-day
and day-of-week. For example, the model we learn for Friday
night is quite different from the model we learn for Saturday
morning. This observation asserts that the spatial component
of demand depends on the temporal component. We discuss
further spatial and temporal insights in Section VI-D.

Using the BIC described in Section IV-B, we find four
mixture components—corresponding to four paid parking
zones—to be optimal. Yet, at present, Belltown has two paid
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(c) k-means, Saturday 11AM (d) Full X Spatial Centers

Fig. 6. GMMs with four components learned using the mean occupancies in Belltown within Summer 2017 at Friday 7PM with a full covariance matrix in
(a), and at Saturday 11AM with a diagonal covariance matrix in (b). Block-faces are colored by the mixture component label. The ellipses indicate the first
and second standard deviations of the component’s GPS coordinates, with the red scatter points indicating their centers. (c) Block-face labels designated via
k-means for Saturday 11AM in Summer 2017; zones from this method fail to contain contiguous groups of block-faces. (d) Clustering of the spatial centers
of the mixture components from the GMMs with full covariance structures learned on all Fridays at 11AM in Summer 2017.

TABLE I
MEAN CONSISTENCY METRIC RESULTS FOR BELLTOWN PAID PARKING HOURS OVER EACH PAID PARKING DAY FOR SUMMER 2017. UNITS ARE %

[Method\Hour || 8AM | 9AM | 10AM [ I1AM | 12PM |

TPM | 2PM | 3PM | 4PM [ 5PM | 6PM | 7PM | Mean |

GMM Diag 724 T 80.8 86.6 88.1 88.2 878 189 [ 8741 88 839844 8.0 84.6

GMM Full 72.7 | 83.0 87.3 88.4 87.7 879 1 872 ] 86.6 | 86.6 | 86.0 | 86.2 [ 853 854

k-means 813 | 79.7 78.8 771 75.1 753 [ 760 | 764 | 778 | 777 1 765 [ 73.1 771
TABLE II

MEAN CONSISTENCY METRIC RESULTS FOR BELLTOWN PAID
PARKING DAYS OVER EACH PAID PARKING HOUR FOR
SUMMER 2017. UNITS ARE %

[Method\Day [ M | T [ W [ Th [ F [ S |
GMM Diag 837 1 852 ] 85.9 | 86.8 | 86.0 [ 80.1
GMM Full 85.4 [ 855 | 86.2 | 86.7 | 86.3 | 82.2

k-means 779 1 782 | 782 | 771.7 | 713 | 73.1

parking zones, suggesting there is potential to improve the
existing policy design methods for selecting the number of
zones. However, we mention that with two mixture compo-
nents the GMM does learn zones similar to those designated
by SDOT.

B. Consistency Metric Results

The results in Tables I and II establish that spatial demand
is reasonably consistent from week-to-week at a fixed time,
and that the GMM is robust to modest demand variations.
With the exception of the first hour of paid parking, the con-
sistency value for each hour of the day is high, ranging
from 80.8%-88.2% for the GMM with a diagonal covari-
ance matrix and from 83.0%-88.4% for the GMM with a
full covariance matrix. Furthermore, on a given day of the
week, the consistency values range from 80.1%—-86.8% with
a mean of 84.6% for the GMM with a diagonal covariance
matrix and from 82.2%-86.7% with a mean of 85.4% for
the GMM with a full covariance matrix. The mean daily
consistency values at each other season we analyze were nearly
the same for the GMM with a diagonal covariance matrix,
which had corresponding values of 86.2%, 85.0%, 84.3%,
and 84.5% for Summer 2016, Fall 2016, Winter 2017, and
Spring 2017, respectively. Similarly, for the GMM with a full
covariance matrix, the values were 84.5%, 83.1%, 84.0%,
and 85.1%. In comparison, k-means is significantly more
sensitive to spatial demand variations with nearly 10% lower
consistency on average. The GMM consistency results suggest
that using historical trends with our model for policy design
is reasonable.

