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Abstract—This work addresses the problem of inverse reinforce-
ment learning in Markov decision processes where the decision-
making agent is risk-sensitive. In particular, a risk-sensitive
reinforcement learning algorithm with convergence guarantees that
makes use of coherent risk metrics and models of human decision-
making which have their origins in behavioral psychology and eco-
nomics is presented. The risk-sensitive reinforcement learning al-
gorithm provides the theoretical underpinning for a gradient-based
inverse reinforcement learning algorithm that seeks to minimize a
loss function defined on the observed behavior. It is shown that the
gradient of the loss function with respect to the model parameters
is well defined and computable via a contraction map argument.
Evaluation of the proposed technique is performed on a Grid World
example, a canonical benchmark problem.

Index Terms—Autonomous systems, Markov processes, opti-
mization, reinforcement learning.

|. INTRODUCTION

Complex risk-sensitive behavior arising from human interaction
with automation has attracted research efforts from a variety of
communities including psychology, economics, engineering, and
computer science. The adoption of diverse behavioral models in
engineering—in particular, in learning and control—is growing due
to the fact that humans are increasingly playing an integral role in
automation both at the individual and societal scale. Learning accurate
models of human decision-making is important for both prediction and
description. For instance, control/incentive schemes need to predict
human behavior as a function of external stimuli including not only
potential disturbances but also the control/incentive mechanism itself.
On the other hand, policy makers are interested in interpreting and
describing human reactions to implemented regulations and policies.

There are many challenges to capturing representative, salient fea-
tures of human decision-making, not the least of which is the fact that
humans are known to behave in ways that are not completely rational.
For instance, there is mounting evidence to support the fact that humans
often use reference points—e.g., the status quo, former experiences, or
recent expectations about the future that are otherwise perceived to be
related to the decision the human is making [1], [2]. Empirical evidence
also suggests that human decision-making is impacted by perceptions
of the external world (exogenous factors) and their present state of
mind (endogenous factors) as well as how the decision is framed or
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presented [3]. Furthermore, humans are risk-sensitive: they are risk-
averse when close to a desired state and risk-seeking otherwise.

Approaches for integrating risk-sensitivity into algorithms for con-
trol synthesis and reinforcement learning via behavioral models have
recently emerged [4]-[7]. These approaches largely assume a risk-
sensitive Markov decision process (MDP) formulated based on a model
that captures behavioral aspects of the human’s decision-making pro-
cess. We refer the problem of learning the optimal policy in this setting
as the forward problem. Our primary interest is the so-called inverse
problem which seeks to estimate the decision-making process given a
set of demonstrations. Inverse reinforcement learning in the context of
recovering policies directly (or indirectly via first learning a representa-
tion for the reward) has long been studied in the context expected utility
maximization and MDPs [8], [9]. There are typically two approaches.
1) producing the value and reward functions (or at least, characterizing
the space of these functions) that mimic behaviors matching that which
is observed; 2) directly extracting the optimal policy from a set of
demonstrations. In order to do so, a well formulated forward problem
with convergence guarantees is required.

We model human decision-makers as risk-sensitive Q-learning
agents. To capture both risk-sensitivity as well as other empirically
observed behavioral decision-making traits such as loss aversion and
reference point dependence, within a reinforcement learning frame-
work, we combine behavioral psychology models of decision-making
such as those from prospect theory [10] with appropriate—and compu-
tationally tractable—risk metrics that take into account such models.
We construct a forward reinforcement learning framework for which
we provide convergence guarantees in support of the development of an
inverse reinforcement learning algorithm. We leverage the developed
forward algorithm in to derive an inverse risk-sensitive reinforcement
learning algorithm with theoretical guarantees. We show that the gra-
dient of the loss function with respect to the model parameters is well
defined and computable via a contraction map argument. We demon-
strate the efficacy of the learning scheme on the canonical Grid World
example.

The remainder of the paper is organized as follows. In Section II, the
contributions are detailed. In Section III, the model for risk-sensitive
agents is presented; we show that behavioral decision-theoretic value
functions can be integrated into the decision-making framework and
present a risk-sensitive Q-learning convergence result. In Section 1V,
we formulate the inverse reinforcement learning problem and propose a
gradient—based algorithm to solve it. [llustrative examples are presented
in Section V, and we conclude in Section VI.

II. CONTRIBUTIONS AND RELATED WORK

The goal of this work is to provide a theoretical and algorithmic
framework for recovering interpretable behavioral models of human
decision-makers. Toward this end, the main contribution of this work
is the development of a gradient-based inverse risk-sensitive reinforce-
ment learning algorithm that enables recovery of prospect theoretic
value functions and parameters of the class of coherent risk metrics—
utility-based shortfall—that we consider.
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The forward risk-sensitive reinforcement learning framework we
adopt was first introduced in [11] and later refined in [5], [6], [12].
In preliminary work [12], we examined a similar risk-sensitive rein-
forcement learning framework to [5] and leveraged it to develop a
gradient-based inverse reinforcement learning algorithm. Building on
these works, we construct a new value function—/—prospect value
function—which is Lipschitz on the domain of interest and retains the
convex—concave shape of a prospect theoretic value function. Similar
to [5], we provide a convergence theorem, though with high proba-
bility due to the fact that the /-prospect function leads to a reinforce-
ment learning scheme that is a contraction on a finite radius ball. We
show that the /—prospect value function—along with other value func-
tions considered in [5]—satisfies the assumptions. The assumptions
of the theorem are also stated explicitly in terms of MDP parameters.
Given the forward risk-sensitive reinforcement learning algorithm, we
propose a gradient-based inverse risk-sensitive reinforcement learning
algorithm for inferring the decision-making model parameters from
demonstrations. We show that the gradient of the loss function with
respect to the model parameters is well defined and computable via a
contraction map argument.

The primary motivation for most other work on inverse risk-sensitive
reinforcement learning is to recover a prescriptive model or algorithm
for humans amidst autonomy so that the human can be accounted for
in the design of control policies. For example, in [5], in order to learn
the decision-making model the approach is to parameterize unknown
quantities of interest, sample the parameter space, and use a model
selection criteria (specifically, the Bayesian information criteria) to
select parameters that best fit the observed behavior. We, on the other
hand, derive a well-formulated gradient-based procedure for finding
the value function and policy best matching the observed behavior.

