
1256 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 3, MARCH 2020

Inverse Risk-Sensitive Reinforcement Learning

Lillian J. Ratliff , Member, IEEE, and Eric Mazumdar , Student Member, IEEE

Abstract—This work addresses the problem of inverse reinforce-
ment learning in Markov decision processes where the decision-
making agent is risk-sensitive. In particular, a risk-sensitive
reinforcement learning algorithm with convergence guarantees that
makes use of coherent risk metrics and models of human decision-
making which have their origins in behavioral psychology and eco-
nomics is presented. The risk-sensitive reinforcement learning al-
gorithm provides the theoretical underpinning for a gradient-based
inverse reinforcement learning algorithm that seeks to minimize a
loss function defined on the observed behavior. It is shown that the
gradient of the loss function with respect to the model parameters
is well defined and computable via a contraction map argument.
Evaluation of the proposed technique is performed on a Grid World
example, a canonical benchmark problem.

Index Terms—Autonomous systems, Markov processes, opti-
mization, reinforcement learning.

I. INTRODUCTION

Complex risk-sensitive behavior arising from human interaction

with automation has attracted research efforts from a variety of

communities including psychology, economics, engineering, and

computer science. The adoption of diverse behavioral models in

engineering—in particular, in learning and control—is growing due

to the fact that humans are increasingly playing an integral role in

automation both at the individual and societal scale. Learning accurate

models of human decision-making is important for both prediction and

description. For instance, control/incentive schemes need to predict

human behavior as a function of external stimuli including not only

potential disturbances but also the control/incentive mechanism itself.

On the other hand, policy makers are interested in interpreting and

describing human reactions to implemented regulations and policies.

There are many challenges to capturing representative, salient fea-

tures of human decision-making, not the least of which is the fact that

humans are known to behave in ways that are not completely rational.

For instance, there is mounting evidence to support the fact that humans

often use reference points—e.g., the status quo, former experiences, or

recent expectations about the future that are otherwise perceived to be

related to the decision the human is making [1], [2]. Empirical evidence

also suggests that human decision-making is impacted by perceptions

of the external world (exogenous factors) and their present state of

mind (endogenous factors) as well as how the decision is framed or
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presented [3]. Furthermore, humans are risk-sensitive: they are risk-

averse when close to a desired state and risk-seeking otherwise.

Approaches for integrating risk-sensitivity into algorithms for con-

trol synthesis and reinforcement learning via behavioral models have

recently emerged [4]–[7]. These approaches largely assume a risk-

sensitive Markov decision process (MDP) formulated based on a model

that captures behavioral aspects of the human’s decision-making pro-

cess. We refer the problem of learning the optimal policy in this setting

as the forward problem. Our primary interest is the so-called inverse

problem which seeks to estimate the decision-making process given a

set of demonstrations. Inverse reinforcement learning in the context of

recovering policies directly (or indirectly via first learning a representa-

tion for the reward) has long been studied in the context expected utility

maximization and MDPs [8], [9]. There are typically two approaches.

1) producing the value and reward functions (or at least, characterizing

the space of these functions) that mimic behaviors matching that which

is observed; 2) directly extracting the optimal policy from a set of

demonstrations. In order to do so, a well formulated forward problem

with convergence guarantees is required.

We model human decision-makers as risk-sensitive Q-learning

agents. To capture both risk-sensitivity as well as other empirically

observed behavioral decision-making traits such as loss aversion and

reference point dependence, within a reinforcement learning frame-

work, we combine behavioral psychology models of decision-making

such as those from prospect theory [10] with appropriate—and compu-

tationally tractable—risk metrics that take into account such models.

We construct a forward reinforcement learning framework for which

we provide convergence guarantees in support of the development of an

inverse reinforcement learning algorithm. We leverage the developed

forward algorithm in to derive an inverse risk-sensitive reinforcement

learning algorithm with theoretical guarantees. We show that the gra-

dient of the loss function with respect to the model parameters is well

defined and computable via a contraction map argument. We demon-

strate the efficacy of the learning scheme on the canonical Grid World

example.

The remainder of the paper is organized as follows. In Section II, the

contributions are detailed. In Section III, the model for risk-sensitive

agents is presented; we show that behavioral decision-theoretic value

functions can be integrated into the decision-making framework and

present a risk-sensitive Q-learning convergence result. In Section IV,

we formulate the inverse reinforcement learning problem and propose a

gradient–based algorithm to solve it. Illustrative examples are presented

in Section V, and we conclude in Section VI.

II. CONTRIBUTIONS AND RELATED WORK

The goal of this work is to provide a theoretical and algorithmic

framework for recovering interpretable behavioral models of human

decision-makers. Toward this end, the main contribution of this work

is the development of a gradient-based inverse risk-sensitive reinforce-

ment learning algorithm that enables recovery of prospect theoretic

value functions and parameters of the class of coherent risk metrics—

utility-based shortfall—that we consider.
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The forward risk-sensitive reinforcement learning framework we

adopt was first introduced in [11] and later refined in [5], [6], [12].

In preliminary work [12], we examined a similar risk-sensitive rein-

forcement learning framework to [5] and leveraged it to develop a

gradient-based inverse reinforcement learning algorithm. Building on

these works, we construct a new value function—ℓ–prospect value

function—which is Lipschitz on the domain of interest and retains the

convex–concave shape of a prospect theoretic value function. Similar

to [5], we provide a convergence theorem, though with high proba-

bility due to the fact that the ℓ-prospect function leads to a reinforce-

ment learning scheme that is a contraction on a finite radius ball. We

show that the ℓ–prospect value function—along with other value func-

tions considered in [5]—satisfies the assumptions. The assumptions

of the theorem are also stated explicitly in terms of MDP parameters.

Given the forward risk-sensitive reinforcement learning algorithm, we

propose a gradient-based inverse risk-sensitive reinforcement learning

algorithm for inferring the decision-making model parameters from

demonstrations. We show that the gradient of the loss function with

respect to the model parameters is well defined and computable via a

contraction map argument.

The primary motivation for most other work on inverse risk-sensitive

reinforcement learning is to recover a prescriptive model or algorithm

for humans amidst autonomy so that the human can be accounted for

in the design of control policies. For example, in [5], in order to learn

the decision-making model the approach is to parameterize unknown

quantities of interest, sample the parameter space, and use a model

selection criteria (specifically, the Bayesian information criteria) to

select parameters that best fit the observed behavior. We, on the other

hand, derive a well-formulated gradient-based procedure for finding

the value function and policy best matching the observed behavior.

In other promising work [7], the authors leverage a more expansive

set of coherent risk metrics to capture risk sensitivity, yet without

the focus on prospect theoretic value functions. In comparison, our

approach focuses on estimating the agent’s behavior and the value

function which also induces the risk metric via an acceptance level

set. In addition, the parameters of the value function are interpretable

in terms of the degree of risk sensitivity and loss aversion. Thus, our

technique supports prescriptive and descriptive analysis, both of which

are important for the design of incentives and policies that takes into

consideration the nuances of human decision-making behavior.

