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Abstract. We introduce a general framework for competitive gradient-based learning that encompasses a wide
breadth of multiagent learning algorithms, and analyze the limiting behavior of competitive gradient-
based learning algorithms using dynamical systems theory. For both general-sum and potential
games, we characterize a nonnegligible subset of the local Nash equilibria that will be avoided if each
agent employs a gradient-based learning algorithm. We also shed light on the issue of convergence to
non-Nash strategies in general- and zero-sum games, which may have no relevance to the underlying
game, and arise solely due to the choice of algorithm. The existence and frequency of such strategies
may explain some of the difficulties encountered when using gradient descent in zero-sum games as,
e.g., in the training of generative adversarial networks. To reinforce the theoretical contributions,
we provide empirical results that highlight the frequency of linear quadratic dynamic games (a
benchmark for multiagent reinforcement learning) that admit global Nash equilibria that are almost
surely avoided by policy gradient.
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1. Introduction. With machine learning algorithms increasingly being deployed in real
world settings, it is crucial that we understand how the algorithms can interact, and the
dynamics that can arise from their interactions. In recent years, there has been a resurgence
in research efforts on multiagent learning, and learning in games. The recent interest in
adversarial learning techniques also serves to show how game theoretic tools can be being used
to robustify and improve the performance of machine learning algorithms. Despite this activity,
however, machine learning algorithms are still being treated as black-box approaches and being
naively deployed in settings where other algorithms are actively changing the environment. In
general, outside of highly structured settings, there exists no guarantees on the performance
or limiting behaviors of learning algorithms in such settings.

Indeed, previous work on understanding the collective behavior of coupled learning algo-
rithms, either in competitive or cooperative settings, has mainly looked at games where the
global structure is well understood like bilinear games [44, 19, 25, 23], convex games [27, 40],
or potential games [28], among many others. Such games are more conducive to the statement
of global convergence guarantees since the assumed global structure can be exploited.
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In games with fewer assumptions on the players’ costs, however, there is still a lack of
understanding of the dynamics and limiting behaviors of learning algorithms. Such settings are
becoming increasingly prevalent as deep learning is increasingly being used in game theoretic
settings [17, 15, 1, 49].

Gradient-based learning algorithms are extremely popular in a variety of these multiagent
settings due to their versatility, ease of implementation, and dependence on local information.
There are numerous recent papers in multiagent reinforcement learning that employ gradient-
based methods (see, e.g., [1, 15, 49]), yet even within this well-studied class of learning al-
gorithms, a thorough understanding of their convergence and limiting behaviors in general
continuous games is still lacking.

Generally speaking, in both the game theory and the machine learning communities, two
of the central questions when analyzing the dynamics of learning in games are the following:

Q1. Are all attractors of the learning algorithms employed by agents’ equilibria relevant to
the underlying game?
Q2. Are all equilibria relevant to the game also attractors of the learning algorithms agents
employ?
In this paper, we provide some answers to the above questions for the class of gradient-based
learning algorithms by analyzing their limiting behavior in general continuous games. In
particular, we leverage the continuous time limit of the more naturally discrete multiagent
learning algorithms. This allows us to draw on the extensive theory of dynamical systems and
stochastic approximation to make statements about the limiting behaviors of these algorithms
in both deterministic and stochastic settings. The latter is particularly relevant since it is
common for stochastic gradient methods to be used in multiagent machine learning contexts.

Analyzing gradient-based algorithms through the lens of dynamical systems theory has
recently yielded new insights into their behavior in the classical optimization setting [48, 42,
22]. We show that a similar type of analysis can also help to understand the limiting behaviors
of gradient-based algorithms in games. We remark, however, that there is a fundamental
difference between the dynamics that are analyzed in much of the single-agent, gradient-based
learning and optimization literature and the ones we analyze in the competitive multiagent
case: the combined dynamics of gradient-based learning schemes in games do not necessarily
correspond to a gradient flow. This may seem to be a subtle point, but it it turns out to be
extremely important.

Gradient flows admit desirable convergence guarantees, e.g., almost sure convergence to
local minimizers, due to the fact that they preclude flows with the worst geometries [39].
In particular, they do not exhibit nonequilibrium limiting behavior such as periodic orbits.
Gradient-based learning in games, on the other hand, does not preclude such behavior. More-
over, as we show, asymmetry in the dynamics of gradient-play in games can lead to surprising
behaviors such as nonrelevant limiting behaviors being attracting under the flow of the game
dynamics and relevant limiting behaviors, such as a subset of the Nash equilibria being almost
surely avoided.

1.1. Related work. The study of continuous games is quite extensive (see, e.g., [2, 30]),

though in large part the focus has been on games admitting a fair amount of structure. The
behavior of learning algorithms in games is also well studied (see, e.g., [16]). In this section,
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we comment on the most relevant prior work and defer a more comprehensive discussion of
our results in the context of prior work to section 6.

As we noted, previous work on learning in games in both the game theory literature, and
more recently from the machine learning community, has largely focused on addressing (Q1)
whether all attractors of the learning dynamics are game-relevant equilibria, and (Q2) whether
all game-relevant equilibria are also attractors of the learning dynamics. The primary type
of game-relevant equilibrium considered in the investigation of these two questions is a Nash
equilibrium.

The majority of the existing work has focused on Q1. In fact, a large body of prior work
focuses on games with structures that preclude the existence of non-Nash equilibria. Con-
sequently, answering Q1 reduces to analyzing the convergence of various learning algorithms
(including gradient-play) to the unique Nash equilibrium or the set of Nash equilibria. This is
often shown by exploiting the game structure. Examples of classes of games where gradient-
play has been well studied are potential games [28], concave or monotone games [40, 8, 27], and
gradient-play over the space of stochastic policies in two-player finite-action bilinear games
[44]. In the latter setting, other gradient-like algorithms such as multiplicative weights have
also been studied fairly extensively [19], and have been shown to converge to cycling behaviors.

Some works have also attempted to address Q1 in the context of gradient-play in two-player
zero-sum games. Concurrently with this paper, for a general class of “sufficiently smooth”
two-player, zero-sum games it was shown that there exist stationary points for gradient-play
that are non-Nash [12].} In such games, it has also been shown that gradient-play can converge
to cycles (see, e.g., [25, 47, 19]).

There is also related work in more general games on the analysis of when Nash equilibria
are attracting for gradient-based approaches (i.e., Q2). Sufficient conditions for this to occur
are the conditions for stable differential Nash equilibria introduced in [34, 35, 36] and the
condition for variational stability later analyzed in [27]. We remark that these conditions are
equivalent for the classes of games we consider. Neither of these works give conditions under
which Nash equilibria are avoided by gradient-play or comment on other attracting behaviors.

Expanding on this rich body of literature (only the most relevant of which is covered in
our short review), in this paper we provide answers to Q1 without imposing structure on the
game outside regularity conditions on the cost functions by exploiting the observation that
gradient-based learning dynamics are not gradient flows. We also provide answers to Q2 by
demonstrating that a nontrivial set of games admit Nash equilibria that are almost surely
avoided by gradient-play. We give explicit conditions for when this occurs. Using similar
analysis tools, we also provide new insights into the behavior of gradient-based learning in
structured classes of games such as zero-sum and potential games.

1.2. Contributions and organization. We present a general framework for modeling com-
petitive gradient-based learning that applies to a broad swath of learning algorithms. In sec-
tion 3, we draw connections between the limiting behavior of this class of algorithms and game
theoretic and dynamical systems notions of equilibria. In particular, we construct general-
sum and zeros-sum games that admit non-Nash attracting equilibria of the gradient dynamics.

!This paper was under review at the time that [12] became publicly available. Our results show the existence
of these non-Nash equilibria and attracting cycles in both general-sum and zero-sum games.
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Such points are attracting under the learning dynamics, yet at least one player—and poten-
tially all of them—has a direction in which they could unilaterally deviate to decrease their
cost. Thus, these non-Nash equilibria are of questionable game theoretic relevance and can
be seen as artifacts of the players’ algorithms.

In section 4, we show that policy gradient multiagent reinforcement learning (MARL), gen-
erative adversarial networks (GANs), gradient-based multiagent multiarmed bandits, among
several other common multiagent learning settings, conform to this framework. The frame-
work is amenable to tools for analysis from dynamical systems theory.

Also in section 4, we show that a subset of the local Nash equilibria in general-sum games
and potential games is avoided almost surely when each player employs a gradient-based
algorithm. We show that this holds in two broad settings: the full information setting when
each player has oracle access to their gradient but randomly initializes their first action, and
a partial information setting where each player has access to an unbiased estimate of their
gradient.

Thus, we provide a negative answer to both Q1 and Q2 for n-player general-sum games,
and highlight the nuances present in zero-sum and potential games. We also show that the
dynamics formed from the individual gradients of agents’ costs are not gradient flows. This
in turn implies that competitive gradient-based learning in general-sum games may converge
to periodic orbits and other nontrivial limiting behaviors that arise in, e.g., chaotic systems.

To support the theoretical results, we present empirical results in section 5 that show that
policy gradient algorithms avoid global Nash equilibria in a large number of linear quadratic
(LQ) dynamic games, a benchmark for MARL.

We conclude in section 6 with a discussion of the implications of our results and some
links with prior work as well as some comments on future directions.

2. Preliminaries. Consider n agents indexed by Z = {1,...,n}. Each agent i € Z has
their own decision variable x; € X;, where X; is their finite-dimensional strategy space of
dimension m;. Define X = X x --- x X, to be the finite-dimensional joint strategy space
with dimension m = ) ..;m;. Each agent is endowed with a cost function f; € C*(X,R)
with s > 2 and such that f; : (x;,z_;) — fi(z;,x—;), where we use the notation x = (x;,z_;)
to make the dependence on the action of the agent z;, and the actions of all agents excluding
agent i, r_; = (T1,...,%i—1,Tit1,...,Ty) explicit. The agents seek to minimize their own
cost, but only have control over their own decision variable x;. In this setup, agents’ costs are
not necessarily aligned with one another, meaning they are competing.