In other promising work [7], the authors leverage a more expansive
set of coherent risk metrics to capture risk sensitivity, yet without
the focus on prospect theoretic value functions. In comparison, our
approach focuses on estimating the agent’s behavior and the value
function which also induces the risk metric via an acceptance level
set. In addition, the parameters of the value function are interpretable
in terms of the degree of risk sensitivity and loss aversion. Thus, our
technique supports prescriptive and descriptive analysis, both of which
are important for the design of incentives and policies that takes into
consideration the nuances of human decision-making behavior.

Ill. RISK-SENSITIVE REINFORCEMENT LEARNING

Consider a class of finite MDPs consisting of a state space X, an
admissible action space U (z) C U for each z € X, a transition kernel
P(x'|x,u) that denotes the probability of moving from state = to x’
given action u, and a reward function 7 : X x U x W — R where W
is the space of bounded disturbances and has distribution P, (-|z, u).
Including disturbances allows us to model random rewards; we use
the notation R(z', u) to denote the random reward having distribution
P, (‘|z,u).

In the classical expected utility maximization framework, the agent
seeks to maximize the sum of their expected discounted reward over
time by selecting a Markov policy 7w which is a distribution across
actions for each state € X, i.e., 7(x) € A(U). For instance, given
an infinite horizon MDP, the optimal policy is obtained by maximizing

t=1

J(xg,m) =E |:Z¢R(xt,ut):| (1)

with respect to m where x is the initial state and v € (0, 1) is the
discount factor.

The risk-sensitive reinforcement learning problem transforms the
above problem to account for salient features of the human decision-
making process such as loss aversion, reference point dependence, and
risk-sensitivity. In this work, like others [5], [6], we introduce prospect

theoretic value functions [10] and coherent risk metrics [13] to cap-
ture such features. Specifically, we introduce two key components,
value functions and valuation functions, that capture these features.
The former captures risk-sensitivity, loss-aversion, and reference point
dependence in its transformation of outcome values to their value as
perceived by the agent and the latter generalizes the expectation oper-
ator to more general measures of risk.

A. Value Functions

Much like the standard expected utility framework, an agent makes
choices based on the value of outcomes as defined by a value func-
tionv : R — R. There are a number of existing approaches to defining
value functions that capture risk-sensitivity and loss aversion. These
approaches derive from a variety of fields including behavioral psychol-
ogy/economics, mathematical finance, and even neuroscience. One of
the principal features of human decision-making is that losses are per-
ceived more significant than a gain of equal true value—I/osses loom
larger than gains. Empirically validated models that capture this af-
fect are convex and concave in different regions of the outcome space.
Prospect theory [10] is built on one such model. The prospect theoretic
value function is given by

W(y) = kie(y —yo),
Y —k_(yo —y)*~,

where y is the reference point that the decision-maker compares out-
comes against in determining if the decision is a loss or gain. The
parameters (k. ,k_,(;,(_) control the degree of loss-aversion and
risk-sensitivity; e.g., the following are risk preferences for different
parameter values: 1) 0 < ¢}, (- < 1 correspond to risk-averse pref-
erences on gains and risk-seeking preferences on losses (concave in
gains, convex in losses); 2) (; = (- = 1 correspond to risk-neutral
preferences; 3) (. ,(_ > 1 correspond to risk-averse preferences on
losses and risk-seeking preferences on gains (convex in gains, concave
in losses). Experimental results for a series of one-off decisions show
that typically both (. and (_ are less than one thereby indicating that
humans are risk-averse on gains and risk-seeking on losses—that is, v
is concave for y > y, and convex otherwise [10], [14].

In addition to the nonlinear transformation of outcome values, the
effect of under/over-weighting the likelihood of events that has been
commonly observed in human behavior is modeled via warping of event
probabilities [15], [16]. Other concepts such as framing effects, refer-
ence dependence, and loss aversion—captured, e.g., in the (k; ,k_)
parameters in (2)—have also been widely observed in experimental
studies on human decision-making (see, e.g., [17]-[19]).

Motivated by the empirical evidence supporting the prospect theo-
retic value function and numerical considerations, which are discussed
in greater detail in subsequent sections, we introduce a new value func-
tion that retains the shape of the prospect theory value function over
the whole domain—convex—concave structure—while improving the
performance (in terms of convergence speed) of the gradient-based in-
verse reinforcement learning algorithm we propose in Section IV. In
particular, we define the locally Lipschitz-prospect (¢-prospect) value
function given by

Y > Yo

()
Yy < Yo

Y > Yo

3
Yy < Yo ®

ki(y—yo +€)+ —kyesr,
o(y) =

—k_(yo—y+e)s +ke,

with k, ,k_,(,,(_ > 0and e > 0, a small constant. This value func-
tion is Lipschitz continuous on a bounded domain. Moreover, the
derivative of the ¢-prospect function is bounded away from zero at
the reference point. Hence, in practice it has better numerical proper-
ties. Moreover, for given parameters (k. ,k_,(,, (), the ¢-prospect
function has the same risk-sensitivity as the prospect value function
with those same parameters; as ¢ — 0 the ¢-prospect value function
approaches the prospect value function.
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There are, of course, other behaviorally motivated value functions
that appear in the literature beyond those from prospect theory. For
example, in [6] a piecewise linear value function is considered in a risk-
sensitive reinforcement learning context, and another very common
example is the entropic map— v(y) = exp(Ay).

The fact that each of these value functions is defined by a small
number of parameters that are highly interpretable in terms of risk-
sensitivity and loss-aversion is one of the motivating factors for inte-
grating them into a reinforcement learning framework. It is our aim to
design learning algorithms that will ultimately provide the theoretical
underpinnings for designing incentives and control policies taking into
consideration salient features of human decision-making behavior.

B. Valuation Functions

Given environment and reward uncertainties, we model the outcome
of each action as a real-valued random variable Y (i) € R, i € I where
I denotes a finite event space and Y is the outcome of ith event with
probability p(i), where i € A(T), the space of probability distributions
on/.

Definition 1 (Valuation Function): A mapping V : Rl x A(T)
R is called a valuation function if for each p € A(I), 1) V(Y, )
V(Z,u) whenever Y < Z (monotonic) and 2) V(Y + y1,p)
V(Y, p) + y for any y € R (translation invariant).