III. RISK-SENSITIVE REINFORCEMENT LEARNING

Consider a class of finite MDPs consisting of a state space X , an

admissible action space U (x) ⊂ U for each x ∈ X , a transition kernel

P (x′|x, u) that denotes the probability of moving from state x to x′

given action u, and a reward function r : X × U × W → R where W
is the space of bounded disturbances and has distribution Pr (·|x, u).

Including disturbances allows us to model random rewards; we use

the notation R(x′, u) to denote the random reward having distribution

Pr (·|x, u).

In the classical expected utility maximization framework, the agent

seeks to maximize the sum of their expected discounted reward over

time by selecting a Markov policy π which is a distribution across

actions for each state x ∈ X, i.e., π(x) ∈ ∆(U ). For instance, given

an infinite horizon MDP, the optimal policy is obtained by maximizing

J(x0 , π) = E

[ ∞
∑

t=1

γtR(xt , ut )

]

(1)

with respect to π where x0 is the initial state and γ ∈ (0, 1) is the

discount factor.

The risk-sensitive reinforcement learning problem transforms the

above problem to account for salient features of the human decision-

making process such as loss aversion, reference point dependence, and

risk-sensitivity. In this work, like others [5], [6], we introduce prospect

theoretic value functions [10] and coherent risk metrics [13] to cap-

ture such features. Specifically, we introduce two key components,

value functions and valuation functions, that capture these features.

The former captures risk-sensitivity, loss-aversion, and reference point

dependence in its transformation of outcome values to their value as

perceived by the agent and the latter generalizes the expectation oper-

ator to more general measures of risk.

A. Value Functions

Much like the standard expected utility framework, an agent makes

choices based on the value of outcomes as defined by a value func-

tion v : R → R. There are a number of existing approaches to defining

value functions that capture risk-sensitivity and loss aversion. These

approaches derive from a variety of fields including behavioral psychol-

ogy/economics, mathematical finance, and even neuroscience. One of

the principal features of human decision-making is that losses are per-

ceived more significant than a gain of equal true value—losses loom

larger than gains. Empirically validated models that capture this af-

fect are convex and concave in different regions of the outcome space.

Prospect theory [10] is built on one such model. The prospect theoretic

value function is given by

v(y) =

{

k+ (y − y0 )
ζ+ , y > y0

−k−(y0 − y)ζ− , y ≤ y0

(2)

where y0 is the reference point that the decision-maker compares out-

comes against in determining if the decision is a loss or gain. The

parameters (k+ , k−, ζ+ , ζ−) control the degree of loss-aversion and

risk-sensitivity; e.g., the following are risk preferences for different

parameter values: 1) 0 < ζ+ , ζ− < 1 correspond to risk-averse pref-

erences on gains and risk-seeking preferences on losses (concave in

gains, convex in losses); 2) ζ+ = ζ− = 1 correspond to risk-neutral

preferences; 3) ζ+ , ζ− > 1 correspond to risk-averse preferences on

losses and risk-seeking preferences on gains (convex in gains, concave

in losses). Experimental results for a series of one-off decisions show

that typically both ζ+ and ζ− are less than one thereby indicating that

humans are risk-averse on gains and risk-seeking on losses—that is, v
is concave for y > y0 and convex otherwise [10], [14].

In addition to the nonlinear transformation of outcome values, the

effect of under/over-weighting the likelihood of events that has been

commonly observed in human behavior is modeled via warping of event

probabilities [15], [16]. Other concepts such as framing effects, refer-

ence dependence, and loss aversion—captured, e.g., in the (k+ , k−)
parameters in (2)—have also been widely observed in experimental

studies on human decision-making (see, e.g., [17]–[19]).

Motivated by the empirical evidence supporting the prospect theo-

retic value function and numerical considerations, which are discussed

in greater detail in subsequent sections, we introduce a new value func-

tion that retains the shape of the prospect theory value function over

the whole domain—convex–concave structure—while improving the

performance (in terms of convergence speed) of the gradient-based in-

verse reinforcement learning algorithm we propose in Section IV. In

particular, we define the locally Lipschitz-prospect (ℓ-prospect) value

function given by

v(y) =

{

k+ (y − y0 + ǫ)ζ+ − k+ ǫζ+ , y > y0

−k−(y0 − y + ǫ)ζ− + k−ǫζ− , y ≤ y0

(3)

with k+ , k−, ζ+ , ζ− > 0 and ǫ > 0, a small constant. This value func-

tion is Lipschitz continuous on a bounded domain. Moreover, the

derivative of the ℓ-prospect function is bounded away from zero at

the reference point. Hence, in practice it has better numerical proper-

ties. Moreover, for given parameters (k+ , k−, ζ+ , ζ−), the ℓ-prospect

function has the same risk-sensitivity as the prospect value function

with those same parameters; as ǫ → 0 the ℓ-prospect value function

approaches the prospect value function.
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There are, of course, other behaviorally motivated value functions

that appear in the literature beyond those from prospect theory. For

example, in [6] a piecewise linear value function is considered in a risk-

sensitive reinforcement learning context, and another very common

example is the entropic map— v(y) = exp(λy).

The fact that each of these value functions is defined by a small

number of parameters that are highly interpretable in terms of risk-

sensitivity and loss-aversion is one of the motivating factors for inte-

grating them into a reinforcement learning framework. It is our aim to

design learning algorithms that will ultimately provide the theoretical

underpinnings for designing incentives and control policies taking into

consideration salient features of human decision-making behavior.

B. Valuation Functions

Given environment and reward uncertainties, we model the outcome

of each action as a real-valued random variable Y (i) ∈ R, i ∈ I where

I denotes a finite event space and Y is the outcome of ith event with

probability µ(i), where µ ∈ ∆(I), the space of probability distributions

on I .

Definition 1 (Valuation Function): A mapping V : R
|I | × ∆(I) →

R is called a valuation function if for each µ ∈ ∆(I), 1) V(Y, µ) ≤
V(Z, µ) whenever Y ≤ Z (monotonic) and 2) V(Y + y1, µ) =
V(Y, µ) + y for any y ∈ R (translation invariant).

Typically the valuation function used in MDPs is defined in terms

of the expectation operation. For each state–action pair, we define

V(Y |x, a) : R
|I | × X × A → R a valuation map such that Vx ,a ≡

V(·|x, a) is a valuation function where we drop the dependence on µ for

simplicity of notation. If we let V
π
x (Y ) =

∑

a∈A (x ) π(a|x)Vx ,a (Y ),

(1) generalizes to

J̃T (π, x0 ) = V
π 0
x 0

[

R(x0 , u0 ) + γV
π 1
x 1

[R(x1 , u1 )

+ · · · + γV
π T
xT

[R(xT , uT )]
]]

where we define J̃(π, x0 ) = limT →∞ J̃T (π, x0 ).