Given the game G = (f1,..., fn), agents are assumed to update their strategies simulta-
neously according to a gradient-based learning algorithm of the form

(2'1) LTit+1 = Lot — ’Yz',thi(%',t, $—i,t)a

where ;¢ is agent ¢’s step size at iteration t.
We analyze the following two settings:
1. Agents have oracle access to the gradient of their cost with respect to their own
choice variable, i.e., hi(xis, x—it) = D;fi(xit,x—it), where D;f; = 0f;/0x; denotes
the derivative of f; with respect to x;.
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Figure 1. Links between the equilibria of generic continuous games G and their properties under the gradient
dynamics & = —w(x).

2. Agents have an unbiased estimator of their gradient, i.e., hi(xi s, x—it) = D;fi(xis, x_it)
+ wj ¢41, where {w;;} is a zero mean, finite variance stochastic process.
We refer to the former setting as deterministic gradient-based learning and the latter setting as
stochastic gradient-based learning. Assuming that all agents are employing such algorithms,
we aim to analyze the limiting behavior of the agents’ strategies. To do so, we leverage the
following game theoretic notion of a Nash equilibrium.

Definition 2.1. A strategy x € X is a local Nash equilibrium for the game (f1,..., fn) if, for
each i € I, there exists an open set W; C X; such that x; € W; and fi(zi,x—;) < fi(z}, x_;) for
all z; € W;. If the above inequalities are strict, then we say x is a strict local Nash equilibrium.

The focus on local Nash equilibria is due to our lack of assumptions on the agents’ cost
functions. If W; = X; for each i, then a local Nash equilibrium z is a global Nash equilibrium.
This holds in, e.g., the bimatrix games and the L.Q games we analyze in section 5. Depending
on the agents’ costs, a game (f1,..., f,) may admit anywhere from one to a continuum of
local or global Nash equilibria; or none at all.

3. Linking games and dynamical systems. In this section, we draw links between the
limiting behavior of dynamical systems and game theoretic notions of equilibria in three
broad classes of continuous games. For brevity, the proofs of the propositions in this section
are supplied in Appendix A. A high-level summary of the links we draw is shown in Figure 1.

Define w(z) = (D1f1(z), ..., Dnfn(z)) to be the vector of player derivatives of their own
cost functions with respect to their own choice variables. When each player is employing a
gradient-based learning algorithm, the joint strategy of the players, (in the limit as the agents’
step sizes go to zero) follows the differential equation

&= —w(x).
A point x € X is said to be an equilibrium, critical point, or stationary point of the

dynamics if w(x) = 0. Stationary points of & = —w(x) are joint strategies from which, under
gradient-play, the agents do not move. We note that w(z) = 0 is a necessary condition for a
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point x € X to be a local Nash equilibrium [36]. Hence, all local Nash equilibria are critical
points of the joint dynamics & = —w(x).

Central to dynamical systems theory is the study of limiting behavior and its stability
properties. A classical result in dynamical systems theory allows us to characterize the stability
properties of an equilibrium z* by analyzing the Jacobian of the dynamics at *. The Jacobian
of w is defined by

Difi(z) -+ Dpufilx)

Duw(x) = : :
Since Dw is a matrix of second derivatives, it is sometimes referred to as the “game Hessian.”
Similarly to the Hessian matrix of a gradient flow, Dw allows us to further characterize the
critical points of w by their properties under the flow of & = —w(z). Let \;(x) € spec(Dw(x))
fori € {1,...,m} denote the eigenvalues of Dw at x, where Re(A;(x)) < -+ < Re(A\p(z)), that
is, A1(x) is the eigenvalue with the smallest real part. Of particular interest are asymptotically
stable equilibria.

Definition 3.1. A point x € X 1is a locally asymptotically stable equilibrium of the continu-
ous time dynamics & = —w(z) if w(z) = 0 and Re(X) > 0 for all X € spec(Dw(z)).

Locally asymptotically stable equilibria have two properties of interest. First, they are
isolated, meaning that there exists a neighborhood around them in which no other equilibria
exist. Second, they are exponentially attracting under the flow of & = —w(x), meaning that if
agents initialize in a neighborhood of a locally asymptotically stable equilibrium z* and follow
the dynamics described by & = —w(z), they will converge to z* exponentially fast [41]. This,
in turn, implies that a discretized version of & = —w(z), namely,

(3-1) Tt41 = Tt — ”Yw(wt),

converges locally for appropriately selected step size v at a rate of O(1/t). Such results
motivate the study of the continuous time dynamical system # = —w(z) in order to understand
convergence properties of gradient-based learning algorithms of the form (2.1).

Another important class of critical points of a dynamical system are saddle points.

Definition 3.2. A point x € X is a saddle point of the dynamics & = —w(x) if w(z) =0
and Ai(x) € spec(Dw(x)) is such that Re(A(z)) < 0. A saddle point such that Re(\;) < 0 for
ie{l,....0} and Re(\j) >0 for j e {{+1,...,m} with 0 < £ < m is a strict saddle point
of the continuous time dynamics © = —w(x).

Strict saddle points are especially relevant to our analysis since their neighborhoods are
characterized by stable and unstable manifolds [41]. When the agents evolve according to
the dynamics solely on the stable manifold, they converge exponentially fast to the critical
point. However, when they evolve solely on the unstable manifold, they diverge from the
equilibrium exponentially fast. Agents whose strategies lie on the union of the two manifolds
asymptotically avoid the equilibrium. We make use of this general fact in section 4.1.

To better understand the links between the critical points of the gradient dynamics and
the Nash equilibria of the game, we make use of an equivalent characterization of strict local
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Nash that leverages first and second order conditions on player cost functions. This makes
them simpler objects to link to the various dynamical systems notions of equilibria than local
Nash equilibria.

Definition 3.3 (see [34, 36]). A point x € X is a differential Nash equilibrium for the game
defined by (f1,..., fn) if w(x) =0 and D?fi(z) = 0 for each i € T.

In [35], it was shown that local Nash equilibria are generically differential Nash equilibria,
where det(Dw(x)) # 0 (i.e., Dw is nondegenerate). Thus, in the space of games where
the agents’ costs are at least twice differentiable, the set of games that admit local Nash
equilibria that are not nondegenerate differential Nash equilibria is of measure zero [35]. In
[35] it was also shown that nondegenerate Nash equilibria are structurally stable, meaning
that small perturbations to the agents’ cost functions will not change the fundamental nature
of the equilibrium. This also implies that gradient-play with slightly biased estimators of the
gradient will not have vastly different behaviors in neighborhoods of equilibria.

Given these different equilibrium notions of the learning dynamics and the underlying
game, let us define the following sets which will be useful in stating the results in the fol-
lowing sections. For a game G = (fi,..., fn), denote the sets of strict saddle points and
locally asymptotically stable equilibria of the gradient dynamics, & = —w(x), as SSP(w) and
LASE(w), respectively, where we recall that w(x) = (D1 fi(x), ..., Dy fn(x)). Similarly, denote
the set of local Nash equilibria, differential Nash equilibria, and nondegenerate differential
Nash equilibria of G as LNE(G), DNE(G), and NDDNE(G), respectively. As previously mentioned,
NDDNE(G) = LNE(G) in almost all continuous games. The key takeaways of this section are
summarized in Figure 1.

3.1. General-sum games. We first analyze the properties of local Nash equilibria under
the joint gradient dynamics in n-player general-sum games.

Proposition 3.4. A nondegenerate differential Nash equilibrium is either a locally asymp-
totically stable equilibrium or a strict saddle point of © = —w(x), i.e., NDDNE(G) C SSP(w) U
LASE(w).

Locally asymptotically stable differential Nash equilibria satisfy the notion of variational
stability introduced in [27]. In fact, a simple analysis shows that the definitions of varia-
tionally stable equilibria and locally asymptotically stable differential Nash equilibria [34] are
equivalent in the games we consider, i.e., games where each players’ cost is at least twice
continuously differentiable. We remark that, from the definition of asymptotic stability, the
gradient dynamics have an O(1/t) convergence rate in the neighborhood of such equilibria.

An important point to make is that not every locally asymptotically stable equilibrium of
& = —w(z) is a nondegenerate differential Nash equilibrium. Indeed, the following proposi-
tion provides an entire class of games whose corresponding gradient dynamics admit locally
asymptotically stable equilibria that are not local Nash equilibria.

Proposition 3.5. In the class of general-sum continuous games, there exists a continuum of
games containing games G such that LASE(w) ¢ NDDNE(G) and, moreover, LASE(w) ¢ LNE(G).
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Proof. Consider a two-player game G = (f1, f2) on R? where

a d
fi(z1, 22) = 5% +brize, and fo(xy,22) = 537% + cr119

for constants a, b, ¢,d € R. The Jacobian of w is given by

(3.2) Deo(ar, x2) = [CC‘ Z

:| \v/(l'l,fl:Q) S R2.

If a > 0 and d < 0, then the unique stationary point x = (0,0) is neither a differential
Nash nor a local Nash equilibrium since the necessary conditions are violated (i.e., d < 0).
However, if a > —d and ad > cb, the eigenvalues of Dw have positive real parts and (0,0)
is asymptotically stable. Further, this clearly holds for a continuum of games. Thus, the
set of locally asymptotically stable equilibria that are not Nash equilibria may be arbitrarily
large. |

The preceding proposition shows that there exist attracting critical points of the gradient
dynamics in general-sum continuous games that are not Nash equilibria and may not be even
relevant to the game. Thus, this provides a negative answer to Q2 (whether all attracting
equilibria in general games are game relevant for the learning dynamics).