Typically the valuation function used in MDPs is defined in terms
of the expectation operation. For each state—action pair, we define
V(Y|z,a) : R x X x A — R a valuation map such that V, , =
V(-|x, a) is a valuation function where we drop the dependence on 1 for
simplicity of notation. If we let Vi (Y) = >, () m(a|z)V, . (Y),
(1) generalizes to

jT (ﬂ', l’g) = ’V:g [R(fﬂo,’do) + 7\7:1 [R(xl 5 Ul)
+ -+ AV [R(zr, ur)]]]

A L

where we define J(m, 2¢) = limy_ Jr (7, x0).

Given that we intend to integrate empirically validated value func-
tions that capture decision-making features of humans, the most appro-
priate class of coherent risk metrics are those induced by an acceptance
level set defined in terms of a value function. Hence, we focus our
attention on this particular class, members of which are often referred
to as utility-based shortfall risk metrics. We are not the first to leverage
this class of risk metrics in a similar framework; the authors of [5] take
a similar approach.

To define this class of metrics, we first recall the following definition.
A monetary measure of risk [13] is a functional p : X — R U {+o0}
on the space X of measurable functions defined on a probability space
(©,F, P) such that p(0) is finite, and for all X, X' € X, p satisfies the
following:

1) (monotone) X < X' = p(X’) < p(X), and
2) (translation invariant) m € R =p(X +m) = p(X) —m.
If p additionally satisfies

pP(AX + (1 = 1)X') < ap(X) + (1 = A)p(X')

for A € [0, 1], then it is a convex risk measure. A monetary measure of
risk p induces an acceptance level set A, = {X € X| p(X) < 0} [13,
Prop. 4.6] and, conversely, an acceptance level set A induces a monetary
measure of risk p4 (X) = inf{m € R| X +m € A} [13, Prop. 4.7].

Utility-based shortfall risk is defined with respect to an acceptance
level set. The acceptance level set A = {X € X| E, [v(X)] > vy}
defined in terms of a utility or value function v, where v, is the ac-
ceptance level induces p(X) = inf{m € R| E,[v(X +m)] > v }.
Given a value function v and acceptance level vy, we use the utility-
based shortfall risk metric to induce a state—action valuation function
given by V, , (Y) = sup{z € R| E[v(Y — z)] > vy}, where the ex-
pectation is taken with respect to u = P(2'|z, u) P, (w|x,u); V, o (V)
has the properties outlined in Definition 1.

C. Risk-Sensitive Q-Learning Convergence

In the classical reinforcement learning framework, the Bellman equa-
tion is used to derive a Q-learning procedure. Generalizations of the
Bellman equation for risk-sensitive reinforcement learning—derived,
e.g., in [5], [6], [20]—have been used to formulate Q-learning proce-
dures for the risk-sensitive reinforcement learning problem. In partic-
ular, as shown in [20], if V* satisfies

V*(x9) = max V, ,(R(z,u) +~vV") 4)

uel (x)
then V* = max, J (m, zo) holds forall z, € X; moreover, a determin-
istic policy is optimal if 7*(x) = arg max, cy (») Va,u (R + V™) [20,
Th. 5.5]. Defining Q*(z,u) ="V, (R +~V*) for each (z,u) €
X x U, (4)becomes Q*(x,u) =V, , (R + ymax,cy o @ (2, u)).
As shown in [5, Prop. 3.1], by letting Y = R + vV'* and directly ap-
plying Proposition 4.104 of [13] with z* = @Q*, we have that

Eflv(r(z,u,w) +v max Q*(z',u") — Q*(z,u))] = v

u'el (x')

where the expectation is with respect to u = P(a'|z, u) P, (w|z,u).
This leads naturally the Q-learning procedure

Qi ur) — Qr,ur) + v (@, ui) [v(yr) — ol ®)

where the nonlinear transformation v is applied to the temporal differ-
ence y; = ry + ymax, Q(x;41,u) — Q(x;,u; ). Transforming tem-
poral differences avoids certain pitfalls of the reward transformation
approach such as poor convergence performance.

Ithas been shown that under some assumptions on v and the sequence
oy, that the above Q-learning procedure converges with probability
one [5, Th. 3.2]. Indeed, suppose that 1) v is strictly increasing in

Yy, 2) there exist constants £, L > 0 such that ¢ < % < L for
all y # v/, and 3) there exists a g such that v(g) = vo. Then, if the
nonnegative learning rates o (x, u) are such that y ;- , oy (z, u) = 00
and Y17, af (z,u) < 0o,V(x,u) € X x U, then the procedure in (5)
converges to Q*(x, u) for all (z,u) € X x U with probability one.

The assumptions on « are fairly standard and the core of the con-
vergence proof is based on the Robbins—Siegmund Theorem appearing
in the seminal work [21]. On the other hand, the assumptions on the
value function v are fairly restrictive, excluding many of the value
functions presented in Section III-A; e.g., value functions of the form
e” and ¢ do not satisfy the global Lipschitz condition. To address this,
the Lipschitz assumption can be relaxed to a local condition assuming
the rewards are bounded [5, Th. A.1]. However the result still requires
the derivative to be bounded away from zero. We provide a slightly
modified result that introduces conditions on v—in terms the bound
on the rewards and the size of the ball on which v is Lipschitz—under
which the derivative is bounded away from zero and show that the func-
tions considered in [5] as well as the /-prospect function we introduce
satisfy these conditions. In addition, we provide a more streamlined
proof technique that leverages a well-known fixed point theorem.

Assumption 1: The value function v € C' (Y, R) satisfies the fol-
lowing: 1) it is strictly increasing in y and there exists a ¢ such that
v(§) = wvp and, 2) it is Lipschitz on any ball of finite radius centered at
the origin.

Let X be a complete metric space endowed with the L., norm and
let O C X be the space of maps @) : X x U — R. Further, define 0 =
v — vy. We then rewrite the ()—update equation in the form

(673

e
Qur(@,w) = (1= 2) Qi w) + Z(alo(y) = v) + Qu(a,u)
where o € (0, min{L "', 1}] and we have suppressed the dependence
of a; on (x,w). This is a standard update equation form in, e.g., the
stochastic approximation algorithm literature [22], [23]. In addition,
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we define the map optimization problem is specified by
(TQ)(z,u) = Ay, [0(r(z,u,w) + v /I€nUa(X,) Qx',u') 1011151 {0(0)| m9p = Hy(Q"),vp € F} )
u x €0
— Q(z,u))] + Q(x,u). (6) where Hy belongs to a parameterized policy class. There are several

For any given K > 0 and M > 0, we use the notation /. for the in-
terval [—M — 2K, M + 2K]. Moreover, for any given K such that
0 < K < oo, leta € (0,min{1, L~'}], where L is the Lipschitz con-
stant of v on [ .
Theorem 1: Suppose v satisfies Assumption 1 and foreach (z, u) €
X x U the reward r(z, u,w) is bounded almost surely—there exists
0 < M < oo such that || < M almost surely.
a) Consider any given K € (0, 00) and let By (0) C Q be a ball of
radius K centered at zero. Then, T : Q — X is a contraction on
B K (O) B
b) Suppose K is chosen such that

max{|o(M)], [0(—M)[}
(I=7)

Then, 7 has a unique fixed point in By (0) for any K € [K, o).