Given that we intend to integrate empirically validated value func-

tions that capture decision-making features of humans, the most appro-

priate class of coherent risk metrics are those induced by an acceptance

level set defined in terms of a value function. Hence, we focus our

attention on this particular class, members of which are often referred

to as utility-based shortfall risk metrics. We are not the first to leverage

this class of risk metrics in a similar framework; the authors of [5] take

a similar approach.

To define this class of metrics, we first recall the following definition.

A monetary measure of risk [13] is a functional ρ : X → R ∪ {+∞}
on the space X of measurable functions defined on a probability space

(Ω, F, P ) such that ρ(0) is finite, and for all X, X ′ ∈ X, ρ satisfies the

following:

1) (monotone) X ≤ X ′ =⇒ ρ(X ′) ≤ ρ(X), and

2) (translation invariant) m ∈ R =⇒ρ(X + m) = ρ(X) − m.

If ρ additionally satisfies

ρ(λX + (1 − λ)X ′) ≤ λρ(X) + (1 − λ)ρ(X ′)

for λ ∈ [0, 1], then it is a convex risk measure. A monetary measure of

risk ρ induces an acceptance level set Aρ = {X ∈ X| ρ(X) ≤ 0} [13,

Prop. 4.6] and, conversely, an acceptance level set A induces a monetary

measure of risk ρA(X) = inf{m ∈ R| X + m ∈ A} [13, Prop. 4.7].

Utility-based shortfall risk is defined with respect to an acceptance

level set. The acceptance level set A = {X ∈ X| Eµ [v(X)] ≥ v0}
defined in terms of a utility or value function v, where v0 is the ac-

ceptance level induces ρ(X) = inf{m ∈ R| Eµ [v(X + m)] ≥ v0}.

Given a value function v and acceptance level v0 , we use the utility-

based shortfall risk metric to induce a state–action valuation function

given by Vx ,u (Y ) = sup{z ∈ R| E[v(Y − z)] ≥ v0}, where the ex-

pectation is taken with respect to µ = P (x′|x, u)Pr (w|x, u); Vx ,u (Y )
has the properties outlined in Definition 1.

C. Risk-Sensitive Q-Learning Convergence

In the classical reinforcement learning framework, the Bellman equa-

tion is used to derive a Q-learning procedure. Generalizations of the

Bellman equation for risk-sensitive reinforcement learning—derived,

e.g., in [5], [6], [20]—have been used to formulate Q-learning proce-

dures for the risk-sensitive reinforcement learning problem. In partic-

ular, as shown in [20], if V ∗ satisfies

V ∗(x0 ) = max
u∈U (x )

Vx ,u (R(x, u) + γV ∗) (4)

then V ∗ = maxπ J̃(π, x0 ) holds for all x0 ∈ X ; moreover, a determin-

istic policy is optimal if π∗(x) = arg maxu∈U (x ) Vx ,u (R + γV ∗) [20,

Th. 5.5]. Defining Q∗(x, u) = Vx ,u (R + γV ∗) for each (x, u) ∈
X × U , (4) becomes Q∗(x, u) = Vx ,u (R + γ maxu∈U (x ′) Q∗(x′, u)).

As shown in [5, Prop. 3.1], by letting Y = R + γV ∗ and directly ap-

plying Proposition 4.104 of [13] with z∗ ≡ Q∗, we have that

E[v(r(x, u, w) + γ max
u ′∈U (x ′)

Q∗(x′, u′) − Q∗(x, u))] = v0

where the expectation is with respect to µ = P (x′|x, u)Pr (w|x, u).

This leads naturally the Q-learning procedure

Q(xt , ut ) ← Q(xt , ut ) + αt (xt , ut )[v(yt ) − v0 ] (5)

where the nonlinear transformation v is applied to the temporal differ-

ence yt = rt + γ maxu Q(xt+1 , u) − Q(xt , ut ). Transforming tem-

poral differences avoids certain pitfalls of the reward transformation

approach such as poor convergence performance.

It has been shown that under some assumptions on v and the sequence

αt , that the above Q-learning procedure converges with probability

one [5, Th. 3.2]. Indeed, suppose that 1) v is strictly increasing in

y, 2) there exist constants ε, L > 0 such that ε ≤ v (y )−v (y ′)
y−y ′ ≤ L for

all y �= y′, and 3) there exists a ȳ such that v(ȳ) = v0 . Then, if the

nonnegative learning rates αt (x, u) are such that
∑∞

t=0 αt (x, u) = ∞
and

∑∞
t=0 α2

t (x, u) < ∞, ∀(x, u) ∈ X × U , then the procedure in (5)

converges to Q∗(x, u) for all (x, u) ∈ X × U with probability one.

The assumptions on αt are fairly standard and the core of the con-

vergence proof is based on the Robbins–Siegmund Theorem appearing

in the seminal work [21]. On the other hand, the assumptions on the

value function v are fairly restrictive, excluding many of the value

functions presented in Section III-A; e.g., value functions of the form

ex and xζ do not satisfy the global Lipschitz condition. To address this,

the Lipschitz assumption can be relaxed to a local condition assuming

the rewards are bounded [5, Th. A.1]. However the result still requires

the derivative to be bounded away from zero. We provide a slightly

modified result that introduces conditions on v—in terms the bound

on the rewards and the size of the ball on which v is Lipschitz—under

which the derivative is bounded away from zero and show that the func-

tions considered in [5] as well as the ℓ-prospect function we introduce

satisfy these conditions. In addition, we provide a more streamlined

proof technique that leverages a well-known fixed point theorem.

Assumption 1: The value function v ∈ C1 (Y, R) satisfies the fol-

lowing: 1) it is strictly increasing in y and there exists a ȳ such that

v(ȳ) = v0 and, 2) it is Lipschitz on any ball of finite radius centered at

the origin.

Let X be a complete metric space endowed with the L∞ norm and

let Q ⊂ X be the space of maps Q : X × U → R. Further, define ṽ ≡
v − v0 . We then rewrite the Q–update equation in the form

Qt+1 (x, u) =
(

1 − αt

α

)

Qt (x, u) +
αt

α
(α(v(yt ) − v0 ) + Qt (x, u))

where α ∈ (0, min{L−1 , 1}] and we have suppressed the dependence

of αt on (x, u). This is a standard update equation form in, e.g., the

stochastic approximation algorithm literature [22], [23]. In addition,
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we define the map

(TQ)(x, u) = αEx ′,w [ṽ(r(x, u, w) + γ max
u ′∈U (x ′)

Q(x′, u′)

− Q(x, u))] + Q(x, u). (6)

For any given K > 0 and M > 0, we use the notation IK for the in-

terval [−M − 2K, M + 2K ]. Moreover, for any given K such that

0 < K < ∞, let α ∈ (0, min{1, L−1}], where L is the Lipschitz con-

stant of v on IK .