Remark 3.6. We note that, by definition, the non-Nash locally asymptotically stable equi-
libria (or non-Nash equilibria) do not satisfy the second order conditions for Nash equilibria.
Thus, at these joint strategies, at least one player—and maybe all of them—has a direction
in which they would unilaterally deviate if they were not using gradient descent. As such, we
view convergence to these points to be undesirable.

3.2. Zero-sum games. Let us now restrict our attention to two-player zero-sum games,
which often arise when training GANSs, in adversarial learning, and in MARL [17, 29, 9]. In
such games, one player can be seen as minimizing f with respect to their decision variable
and the other as minimizing — f with respect to theirs. The following proposition shows that
all differential Nash equilibria in two-player zero-sum games are locally asymptotically stable
equilibria under the flow of & = —w(x).

Proposition 3.7. For an arbitrary two-player zero-sum game, (f,—f) on R™, if x is a
differential Nash equilibrium, then x is both a nondegenerate differential Nash equilibrium
and a locally asymptotically stable equilibrium of & = —w(x), that is, DNE(G) = NDDNE(G) C
LASE(w).

This result guarantees that the differential Nash equilibria of zero-sum games are isolated
and exponentially attracting under the flow of © = —w(x). This in turn guarantees that
simultaneous gradient-play has a local linear rate of convergence to all local Nash equilibria
in all zero-sum continuous games. Thus, the answer to Q1 is the context of zero-sum games
is “yes,” since all Nash equilibria are attracting for the gradient dynamics.

The converse of the preceding proposition, however, is not true. Not every locally asymp-
totically stable equilibrium in two-player zero-sum games is a nondegenerate differential Nash
equilibrium. Indeed, there may be many locally asymptotically stable equilibria in a zero-sum
game that are not local Nash equilibria. The following proposition highlights this fact.
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Proposition 3.8. In the class of zero-sum continuous games, there exists a continuum of
games such that for each game G, LASE(w) ¢ DNE(G) C LNE(G).

Proof. Consider the two-player zero-sum game (f, —f) on R?, where
a

f(wh‘r?) = 9

and a, b, c € R. The Jacobian of w is given by

C

x3 4+ bryze + 23;%,

Dw(xy1,x9) = [Z lj Y (z1,22) € R2.

If a > ¢ > 0 and b? > ac, then Dw(x1,x2) has eigenvalues with strictly positive real part, but
the unique stationary point is not a differential Nash equilibrium, since —c < 0, and, in fact,
is not even a Nash equilibrium. Indeed,

—£(0,0) > —f(0,22) = —gxg V g # 0.

Thus, there exists a continuum of zero-sum games with a large set of locally asymptotically
stable equilibria of the corresponding dynamics & = —w(x) that are not differential Nash. MW

The preceding proposition again shows that there exist non-Nash equilibria of the gradient
dynamics in zero-sum continuous games. Thus, this proposition also provides a negative
answer to Q2 in the context of zero-sum games.

3.3. Potential games. One last set of games with interesting connections between the
Nash equilibria and the critical points of the gradient dynamics is the class known as potential
games. This particularly nice class of games are ones for which w corresponds to a gradient
flow under a coordinate transformation, that is, there exists a function ¢ (commonly referred
to as the potential function) such that for each i € Z, D;f; = D;¢. We remark that due to
the equivalence, this class of games is sometimes referred to as an exact potential game. Note
that a necessary and sufficient condition for (fi,..., f,) to be a potential game is that Dw
is symmetric 28], that is, D;;f; = Dj;f;. This gives potential games the desirable property
that the only locally asymptotically stable equilibria of the gradient dynamics are local Nash
equilibria.

Proposition 3.9. For an arbitrary potential game, G = (f1,..., fn) on R™, if x is a locally
asymptotically stable equilibrium of © = —w(x) (i.e., © € LASE(w) ), then x is a nondegenerate
differential Nash equilibrium (i.e., x € NDDNE(G)).

The full proof of Proposition 3.9 is supplied in Appendix A. The preceding proposition rules
out non-Nash locally asymptotically stable equilibria of the gradient dynamics in potential
games, and implies that every local minimum of a potential game must be a local Nash
equilibrium. Thus, in potential games, unlike in general-sum and zero-sum games, the answer
to Q2 is positive. However, the following proposition shows that the existence of a potential
function is not enough to rule out local Nash equilibria that are saddle points of the dynamics.

Proposition 3.10. In the class of continuous games, there exist a continuum of potential
games containing games G that admit Nash equilibria that are saddle points of the dynamics
& = —w(z), i.e., 3 G such that for some x € LNE(G), x € SSP(w).
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Proof. Consider the game (f, f) on X = R? described by
c

2
972

a
fz1,22) = 51’% + bxixo +

where a,b,d € R. The Jacobian of w is given by

a b

Dw(x1,x9) = [b c] VY (z1,12) € R?.

If a,c > 0, then z = (0,0) is a local Nash equilibrium. However, if ac < b?, Dw(x) has one
positive and one negative eigenvalue and (0,0) is a saddle point of the gradient dynamics.
Thus, there exists a continuum of potential games where a large set of differential Nash
equilibria are strict saddle points of & = —w(z). [ ]

Proposition 3.10 demonstrates a surprising fact about potential games. Even though all
minimizers of the potential function must be local Nash equilibria, not all local Nash equilibria
are minimizers of the potential function.

3.4. Main takeaways. The main takeaways of this section are summarized in Figure 1.
We note that for zero-sum games, Proposition 3.8 shows that LNE(G) C LASE(w). Since
the inclusion is strict, the answer to Q2 in such games is “no.” For general-sum games,
Proposition 3.5 allows us to to conclude that there do exist attracting, non-Nash equilibria.
Thus, the answer to Q2 is also no. In potential games, since LASE(w) C LNE(G) the answer is
yes.

In the following sections, we provide answers to Q1 by showing that all local Nash equi-
libria in LNE(G) N SSP(w) are avoided almost surely by gradient-based algorithms in both the
deterministic and stochastic settings. In particular, since LNE(G) N SSP(w) # () in potential
and general-sum games, one cannot give a positive answer to Q1 in either of these classes of
games.

4. Convergence of gradient-based learning. In this section, we provide convergence and
nonconvergence results for gradient-based algorithms. We also include a high-level overview of
well-known algorithms that fit into the class of learning algorithms we consider; more details
can be found in Appendix C.

4.1. Deterministic setting. We first address convergence to equilibria in the deterministic
setting in which agents have oracle access to their gradients at each time step. This includes
the case where agents know their own cost functions f; and observe their own actions as well
as their competitors’ actions and, hence, can compute the gradient of their cost with respect
to their own choice variable.

Since we have assumed that each agent i € Z has their own learning rate (i.e., step sizes
i), the joint dynamics of all the players are given by

(4.1) Ti11 = g(@t),

where g : x — = — v @ w(z) with v = (7;)iez and 7 > 0 elementwise. By a slight abuse
of notation, v ® w(z;) is defined to be elementwise multiplication of v and w(-), where 7 is
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multiplied by the first m; components of w(+), ¥2 is multiplied by the next mo components,
and so on.

We remark that this update rule immediately distinguishes gradient-based learning in
games from gradient descent. By definition, the dynamics of gradient descent in single-agent
settings always correspond to gradient flows, i.e., x evolves according to an ordinary differential
equation of the form & = —V¢(z) for some function ¢ : R¢ — R. Outside of the class of exact
potential games we defined in section 3, the dynamics of players’ actions in games are not
afforded this luxury; indeed, Dw is not in general symmetric (which is a necessary condition for
a gradient flow). This makes the potential limiting behaviors of & = —w(z) highly non-trivial
to characterize in general-sum games.

The structure present in a gradient flow implies strong properties on the limiting behaviors
of z. In particular, it precludes the existence of limit cycles or periodic orbits (limiting
behaviors of dynamical systems where the state of system cycles infinitely through a set of
states with a finite period) and chaos (an attribute of nonlinear dynamical systems, where the
system’s behavior can vary extremely due to slight changes in initial position) [41]. We note
that both of these behaviors can occur in the dynamics of gradient-based learning algorithms
in games.”

Despite the wide breadth of behaviors that gradient dynamics can exhibit in competi-
tive settings, we can still make statements about convergence (and nonconvergence) to cer-
tain types of equilibria. To do so, we first make the following standard assumptions on the
smoothness of the cost functions f; and the magnitude of the agents’ learning rates ;.

Assumption 1. For each i € Z, f; € C*(X,R) with s > 2, sup,cx ||[Dw(x)|2 < L < oo,
and 0 < 7; < 1/L, where || - ||2 is the induced 2-norm.

Given these assumptions, the following result rules out converging to strict saddle points.

Theorem 4.1. Let f; : X — R and ~ satisfy Assumption 1. Suppose that X = X1 X --- X
X, CR™ i4s open and convex. If g(X) C X, the set of initial conditions x € X from which
competitive gradient-based learning converges to strict saddle points is of measure zero.

We remark that the above theorem holds for X = X7 x --- x X,, = R™ in particular, since
g(X) C X holds trivially in this case. It is also important to note that, as we point out in
section 3, local Nash equilibria can be strict saddle points. Thus, all local Nash equilibria that
are strict saddle points for & = —w(z) are avoided almost surely by gradient-play even with
oracle gradient access and random initializations. This holds even when players randomly
initialize uniformly in an arbitrarily small ball around such Nash equilibria. In section 5, we
show that many LQ dynamic games have a strict saddle point as their global Nash equilibrium.
For brevity, we provide the proof of Theorem 4.1 in Appendix A, and provide a proof sketch
below.