Focusing on the GMM, we investigate how the spatial
centers of the mixture components change each week; e.g.,
given a day-of-week and hour-of-day, we use k-means clus-
tering on the spatial centers that were found at each date
with the same corresponding day-of-week and hour-of-day.
Fig. 6d shows an example of clustering the centers from full
covariance GMMs learned on each Friday at 11AM in Summer
2017. The centers are tightly clustered with limited change
in location. By finding the centroids of each of the k-means
clusters, and calculating the mean distance from each centroid
to the points in that respective cluster, we can describe this
change in terms of distance. In Fig. 6d, we find the mean
distance of the points to their respective centroids to be just
61 meters (m). The mean of the values at each hour-of-day
and day-of-week is 92m. In Summer 2016, Fall 2016, Winter
2017, Spring 2017 the results are comparable with values
of 88m, 83m, 77m, and 77m, respectively. For the diagonal
covariance matrix, the matching values are 77m, 79m, 73m,
74m, and 67m.

C. Spatial Autocorrelation Results

The spatial autocorrelation results provide a way of quan-
tifying improvement of the GMM approach over current
paid parking zones. Using spatial autocorrelation as a metric
allows for assessment of spatial consistency and thus how
reasonable it is to implement a spatially uniform policy in
a particular area. Table III summarizes the results of the
spatial autocorrelation analysis in Belltown for each season
and method of creating the spatial weight matrix. The results
are reported as follows: (rows 1-4) assessing the local and
global spatial autocorrelation as described in Section V-A;
(rows 5-6) assessing the spatial autocorrelation in the current
paid parking zones as described in Section V-B; (rows 7-10)
assessing the spatial autocorrelation in the GMM components
with diagonal (rows 7,9) and full (rows 8, 10) covariance
structures as described in Section V-C.

The k-nearest neighbor method from Section V-A reveals
that within Belltown there is almost always significant local
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SPATIAL AUTOCORRELATION RESULTS FOR BELLTOWN IN EACH SEASON AND METHOD OF CREATING THE SPATIAL WEIGHT MATRIX. THE VALUES

TABLE III

INDICATE THE PERCENTAGE OF INSTANCES IN OUR DATA SET IN WHICH THE p-VALUE OF MORAN’S / WAS SIGNIFICANT

[ [ Method\Season [[ Summer ‘16 | Fall ‘16 [ Winter ‘17 | Spring ‘17 | Summer ‘17 | Mean |

k=3 57.1 85.4 83.0 91.0 95.1 82.3

Sec. V.A LF=5 75.7 92.9 91.3 95.6 98.9 90.9
’ k=10 86.6 97.1 96.8 99.1 99.8 95.9
Distance 29.9 55.6 56.2 483 26.1 43.2

Sec. V-B |_Area Connect i 53.1 68.1 65.0 65.6 59.8 62.3
) | Area Distance [ 62.3 828 | 8I.1 334 78.4 77.6
GMM Diag Connect 97.5 99.7 99.7 99.7 100.0 99.8

Sec. V.C | _GMM Full Connect 99.0 99.9 99.9 99.6 100.0 99.7
’ GMM Diag Distance 97.8 99.7 99.7 99.8 100.0 99.8
GMM Full Distance 99.9 100.0 100.0 99.8 100.0 99.9

Fig. 7. GMM zoning (full covariance) for Summer 2017 weekdays at 9AM using mean occupancies. Each figure corresponds to a day Monday—Friday.

spatial autocorrelation, indicating block-faces adjacent to each
other see similar demand properties. The distance based
method from Section V-A confirms our previous observations
that there is neighborhood-wide diversity of demand within
Belltown as the frequency of significant spatial autocorrelation
is much lower. The methods assessing the current paid parking
zones from Section V-B demonstrate that it is often not the
case that there is significant spatial autocorrelation within
these zones which suggests that static pricing policies can be
improved by considering location. The methods assessing the
zones learned using the GMM from Section V-C demonstrate
that our approach provides meaningful improvement. The
results show that at nearly all times the spatial autocorre-
lation within the mixture components is significant. Finally,
we remark that the results are similar for each covariance
design choice with the GMM.