Theorem 1: Suppose v satisfies Assumption 1 and for each (x, u) ∈
X × U the reward r(x, u, w) is bounded almost surely—there exists

0 < M < ∞ such that |r| < M almost surely.

a) Consider any given K ∈ (0,∞) and let BK (0) ⊂ Q be a ball of

radius K centered at zero. Then, T : Q → X is a contraction on

BK (0).

b) Suppose K̄ is chosen such that

max{|ṽ(M )|, |ṽ(−M )|}
(1 − γ)

< K̄ min
y∈I K̄

Dṽ(y). (7)

Then, T has a unique fixed point in BK (0) for any K ∈ [K̄,∞).

The proof is provided in Appendix A.

The following proposition shows that the ℓ-prospect as well as the

class of functions considered in [5] satisfy (7). Moreover, it shows that

the value functions which satisfy Assumption 1 also satisfy (7).

Proposition 1: Suppose r : X × U × W → R is bounded almost

surely by M and γ ∈ (0, 1). Consider the condition

max{|ṽ(M )|, |ṽ(−M )|}
(1 − γ)

< K min
y∈IK

Dṽ(y). (8)

a) Suppose v satisfies Assumption 1 and that for some ε > 0, ε <
v (y )−v (y ′)

y−y ′ for all y �= y′. Then (8) holds.

b) Suppose v is an ℓ-prospect value function with arbitrary parameters

(k−, k+ , ζ−, ζ+ ) satisfying Assumption 1. Then there exists a K
such that the ℓ-prospect value function satisfies (8).

With Theorem 1 and Proposition 1, we can prove convergence of

Q-learning for risk-sensitive reinforcement learning.

Theorem 2 (Q-learning Convergence on BK (0)): Suppose that v
satisfies Assumption 1 and that for each (x, u) ∈ X × U the re-

ward r(x, u, w) is bounded almost surely—that is, there exists 0 <
M < ∞ such that |r| < M almost surely. Moreover, suppose the ball

BK (0) is chosen such that (7) holds and Q0 ∈ BK (0). If the non-

negative learning rates αt (x, u) are such that
∑∞

t=0 αt (x, u) = ∞
and

∑∞
t=0 α2

t (x, u) < ∞, ∀(x, u) ∈ X × U . Let ε > 0. Then, if

T ≥ g1 (ε) and 1/γk ≥ g2 (ε) for all k ≥ 0 and for some functions

g1 (ε) = O(log(1/ε)) and g2 (ε) = O(1/ε), then the procedure in (5)

converges to Q∗ ∈ BK (0) with high probability— Pr(‖Qt − Q∗‖ ≤
ε, ∀t ≥ T + 1) ≥ 1 − δ(ε) for some constant δ(ε).

The proof of the above theorem is provided in Appendix B. It

replies on a standard argument which combines the fixed point result of

Theorem 1 with and the ordinary differential equation (ODE) method

for analyzing stochastic approximation algorithms [24, Ch. 1–4][25].

Since Theorem 1 holds on any BK (0) with K̄ < K < ∞, so does

Theorem 2.

IV. INVERSE RISK-SENSITIVE REINFORCEMENT LEARNING

Given a set of demonstrations D = {(xk , uk )}N
k=1 , our goal is to

recover an estimate of the policy and value function used to generate the

demonstrations. Let Π = {πθ }θ be a class of parameterized policies

and F be a class of parameterized value functions where θ ∈ Θ ⊂ R
d

and v ∈ F is such that v : Y × Θ → R : (y(θ), θ) �→ v(y(θ), θ). We

use the notation vθ where convenient. We also indicate the dependence

of Q on θ using the notation Q(x, u, θ). We seek to minimize some

loss ℓ(πθ ) which is a function of the parameterized policy πθ . By

an abuse of notation, we introduce the shorthand ℓ(θ) = ℓ(πθ ). The

optimization problem is specified by

min
θ∈Θ

{ℓ(θ)| πθ = Hθ (Q∗), vθ ∈ F} (9)

where Hθ belongs to a parameterized policy class. There are several

possible loss functions that may be employed.

Since we seek a probability distribution πθ , it is natural to formu-

late the loss in terms of the principle of maximum entropy, a tool for

building probability distributions to match observations. It has been

shown in the classical inverse reinforcement learning approach that

specifying the problem in terms of maximum casual entropy [26]–[28]

avoids certain pitfalls—e.g., nonconvexity and learning from subopti-

mal demonstrations. Motivated by this, we consider two related cost

functions: the negative weighted log-likelihood of the demonstrated

behavior and the relative entropy or Kullback–Leibler (KL) divergence

between the empirical distribution of the state–action trajectories and

their distribution under the learned policy. The former is given by

ℓ(θ) =
∑

(x ,u )∈D

w(x, u) log(πθ (u|x))

where w(x, u) may, e.g., be the normalized empirical frequency of

observing (x, u) pairs in D— n(x, u)/N with n(x, u) denoting the

frequency of (x, u) and the latter is given by

ℓ(θ) =
∑

x∈Dx

DKL(π̂(·|x)||πθ (·|x))

where DKL(π||π′) =
∑

i π(i) log(π(i)/π′(i)) is the KL divergence,

Dx ⊂ D is the sequence of observed states, and π̂ is the empirical

distribution on the trajectories of D. These losses are essentially the

same under a reweighting: the weighted log-likelihood can be rewritten

as ℓ(θ) =
∑

x∈Dx
w(x)DK L (π̂n (·|x)||πθ (·|x)), where w(x) is the

frequency of state x normalized by |D| = N . This approach has the

added benefit that it is independent of θ and thus, is not affected by

scaling of the value functions.

It is also common to adopt a smooth map H that operates on the

action-value function space for defining the parametric policy space—

e.g., soft-max or Boltzmann policies [27]–[29] of the form

Hθ (Q)(u|x) =
exp(βQ(x, u, θ))

∑

u ′∈U (x ) exp(βQ(x, u′, θ))
(10)

to the action-value functions Q where β > 0 controls how close

Hθ (Q) is to a greedy policy which we define to be any policy π such

that
∑

u∈U (x ) π(u|x)Q(x, u, θ) = maxu∈U (x ) Q(x, u, θ) at all states

x ∈ X . This is one class of smooth policies dependent on θ through Q;

we use this class in the examples in Section V. We use value functions

such as those described in Section III-A; e.g., if v is the prospect

theory value function defined in (2), then the parameter vector is

θ = (k−, k+ , ζ−, ζ+ , β).

A. Gradient–Based Approach

In this subsection, we show (Theorem 3) that gradient descent is

well-defined in the sense that 1) the derivative is computable via a

contraction map and 2) the update step is in the direction of steepest

descent. This result requires computing the derivative of Q∗(x, u, θ)
with respect to θ. In particular, our result applies to any smooth policy

class Π dependent on θ through Q. For instance, given policies of the

form (10), the derivative with respect to an element θj of θ of the loss

ℓ depends on the policy πθ which, in turn, depends on Q∗(·, ·, θ).

Further, considering the log-based loss functions described above,

log(πθ (u|x)) = β(Q∗(x, u, θ) − ∑

u ′∈U (x ) Q∗(x, u′, θ)) so that we

simply need to show that Dθ j
Q∗ can be computed. We do this by

showing it can be calculated almost everywhere on Θ by solving fixed-

point equations similar to the Bellman-optimality equations. We require

some assumptions on the value function v.
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Algorithm 1: Gradient-Based IRSRL.