Proof sketch of Theorem 4.1. The core of the proof is the celebrated stable manifold the-
orem from dynamical systems theory, presented in Theorem A.1. We construct the set of
initial positions from which gradient-play will converge to strict saddle points and then use

2The Van der Pol oscillator and Lorenz system (see, e.g., [41]) can be seen as the resulting gradient dynamics
in a two-player and three-player general-sum game, respectively. The first is a classic example of a system where
players converge to cycles and the second is an example of a chaotic system.
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the stable manifold theorem to show that the set must have measure zero in the players’ joint
strategy space. Therefore, with a random initialization players will never evolve solely on the
stable manifold of strict saddles and they will consequently diverge from such equilibria.

To be able to invoke the stable manifold theorem, we first show that the mapping g : R™ —
R™ is a diffeomorphism, which is nontrivial due to the fact that we have allowed each agent
to have their own learning rate ; and Dw is not symmetric. We then iteratively construct
the set of initializations that will converge to strict saddle points under the game dynamics.
By the stable manifold theorem, and the fact that g is a diffeomorphism, the stable manifold
of a strict saddle point must be measure zero. Then, by induction we show that the set of all
initial points that converge to a strict saddle point must also be measure zero. |

In potential games we can strengthen the above nonconvergence result and give conver-
gence guarantees.

Corollary 4.2. Consider a potential game (f1,..., fn) on open, conver X = X3 x---x X,, C
R™ and where each f; € C*(X,R) for s > 3. Let v be a prior measure with support X which
is absolutely continuous with respect to the Lebesque measure and assume limy o, g'(x) exists.
Then, under Assumption 1, competitive gradient-based learning converges to nondegenerate
differential Nash equilibria almost surely. Moreover, the nondegenerate differential Nash to
which it converges is generically a local Nash equilibrium.

Corollary 4.2 guarantees that in potential games, gradient-play will converge to a differen-
tial Nash equilibrium. Combining this with Theorem 4.1 guarantees that the differential Nash
equilibrium it converges to is a local minimizer of the potential function. A simple implication
of this result is that gradient-based learning in potential games cannot exhibit limit cycles or
chaos.

Of note is the fact that the agents do not need to be performing gradient-based learning on
¢ to converge to Nash almost surely. That is, they do not need to know the function ¢; they
simply need to follow the derivative of their own cost with respect to their own choice variable,
and they are guaranteed to converge to a local Nash equilibrium that is a local minimizer of
the potential function.

We note that convergence to Nash equilibria is a known characteristic of gradient-play in
potential games. However, our analysis also highlights that gradient-play will avoid a subset
of the Nash equilibria of the game. This is surprising given the particularly strong structural
properties of such games. The proof for Corollary 4.2 is provided in Appendix A and follows
from Proposition 3.9, Theorem 4.1, and the fact that Dw is symmetric in potential games.

4.1.1. Implications and interpretation of convergence analysis. Both Theorem 4.1 and
Corollary 4.2 show that gradient-play in multiagent settings avoids strict saddles almost surely
even in the deterministic setting. Combined with the analysis in section 3 which shows that
(local) Nash equilibria can be strict saddles of the dynamics for general-sum games, this implies
that a subset of the Nash equilibria are almost surely avoided by individual gradient-play, a
potentially undesirable outcome in view of Q1 (whether all Nash equilibria are attracting for
the learning dynamics). In section 5, we show that the global Nash equilibrium is a saddle
point of the gradient dynamics in a large number of randomly sampled LQ dynamic games.
This suggests that policy gradient algorithms may fail to converge in such games, which is
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highly undesired. This is in stark contrast to the single agent setting where policy gradient
has been shown to converge to the unique solution of LQ regulator problems [13].

In section 3, we also showed that local Nash equilibria of potential games can be strict
saddle points of the potential function. Nonconvergence to such points in potential games is
not necessarily a bad result since this in turn implies convergence to a local minimizer of the
potential function (as shown in [22, 32]) which is guaranteed to be a local Nash equilibrium of
the game. However, these results do imply that one cannot answer “yes” to Q1 in potential
games since some of the Nash equilibria are not attracting under gradient-play.

In zero-sum games, where local Nash equilibria cannot be strict saddle points of the
gradient dynamics, our result suggests that eventually gradient-based learning algorithms will
escape saddle points of the dynamics.

The almost sure avoidance of all equilibria that are saddle points of the dynamics further
implies that if (3) converges to a critical point z, then x € LASE(w), i.e., z is locally asymp-
totically stable for & = —w(x). This may not be a desired property, however, since we showed
in section 3 that zero-sum and general-sum games both admit non-Nash LASE.

Since gradient-play in games generally does not result in a gradient flow, other types of lim-
iting behavior such as limit cycles can occur in gradient-based learning dynamics. Theorem 4.1
says nothing about convergence to other limiting behaviors. In the following sections we prove
that the results described in this section extend to the stochastic gradient setting. We also
formally define periodic orbits in the context of dynamical systems and state stronger results
on avoidance of some more complex limiting behaviors like linearly unstable limit cycles.

4.2. Stochastic setting. We now analyze the stochastic case in which agents are assumed
to have an unbiased estimator for their gradient. The results in this section allow us to extend
the results from the deterministic setting to a setting where each agent builds an estimate of
the gradient of their loss at the current set of strategies from potentially noisy observations of
the environment. Thus, we are able to analyze the limiting behavior of a class of commonly
used machine learning algorithms for competitive, multiagent settings. In particular, we show
that agents will almost surely not converge to strict saddle points. In Appendix B.1, we show
that the gradient dynamics will actually avoid more general limiting behaviors called linearly
unstable cycles which we define formally.

To perform our analysis, we make use of tools and ideas from the literature on stochastic
approximations (see. e.g., [6]). We note that the convergence of stochastic gradient schemes
in the single-agent setting has been extensively studied [37, 33, 7, 26]. We extend this analysis
to the behavior of stochastic gradient algorithms in games.

We assume that each agent updates their strategy using the update rule

(4.2) Tigr1 = Tip — Vit (Difil@ig, xi4) + wier1)

for some zero-mean, finite-variance stochastic process {w;;}. Before presenting the results
for the stochastic case, let us comment on the different learning algorithms that fit into this
framework.

4.2.1. Examples of stochastic gradient-based learning. The stochastic gradient-based
learning setting we study is general enough to include a variety of commonly used multia-
gent learning algorithms. The classes of algorithms we include is hardly an exhaustive list,
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Table 1
FEzample problem classes that fit into competitive gradient-based learning rules. Details on the derivation
of these update rules as gradient-based learning schemes is provided in Appendiz C.

[ Class | Gradient learning rule ]
Gradient-play mj =x; — v Di fi(xi, x—5)
97 =0 _E[DsL (0, w)]
GANs wt = w + YE[Duy L(0, w)]
MA policy gradient ] =z — BE[D Ji(wi, -5)]

Individual Q-learning|| ;" (wi) = qs(ws) + vi (s (wi, 7= (g1, =) — qi(us))

MA gradient bandits |27, = @i¢ + VE[Bi Ri(ui,u_)u; = €], £ =1,...,m;

MA experts z], =z + E[Ri(ui,ui)|u; = €], £=1,...,m;

and indeed many extensions and altogether different algorithms exist that can be considered
members of this class. In Table 1, we provide the gradient-based update rule for six different
example classes of learning problems: (i) gradient-play in noncooperative continuous games,
(ii) GANS, (iii) multiagent policy gradient, (iv) individual Q-learning, (v) multiagent gradient
bandits, and (vi) multiagent experts. We provide a detailed analysis of these different algo-
rithms including the derivation of the gradient-based update rules along with some interesting
numerical examples in Appendix C. In each of these cases, one can view an agent employing
the given algorithm as building an unbiased estimate of their gradient from their observation
of the environment.

For example, in multiagent policy gradient (see, e.g., [46, Chapter 13]), agents’ costs are
defined as functions of a parameter vector z; that parameterize their policies m;(x;). The
parameters x; are agent i’s choice variable. By following the gradient of their loss function,
they aim to tune the parameters in order to converge to an optimal policy m;. Perhaps
surprisingly, it is not necessary for agent i to have access to m_;(x_;) or even x_; in order for
them to construct an unbiased estimate of the gradient of their loss with respect to their own
choice variable z; as long as they observe the sequence of actions, say u_;, of all other agents
generated. These actions are implicitly determined by the other agents’ policies m_;(z_;)(+).
Hence, in this case if agent i observes { (7, u; ¢, s5) V j € I}, where (r;j,uj, s;) is the reward,
action, and state of agent j, then this is enough to construct an unbiased estimate of their
gradient. We provide further details on multiagent policy gradient in Appendix C.

4.2.2. Stochastic gradient results. Returning to the analysis of (4.2), we make the fol-
lowing standard assumptions on the noise processes [37, 38].

Assumption 2. The stochastic process {w; ¢+1} satisfies the assumptions E[w; ;41| F}] = 0,
t >0, and E[|lw; 1] F}] < 0% < 0o a.s. for t > 0, where F;; is an increasing family of
o;-fields, i.e., filtration, or history generated by the sequence of random variables, given by
Fit = 0i(Tig, wip, k < t), £ >0.

We also make new assumptions on the players’ step sizes. These are standard assumptions
in the stochastic approximation literature and are needed to ensure that the noise processes
are asymptotically controlled.
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Assumption 3. For each i € Z, f; € C*(X,R) with s > 2, D;f; is L;-Lipschitz with
0 < L; < 0o, the step sizes satisfy v;; = v for all i € Z and >,y = oo, and Y, (11)? < oo,
and sup, ||z¢]| < oo a.s.

Let (a)™ = max{a, 0} and a-b denotes the inner product. The following theorem extends
the results of Theorem 4.1 to the stochastic gradient dynamics in games.