The zones we find also have lower variance in the demand
than the current paid parking zones in Belltown. The mean
occupancy variance in the GMM zones over each paid parking
time ranges from 4.9% to 6.3% with a mean of 5.5% over
the seasons with the diagonal covariance matrix, and from
5.9% to 6.7% with a mean of 6.1% over the seasons with the
full covariance matrix. This is in contrast to the occupancy
variance in the current paid parking zones, which ranges from
9.0% to 10.1% with a mean of 9.5% over the seasons.

D. Spatial and Temporal Insights

The GMM serves as a means to determine how to zone
block-faces at a given time to reflect the spatial demand.
However, the relationship between the zones discovered at
each hour-of-day and day-of-week is important to guide rate
periods and give insights into the how spatial demand evolves
over each day and the week. As it turns out, visually examining
the zones suggested from the GMM at each given time
provides us with this information. The following insights are
with respect to the GMM with a full covariance structure.

We can draw vaguely similar conclusions for the diagonal
covariance structure, but the relations are not as clear.

Notably, we find that Monday—Friday (weekdays) from
8AM—4PM similar models are learned. Likewise, we find that
weekdays from 4PM—8PM similar models are learned, which
are different from those learned weekdays from 8AM—4PM.
We observe that models we learn for Saturday are unique
and need to be considered on their own. Fig. 7 serves to
show what we observe by considering a specific hour in
the 8AM—4PM interval at each day of the week. To give
an idea of what the model generally is like weekdays from
4PM-8PM we refer the reader to Fig. 6a. The preceding
observations indicate that, based off of our model, it would
make the most sense to have two weekday pricing periods—
8AM—4PM and 4PM-8PM—for the zones we commonly find
at these respective time periods, and a unique Saturday pricing
scheme. Interestingly, these observations mirror much of what
we discovered in Section III-A and III-B. The results are
also compelling because they are quite different than the
policies in place now, while still being surprisingly simple.
Currently, the pricing periods in Belltown are 8AM—11AM and
11AM-8PM; no individual consideration is given to Saturdays.

In comparing our model to the zones in place at present, we
note key similarities and differences. At nearly all paid parking
times during weekdays, we learn a mixture component that
covers a zone similar to that of the South Zone in Belltown.
Yet in the North Zone of Belltown, our model typically learns
to divide up what is now the North Zone into three distinct
zones. This implies that the South Zone may be simple enough
to consider as is, while improvements can be made to policies
in the North Zone.

E. Seasonal and Price Changes

In previous sections, we have seen that the consistency,
spatial autocorrelation, and variance results in Belltown are
similar between seasons. Likewise we find that the GMM
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Fig. 8. Full covariance GMM analysis before (Fig. 8a) and after (Fig. 8b)
the price change in Belltown using the mean occupancies in the respective
months.

we learn within the different seasons coincide. These results
indicate that in terms of the spatial demand, the variation
between seasons is insignificant, despite that in Section III-C
we showed the variation in occupancy is non-negligible. Thus,
we conclude that demand does indeed fluctuate over time,
but the fluctuation in the relative levels of demand between
block-faces is inconsequential, implying static policies can be
robust to seasonal variation effects. Analyzing the price change
in 2016 in Belltown we draw similar conclusions. While
occupancy decreased from the month before the price change
to the month one year following the price change, the models
we learn using data from the two time periods hardly change.
Fig. 8 shows an example of this. These results corroborate
studies of SFPark suggesting price control methods may not
produce the desired behavior changes [11].

VII. DISCUSSION AND FUTURE WORK

We provide an in depth analysis of the spatial and temporal
properties of parking demand using real data, as well as an
interpretable way to find zones of connected block-faces which
exhibit a high degree of spatial autocorrelation using a GMM.
Furthermore, we establish that the GMM are not sensitive to
modest variations in the spatial distribution of demand and as
a result are consistent through time. Our analysis focused on
Belltown as a case study, however we provide analysis for a
broader area in [24].
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