1: procedure IRSRL D

2: Initialize: θ ← θ0

3: while k < MAXITER & ‖ℓ(θ) − ℓ(θ−)‖ ≥ δ do

4: θ− ← θ
5: ηk ← LINESEARCH(ℓ(θ−), Dθ ℓ(θ−))
6: θ ← θ− − ηk Dθ ℓ(θ−)T

7: k ← k + 1
8: return θ

Assumption 2: The value function v ∈ C1 (Y × Θ, R) satisfies the

following conditions: (i) v is strictly increasing in y and for each θ ∈ Θ,

there exists a ȳ such that v(ȳ, θ) = v0 ; (ii) for each θ ∈ Θ, on any ball

centered around the origin of finite radius, v is locally Lipschitz in y
with constant Ly (θ) and Lipschitz in θ on Θ with constant Lθ .

Define Ly = maxθ Ly (θ) and L = maxθ {Ly (θ), Lθ }. As before,

let ṽ ≡ v − v0 . The Q–update equation can be re-written as

Qt+1 (xt , ut , θ) =
(

1 − αt

α

)

Qt (xt , ut , θ)

+
αt

α
(α(v(yt (θ), θ) − v0 ) + Qt (xt , ut , θ)) (11)

where

yt (θ) = rt + γ max
u

Qt (xt+1 , u, θ) − Qt (xt , ut , θ)

is the temporal difference, α ∈ (0, min{L−1 , 1}] and we have sup-

pressed the dependence of αt on (xt , ut ). In addition, define the map

T such that

(TQ)(x, u, θ) = αEx ′,w ṽ(y(θ), θ) + Q(x, u, θ)

where

y(θ) = r(x, u, w) + γ max
u ′∈U (x ′)

Q(x′, u′, θ) − Q(x, u, θ).

By the results of the proceeding section, this map is a contraction in Q
for each fixed θ. Let Di ṽ(·, ·) be the derivative of ṽ with respect to the

ith argument where i = 1, 2.

Theorem 3: Assume that v ∈ C1 (Y × Θ, R) satisfies Assump-

tion 2 and that the reward r : X × U × W → R is bounded almost

surely, i.e, |r| < M for M > 0. Let BK (0) be any ball with radius K
satisfying

max{|ṽ(M, θ)|, |ṽ(−M, θ)|}
1 − γ

< K min
(θ ,y (θ ))∈Θ×IK

D1 ṽ(y(θ), θ).

(12)

Then the following statements hold:

a) Q∗ is locally Lipschitz-continuous on BK (0) as a function of

θ—that is, for any (x, u) ∈ X × U , θ, θ′ ∈ Θ, |Q∗(x, u, θ) −
Q∗(x, u, θ′)| ≤ C‖θ − θ′‖ for some C > 0.

b) Except on a set of measure zero, the gradient Dθ Q∗(x, u, θ) ∈
BK (0) is given by the solution of the fixed–point equation

φθ (x, u) = αEx ′,w [D2 ṽ(y(θ), θ) + D1 ṽ(y(θ), θ)

· (γφθ (x′, u∗
x ′) − φθ (x, u))] + φθ (x, u)

(13)

where φθ : X × U → R
d and u∗

x ′ is an action that maximizes

Q(x′, u, θ).

The proof is provided in Appendix D. Theorem 3 gives us a

procedure—namely, a fixed–point equation which is a contraction—

to compute the derivative Dθ j
Q∗ so that, in turn, we can compute

the derivative of ℓ(θ) with respect to θ. Hence, the gradient method

provided in Algorithm 1 for solving the inverse risk-sensitive reinforce-

ment learning problem is well formulated. Note that for each fixed θ,

Fig. 1. (a) Grid World layout. (b) Maximum likelihood paths corre-
sponding to the five behavior profiles of risk-sensitive policies with
various parameter combinations ({k−, k+ , ζ−, ζ+ }) for the prospect
and ℓ-prospect value functions: Behavior 1: {0.1, 1.0, 0.5, 1.5}; Behav-
ior 2: {1.0, 1.0, 1.0, 1.0}; Behavior 3: {1.0, 1.0, 1.1, 0.9}; Behavior 4:
{5.0, 1.0, 1.1, 0.8}; Behavior 5: {5.0, 1.0, 1.5, 0.7}.

condition (12) is the same as condition (7). Moreover, Proposition 1

shows that for the ℓ-prospect value functions and functions v such that

ε < v (y )−v (y ′)
y−y ′ , such a K must exist for any choice of parameters and,

hence, the result of Theorem 3 holds for these functions.

Given that the gradient of Q∗ with respect to θ is computable,

the gradient-based approach in Algorithm 1 simply implements an

update scheme of the form θk+1 = θk − ηk gk , where −gk (θk ) =
−Dθ ℓ(θk )T points in the direction of steepest descent. We also note

that, following [30] this method is amenable to letting gk be the natural

gradient. Indeed, let h(θ) = Hθ (Q) be a mapping from the parame-

ter space to the policy space. Then, gk = G†
θ Dθ ℓ(θk )T be the natural

gradient, where Gθ = Dh(θ)Dh(θ)T is a pseudo-Riemannian metric

at θ induced by (d, Π, h) with d a metric on Π [31, Th. 1]. Since our

intention is to find the best policy πθ matching the empirical policy,

this approach is beneficial as it allows us to update θ by taking a step

in the direction of steepest ascent on the surface (π, ℓ(π)).

V. EXAMPLES

We demonstrate the proposed approach on Grid World. While the for-

mulation of inverse risk-sensitive reinforcement learning is amenable to

learning β, we assume it is known for the purpose of explicitly exploring

the effects of changing the value function parameters on the resulting

policy. In all experiments, γ = 0.95, β = 4, the objective is the nega-

tive log-likelihood of the data, and the valuation function is induced by

an acceptance level set defined by a parameterized value function and

acceptance level of zero. For the prospect and ℓ-prospect value func-

tions, the reference point is zero. These choices are aimed at further

deconflating observations of behavior—in terms of risk-sensitivity and

loss-aversion—that result from different choices of the value function

parameters from characteristics of the MDP or learning algorithm.

The Grid World instance is shown in Fig. 1(a). The agent starts in

the blue box and aims to maximize their reward via the risk-sensitive

reinforcement learning procedure described in Section III over an infi-

nite time horizon. Every square in the grid represents a state, and the

action space is U = {N, NE, E, SE, S, SW, W, NW }. Each action

corresponds to a movement in the specified direction. The black and

green states are absorbing. In all the other states, the agent moves in

the direction specified by their action with probability 0.93 and in any

of the other seven directions with probability 0.01. To make the grid

finite, any action taking the agent out of the grid has probability zero,

and the other actions are re-weighted accordingly. Rewards in the black

and green states are −1 and +1, respectively. In the darker gray states,

the agent gets a reward of −0.1. In all other states, the agent gets a

reward of +0.1.