Theorem 4.3. Consider a game (f1,...,fn) on X = X5 x -+ x X;, = R™. Suppose each
agent i € T adopts a stochastic gradient algorithm that satisfies Assumptions 2 and 3. Further,
suppose that for each i € I, there exists a constant b; > 0 such that E[(w; - v)"|Fii] > b; for
every unit vector v € R™i, Then, competitive stochastic gradient-based learning converges to
strict saddle points of the game on a set of measure zero.

The proof follows directly from showing that (4.2) satisfies Theorem A.2; provided the
assumptions of the theorem hold. The assumption that E[(w;; - v)*|F;s] > b; rules out
degenerate cases where the noise forces the stochastic dynamics onto the stable manifold of
strict saddle points.

Theorem 4.3 implies that the dynamics of stochastic gradient-based learning defined in
(4.2), have the same limiting properties as the deterministic dynamics vis-a-vis saddle points.
Thus, the implications described in section 4.1.1 extend to the stochastic gradient setting. In
particular, stochastic gradient-based algorithms will avoid a nonnegligible subset of the Nash
equilibria in general-sum and potential games. Further, in zero-sum and general-sum games,
if the players converge to a critical point, that point may be a non-Nash equilibrium.

4.2.3. Further convergence results for stochastic gradient-play in games. As we demon-
strated in section 4.1, outside of potential games, the dynamics of gradient-based learning al-
gorithms in games are not gradient flows. As such, the players’ actions can converge to more
complex sets than simple equilibria. A particularly prominent class of limiting behaviors for
dynamical systems are known as limit cycles (see, e.g., [41]). Limit cycles (or periodic orbits)
are sets of states S such that each state x € S is visited at periodic intervals ad infinitum
under the dynamics. Thus, if the gradient-based algorithms converge to a limit cycle they
will cycle infinitely through the same sequence of actions. Like equilibria, limit cycles can
be stable or unstable under the dynamics & = —w(z), meaning that the dynamics can either
converge to or diverge from them depending on their initializations.

We remark that the existence of oscillatory behaviors and limit cycles has been observed
in the dynamics of of gradient-based learning in various settings like the training of GANs [11],
and multiplicative weights in finite action games [25]. We simply emphasize that the existence
of such limiting behaviors is due to the fact that the dynamics are no longer gradient flows.
This fact also allows for other complex limiting behaviors like chaos® to exist in the dynamics
of gradient-based learning in games. We also show in Appendix B.1 that gradient-based
learning avoids some limit cycles.

In Appendix B.1, we formalize the notion of a limit cycle and its stability in the stochastic
setting. Using these concepts, we then provide an analogous theorem to Theorem 4.3 which
states that competitive stochastic gradient-based learning converges to linearly unstable limit

3A general term used to characterize dynamical systems where arbitrarily small perturbations in the initial
conditions lead to drastically different solutions to the differential equations.
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cycles—a parallel notion to strict saddle points but pertaining to more general limit sets—
on a set of measure zero, provided that analogous assumptions to those in the statement of
Theorem 4.3 hold. Providing such guarantees requires a bit more mathematical formalism,
and as such we leave the details of these results to Appendix B.

5. Saddle point local Nash equilibria in LQ dynamic games. In this section, we present
empirical results that show that a nonnegligible subset of two-player LQ games have local
Nash equilibria that are strict saddle points of the gradient dynamics. LQ games serve as
good benchmarks for analyzing the limiting behavior of gradient-play in a nontrivial setting
since they are known to admit global Nash equilibria that can be found by solving a coupled set
of Riccati equations [2]. LQ games can also be cast as MARL problems where each agent has
a policy that is a linear function of the state and a quadratic reward function. Gradient-play
in LQ games can therefore be seen as a form of policy gradient.

The empirical results we now present imply that, even in the relatively straightforward
case of linear dynamics, linear feedback policies, and quadratic costs, policy gradient MARL
would be unable to find the local Nash equilibrium in a non-negligible subset of problems.

LQ game setup. For simplicity, we consider two-player LQ games in R?. Consider a discrete
time dynamical system defined by

(5.1) z(t+1) = Az(t) + Biui(t) + Baua(t),

where z(t) € R? is the state at time ¢, u;(¢) and uy(t) are the control inputs of players 1 and
2, respectively, and A, B, and By are the system matrices. We assume that player i searches
for a linear feedback policy of the form u;(t) = —K;z(t) that minimizes their loss which is
given by

fi(Z(), ui, UQ) = Zfio Z(t)TQZ'Z(t) + ui(t)TRiui(t),
where ); >~ 0 and R; > 0 are the cost matrices on the state and input, respectively. We
note that the two players are coupled through the dynamics since z(t) is constrained to

obey the update equation (5.1). The vector of player derivatives is given by w(Ki, K3) =
(D1f1(K1, K2), Do f2(K1, K3)), where

Difi(Kl,Kg) = (R”Kl + BlTPz(BlKl =+ BQKQ) — BlszA) Z?io z(t)z(t)T, 7€ {1,2}

Note that there is a slight abuse of notation here as we are treating D; f; as a matrix and as
the vectorization of a matrix. The matrices P; and P, can be found by solving the Riccati
equations

Py = (A— B1K| — ByK>)TPj(A — B1K| — BoKy) + Kl RiK; + Q;, i€ {1,2},

for a given (K7, K2). As shown in [2], global Nash equilibria of LQ games can be found by
solving coupled Ricatti equations. Under the following assumption, this can be done using an
analogous method to the method of Lyapunov iterations outlined in [24] for continuous time
LQ games.

Assumption 4. Either (A, B1,/Q1) or (A, Ba,v/Q2) is stabilizable-detectable.

Further information on the Nash equilibria in LQ games and the method of Lyapunov
iterations can be found in [2] and [24], respectively.
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Figure 2. Frequency (out of 1000) of randomly sampled LQ games with global Nash equilibria that are
avoided by policy gradient. The experiment was run 10 times and the average frequency is shown by the solid
line. The shaded region demarcates the 95% confidence interval of the experiment. (left) r is varied in (0, 1),
q = 0.01. (right) q is varied in (0,1), r = 0.1.

Generating LQ games with strict saddle point Nash equilibria. Without loss of generality, we
assume (A, By, 1/Q1) is stabilizable-detectable. Given that we have a method of finding the
global Nash equilibrium of the LQ game, we now present our experimental setup.

We fix B1, Ba, @1, and R; and parameterize ()2, and R by ¢ and r, respectively. The
shared dynamics matrix A has entries that are sampled from the uniform distribution sup-
ported on (0,1). For each value of the parameters b, ¢, and r, we randomly sample 1000
different A matrices. Then, for each L(Q game defined in terms of each of the sets of pa-
rameters, we find the optimal feedback matrices (K7, K5) using the method of Lyapunov
iterations, and we numerically approximate Dw(K7, K3) using autodifferentiation tools and
check its eigenvalues.

The exact values of the matrices are defined as follows: A € R?*? with each of the entries
a;j sampled from the uniform distribution on (0, 1),

1 0 0.01 0O 10
Bl:|:1:|7B2:|:1:|7Q1:|:0 1:|7Q2:|:0 q:|,R1:0.0].,R2:T.

The results for various combinations of the parameters ¢ and r are shown in Figure 2.
For all of the different parameter configurations considered, we found that in anywhere from
0%—25% of the randomly sampled LQ games, there was a global Nash equilibrium that was
a strict saddle point of the gradient dynamics. Of particular interest is the fact that for all
values of ¢ and r we tested, at least 5% of the LQ games had a global Nash equilibrium with
the strict saddle property. In the worst case, around 25% of the LQ games for the given values
of ¢ and r admitted such Nash equilibria.

Remark 5.1. These empirical observations imply that multiagent policy gradient, even in
the relatively straightforward setting of linear dynamics, linear policies, and quadratic costs,
has no guarantees of convergence to the global Nash equilibria in a nonnegligible number
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of games. Further investigation is warranted to validate this fact theoretically. This in turn
supports the idea that for more complicated cost functions, policy classes, and dynamics, local
Nash equilibria with the strict saddle property are likely to be very common.

6. Discussion and future directions. In this paper we provided answers to the following
two questions for classes of gradient-based learning algorithms:

Q1. Are all attractors of the learning algorithms employed by agents’ equilibria relevant to
the underlying game?

Q2. Are all equilibria relevant to the game also attractors of the learning algorithms agents
employ?

We answered these questions in general-sum, zero-sum, and potential games without im-
posing structure on the game outside regularity conditions on the cost functions by exploiting
the observation that gradient-based learning dynamics are not gradient flows. Our analysis is
shown in section C to apply to a number of commonly used methods in multiagent learning.

6.1. Links with prior work. As we noted, previous work on learning in games in both the
game theory literature, and more recently from the machine learning community, has largely
focused on Q1, though some recent work has analyzed Q2 in the setting of zero-sum games.

In the seminal work by Rosen [40], n-player concave or monotone games are shown to
either admit a unique Nash equilibrium or a continuum of Nash equilibria, all of which are
attracting under gradient-play. The structure present in these games rules out the existence
of non-Nash equilibria.

Two-player, finite-action bilinear games have also been extensively studied. In [44], the
authors investigate the convergence of the gradient dynamics in such games. Additionally,
the dynamics of other (non-gradient-based) algorithms like multiplicative weights have been
studied in [19] among many others. In such settings, the structure guarantees that there exists
a unique global Nash equilibrium and no other critical points of the gradient dynamics. As
such, non-Nash equilibria, cannot exist.

In the study of learning dynamics in the class of zero-sum games, it has been shown that
cycles can be attractors of the dynamics (see, e.g., [25, 47, 19]). Concurrently with our results,
[12] also showed the existence of non-Nash attracting equilibria in this setting.