The proof is provided in Appendix A.

The following proposition shows that the /-prospect as well as the
class of functions considered in [5] satisfy (7). Moreover, it shows that
the value functions which satisfy Assumption 1 also satisfy (7).

Proposition 1: Suppose r : X x U x W — R is bounded almost
surely by M and v € (0, 1). Consider the condition

max{|0(M)|,|o(—M)|}
(1=7)

a) Suppose v satisfies Assumption 1 and that for some € > 0, € <
% for all y # y'. Then (8) holds.

b) Suppose v is an ¢-prospect value function with arbitrary parameters
(k_,k.,C, (. ) satisfying Assumption 1. Then there exists a K
such that the ¢-prospect value function satisfies (8).

With Theorem 1 and Proposition 1, we can prove convergence of
Q-learning for risk-sensitive reinforcement learning.

Theorem 2 (Q-learning Convergence on By (0)): Suppose that v
satisfies Assumption 1 and that for each (z,u) € X x U the re-
ward r(z,u,w) is bounded almost surely—that is, there exists 0 <
M < oo such that || < M almost surely. Moreover, suppose the ball
By (0) is chosen such that (7) holds and @y € B (0). If the non-
negative learning rates o (z,u) are such that Y, ;o (z,u) = 0o
and Y7 af(z,u) < oo, V(x,u) € X x U. Let ¢ > 0. Then, if
T >gi(e) and 1/, > ¢2(g) for all £ > 0 and for some functions
g1(e) = O(log(1/¢)) and g2 (¢) = O(1/¢), then the procedure in (5)
converges to Q* € By (0) with high probability— Pr(||Q, — Q*| <
e,¥t > T + 1) > 1 — §(e) for some constant 6(¢).

The proof of the above theorem is provided in Appendix B. It
replies on a standard argument which combines the fixed point result of
Theorem 1 with and the ordinary differential equation (ODE) method
for analyzing stochastic approximation algorithms [24, Ch. 1-4][25].
Since Theorem 1 holds on any By (0) with K < K < oo, so does
Theorem 2.

< K min D(y). (7)

yelp

< K min Dv(y). (8)

yelg

IV. INVERSE RISK-SENSITIVE REINFORCEMENT LEARNING

Given a set of demonstrations D = {(x,,uy,)}1_,, our goal is to
recover an estimate of the policy and value function used to generate the
demonstrations. Let II = {7y }y be a class of parameterized policies
and F be a class of parameterized value functions where § € © C R
and v € Fissuchthatv: Y x © — R : (y(0),0) — v(y(0),0). We
use the notation v, where convenient. We also indicate the dependence
of @ on 6 using the notation Q(x,u, ). We seek to minimize some
loss ¢(my) which is a function of the parameterized policy my. By
an abuse of notation, we introduce the shorthand ¢(6) = ¢(my). The

possible loss functions that may be employed.

Since we seek a probability distribution 7y, it is natural to formu-
late the loss in terms of the principle of maximum entropy, a tool for
building probability distributions to match observations. It has been
shown in the classical inverse reinforcement learning approach that
specifying the problem in terms of maximum casual entropy [26]-[28]
avoids certain pitfalls—e.g., nonconvexity and learning from subopti-
mal demonstrations. Motivated by this, we consider two related cost
functions: the negative weighted log-likelihood of the demonstrated
behavior and the relative entropy or Kullback—Leibler (KL) divergence
between the empirical distribution of the state—action trajectories and
their distribution under the learned policy. The former is given by

Z w(z, u)log(my (u|x))

(z,u)eD

0o =

where w(x,u) may, e.g., be the normalized empirical frequency of
observing (z,u) pairs in D— n(z,u)/N with n(x,u) denoting the
frequency of (x, u) and the latter is given by

00) = Y Dia(i(-|2)llm (|))

ze€D,

where Dy (7||n") = >, m(i)log(m(i) /=" (¢)) is the KL divergence,
D, C D is the sequence of observed states, and 7 is the empirical
distribution on the trajectories of D. These losses are essentially the
same under a reweighting: the weighted log-likelihood can be rewritten
as £(0) = 3, . () D (, () |[mo (). where w(x) is the
frequency of state 2 normalized by |D| = N. This approach has the
added benefit that it is independent of ¢ and thus, is not affected by
scaling of the value functions.

It is also common to adopt a smooth map H that operates on the
action-value function space for defining the parametric policy space—
e.g., soft-max or Boltzmann policies [27]-[29] of the form

exp(BQ(x, u, 0))
ZU'EU(J') exp(ﬁQ(m, u, 6))

to the action-value functions () where [ > 0 controls how close
Hy(Q) is to a greedy policy which we define to be any policy 7 such
that >, () 7(ulz)Q(z, u,0) = max,cp () Q(x, u, ) at all states
x € X. This is one class of smooth policies dependent on 6 through Q;
we use this class in the examples in Section V. We use value functions
such as those described in Section III-A; e.g., if v is the prospect
theory value function defined in (2), then the parameter vector is

0 = (k77k+7<-77§+3ﬂ)'

Hy(Q)(ulz) = (10)

A. Gradient—Based Approach

In this subsection, we show (Theorem 3) that gradient descent is
well-defined in the sense that 1) the derivative is computable via a
contraction map and 2) the update step is in the direction of steepest
descent. This result requires computing the derivative of Q*(x, u, 6)
with respect to . In particular, our result applies to any smooth policy
class IT dependent on 6 through (). For instance, given policies of the
form (10), the derivative with respect to an element ¢; of 6 of the loss
¢ depends on the policy my which, in turn, depends on Q*(-,-,0).
Further, considering the log-based loss functions described above,
ng(we (ulz)) = B(Q"(x,u,0) — 3, 1cpy () @7 (z,0',0)) so tha't we
simply need to show that Dy, Q* can be computed. We do this by
showing it can be calculated almost everywhere on © by solving fixed-
point equations similar to the Bellman-optimality equations. We require
some assumptions on the value function v.
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Algorithm 1: Gradient-Based IRSRL.
1: procedure IRSRL D

2: Initialize: 6 < 6,

3: while & < MAXITER & ||4(0) — ¢(6-)|| > 6 do
4 0«0

5: e < LINESEARCH(((6_), Dy ((6-))

6: 0—0_ — T];CDof(e,)T

7: k—k+1

8 return ¢

Assumption 2: The value function v € C* (Y x O, R) satisfies the
following conditions: (i) v is strictly increasing in y and foreach § € ©,
there exists a § such that v(§, ) = vy; (ii) for each # € ©, on any ball
centered around the origin of finite radius, v is locally Lipschitz in y
with constant L, (0) and Lipschitz in 6 on © with constant Ly.