We conduct two types of experiments: 1) learning the value function

of an agent with the correct model for the value function (e.g., learning
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TABLE I
THE MEAN AND VARIANCE OF THE TV DISTANCE BETWEEN THE TRUE

POLICY AND THE POLICY UNDER THE LEARNED VALUE FUNCTION

a prospect value function when the agent also has a prospect value

function); 2) learning the value function of an agent with the wrong

model for the value function (e.g., learning an ℓ–prospect value function

when the agent has a prospect value function). Performance is measured

via the total variation (TV) distance.

In Experiment A, we trained agents with various parameter combi-

nations of the prospect and ℓ-prospect value functions. The resulting

policies of these agents are classified into five behavior profiles via their

maximum likelihood path: (Behavior 1) profile that is risk-seeking on

gains, (Behavior 2) profile that is risk neutral on gains and losses (this is

also the behavior corresponding to the nonrisk-sensitive reinforcement

learning approach), and (Behaviors 3–5) profiles that are increasingly

risk averse on losses and increasingly weigh losses more than gains.

The parameters are given in Fig. 1(b). We sampled 1,000 trajectories

from the policies of these agents and used the data in the inverse risk-

sensitive reinforcement learning framework. The learned value function

is of the same type as that of the agent. Due to the nonconvexity of the

loss, we use five randomly generated initial parameter choices.

The results we report are associated with the value function that

achieves the minimum value of the objective. In Table I a, we report the

mean and variance of the TV distance between the two policies across

all states. In all the cases the learned value functions produce policies

that correctly match the maximum likelihood path of the true agent.

The performance for learning a prospect value function is consistently

worse than learning an ℓ-prospect function and requires significantly

more computation time. This is most likely due to the fact that the

prospect value function is not Lipschitz around the reference point.

Thus, we have no guarantees of differentiability of Q∗ with respect to

θ for the prospect value function.

Experiment B consists of learning different types of value functions

from the same dataset. The motivation for this experiment is to ensure

that the results and risk-profiles learned were consistent across the

choice of model. We generated a data set with 10 000 samples from an

agent with a prospect value function, and used it to learn prospect and

ℓ-prospect value functions. The mean TV distance between the policy

of the true agent and the policies under the learned value functions

are shown in Table I b. The true agent’s value function has parameters

{k−, k+ , ζ−, ζ+ } = {2.0, 1.0, 0.9, 0.7}, i.e., it is risk-seeking in losses,

risk-averse in gains, and loss averse. Again, the learned value functions

all have policies that replicated the maximum likelihood behavior of the

true agent. We note that the ℓ-prospect and prospect functions perform

as well as each other on this data (likely due to the fact that they have

the same underlying shape), but the ℓ-prospect function showed none

of the numerical issues that we encountered with the prospect function.

Further, learning with the ℓ-prospect function is markedly faster than

with the prospect function. Again, this is most likely due to the fact

that the prospect function is not locally Lipschitz continuous around

the reference point.

VI. DISCUSSION

We present a gradient-based technique for learning risk-sensitive

decision-making models of agents operating in uncertain environments.

Moreover, we introduce a Lipschitz variation of the prospect value func-

tion, which retains the convex–concave structure of the prospect theory

value function while satisfying the assumptions of the theorems we

present on a bounded domain and possessing better numerical proper-

ties. We demonstrate the algorithm’s performance for agents based on

several types of behavioral models on the Grid World benchmark prob-

lem. Looking forward, there are a number of interesting open questions

regarding convergence of the gradient-based procedure (perhaps using

a multitimescale stochastic approximation technique), expanding the

theory to handle multiple value functions to tradeoff between different

outcomes, and estimating the reference point and acceptance level.

APPENDIX

A. Proof of Theorem 1

The proof of Theorem 1 relies on a fixed point theorem.

Theorem 4 ([32, Th. 2.2]): Let (X, d) be a complete metric space

and Br (y) = {x ∈ X | d(x, y) < r} be a ball of radius r > 0 centered

at y ∈ X . Let f : Br (y) → X be a contraction map with contraction

constant h < 1. Further, assume that d(y, f (y)) < r(1 − h). Then, f
has a unique fixed point in Br (y). �

Proof: [Proof of Th. 1. (a)] The map T , defined by (TQ)(x, u) =
αEx ′,w [ṽ(y(Q(x, u), x′))] + Q(x, u), is a contraction with constant

ᾱK = 1 − α(1 − γ)εK where εK = min{Dṽ(y)| y ∈ IK }, IK =
[−M − 2K, M + 2K ] and α ∈ (0, min{1, L−1}] with L the Lips-

chitz constant of v on IK . Indeed, let y(Q(x, u), x′) = r(x, u, w) +
γ maxu ′ Q(x′, u′) − Q(x, u) and define g(x′) = maxu ′ Q(x′, u′). For

any Q ∈ BK (0) we note that the temporal differences are bounded—in

fact, y(Q(x, u), x′) ∈ IK = [−M − 2K, M + 2K ]. For any y′, y ∈
IK , ṽ(y) − ṽ(y′) = ξ(y − y′) for some ξ ∈ [εK , L] by the monotonic-

ity assumption on v. Then, for any Q1 , Q2 ∈ BK (0),

(TQ1 − TQ2 )(x, u)

= αEx ′,w [ṽ(y(Q1 (x, u), x′)) − ṽ(y(Q2 (x, u), x′))] + Q1 (x, u)

− Q2 (x, u)

= αEx ′,w [ξx ′,w (γg1 (x
′) − γg2 (x

′) − Q1 (x, u) + Q2 (x, u))]

+ Q1 (x, u) − Q2 (x, u)

= αγEx ′,w [ξx ′,w (g1 (x
′)−g2 (x

′))] + (1 − αEx ′,w [ξx ′,w ])

· (Q1 (x, u) − Q2 (x, u)).

so that |(TQ1 − TQ2 )(x, u)| ≤ (1 − α(1 − γ)εK )‖Q1 − Q2‖∞. We

claim that the constant ᾱK = 1 − α(1 − γ)εK < 1. Indeed, recall that

0 < α ≤ min{1, L−1} so that if α = L−1 , then ᾱK < 1 since L =
maxy∈IK

Dṽ(y) and εK = miny∈IK
Dṽ(y). On the other hand, if

α = 1, then 1 ≤ L−1 ≤ (εK )−1 so that εK ≤ 1 which, in turn, implies

that ᾱK < 1. If 0 < α < min{1, L−1}, then ᾱK < 1 follows trivially

from the implications in the above two cases. Thus, T is a contraction

on BK (0).