In more general settings, there has been some analysis of the limiting behavior of gradient-
play though the focus has been for the most part, on giving sufficient conditions under which
Nash equilibria are attracting under gradient-play. For example, [34, 35, 36] introduced the
notion of a differential Nash equilibrium which is characterized by first and second order
conditions on the players’ individual cost functions and which we made extensive use of.
Following this body of work, [27] also investigated the local convergence of gradient-play in
continuous games. They showed that if a Nash equilibrium satisfies a property known as
variational stability, the equilibrium is attracting under gradient play. In twice continuously
differentiable games, this condition coincides exactly with the definition of stable differential
Nash equilibria. Though these works analyze a general class of games, the focus of the
analysis is solely on the local characterization and computation (via gradient play) of local
Nash equilibria. As such, the issues of nonconvergence that we show in this paper were not
discussed.
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6.2. Open questions. Our results suggest that gradient-play in multiagent settings has
fundamental problems. Depending on the players’ costs, in general games and even potential
games, which have a particularly mice structure, a subset of the Nash equilibria will be al-
most surely avoided by gradient-based learning when the agents randomly initialize their first
action. In zero-sum and general-sum games, even if the algorithms do converge, they may
have converged to a point that has no game theoretic relevance, namely, a non-Nash locally
asymptotically stable equilibrium.

Last, these results show that limit cycles persist even under a stochastic update scheme.
This explains the empirical observations of limit cycles in gradient dynamics presented in [11,
23, 19]. It also implies that gradient-based learning in MARL, multi-armed bandits, GANs,
and online optimization all admit limit cycles under certain loss functions. Our empirical
results show that these problems are not merely of theoretical interest, but also have great
relevance in practice.

Which classes of games have all Nash being attracting for gradient-play and which classes
preclude the existence of non-Nash equilibria is an open and particularly interesting ques-
tion. Further, the question of whether gradient-based algorithms can be constructed for
which only game theoretically relevant equilibria are attracting is of particular importance as
gradient-based learning is increasingly implemented in game theoretic settings. Indeed, more
generally, as learning algorithms are increasingly deployed in markets and other competitive
environments, understanding and dealing with such theoretical issues will become increasingly
important.

Appendix A. Proofs of the main results. This appendix contains the full proofs of the
results in the paper.

A.1. Proofs on links between dynamical systems and games. We begin with a proof of
Proposition 3.4 that all differential Nash equilibria are either strict saddle points or asymp-
totically stable equilibria of the gradient dynamics. This relies mainly on the definitions of
strict saddle points, locally asymptotically stable equilibria, and nondegenerate differential
Nash equilibria and simple linear algebra.

Proof of Proposition 3.4. Suppose that x € X is a nondegenerate differential Nash equi-
librium. We claim that tr(Dw(x)) > 0. Since z is a differential Nash equilibrium, D2 f;(z) = 0
for each i € T; these are the diagonal blocks of Dw(x). Further D2fi(x) = 0 implies that
tr(D? fi(x)) > 0. Since tr(Dw) = Y% | tr(D?f;(z)), tr(Dw(z)) > 0. Thus, it is not possible
for all the eigenvalues to have negative real part. Since = is nondegenerate, det(Dw(z)) # 0
so that none of the eigenvalues can have zero real part. Hence, at least one eigenvalue has
strictly positive real part.

To complete the proof, we show that the conditions for nondegenerate differential Nash
equilibrium are not sufficient to guarantee that z is locally asymptotically stable for the
gradient dynamics, that is, not all eigenvalues of Dw(x) have strictly positive real part. We
do this by constructing a class of games with the strict saddle point property. Consider a
class of two player games G = (f1, f2) on R x R defined as follows:

a d
(fi(z1,22), fo(z1,22)) = (295% + bryo, 5953 + 0961332> -
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In this game, the Jacobian of the gradient dynamics is given by

(A1) De() = {‘CL Z}

with a,b,c,d € R. If z is a nondegenerate differential Nash equilibria, a,d > 0 and
det(Dw(zx)) # 0 which implies that ad # cb. Choosing ¢,d such that ad < ¢b will guar-
antee that one of the eigenvalues of Dw(x) is negative and the other is positive, making = a
strict saddle point. This shows that nondegenerate differential Nash equilibria can be strict
saddle points of the combined gradient dynamics.

Hence, for any game (fi, ..., f,), a nondegenerate differential Nash equilibrium is either a
locally asymptotically stable equilibrium or a strict saddle point, but it not strictly unstable
or strictly marginally stable (i.e., having eigenvalues all on the imaginary axis). |

The proof of Proposition 3.7, which claims that all differential Nash equilibria in zero-
sum games are locally asymptotically stable, again just relies on basic linear algebra and the
definition of a differential Nash equilibrium.

Proof of Proposition 3.7. Consider a two-player game (f,—f) on X; x Xy = R™ with
X; = R™i. For such a game,

[ DM@ Duf()
Du(@) = | _pifa) —Difa)]

Note that Doy f(x) = (Di2f(x))T. Suppose that x = (x1,22) is a differential Nash equi-
librium and let v = [v1,v2] € R™ with v; € R™ and vy € R™. Then, v/ Dw(z)v =
vID?f(z)v; — v D2f(x)vy > 0 since D?f(x) = 0 and —D3f(z) = 0 for z, a differential
Nash equilibrium. Since v is arbitrary, this implies that Dw(z) is positive definite and, hence,
clearly nondegenerate. Thus, for two-player zero-sum games, all differential Nash equilibria
are both nondegenerate differential Nash equilibria and locally asymptotically stable equilibria
of & = —w(x). [ ]

The proof that all locally asymptotically stable equilibria in potential games are differential
Nash equilibria relies on the symmetry of Dw in potential games.

Proof of Proposition 3.9. The proof follows from the definition of a potential game. Since
(f1, ..., fn)is a potential game, it admits a potential function ¢ such that D; f;(x) = D;¢(x) for
all . This, in turn, implies that at a locally asymptotically stable equilibrium of & = —w(z),
Dw(z) = D?¢(z), where D?¢ is the Hessian matrix of the function ¢. Further D?¢(x)
must have strictly positive eigenvalues for x to be a locally asymptotically stable equilibrium
of & = —w(x). Since the Hessian matrix of a function must be symmetric, D?¢(z), must
be positive definite, which through Sylvester’s criterion ensures that each of the diagonal
blocks of D%¢(x) is positive definite. Thus, we have that the existence of a potential function
guarantees that the only locally asymptotically stable equilibria of & = —w(x), are differential
Nash equilibria. |

A.2. Proofs for deterministic setting. We now present the proof of Theorem 4.1 and its
corollaries. The proof of relies on the celebrated stable manifold theorem [43, Theorem IIL.7],
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[45]. Given a map ¢, we use the notation ¢! = ¢o--- 0 ¢ to denote the t—times composition
of ¢.

Theorem A.1 (Center and stable manifolds [43, Theorem I11.7], [45]). Let zq be a fized point
for the C™ local diffeomorphism f : U — R%, where U C R? is an open neighborhood of xo in
R andr > 1. Let E*@®E°® E" be the invariant splitting of R into generalized eigenspaces of
Do (xy) corresponding to eigenvalues of absolute value less than one, equal to one, and greater
than one. To the D¢(xg) invariant subspace E° @ E° there is an associated local ¢-invariant
C" embedded disk W3 called the local stable center manifold of dimension dim(E® & E€) and
ball B around x such that (W) N B C W, and if ¢'(x) € B for allt > 0, then v € WC.

Some parts of the proof follow similar arguments to the proofs of results in [22, 32] which
apply to (single-agent) gradient-based optimization. Due to the different learning rates em-

ployed by the agents and the introduction of the differential game form w, the proof differs.

Proof of Theorem 4.1. The proof is composed of two parts: (a) the map g is a diffeomor-
phism, and (b) application of the stable manifold theorem to conclude that the set of initial
conditions is measure zero.

(a) g is a diffeomorphism. We claim the mapping g : R™ — R™ is a diffeomorphism. If we
can show that g is invertible and a local diffeomorphism, then the claim follows. Consider x # y
and suppose ¢(y) = g(z) so that y—z = v-(w(y)—w(x)). The assumption sup,cpm ||[Dw(x)||2 <
L < oo implies that w satisfies the Lipschitz condition on R™. Hence, |w(y) —w(z)|2 < L
|ly—x||2. Let T' = diag(T'y,...,[,), where I'; = diag((wi)?"”:il), that is, I'; is an m; x m; diagonal
matrix with v; repeated on the diagonal m; times. Then, ||z —y|l2 < L||T|2[ly—z|l2 < ||ly—z]|2
since ||I'||2 = max; |vi| < 1/L.

Now, observe that Dg = I — I'Dw(z). If Dg is invertible, then the implicit function
theorem [21, Theorem C.40] implies that g is a local diffeomorphism. Hence, it suffices to show
that I'Dw(x) does not have an eigenvalue of 1. Indeed, letting p(A) be the spectral radius of a
matrix A, we know in general that p(A) < ||A|| for any square matrix A and induced operator
norm || - || so that p(I'Dw(x)) < ||[I'Dw(x)||2 < ||T'||2 supyerm || Dw(z)|l2 < max; |y;|L < 1 Of
course, the spectral radius is the maximum absolute value of the eigenvalues, so that the above
implies that all eigenvalues of I' Dw(z) have absolute value less than 1.

Since g is injective by the preceding argument, its inverse is well-defined and since g is a
local diffeomorphism on R™, it follows that g~—! is smooth on R™. Thus, g is a diffeomorphism.

(b) Application of the stable manifold theorem. Consider all critical points to the game,
ie, X, = {z € X| w(z) = 0}. For each p € A, let B, be the open ball derived from
Theorem A.1 and let B = U, B,,. Since X C R™, Lindel6f’s lemma [20]—every open cover has
a countable subcover—gives a countable subcover of B. That is, for a countable set of critical
points {p;}°, with p; € X, we have that B = U2, B),.