Define L, = maxy L, (#) and L = maxy{L,(0), Ly }. As before,
let ? = v — vy. The Q—update equation can be re-written as

Qf+1(xf7uf76) = (1 - %)Qf(%mume)

+ 2 a(0(y(0), 0) — vo) + Qulwe, e, 0)) (1)
where
ye(0) =7 + VIQ?XQt($f+17U>9) — Qi (wr,ur,0)

is the temporal difference, o € (0, min{LZ ', 1}] and we have sup-
pressed the dependence of «; on (x;, u;). In addition, define the map
T such that

(TQ)(xv U, 0) = a]Ea",'ur @(y(e)v 9) + Q(x‘ u, 0)
where

y(0) =r(z,u,w) + Y, max, Q" v, 0) — Q(z,u,0).
By the results of the proceeding section, this map is a contraction in @
for each fixed 6. Let D;9(-, -) be the derivative of v with respect to the
ith argument where ¢ = 1, 2.

Theorem 3: Assume that v € C1(Y x ©,R) satisfies Assump-
tion 2 and that the reward » : X x U x W — R is bounded almost
surely, i.e, || < M for M > 0. Let By (0) be any ball with radius K
satisfying

max{|5(M, )|, |5(—M, 0)|}

K
1—7v <

min
(0,y(0))eOxIK

Dy o(y(6),6).

(12)
Then the following statements hold:

a) Q* is locally Lipschitz-continuous on B (0) as a function of
f—that is, for any (z,u) € X xU, 6,0’ € ©, |Q*(z,u,0) —
Q*(z,u,0")| < C|6 — 0| for some C > 0.

b) Except on a set of measure zero, the gradient Dy Q*(x, u,0) €
By (0) is given by the solution of the fixed—point equation

¢o(z,u) = @By [D20(y(0),0) + D19(y(6), )

(e (' uls) — dp(z,u))] + g (2, u)
(13)

where ¢y : X x U — R? and u;, is an action that maximizes
Q(z',u,0).

The proof is provided in Appendix D. Theorem 3 gives us a
procedure—namely, a fixed—point equation which is a contraction—
to compute the derivative Dy, Q" so that, in turn, we can compute
the derivative of ¢(f) with respect to 6. Hence, the gradient method
provided in Algorithm 1 for solving the inverse risk-sensitive reinforce-
ment learning problem is well formulated. Note that for each fixed 6,

0.1 | +0.1|+0.1|+0.1 | +0.1 +0.1|+0.1 +0.1 Behavior 1
Behavior 2
Behavior 3
Behavior 4

Behavior 5

0.1 +0.1 0.1 +0.1 +0.1 +0.1 +0.1 +0.1

01| +0.1 401 +0.1 +0.1 +0.1 +0.1 +0.1

-0.1 +0.1|+0.1 +0.1 +0.1 +0.1 +0.1

0.1 +0.1|+0.1 NN +0.1 | +0.1 | +0.1
0.1 +0.1[+0.1 NN +0.1 | +0.1| +0.1

0.1 40.1[+0.1 | +0.1 +0.1|+0.1|+0.1

-0.1 +0.1|+0.1 +0.1 +0.1 +0.1 +0.1

\‘0.1"00.1 +0.1 +0.1 +0.1 +0.1 +0.1

(a)

Fig. 1. (a) Grid World layout. (b) Maximum likelihood paths corre-
sponding to the five behavior profiles of risk-sensitive policies with
various parameter combinations ({k_,k.,(_,(s}) for the prospect
and (-prospect value functions: Behavior 1: {0.1,1.0,0.5,1.5}; Behav-
jor 2. {1.0,1.0,1.0,1.0}; Behavior 3: {1.0,1.0,1.1,0.9}; Behavior 4:
{5.0,1.0,1.1,0.8}; Behavior 5: {5.0,1.0,1.5,0.7}.

condition (12) is the same as condition (7). Moreover, Proposition 1
shows that for the ¢-prospect value functions and functions v such that
e < % such a K must exist for any choice of parameters and,
hence, the result of Theorem 3 holds for these functions.

Given that the gradient of Q* with respect to 6 is computable,
the gradient-based approach in Algorithm 1 simply implements an
update scheme of the form 6,1 = 0y — n g, Where —gj. (0) =
—Dy€(0;)T points in the direction of steepest descent. We also note
that, following [30] this method is amenable to letting g;. be the natural
gradient. Indeed, let h(0) = Hy(Q) be a mapping from the parame-
ter space to the policy space. Then, g, = G Dy¢(0).)" be the natural
gradient, where Gy = Dh(0)Dh(#)T is a pseudo-Riemannian metric
at f induced by (d, IT, h) with d a metric on II [31, Th. 1]. Since our
intention is to find the best policy 7y matching the empirical policy,
this approach is beneficial as it allows us to update # by taking a step
in the direction of steepest ascent on the surface (7, £()).

V. EXAMPLES

We demonstrate the proposed approach on Grid World. While the for-
mulation of inverse risk-sensitive reinforcement learning is amenable to
learning 3, we assume it is known for the purpose of explicitly exploring
the effects of changing the value function parameters on the resulting
policy. In all experiments, v = 0.95, 3 = 4, the objective is the nega-
tive log-likelihood of the data, and the valuation function is induced by
an acceptance level set defined by a parameterized value function and
acceptance level of zero. For the prospect and /-prospect value func-
tions, the reference point is zero. These choices are aimed at further
deconflating observations of behavior—in terms of risk-sensitivity and
loss-aversion—that result from different choices of the value function
parameters from characteristics of the MDP or learning algorithm.