Proof: [Proof of Th. 1. (b)] Let K be chosen such that

max{|ṽ(M )|, |ṽ(−M )|}
1 − γ

< K min
y∈IK

Dṽ(y). (14)

The map T applied to the zero map, 0 ∈ BK (0), is strictly less

than K(1 − ᾱK ). Indeed, for any α ∈ (0, min{1, L−1}], ‖T (0)‖ ≤
α max{|ṽ(M )|, |ṽ(−M )|} < (1 − γ)KεK α since ṽ is increasing by

assumption. Since T is a contraction, combining the above with the fact

that (1 − γ)KεK α = K(1 − ᾱK ), the assumptions of Theorem 4 hold

and, hence there is a unique fixed point Q∗ ∈ BK (0). �
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B. Proof of Theorem 2

Proof: Following [33], let (i, a) index the state–action pairs in

X × U . Consider

Qt+1 (i, a) =

(

1 − αt (i, a)

α

)

Qt (i, a)

+
αt (i, a)

α
(TQt (i, a) + dt (i, a))

where dt (i, a) = α(ṽ(yt (i, a)) − Ex ′ ,w ṽ(yt (i, a))) is a random noise

term and αt is the learning rate such that αt (i, a) = 0 if Qt (i, a) is

not updated, i.e., αt (i, a) = 0 if 1{xt = i, ut = a} = 0. Let Ft =
{(Qk (i, a), αk (i, a))t

k=0 , (dℓ (i, a))t−1
ℓ=0 , (i, a) ∈ X × U}. Since we

have already shown the map T is a contraction, following [25],

we simply need to show that Ex ′ ,w [dt |Ft ] = 0 and Ex ′ ,w [d2
t |Fk ] ≤

A + B‖Qt‖∞ for some constants A and B. Clearly, Ex ′ ,w [dt (i)] = 0.

It is also the case that

Ex ′,w [d2
t |Ft ] ≤ α2

Ex ′,w [ṽ(yt )
2 |Ft ] − α2 (Ex ′ ,w [ṽ(yt )|Ft ])

2

≤ α2
Ex ′,w [ṽ(yt )

2 |Ft ].

Since the rewards are bounded by M , |yt | ≤ M + 2‖Qt‖∞. Moreover,

ṽ is Lipschitz on IK so that |ṽ(yt )| ≤ |ṽ(0)| + L(M + 2‖Qt‖∞).

Applying the triangle inequality, we get that (|ṽ(0)| + L(M +
2‖Qt‖∞))2 ≤ 2(|ṽ(0)| + LM )2 + 8L2‖Qt‖2

∞ so that

α2
Ex ′ ,w [ṽ(yt )

2 |Ft ] ≤ 2α2 (|ṽ(0)| + 2M )2 + 8α2L2‖Qt‖∞.

Note this is stronger than [25, Assum. A.3]. Since T is a contrac-

tion, we can construct a local Lyapunov function: V (Qt (x, u)) =
1
2
‖Qt (x, u) − Q∗(x, u)‖2

2 with

V̇ (Qt (x, u)) = 2(Qt (x, u) − Q∗(x, u))(TQt (x, u) − TQ∗(x, u))

− 2‖Qt (x, u) − Q∗(x, u)‖2

< 2(α − 1)‖Qt (x, u) − Q∗(x, u)‖2 < 0.

Hence, applying [25, Cor. 1.1], we get convergence with high proba-

bility given some ε > 0, i.e., suppressing the dependence on (i, a) ∈
X × U , there exists constants λ, C1 , C2 > 0 such that

Pr(‖Qt − Q∗‖ ≤ ε, ∀t ≥ T + 1) ≥ 1 − δ(ε)

where, by letting βn = max0≤k≤n−1{exp(−λ
∑n−1

i= k+1 αi )αk },

δ(ε) =

{
∑∞

n =0 C1e
−C 2

√
ε/

√
α −

∑∞
n =0 C1e

−C 2 ε2 /βn , ε ≤ 1
∑∞

n =0 C1e
−C 2

√
ε/

√
α t − ∑∞

n =0 C1e
−C 2 ε/βn , ε > 1

�

We refer the reader to [25, Cor. 1.1] for a more explicit characteri-

zation of the constants.

C. Proof of Proposition 1

Proof: [Proof of Proposition 1.a] Suppose v satisfies Assumption

1 and that for some ε > 0, ε < v (y )−v (y ′)
y−y ′ for all y �= y′. Then there

exists a value of K , say K̄ , such that (8) holds for all K > K̄ . Indeed

since minK > 0 εK > ε, for all K satisfying
m ax{|ṽ (M ) |, |ṽ (−M ) |}

ε (1−γ )
< K ,

(8) must hold. �

Proof: [Proof of Proposition 1.b] For ζ+ , ζ− ≥ 1 and any choice

of k−, k+ , minK > 0 εK > ε > 0 where ε = min{limy ↑0 Dṽ(y),
limy ↓0 Dṽ(y)}. Therefore, with ζ+ , ζ− ≥ 1, for any K such that
m ax{|ṽ (M ) |, |ṽ (−M ) |}

ε (1−γ )
< K , (8) must hold. For the case when either ζ+ <

1 or ζ− < 1 or both, we note that miny∈IK
Dṽ(y) = min{miny∈IK

Dṽ(y), ε}. so that we need only show that for ζ+ < 1, there exists a

K such that

max{|ṽ(M )|, |ṽ(−M )|}
1 − γ

< KDṽ(2K + M ) (15)

and, similarly for ζ− < 1, there exists a K such that the left-hand

side of (15) is less than KDṽ(−2K − M ). Without loss of generality,

we show (15) must hold for ζ+ < 1 and reference point y0 = 0 (the

proof for ζ− < 1 follows an exactly analogous argument). Plugging

Dṽ(2K + M ) = k+ ζ+ (2K + M − y0 + ǫ)ζ+ −1 in and rearranging,

we simply need to show that there exists a K such that

max{|ṽ(M )|, |ṽ(−M )|}
(1 − γ)ξ+ k+

< K(2K + M − y0 + ǫ)ξ+ −1

Since the right-hand side is a function of K that is zero at K = 0
and approaches infinity as K → ∞, and the left-hand side is a finite

constant, there is some K̄ such that for all K > K̄ , the above holds.

Thus, for the ℓ-prospect value function, our assumptions are satisfied

and there always exists a value of K to choose in Theorem 1.b. �

D. Proof of Theorem 3

Let U be a Banach space and U ∗ its dual. The Fréchet subdifferential

of f : U → R at u ∈ U , denoted by ∂f (u) is the set of u∗ ∈ U ∗ such

that limh→0 infh �=0 ‖h‖−1 (f (u + h) − f (u) − 〈u∗, u〉) ≥ 0.

Proposition 2 ([31], [34]): For a finite family (fi )i∈I of real-

valued functions (where I is a finite index set) defined on U , let f (u) =
maxi∈I fi (u). If u∗ ∈ ∂fi (u) and fi (u) = f (u), then u∗ ∈ ∂f (u).

