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Abstract— Markov Decision Process (MDP) congestion game
is an extension of classic congestion games, where a continuous
population of selfish agents each solves a Markov decision
processes with congestion: the payoff of a strategy decreases
as more population uses it. We draw parallels between key
concepts from capacitated congestion games and MDPs. In par-
ticular, we show that the population mass constraints in MDP
congestion games are equivalent to imposing tolls/incentives on
the reward function, which can be utilized by a social planner to
achieve auxiliary objectives. We demonstrate such methods on
a simulated Seattle ride-share model, where tolls and incentives
are enforced for two distinct objectives: to guarantee minimum
driver density in downtown Seattle, and to shift the game
equilibrium towards a maximum social output.

I. INTRODUCTION

We consider a class of non-cooperative games, Markov

decision process congestion games (MDPCG) [1], [2], which

combine features of classic nonatomic routing games [3]–

[5]—i.e. games where a continuous population of agents

each solve a shortest path problem—and stochastic games

[6], [7]—i.e. games where each agent solves a Markov

decision process (MDP). In MDP congestion games, similar

to mean field games with congestion effects [8], [9], a

continuous population of selfish agents each solve an MDP

with congestion effects on its state-action rewards: the payoff

of a strategy decreases as more population mass chooses it.

An equilibrium concept for MDPCG’s akin to the Wardrop

equilibrium [3] for routing games was introduced in [1].

In this paper, we consider modifying MDPCG’s game

rewards to enforce artificial state constraints that may arise

from a system level. For example, in a traffic network

with selfish users, tolls can be used to lower the traffic in

certain neighbourhoods to decrease ambient noise. Drawing

on techniques from capacitated routing games [10], [11] and

constrained MDPs [12], [13], we derive reward modification

methods that shifts the game equilibrium mass distribution.

Alternatively, constraints may arise in the following scenario:

central agent, which we denote by a social planner, may

enforce constraints to improve user performance as measured

by an alternative objective. Equilibria of MDPCGs have

been shown to exhibit similar inefficiencies to classic routing

games [14], [15]. As in routing games, we show how reward

adjustments can minimize the gap between the equilibrium

distribution and the socially optimal distribution [16], [17].
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Since MDPCG models selfish population behaviour under

stochastic dynamics, our constraint enforcing methods can be

considered as an incentive design framework. One practical

application in particular is modifying the equilibrium be-

haviour of ride-sharing drivers competing in an urban setting.

Ride-share has become a significant component of urban

mobility in the past decade [18]. As data becomes more

readily available and computation more automated, drivers

will have the option of employing sophisticated strategies to

optimize their profits—e.g. as indicated in popular media,

there are a number of mechanisms available to support

strategic decision-making by ride-sharing drivers [19]–[21].

This provides the need for game theoretic models of ride-

sharing competition [22]: while rational drivers only seek to

optimize their individual profits, ride-sharing companies may

choose to incentivize driver behaviours that are motivated

by other objectives, such as maintaining driver coverage

over large urban areas with varied rider demand as well as

increasing overall profits.

The rest of the paper is organized as follows. Section

II provides a discussion of related work. In Section III,

we introduce the optimization model of MDPCG’s and

highlight the relationship between the classical congestion

game equilibrium—i.e. Wardrop equilibrium—and Q-value

functions from MDP literature. Section IV-A shows how a

social planner can shift the game equilibrium through reward

adjustments. Section IV-B adopts the Frank-Wolfe numerical

method [23] to solve the game equilibrium and provides

an online interpretation of Frank-Wolfe in the context of

MDPCG. Section V provides an illustrative application of

MDPCG, in which agents repeatedly play a ride-share model

game in the presence of population constraints as well as

improving the social welfare. Section VI concludes and

comments on future work.

II. RELATED WORK

Stochastic population games were first studied in the

literature as anonymous sequential games [24]–[27]. Recent

developments in stochastic population games has been in the

mean field game [8], [28] community. Our work is related to

potential mean field games [8], [29] in discrete time, discrete

state space [30] and mean field games on graphs [9], [31].

Our work can also be thought of as a continuous popula-

tion potential game [32] where the strategies are policies of

an MDP or as a modification of classic nonatomic routing

games [5] where routes have been replaced by policies.

Techniques for cost modification to satisfy capacity con-

straints in nonatomic routing games were developed in [10].

See also [5, Sec. 2.8.2] for a discussion of tolling to enforce
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side-constraints and [5, Sec. 2.4] for a discussion of tolling

to improve social welfare in routing games.

III. MDP CONGESTION GAMES

We consider a continuous population of selfish agents each

solving a finite-horizon MDP with horizon of length T , finite

state space S , and finite action space A. We use the notation

[T ] = {1, . . . , T} to denote the integer set of length T .

The population mass distribution, y ∈ R
T×|S|×|A|, is

defined for each time step t ∈ [T ], state s ∈ S , and action

a ∈ A. ytsa ∈ R is the population mass in state s taking

action a at time t, and
∑

a ytsa is the total population mass

in state s at time t.
Let P ∈ R

(T−1)×|S|×|S|×|A| be a stochastic transition

tensor. Pts′sa ∈ R defines the probability of ytsa transi-

tioning to state s′ in stage t + 1 when action a is chosen.