The Grid World instance is shown in Fig. 1(a). The agent starts in
the blue box and aims to maximize their reward via the risk-sensitive
reinforcement learning procedure described in Section III over an infi-
nite time horizon. Every square in the grid represents a state, and the
action space is U = {N, NE, E,SE, S, SW,W, NW }. Each action
corresponds to a movement in the specified direction. The black and
green states are absorbing. In all the other states, the agent moves in
the direction specified by their action with probability 0.93 and in any
of the other seven directions with probability 0.01. To make the grid
finite, any action taking the agent out of the grid has probability zero,
and the other actions are re-weighted accordingly. Rewards in the black
and green states are —1 and +1, respectively. In the darker gray states,
the agent gets a reward of —0.1. In all other states, the agent gets a
reward of +0.1.

We conduct two types of experiments: 1) learning the value function
of an agent with the correct model for the value function (e.g., learning
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TABLE |
THE MEAN AND VARIANCE OF THE TV DISTANCE BETWEEN THE TRUE
PoLICY AND THE PoLICY UNDER THE LEARNED VALUE FUNCTION

Value Function Prospect {-prospect
Behavior Mean | Variance || Mean | Variance
Behavior 1 1.9e-2 6.3e-4 || 1.3e-2 2.3e-4
Behavior 2 1.5e-2 2.0e-4 1.0e-2 9.6e-5
Behavior 3 2.0e-2 3.6e-4 || 1.le-2 1.3e-4
Behavior 4 1.6e-2 2.0e-4 || 1.2e-2 1.4e-4
Behavior 5 4.7e-2 3.0e-3 || 1.0e-2 3.4e-4

(a) Experiment A: Learning with the correct model

[ Value Function || Mean [ Variance |
Prospect 1.5e-2 1.6e-4
{-prospect 1.5e-2 1.6e-4

(b) Experiment B: Learning with an incorrect model

a prospect value function when the agent also has a prospect value
function); 2) learning the value function of an agent with the wrong
model for the value function (e.g., learning an /—prospect value function
when the agent has a prospect value function). Performance is measured
via the total variation (TV) distance.

In Experiment A, we trained agents with various parameter combi-
nations of the prospect and /-prospect value functions. The resulting
policies of these agents are classified into five behavior profiles via their
maximum likelihood path: (Behavior I) profile that is risk-seeking on
gains, (Behavior 2) profile that is risk neutral on gains and losses (this is
also the behavior corresponding to the nonrisk-sensitive reinforcement
learning approach), and (Behaviors 3-5) profiles that are increasingly
risk averse on losses and increasingly weigh losses more than gains.
The parameters are given in Fig. 1(b). We sampled 1,000 trajectories
from the policies of these agents and used the data in the inverse risk-
sensitive reinforcement learning framework. The learned value function
is of the same type as that of the agent. Due to the nonconvexity of the
loss, we use five randomly generated initial parameter choices.

The results we report are associated with the value function that
achieves the minimum value of the objective. In Table I a, we report the
mean and variance of the TV distance between the two policies across
all states. In all the cases the learned value functions produce policies
that correctly match the maximum likelihood path of the true agent.
The performance for learning a prospect value function is consistently
worse than learning an /-prospect function and requires significantly
more computation time. This is most likely due to the fact that the
prospect value function is not Lipschitz around the reference point.
Thus, we have no guarantees of differentiability of QQ* with respect to
0 for the prospect value function.

Experiment B consists of learning different types of value functions
from the same dataset. The motivation for this experiment is to ensure
that the results and risk-profiles learned were consistent across the
choice of model. We generated a data set with 10 000 samples from an
agent with a prospect value function, and used it to learn prospect and
{-prospect value functions. The mean TV distance between the policy
of the true agent and the policies under the learned value functions
are shown in Table I b. The true agent’s value function has parameters
{k_ky,C, ¢} =42.0,1.0,0.9,0.7}, i.e., itis risk-seeking in losses,
risk-averse in gains, and loss averse. Again, the learned value functions
all have policies that replicated the maximum likelihood behavior of the
true agent. We note that the ¢-prospect and prospect functions perform
as well as each other on this data (likely due to the fact that they have
the same underlying shape), but the ¢-prospect function showed none
of the numerical issues that we encountered with the prospect function.
Further, learning with the /-prospect function is markedly faster than
with the prospect function. Again, this is most likely due to the fact
that the prospect function is not locally Lipschitz continuous around
the reference point.

VI. DISCUSSION

We present a gradient-based technique for learning risk-sensitive
decision-making models of agents operating in uncertain environments.
Moreover, we introduce a Lipschitz variation of the prospect value func-
tion, which retains the convex—concave structure of the prospect theory
value function while satisfying the assumptions of the theorems we
present on a bounded domain and possessing better numerical proper-
ties. We demonstrate the algorithm’s performance for agents based on
several types of behavioral models on the Grid World benchmark prob-
lem. Looking forward, there are a number of interesting open questions
regarding convergence of the gradient-based procedure (perhaps using
a multitimescale stochastic approximation technique), expanding the
theory to handle multiple value functions to tradeoff between different
outcomes, and estimating the reference point and acceptance level.

APPENDIX
A. Proof of Theorem 1

The proof of Theorem 1 relies on a fixed point theorem.

Theorem 4 ([32, Th. 2.2]): Let (X, d) be a complete metric space
and B, (y) = {z € X|d(x,y) < r} beaball of radius r > 0 centered
aty € X.Let f: B, (y) — X be a contraction map with contraction
constant i < 1. Further, assume that d(y, f(y)) < 7(1 — h). Then, f
has a unique fixed point in B, (y). |

Proof: [Proof of Th. 1. (a)] The map 7', defined by (7Q)(x,u) =
aE, o, [0(y(Q(z,u),2"))] + Q(x,u), is a contraction with constant
ax =1—a(l —v)ex where ex = min{Do(y)| y € Ix}, Ix =
[-M —2K,M + 2K] and « € (0,min{1, L~'}] with L the Lips-
chitz constant of v on Ik . Indeed, let y(Q(z,u),2’) = r(z,u,w) +
ymax, Q(x',u') — Q(x,u) and define g(z') = max,, Q(z', ). For
any ) € By (0) we note that the temporal differences are bounded—in
fact, y(Q(z,u),z') € Iy = [-M — 2K, M + 2K]. For any ¢,y €
I, 9(y) —9(y") = &(y — y') forsome € € [, L] by the monotonic-
ity assumption on v. Then, for any Q;, Q> € Bk (0),