Proposition 3 ([31], [35]): Consider (fn )n∈N , a pointwise con-

vergent sequence to f such that fn : U → R. Let u ∈ U , u∗
n ∈

∂fn (u) ⊂ U ∗. Suppose that (u∗
n )n∈N is weak∗–convergent to u∗ and

is bounded, and that at u, for any ε > 0, ∃N > 0, δ > 0 such that

for any n ≥ N , h ∈ Bδ (0), a δ–ball around 0 ∈ U , fn (u + h) ≥
fn (u) + 〈u∗

n , h〉 − ε‖h‖. Then u∗ ∈ ∂f (u). �

Proof: [Proof of Theorem 3.a.] Let Q0 (x, u, θ) ≡ 0. Then it is

trivial that Q0 (x, u, θ) is locally Lipschitz in θ on Θ. Supposing that

Qt (x, u, θ) is Lt –locally Lipschitz in θ, then we need to show that

TQt (x, u, θ) is locally Lipschitz. Since ṽ ≡ v − v0 , it also satisfies

Assumption 2. Let Ly = max{Ly (θ)|θ ∈ Θ} and define gt (x, θ) =
maxu ′ Qt (x, u′, θ). Since Qt is assumed Lipschitz with constant Lt ,

so is gt . Let ∆TQt (θ, θ′) = TQt (θ) − TQt (θ
′) and ∆Qt (θ, θ′) =

Qt (θ) − Qt (θ
′). Suppressing the dependence on (x, u),

∆TQt (θ, θ′) = αEx ′ ,w [ṽ(y(θ), θ) − ṽ(y(θ′), θ) + ṽ(y(θ′), θ)

− ṽ(y(θ′), θ′)] + ∆Qt (θ, θ′).

Let ε̃K = min(θ ,y (θ ))∈Θ×IK
D1 ṽ(y(θ), θ). Due to the monotonicity

of ṽ in y, we know that for all y1 , y2 there exists ξ ∈ [ε̃K , Ly ] such

that ṽ(y1 , θ) − ṽ(y2 , θ) = ξ(y1 − y2 ). Hence,

∆TQt (θ, θ′)

= αEx ′,w
[

ξx ′,w (y(θ) − y(θ′)) + ṽ(y(θ′), θ) − ṽ(y(θ′), θ′)
]

+ ∆Qt (θ, θ′)

= αγEx ′,w [ξx ′,w (gt (x
′, θ) − gt (x

′, θ′))] − αEx ′ ,w [ξx ′,w ]

·∆Qt (θ, θ′) + αEx ′ ,w [ṽ(y(θ′), θ) − ṽ(y(θ′), θ′)] + ∆Qt (θ, θ′)

= (1 − αEx ′,w [ξx ′,w ])∆Qt (θ, θ′) + αγEx ′,w [ξx ′,w (gt (x
′, θ)

− gt (x
′, θ′))] + αEx ′ ,w [ṽ(y(θ′), θ) − ṽ(y(θ′), θ′)]
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so that

‖∆TQt (θ, θ′)‖ ≤ ((1 − α(1 − γ)Ex ′ ,w [ξx ′ ,w ])Lt + αLθ )‖θ − θ′‖

≤ ((1 − α(1 − γ)ε̃K )Lt + αLθ )‖θ − θ′‖.

Since ᾱK = 1 − α(1 − γ)ε̃K , TQt (·, ·, θ) is Lt+1 –locally Lipschitz

with Lt+1 = ᾱLt + αLθ . With L0 = 0, by iterating, we get that

Lt+1 = (ᾱt + · · · + ᾱ + 1)αLθ . As stated in Section IV-A, T is a

contraction so that T n Q0 → Q∗
θ = Q∗(·, ·, θ) as n → ∞. Hence, by

the above, Q∗
θ is αLθ /(1 − ᾱK )–Lipschitz continuous.

Proof: [Proof of Theorem 3.b.] Consider a fixed θ ∈ Θ ⊂ R
d .

Since by part (a), Q∗
θ is locally Lipschitz in θ, Rademacher’s

Theorem (see, e.g., [36, Th. 3.1.6]) tells us it is differentiable al-

most everywhere (except a set of Lebesgue measure zero). We now

show that the operator S acting on the space of functions φθ :
X × U → R

d and defined by (Sφθ )(x, u) = αEx ′,w [D2 ṽ(y(θ), θ) +
D1 ṽ(y(θ), θ) · (γφθ (x′, u∗

x ′) − φθ (x, u))] + φθ (x, u) where u∗
x ′ is an

action that maximizes Q(x′, u, θ) is a contraction since, by Proposi-

tion 2, a subdifferential of the pointwise maximum of functions is equal

to the subdifferential of one of the one that achieves the maximum.

Indeed,

(Sφθ − Sφ′
θ )(x, u)

= αEx ′,w [D1 ṽ(y(θ), θ)
(

γ(φθ (x′, u∗
x ′) − φ′

θ (x′, u∗
x ′))

− (φθ (x, u) − φ′
θ (x, u))

)

] + φθ (x, u) − φ′
θ (x, u)

≤ (1 − α(1 − γ)Ex ′,w [D1 ṽ(y(θ), θ)])‖φθ − φ′
θ ‖∞.

Since we have fixed θ, let ε̃K ,θ = miny∈IK
D1 ṽ(y, θ). Then, by

Assumption 1, ‖(Sφθ − Sφ′
θ )(x, u)‖ ≤ (1 − α(1 − γ)ε̃K ,θ )‖φθ −

φ′
θ ‖∞. Note that ᾱK = 1 − α(1 − γ)ε̃K ,θ < 1 for the same reasons

as given in the proof of Theorem 1 since α ∈ (0, min{1, L−1}]. Note

that S operates on each of the d components of θ separately and hence,

it is a contraction when restricted to each individual component. Then,

for each θ, S has a unique fixed point. In particular, consider the se-

quence φθ ,k such that φθ ,0 = 0 and φθ ,k+1 = Sφθ ,k . For large enough

k, φθ ,k+1 = Sφθ ,k . Applying the contraction mapping theorem (see,

e.g., [37, Th. 3.18]) we get that limk→∞ Sk φ0 converges to a unique

fixed point.

Applying Proposition 2 by induction, φθ ,k (x, u) ∈ ∂θ Qk (x, u, θ).

Indeed, it is obvious for k = 0. Suppose it holds for k, i.e., φθ ,k (x, u)
∈ ∂θ Qk (x, u, θ). Then, φθ ,k+1 (x, u) = Sφθ ,k (x, u) ∈ S(∂θ Qk (x,
u, θ)) and S(∂θ Qk (x, u, θ)) ⊂ ∂θ (TQk ) = ∂θ Qk+1 (x, u, θ) by the

definition of the maps and subdifferentiation. Hence, φθ ,k+1 (x, u) ∈
∂θ Qk+1 (x, u, θ). By Proposition 3, the limit is a subdifferential of Q∗

θ

since ṽ is Lipschitz on Y and Θ and the derivatives of ṽ are uniformly

bounded. By part (a), Q∗
θ is locally Lipschitz in θ so that it is differen-

tiable almost everywhere [36, Th. 3.1]. Since Q∗
θ is differentiable, its

subdifferential is its derivative. �
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