Starting from some point zg € X, if gradient-based learning converges to a strict saddle
point, then there exists a to and index i such that g'(xg) € By, for all ¢ > ty. Again, applying
Theorem A.1 and using that g(X) C X—which we note is obviously true if X = R™—we get
that ¢'(zo) € W N X.

Using the fact that g is invertible, we can iteratively construct the sequence of sets defined
by Wi(p:) = g (W N X) and Wii1(pi) = g (Wi(pi) N X). Then we have that zo € Wy(p;)
for all t > to. The set Xy = U2, U2, Wi(p;) contains all the initial points in X such that
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gradient-based learning converges to a strict saddle. Since p; is a strict saddle, I — I"Dw(p;)
has an eigenvalue greater than 1. This implies that the codimension of E is strictly less than
m. (i.e., dim(W) < m). Hence, W% N X has Lebesgue measure zero in R™.

Using again that g is a diffeomorphism, g=! € C! so that it is locally Lipschitz and locally
Lipschitz maps are null set preserving. Hence, Wy (p;) has measure zero for all k& by induction
so that Ap is a measure zero set since it is a countable union of measure zero sets. [ |

The proof of Corollary 4.2 follows from the symmetry of Dw in potential games, and our
observations in section 3.

Proof of Corollary 4.2. Since the game admits a potential function ¢, there is a transfor-
mation of coordinates such that agents following the dynamics x;; = x; — vy ©@w(x;) converge
to the same equilibria as the gradient dynamics x;y1 = 2, — v @ D¢(x;). Hence, the analy-
sis of the gradient-based learning scheme reduces to analyzing gradient-based optimization
of ¢. Moreover, existence of a potential function also implies that D;;f; = Dj;f; so that
Dw is symmetric. Indeed, writing w(z) as the differential form Y 7 ;| D;f;(x)dz; and not-
ing that d od = 0 for the differential operator d, we have that d(w) = >, d(D;fi) A dx; =
>ijijsi (Dijfj — Djifi) dwi Adaj = 0, where A is the standard exterior product [21]. Symme-
try of Dw implies that all periodic orbits are equilibria, i.e., the dynamics do not possess any
limit cycles. By Theorem 4.1, the set of initial points that converge to strict saddle points is
of measure zero. Since all the stable critical points of the dynamics are equilibria, with the
assumption that lim;_, g*(7) exists for all z € X, we have that P, [limt_wO gt(z) = a;*] =1,
where z* is a nondegenerate differential Nash equilibrium which is generically a local Nash
equilibrium [35]. [ ]

A.3. Classical results from dynamical systems. The remaining results use the following
classical result from dynamical systems theory. Consider a general stochastic approximation
framework z;11 = 2 + ve(h(z¢)) + € for h : X — TX with h € C? and where X C R? and
where T'X denotes the tangent space.

Theorem A.2 (see [33, Theorem 1]). Suppose 7y is Fi-measurable and Elw;|F] = 0. Let
the stochastic process {xt}+>0 be defined as above for some sequence of random variables {e;}
and {v}. Let p € X with h(p) = 0 and let W be a neighborhood of p. Assume that there
are constants n € (1/2,1] and ci1,ca,c3,c4 > 0 for which the following conditions are satisfied
whenever vy € W and t sufficiently large: (1) p is a linear unstable critical point; (ii) c¢1/t" <
v < o/t (iil) E[(wy - v)T|[F] > e3/t" for every unit vector v € TX ; and (iv) |lw]l2 < ca/t".
Then P(zy — p) = 0.

Appendix B. Expanded results in the stochastic setting. In this appendix , we provide
extended results in the stochastic setting that require more mathematical formalism than the
main body of the paper. In addition, we introduce a new class of games that generalizes
potential games and has stronger convergence guarantees than the broader class of general-
sum continuous games.

B.1. Avoidance of repelling sets. To show that stochastic gradient-based learning avoids
more general limiting behaviors than saddle points, we need further assumptions on our un-
derlying space, i.e., we need the underlying decision spaces of each agent, i.e., X; for each
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i € I, to be smooth, compact manifolds without boundary.* The stochastic process {z,}
which follows (4.2) is defined on X, that is, x,, € X for all n > 0. As before, it is natural to
compare sample points {z,} to solutions of & = —w(x), where we think of (4.2) as a noisy
approximation. The asymptotic behavior of {z,} can indeed be described by the asymptotic
behavior of the flow generated by w.

We also need a formal notion of cycles. A nonstationary periodic orbit of w is called a
cycle. Let £ C X be a cycle of period T' > 0. Denote by ®1 the flow corresponding to w. For
any = € &, spec(D®r(z)) = {1} U C(£), where C(§) is the set of characteristic multipliers.
We say ¢ is hyperbolic if no element of C(€) is on the complex unit circle. Further, if C(§) is
strictly inside the unit circle, £ is called linearly stable and, on the other hand, if C'(§) has at
least one element on the outside of the unit circle, that is, D®7(z) for x € £ has an eigenvalue
with real part strictly greater than 1, then £ is called linearly unstable. The latter is the analog
of strict saddle points in the context of periodic orbits. We denote by {z;} sample paths of the
process (4.2) and L({z;}) is the limit set of any sequence {x;};>0 which is defined in the usual
way as all p € X such that limy_,o, 24, = p for some sequence t — co. It was shown in [3]
that under less restrictive assumptions than Assumptions 2 and 3, L({z:}) is contained in
the chain recurrent set of w and L({z;}) is a nonempty, compact and connected set invariant
under the flow of w.

Theorem B.1. Consider a game (fi,..., fn), where each X; is a smooth, compact mani-
fold without boundary. Suppose each agent i € I adopts a stochastic gradient-based learn-
ing algorithm that satisfies Assumptions 2 and 3 and is such that sample points x; € X
for all t > 0. Further, suppose that for each i € I, there exist a constant b; > 0 such that
E[(w;¢-v)T|Fit] > b; for every unit vector v € R™i. Then competitive stochastic gradient-based
learning converges to linearly unstable cycles on a set of measure zero, i.e., P(L(xy) = &) =0,
where {x} is a sample path.

As we noted, periodic orbits are not necessarily excluded from the limiting behavior of
gradient-based learning in games. We leave out the proof of Theorem B.1 since after some
algebraic manipulation, it is a direct application of [4, Theorem 2.1] which is stated be-
low.

Theorem B.2 (see [4, Theorem 2.1]). Let & C X be a hyperbolic linearly unstable cycle of
h. Assume the following: (i) h € C?; (ii) c1/t7 < v < e2/t" with 0 < ¢; < cg and 0 < n < 1;
and (iil) there exists b > 0 such that for all unit vectors v € R™, E[(ws - v)*|F] > b. Then
P(L({x:}) = &) = 0.

B.2. Morse—Smale games. For a class of games admitting gradient-like vector fields we
can go beyond nonconvergence results and give convergence guarantees. Following [4], we
introduce a new class of games, which we call Morse-Smale games, that are a generalization
of potential games. Such games represent an important class since the vector field of w
corresponds to a Morse-Smale vector field which is known to be generic in R? and are otherwise
structurally stable [18, 31].

4The torus T = S' x S! is an example. The interested reader can consult, e.g., [21] for more details on
differential geometry.
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Definition B.3. A game (f1,..., fn) with f; € C" for some r > 3 and where the strategy
spaces X; are smooth, compact manifolds without boundaries for each i € I is a Morse—
Smale game if the vector field corresponding to the differential w is Morse—Smale, that is,
the following hold: (i) all periodic orbits & (i.e., equilibria and cycles) are hyperbolic and
We(&) h W) (i.e., the stable and unstable manifolds of & intersect transversally); (ii) every
forward and backward w limit set is a periodic orbit; (iii) and w has a global attractor.

The conditions of Morse—Smale in the above definition ensure that there are only finitely
many periodic orbits. The dynamics of games with more general vector fields, on the other
hand, can admit chaos (e.g., the classic Lorentz attractor can be cast as gradient-play in
a three-player game). Hyperbolic equilibria and periodic orbits are the only types of lim-
iting behavior that have been shown to correspond to strategies relevant to the underlying
game [5]. The simplest example of a Morse-Smale vector field is a gradient flow. However,
not all Morse-Smale vector fields are gradient flows and, hence, not all Morse-Smale games
are potential games.

Ezample 1. Consider the n-player game with X; = R for each ¢ € Z and f,(z) = z,
(22 — 1), fi(x) = ziw41 Vi € Z/{n} This is a Morse-Smale game that is not a potential
game. Indeed, © = —w(x), where w = [z, 23,...,Tp_1, :c% — 1] is a dynamical system with a
Morse-Smale vector field that is not a gradient vector field [10].

Essentially, in a neighborhood of a critical point for a Morse-Smale game, the game
behavior can be described by a Morse function ¢ such that near critical points w can be written
as D¢ and away from critical points w points in the same direction as Dp—i.e., w- D¢ > 0.
Specializing the class of Morse-Smale games, we have stronger convergence guarantees.

Theorem B.4. Consider a Morse-Smale game (fi,..., fn) on smooth boundaryless com-
pact manifold X. Suppose Assumptions 2 and 3 hold and that {x;} is defined on X. Let
{&, i = 1,...,1} denote the set of periodic orbits in X. Then 2221 P(L({x}) = &) =1
and P(L({z:}) = &) > 0 implies & is linearly stable. Moreover, if the periodic orbit & with
P(L({xt}) = &) > 0 is an equilibrium, then it is either a nondegenerate differential Nash
equilibrium—uwhich is generically a local Nash—or a non-Nash locally asymptotically stable
equilibrium.

The proof of Theorem B.4 follows by invoking Corollary B.5 which is stated below.