The transition tensor P is defined such that Pts′sa ≥ 0 and
∑

s′∈S

∑

a∈A Pts′sa = 1, ∀ s′, s ∈ S, a ∈ A, t ∈ [T − 1].
The population mass distribution obeys the stochastic mass

propagation equation
∑

a∈A

y1sa = ps, ∀ s ∈ S

∑

a∈A

yt+1,sa =
∑

s′∈S

∑

a∈A

Ptss′ayts′a, ∀ t ∈ [T − 1]

where ps is the initial population mass in state s.

The reward of each time-state-action triplet is given by

a function rtsa : R
T×|S|×|A|
+ → R. rtsa(y) is the reward

for taking action a in state s at time t for given population

distribution y. In particular, if rtsa(y) simply depends on

ytsa, then there exists functions ℓtsa : R+ → R such that

rtsa(y) = ℓtsa(δ
T
tsay) (1)

where δtsa is an indicator vector for (t, s, a) such that

δTtsay = ytsa. We say the game is a congestion game if the

rewards have the form of (1) and the functions ℓtsa(ytsa)
satisfy the following assumption.

Assumption 1. ℓtsa(ytsa) is a strictly decreasing continuous

function of ytsa for each t, s, a.

Intuitively, the reward of each time-state-action triplet

decreases as more members of the population choose that

state-action pair at that time. We will use r(y) or ℓ(y) to

refer to the tensor of all reward functions in each case.

Each member of the population solves an MDP with pop-

ulation dependent rewards rtsa(y). As in the MDP literature,

we define Q-value functions for each (t, s, a) pair as

Qtsa =







rtsa(y) +
∑

s′
Pts′sa

(

max
a

Qt+1,s′a

)

t ∈ [T − 1]

rtsa(y) t = T

(2)

In the game context, Q-value function Qtsa(y) represents

the distribution dependent payoff that the population receives

when choosing action a at (t, s). The Q-value functions

can be used to define an equilibrium akin to the Wardrop

equilibrium of routing games [1].

Definition 1 (Wardrop Equilibrium [1]). A population dis-

tribution over time-state-action triplets, {y⋆tsa}t∈[T ],s∈S,a∈A

is an MDP Wardrop equilbrium for the corresponding

MDPCG, if for any (s, t), y⋆tsa > 0 implies Qtsa ≥
Qtsa′ ∀a′ 6= a, a′ ∈ A.

Intuitively, definition 1 amounts to the fact that at every

state and time, population members only choose actions

that are optimal. When game rewards satisfy assumption 1,

MDPCG can be characterized as a potential game.

Definition 2 (Potential Game [1], [32]). We say that the

MDPCG associated with rewards r(y) is a potential game

if there exists a continuously differentiable function F such

that ∂F/∂ytsa = rtsa(y).

In the specific case when the rewards have form (1), we

can use the potential function

F (y) =
∑

t∈T

∑

s∈S

∑

a∈A

∫ ytsa

0
ℓtsa(x) dx (3)

As shown in [1, Theorem 1.3] given a potential function

F (y), the equilibrium to the finite horizon MDPCG can be

found by solving the following optimization problem for an

initial population distribution p.

max
y

F (y)

s.t.
∑

a∈A

yt+1,sa =
∑

s′∈S

∑

a∈A

Ptss′ayts′a, ∀ t ∈ [T − 1],

∑

a∈A

y1sa = ps, ∀ s ∈ S,

ytsa ≥ 0, ∀ s ∈ S, a ∈ A, t ∈ [T ]

The proof that the optimizer of (4) is a Wardrop equilibrium

relies on the fact that the Q-value functions (2) are encoded

in the KKT optimality conditions of the problem. The equi-

librium condition (Definition 1) is then specifically derived

from the complementary slackness condition [1]. When F (y)
has form (3) and Assumption 1 is satisfied, F (y) is strictly

concave, and MDPCG (4) has a unique Wardrop equilibrium.

IV. CONSTRAINED MDPCG

In this section, we analyze the problem of shifting the

game equilibrium by augmenting players’ reward functions.

In Section IV-A, we show that introducing constraints cause

the optimal population distribution to obey Wardrop equi-

librium for a new set of Q-value functions. Section IV-

B outlines the Frank Wolfe numerical method for solving

a constrained MDPCG as well as provides a population

behavioural interpretation for the numerical method.

A. Planning Perspective: Model and Constraints

The Wardrop equilibrium of an MDP congestion game is

given by (4). The planner may use additional constraints to

achieve auxiliary global objectives. For example, in a city’s

traffic network, certain roads may pass through residential

neighbourhoods. A city planner may wish to artificially limit

traffic levels to ensure residents’ wellbeing.
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We consider the case where the social planner wants the

equilibrium population distribution to satisfy constraints of

the form

gi(y) ≥ 0 ∀i ∈ I (5)

where gi are continuously differentiable concave functions.