(TQ1 —TQ:)(z,u)
= aB,, [0(y(Q1(z, u), 7)) — 0(y(Q2(z,u),2"))] + Q1 (z, u)
= Q2(,u)
= aEyury [§r 0 (791(2)) = 792 (2") — Qi (2, u) + Q2 (2, u))]
+ Qi(z,u) — Q2(z,u)
= By (6w (91 (2")—g2(2"))] + (1 — aByr o [€0r,0])
(Qi(z,u) — Q2(z,u)).

so that ‘(TQl — TQQ)(J?, u)\ S (1 — Oé(l — ’Y)EK)HQl — Qz HOOWe
claim that the constant &gy = 1 — (1 — v)ex < 1.Indeed, recall that
0 < o <min{l, L7} so that if o = L', then ax < 1 since L =
maxyer, DU(y) and ex = minger,, D0(y). On the other hand, if
a=1,thenl < L' < (ex)~! sothatex < 1 which, in turn, implies
that ax < 1.1f0 < o < min{1, L7'}, then ax < 1 follows trivially
from the implications in the above two cases. Thus, 7" is a contraction
on By (0).
Proof: [Proof of Th. 1. (b)] Let K be chosen such that
max{|o(M)], [o(=M)|[}
I—y
The map T applied to the zero map, 0 € Bx (0), is strictly less
than K (1 — ay ). Indeed, for any o € (0, min{1, L~'}], |T(0)|| <
amax{|o(M)|,|[o0(—M)|} < (1 —v)Keg a since ¥ is increasing by
assumption. Since 7' is a contraction, combining the above with the fact
that (1 — ) Kex o = K (1 — @y ), the assumptions of Theorem 4 hold
and, hence there is a unique fixed point Q* € B (0). [ |

< K min Do(y).

yelg

(14)
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B. Proof of Theorem 2

Proof: Following [33], let (¢,a) index the state-action pairs in
X x U. Consider

Qrtia) = (1-222) Qi)
+ 2 (70, 6,0) + di i)

where d; (i,a) = a(0(y; (¢,a)) — E,r, 9(y: (i, a))) is a random noise
term and «; is the learning rate such that oy (7,a) = 0 if Q;(i,a) is
not updated, i.e., ay;(i,a) =0 if 1{z; =4,us =a} =0. Let F; =
{(Qr(isa),ar(i,a))i_y, (de(i,a))i—t, (i,a) € X x U}. Since we
have already shown the map 7" is a contraction, following [25],
we simply need to show that E,/ , [d;|F;] = 0 and E,/ ,, [d?|F;] <
A + BJ|Q; || for some constants A and B. Clearly, E,/ ,, [d; (i)] = 0.
It is also the case that

Ez’,w [d3|?1] < QZEz’,w [75(1/02 ‘?l] - a2 (]Ez",w
Ye)? |5

Since the rewards are bounded by M, |y, | < M + 2||Q; ||.. Moreover,
0 is Lipschitz on Ix so that |[0(y:)| < [0(0)] + L(M + 2||Q¢]|x)-
Applying the triangle inequality, we get that (|0(0)|+ L(M +
2(|Q:llx))* < 2(|9(0) + LM)* + 8L*[|Q, |I%, so that

[ﬁ(ytﬂ?{lf

S a2]ET/,2U [ﬁ(

@By [0(y:)?|F1] < 267 (|5(0)] + 2M)? + 802 L?|| Q) || o -

Note this is stronger than [25, Assum. A.3]. Since 7' is a contrac-
tion, we can construct a local Lyapunov function: V(Q;(z,u)) =

%HQt(mﬂl) - Q*(LE,U)”% with
V(Q:i(z,u)) = 2(Q (z,u) — Q" (2, u)(TQ:(w,u) = TQ*(x,u))
—2[|Qi (2, u) — Q" (z,u)|?
< 2(a - 1)”Qt (‘Tvu) - Q*(xau)w <0.

Hence, applying [25, Cor. 1.1], we get convergence with high proba-
bility given some € > 0, i.e., suppressing the dependence on (i,a) €
X x U, there exists constants A, C;,Cy > 0 such that

Pr([|Q: — Q|| <&, Vt>T+1)>1-4(¢)
where, by letting 8, = maxg<r<, 1 {exp(—A Zl'.:,iﬂ a;)ay s
S, CreCavElva e CyeC2e? /B e<1
o= { ZZO:U Cre 2 vElvar Znoozo Cieicze/ﬂ" s e>1
|

We refer the reader to [25, Cor. 1.1] for a more explicit characteri-
zation of the constants.

C. Proof of Proposition 1

Proof: [Proof of Proposition 1 a] Suppose v satisfies Assumption
1 and that for some & > 0, £ < =) pr— W) for all y # v'. Then there
exists a value of K, say K, such that (8) holds for all K > K. Indeed
since ming o ex > ¢, for all K satisfying W < K,
(8) must hold.

Proof: [Proof of Proposition 1.b] For (;,{_ > 1 and any choice
of k_,ki, ming.gex >¢e>0 where ¢=min{lim,y Do(y),
lim, o Do(y)}. Therefore, with ¢ ,(_ > 1, for any K such that

max{]i ‘([1 ‘7‘7 M < K, (8) must hold. For the case when either ¢, <

1 or § < 1 or both, we note that min,c;,, D9(y) = min{min, ¢,

Dw(y),e}. so that we need only show that for ¢, < 1, there exists a

K such that
max{|9(

M), [o(=M)[}
1—vy

< KDv(2K + M) (15)
and, similarly for {_ < 1, there exists a K such that the left-hand
side of (15) is less than K Do (—2K — M ). Without loss of generality,
we show (15) must hold for {, < 1 and reference point y, = 0 (the
proof for (_ < 1 follows an exactly analogous argument). Plugging
Do(2K + M) =k, ¢, (2K + M — yo + €)°+ ! in and rearranging,
we simply need to show that there exists a K such that

max{|o(M)], |o(=M)|[}
(1 - ’Y)§+ ky

Since the right-hand side is a function of K that is zero at X =0
and approaches infinity as K — oo, and the left-hand side is a finite
constant, there is some K such that for all KX > K, the above holds.
Thus, for the ¢-prospect value function, our assumptions are satisfied
and there always exists a value of K to choose in Theorem 1.b. |

<KQ2K+M —yy+e)+!