Corollary B.5 (see [4, Corollary 2.2]). Assume that there exists § > 1 such that Y, <o 7at? <
oo and that h is a Morse-Smale vector field. If we denote by {&;, i = 1,...,1} the set of periodic
orbits in X, then Zﬁ:l P(L({z:}) = &) = 1. Further, if conditions (i)—(iii) of Theorem B.2
hold, then P(L({z:}) = &) > 0 implies &; is linearly stable.

Thus, in Morse-Smale games, with probability one, the limit sets of competitive gradient-
based learning with stochastic updates are attractors (i.e., periodic orbits, which include limit
cyles and equilibria) of £ = —w(x) and if any attractor has positive probability of being a
limit set of the players’ collective update rule, then it is (linearly) stable. Moreover, attractors
that are equilibria are either nondegenerate differential Nash equilibria (generically local Nash
equilbiria) or non-Nash locally asymptotically stable equilibria, but not saddle points.

If we further restrict the class of games to potential games, the results for Morse—Smale
games imply convergence to Nash almost surely, a particularly strong convergence guarantee.
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Corollary B.6. Consider the game (fi,..., fn) on smooth boundaryless compact manifold
X = Xj x -+ x X, admitting potential function ¢. Suppose each agent i € T adopts a
stochastic gradient-based learning algorithm that satisfies Assumptions 2 and 3 and such that
{4} evolves on X. Further, suppose that for each i € I, there exists a constant b; > 0 such
that B[(w;-v) T |Fid] > bi for every unit vector v € R™i. Then, competitive stochastic gradient-
based learning converges to a nondegenerate differential Nash equilibrium almost surely.

The proof of Corollary B.6 follows from the fact that potential games are trivially Morse—
Smale games that admit no periodic cycles as we showed in the proof of Corollary 4.2.

Proof of Corollary B.6. Consider a potential game (f1, ..., fn), where each X; is a smooth,
compact boundaryless manifold. Then w = D¢ for some ¢ € C" which implies that w is a
gradient flow and, hence, does not admit limit cycles. Let {&, ¢ = 1,...,l} be the set
of equilibrium points in X. Under the assumptions of Theorem B.4, Zi:l P(L({x}) =
&) = 1 and, if P(L({z:}) = &) > 0, then & is a linearly stable equilibrium point which
is a nondegenerate differential Nash equilibrium of the game due to the fact that Dw(x)
is symmetric in potential games. Hence, a sample path {x;} converges to a nondegenerate
differential Nash equilibrium with probability one. Moreover, by [35], we know it is generically
a local Nash. |

We note, that even though a potential function is enough to guarantee convergence to a
local Nash equilibrium, potential games can still admit local Nash equilibria that are strict
saddle points as shown in section 3. Thus, even this relatively well-behaved class of games
has fundamental problems when applying a gradient-based learning scheme.

Appendix C. Classes of gradient-based learning algorithms. In this section, we provide
derivation of the gradient-based learning rules provided in Table 1. We note that the derivation
of gradient-based approaches for multiarmed bandits can be found in [46] among other classic
references on reinforcement learning.

C.1. Online optimization: Gradient play in noncooperative games. We first show that
classical online optimization algorithms fit into the framework we describe. In this case, each
agent is directly trying to minimize their own function f;(x;, x_;), which can depend on the
current iterate of the other agents. There are many examples in the optimization literature of
this type of setup. We note that in the full information case, the competitive gradient-based
learning framework we describe here is simply gradient-play [16], a very well-studied game
theoretic learning rule.

Of more interest are some gradient-free online optimization algorithms that also fit into
the framework we describe. The game can be described as follows. At each iteration, t of the
game, every player publishes their current iterate x;;. Player ¢, implementing this algorithm,
then updates their iterate by taking a random unit vector u, and querying f;(z; + d;u, z_;).
The update map is given by x;i1 = i — Vifi(zi + diu, z—;)u. It is shown in [14] that
fi(x; + dju,x_;)u is an unbiased estimate of the gradient of a smoothed version of f;, i.e.,
fi(wi, z_;) = Ey[fi(z + dv,z_;)]. Thus the loss function being minimized by the agent is fz
In this case, the results on characterizing limiting behavior presented in section 4.2 apply.
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C.2. Generative adversarial networks. GANs take a game theoretic approach to fitting
a generative model in complex structured spaces. Specifically, they approach the problem of
fitting a generative model from a data set of samples from some distribution @@ € A(Y) as
a zero-sum game between a generator and a discriminator. In general, both the generator
and the discriminator are modeled as deep neural networks. The generator network outputs
a sample Gp(z) € Y in the same space Y as the sampled data set given a random noise signal
z ~ F as an input. The discriminator D,,(y) tries to discriminate between a true sample
and a sample generated by the generator, that is, it takes as input a sample y drawn from
@ or the generator and tries to determine if its real or fake. The goal, is to find a Nash
equilibrium of the zero-sum game under which the generator will learn to generate samples
that are indistinguishable from the true samples, i.e., in equilibrium, the generator has learned
the underlying distribution.

To prevent instabilities in the training of GANs with zero-one discriminators, the Wasser-
stein GAN attempts to approximate the Wasserstein-1 metric between the true distribution
and the distribution of the generator. In this setting, D,,(+) is a 1-Lipschitz function leading
to the problem

infg sup,, EyNQ [Dw (y)] - EZNF[Dw(GG(Z))]

which has corresponding dynamics wy+1 = wy + YV L(0, wy) and 0441 = 0 — YV L (6, wy),
where L(0,w) = Eyug[Dw(y)] — E.nr[Dw(Go(2))] and where v is the learning rate.

GANSs are notoriously difficult to train. The typical approach is to allow each player to
perform (stochastic) gradient descent on the derivative of their cost with respect to their
own choice variable. There are two important observations about gradient-based learning
approaches to GANs relevant to this paper. First, the equilibrium that is sought is generally a
saddle point and, second, the dynamics of GANs are complex enough to admit limit cycles [25].
Nonetheless, training GANs with gradient descent is still very common. We note that our
results suggest that, on top of periodic orbits and oscillations, training GANs with gradient
descent can result in convergence to non-Nash equilibria.

C.3. Multi-agent reinforcement learning algorithms. Consider a setting in which all
agents are operating in a Markov decision process (MDP). There is a shared state space S.
Each agent, indexed by Z = {1,...,n} has their own action space U; and reward function
R; : SxU — Ag, where U = Uy x - - - x U,,. We note the reward functions could themselves be
random, but for illustrative purposes we suppose they are deterministic. Finally, the dynamics
of the MDP are described by a state transition kernel P : § x U — Ag and an initial state
distribution Py. Each agent ¢ also has a policy, m;, that returns a distribution over U; for
each state s € S. We define a trajectory of the MDP, 7, as 7 = {(s¢, wi ¢, u—i ) tT:_Ol. Thus,
a trajectory is a finite sequence of states, the actions of each player in that state, and the
reward agent i received in that state, where T is the time horizon. Given fixed policies we
can define a distribution over the space of all trajectories I', namely, Pr(), by

Pr(r;m) = Po(so) [ [;ez mi(uiolso) - - P(se|se—1,ue—1) [ Lier mi(uielse) - - -

The goal of each single agent in this setup is to maximize their cumulative expected reward
over a time horizon T'. That is, the agent is trying to find a policy 7; so as to maximize some
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function, which in keeping with our general formulation in section 2, we write as — f; since
this problem is a maximization. When an agent is employing policy gradient in this MARL
setup, we assume that their policy comes from a parametric class of policies parameterized
by x; € X; C R™i. To simplify notation, we write the parametric policy as m;(x;), where, for
each x;, given a state s, m;(z;) is a probability distribution on actions u; which we denote by
i) (1s).

The policy gradient MARL algorithm can be reformulated in the competitive gradient-
based learning framework. An agent ¢ using policy gradient is trying to tune the parameters z;
of their policy to maximize their expected reward over a trajectory of length T'. We define the
reward of agent i over a trajectory of the MDP, 7 € T, to be R;(7) = ZtT:_Ol Ri(Styit,u—it).
Thus, each agent’s loss function f;, in keeping with our notation, is given by fi(z;,x_;) =
—Ji(mi(w;), i) = =B p.(x) [RRi(7))]. The actions of agent 7 in the continuous game frame-
work described in previous sections are the parameters of their policy, and thus their action
space is X; C R™. We note that we have made no assumptions on the other player’s actions
x_;. That is, they do not need to be employing the same parameterized policy class or exactly
the same gradient-based update procedure; the only requirement is that they also be using
a gradient based multiagent learning algorithm, and that their actions give rise to a set of
policies m_; that govern the way they choose their actions in the MDP.

In the full information case, at each round, t of the game, a player plays according to
mi(zi¢) for a time horizon T', and then performs a gradient update on their parameters, where
D;fi(xs, x—;) = DiJi(mi(x;), m—i¢) is given by

(C.1) Dii(mi(®:), 7-i) = Erpo(my | Loico Rilseswe) Yo Vi, log mi (i) (wi g |8j)] :

The derivation of this gradient is exactly the same as that of the classic policy gradient.
From (C.1) it is clear that an unbiased estimate of the gradient can be constructed. At
each time ¢ in the policy gradient update procedure, agent i receives a 1" horizon rollout,

say zj;y = {(sk,u@k,rm)};‘ctol, and constructs the unbiased estimate of the gradient, i.e.,
D;J; = ;‘CF:_OI Ti,k(Z?:o Vo, log mi(z;4)(ui 5]5;)). We note that in this case, the agent does

not need to know the policies of the other agents, or anything about the dynamics of the
MDP. The agent can construct the estimator solely from the sequence of states, the reward
they received in those states, and their own actions. With these two derivations of the gradient
for the full information and gradient-free cases, the policy gradient for MARL conforms to
the competitive gradient-based learning framework and, hence, the results of section 4 apply
under appropriate assumptions.
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