The social planner cannot explicitly constrain players’ be-

haviour, but rather seeks to add incentive functions {f i
tsa}i∈I

to the reward functions ℓ(y) in order to shift the equilibrium

to be within the constrained set defined by (5). The modified

rewards have form

r̄tsa(y) = rtsa(y) +
∑

i∈I

f i
tsa(y) (6)

To determine the incentive functions, the social planner first

solves the constrained optimization problem

max
y

F (y)

s.t.
∑

a∈A

yt+1,sa =
∑

s′∈S

∑

a∈A

Ptss′ayts′a, ∀ t ∈ [T − 1],

∑

a∈A

y1sa = ps, ∀ s ∈ S

ytsa ≥ 0, ∀ s ∈ S, a ∈ A, t ∈ [T ]

gi(y) ≥ 0, ∀ i ∈ I (7a)

and then computes the incentive functions as

f i
tsa(y) = (τ i)⋆

∂gi

∂ytsa
(y) (8)

where {(τ i)⋆ ∈ R+}i∈I are the optimal Lagrange multipliers

associated with the additional constraints (5).

The following theorem shows that the Wardrop equilib-

rium of the MDPCG with modified rewards in (6) satisfies

the new constraints in (7a).

Theorem 1. Let the MDPCG (4) with rewards r(y) be a po-

tential game with a strictly concave potential function F (y).
If y⋆ is a Wardrop equilibrium for a modified MDPCG with

reward functions r̄tsa(y) = rtsa(y) +
∑

i∈I(τ
i)⋆ ∂gi

∂ytsa

(y),
then y⋆ also solves (7) and thus satisfies the additional

constraints (5).

Proof. The Lagrangian of (7) is given by

L(y, µ, V, τ) = F (y)−
∑

tsa

µtsaytsa +
∑

i

τ igi(y)

+
T−1
∑

t=1

∑

s

(

∑

as′
Pt,ss′ayt,s′a −

∑

a

yt+1,sa

)

Vt+1,s

+
∑

s

(

ps −
∑

a

y1sa

)

V1s

(9)

and note that by strict concavity, sup
y≥0

inf
µ≥0,V,τ≥0

L(y, µ, V, τ)

has unique solution, which we denote by (y⋆, µ⋆, V ⋆, τ⋆).
We then note that

F̄ (y) = F (y) +
∑

i

(τ i)⋆gi(y) (10)

is a potential function for the MDPCG with desired modified

rewards. Since F (y) is strictly concave, gi(y) is concave, and

(τ i)⋆ is positive, F̄ (y) is strictly concave. The equilibrium

for the MDPCG with modified rewards can be computed by

solving (7) with F̄ (y) as the objective.

The Lagrangian for (7) with F̄ (y) is given by L̄(y, µ, V ) =
L(y, µ, V, τ⋆). Again by strict concavity,

sup
y≥0

inf
µ≥0,V

L̄(y, µ, V ) = sup
y≥0

inf
µ≥0,V

L(y, µ, V, τ⋆)

has a unique solution which we denote as (ȳ⋆, µ̄⋆, V̄ ⋆). It

follows that ȳ⋆ = y⋆. Thus the game equilibrium with

modified rewards, ȳ⋆ satisfies desired constraints.

For the social planner, Theorem 1 has the following

interpretation: in order to impose constraints of form (5) on

a MDPCG, the planner could solve the constrained game (7)

for optimal dual variables τ⋆ and offer incentives of form (8).

B. Population Perspective: Numerical Method

After the social planner has offered incentives, the popu-

lation plays the Wardrop equilibrium defined by modified

rewards (6); this equilibrium can be computed using the

Frank Wolfe (FW) method [23], given in Algorithm 3, with

known optimal variables {τ⋆i }.

FW is a numerical method for convex optimization prob-

lems with continuously differentiable objectives and compact

feasible sets [33], including routing games. One advantage of

this learning paradigm is that the population does not need

to know the function r(·). Instead, they simply react to the

realized rewards of previous game at each iteration. It also

provides an interpretation for how a Wardrop equilibrium

might be asymptotically reached by agents in MDPCG in an

online fashion.

Assume that we have a repeated game play, where players

execute a fixed strategy determined at the start of each

game. At the end of each game k, rewards of game k
based on yktsa are revealed to all players. FW models the

population as having two sub-types: adventurous and con-

servative. Upon receiving reward information ℓtsa(y
k
tsa), the

adventurous population decides to change its strategy while

the conservative population does not. To determine its new

strategy, the adventurous population uses value iteration on

the latest reward information—i.e. Algorithm 1—to compute

a new optimal policy. Their resultant density trajectory is

then computed using Algorithm 2. The step size at each

iteration is equivalent to the fraction of total population who

switches strategy. The stopping criteria for the FW algorithm

is determined by the Wardrop equilibrium notion—that is, as

the population iteratively gets closer to an optimal strategy,

the marginal increase in potential decreases to zero.

Algorithm 1 Value Iteration Method

Input: r, P .

Output: {π⋆
ts}t∈[T ], s∈S

for t = T, . . . , 1 do

Vts = max
a∈A

Qtsa, π⋆
ts = argmax

a∈A
Qtsa, ∀ s ∈ S ⊲

Eqn. (2)

end for
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