D. Proof of Theorem 3

Let U be a Banach space and U its dual. The Fréchet subdifterential
of f: U — Ratu € U, denoted by 9 f(u) is the set of u* € U* such
that limy, o inf), . ||A]| 72 (f(u+ h) — f(u) — (u*,u)) > 0.

Proposition 2 ([31], [34]): For a finite family (f;);c; of real-
valued functions (where [ is a finite index set) defined on U, let f(u) =
max;er fi(u). fu* € 0f;(u) and f;(u) = f(u), then u* € 9 f(u).

Proposition 3 ([31], [35]): Consider (f,),en, a pointwise con-
vergent sequence to f such that f, :U — R. Let ue U, u) €
df, (u) C U*. Suppose that (u} ), cn is weak*—convergent to u* and
is bounded, and that at u, for any € > 0, 3N > 0, > 0 such that
for any n > N, h € Bs(0), a d-ball around 0 € U, f,(u+h) >
fo(u) + (ul, h) — ¢||h||. Then u* € O f(u). |

Proof: [Proof of Theorem 3.a.] Let Qy(z,u,0) = 0. Then it is
trivial that Qg (z, u, 0) is locally Lipschitz in 6 on ©. Supposing that
Q(z,u,0) is L;~locally Lipschitz in 0, then we need to show that
TQ,(z,u,0) is locally Lipschitz. Since © = v — v, it also satisfies
Assumption 2. Let L, = max{L,(0)|0 € ©} and define ¢, (z,0) =
max,’ Q;(x,u/,0). Since Q, is assumed Lipschitz with constant L,,
so is g;. Let ATQ(0,0)) =TQ:(0) —TQ;(0') and AQ;(0,0) =
Q:(0) — Q;(0'). Suppressing the dependence on (x, u),

ATQt (97 0/) = OC]E,T/,“, [ﬁ(y(0)> 9) - ﬁ(y(e ) 9) +v (y(e,)> 0)
—0(y(8),6)] + AQ:(0,0').

Let éx = ming ,(9))co xi, D10(y(8),0). Due to the monotonicity
of v in y, we know that for all y;,y, there exists £ € [€x, L, ] such
that 0(y;,0) — 0(y2,0) = £(y1 — y2). Hence,

ATQ,(0,0')
= aEqru [6or.0 (y(0) —y(0) + 0(y(6),0) — 0(y(6),0)]
+AQ(0,6)

= VB [&arw (9: (2, 0) — g0 (2',6))] — By [Sor,0]
AQ(0,0') + aEqr . [0(y(0), 0) — 0(y(6'),0")] + AQ, (6,0)

= (1= aEsru[§rw])AQ:(0,0') + aVEyr 1 [€or.0 (9 (2, 0)
—g:(2,0)] + aBarw [0(y(0),0) — o(y(6"),60")]
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so that

”ATQt (07 el)H < ((1 - a(l - W)E.L/w [fL’u.DLt + CYL(Q)HQ - 9,”
< (1 — a1 —7)Ex )Ly + aLy)|6 — 0],

Since ag =1 —a(l —v)ég, TQ, (-, -, 0) is L, -locally Lipschitz
with Ly 1 = aly +alLy. With Ly = 0, by iterating, we get that
Liyi = (&' + -+ a+1)aly. As stated in Section IV-A, T is a
contraction so that 7" Qy — Q; = Q*(,-,6) as n — co. Hence, by
the above, Q} is aLg /(1 — ax )-Lipschitz continuous.

Proof: [Proof of Theorem 3.b.] Consider a fixed § € © C R?.
Since by part (a), @, is locally Lipschitz in ¢, Rademacher’s
Theorem (see, e.g., [36, Th. 3.1.6]) tells us it is differentiable al-
most everywhere (except a set of Lebesgue measure zero). We now
show that the operator S acting on the space of functions ¢y :
X x U — R? and defined by (S¢pg ) (w,u) = @y, [D29(y(0),0) +
Dy o(y(0),0) - (voo (2, ul,) — ¢g(x,u))] + ¢g (2, u) where u?, is an
action that maximizes Q(z’, u, 0) is a contraction since, by Proposi-
tion 2, a subdifferential of the pointwise maximum of functions is equal
to the subdifferential of one of the one that achieves the maximum.
Indeed,

(Spg — Sy)(x,u)
= B, [D19(y(0), ) (v(¢o (2", uy0) — 6 (2, us))
= (¢ (2, u) = ¢ (x,0)))] + by (w,u) — ¢ (w, )
< (1= a(l =)E. . [Di(y(6), )]l ¢ — & lloe-

Since we have fixed 6, let i ¢ = minyc;, D10(y,0). Then, by
Assumption 1, [[(Sés — S¢))(x,u)l| < (1 a(l —7)ex o) o —
®p |l Note that &gy =1 — (1 —7)Ex 9 < 1 for the same reasons
as given in the proof of Theorem 1 since o € (0, min{1, L~'}]. Note
that S operates on each of the d components of § separately and hence,
itis a contraction when restricted to each individual component. Then,
for each 6, S has a unique fixed point. In particular, consider the se-
quence ¢y suchthat ¢y o = 0and ¢y +1 = Sy ;. For large enough
k, ¢9.k+1 = Sy . Applying the contraction mapping theorem (see,
e.g., [37, Th. 3.18]) we get that lim, ., S* ¢, converges to a unique
fixed point.

Applying Proposition 2 by induction, ¢y x(z,u) € 9y Qy. (z,u, ).
Indeed, it is obvious for £ = 0. Suppose it holds for &, i.e., ¢y 1 (2, u)
€ 66 Qk (.CC7 u, 9) Then, ¢9.kt+l ($7 u) = S(bb",k, (1‘7 u) € S(aﬁ Qk (Z‘,
u,0)) and S(9y Qi (z,u,0)) C Op(TQr) = IpQy11(x,u,0) by the
definition of the maps and subdifferentiation. Hence, ¢g 1+ 1 (2, u) €
09 Qr+1(x,u,0). By Proposition 3, the limit is a subdifferential of @}
since ¥ is Lipschitz on Y and © and the derivatives of ¢ are uniformly
bounded. By part (a), Q; is locally Lipschitz in § so that it is differen-
tiable almost everywhere [36, Th. 3.1]. Since Q) is differentiable, its
subdifferential is its derivative. |
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