
A Conceptual Replication of Continuous Integration Pain Points
in the Context of Travis CI

David Gray Widder
dwidder@cmu.edu
Carnegie Mellon

Michael Hilton
mhilton@cmu.edu
Carnegie Mellon

Christian Kästner

Carnegie Mellon

Bogdan Vasilescu
vasilescu@cmu.edu
Carnegie Mellon

ABSTRACT

Continuous integration (CI) is an established software quality assur-
ance practice, and the focus of much prior research with a diverse
range of methods and populations. In this paper, we first conduct a
literature review of 37 papers on CI pain points. We then conduct
a conceptual replication study on results from these papers using
a triangulation design consisting of a survey with 132 responses,
12 interviews, and two logistic regressions predicting Travis CI
abandonment and switching on a dataset of 6,239 GitHub projects.
We report and discuss which past results we were able to replicate,
those for which we found conflicting evidence, those for which we
did not find evidence, and the implications of these findings.

CCS CONCEPTS

• Software and its engineering→ Software maintenance tools.

KEYWORDS

Continuous integration, open source software, replication
ACM Reference Format:

DavidGrayWidder,Michael Hilton, Christian Kästner, and BogdanVasilescu.
2019. A Conceptual Replication of Continuous Integration Pain Points in
the Context of Travis CI. In Proceedings of the 27th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338922

1 INTRODUCTION

Continuous integration (CI) has enjoyed tremendous popularity
as a quality assurance mechanism during software development,
by automating the execution of builds, tests, and other tasks. CI
adoption was primarily driven by practitioners,1 but research has
shown that CI practices have a positive effect on software quality
and productivity [28, 69, 76].

Despite the widespread adoption of CI, it has long been estab-
lished by contingency theory [50, 66] that a single “universal best
practice” is unlikely, whatever the actual practice. Moreover, for
CI specifically, the literature abounds with studies (we counted
37 papers; Section 3) that each touch on some CI pain points. For
example, research has shown that it can take significant effort to

1www.martinfowler.com/articles/continuousIntegration.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338922

set up and customize CI infrastructure [27, 34], and reports from
CI systems require effort to process and can cause unwanted in-
terruptions [39], especially without developer buy-in and in the
presence of frequent false positives from flaky tests and platform
instabilities [37]. Bad experiences or frustration with a specific CI
tool can turn developers away from CI as a practice, even when
more customized tool solutions exist [86].

Given the number of studies, conducted using a multitude of
methods, on diverse populations, we argue that it is the right time
for a thorough review of the pain points and context mismatches
that turn people away from CI. This can help practitioners adopt CI
with realistic expectations and in a way that fits their needs, and
researchers and tool builders focus on the most severe CI barriers.

In this paper we review the CI literature from the perspective of
pain points to adoption and usage, and perform a mixed-methods
conceptual replication [32, 65] of previously observed findings, on
a new population (GitHub open-source developers using Travis
CI), and using a robust study design. As particular strengths of
our study design, we note: ❶ the mixed qualitative (survey with
132 developers and interviews with 12; Sec. 4) and quantitative
(large-scale multivariate statistical modeling of trace data from
6,239 projects; Sec. 5) analyses, which enable us to triangulate our
results; and ❷ the focus on CI leavers (rather than current CI users),
i.e., those who either switched the Travis CI tool or abandoned the
CI practice altogether, which, similarly to customer exit surveys in
market research [70], enable us to identify the most acute of Travis
CI pain points, since they caused users to leave.

Our main results (Sec. 6), confirming past literature, are that
many developers find troubleshooting build failures difficult, desire
consistency in CI tools across their projects, find it difficult to use
CI with complex tool setups including Docker or to use CI with
unsupported languages, find long build times annoying, and find
CI less useful without enough tests.

In summary, we contribute: (1) a literature review of general CI
pain points; (2) an analysis of 132 survey responses about reasons
for abandoning or switching Travis CI; (3) regression models on a
dataset of 6,239 GitHub Travis CI projects, testing observations
from literature; and (4) a discussion of results and implications.

2 STUDY DESIGN

What are the major pain points that turn people away from CI?
To answer this research question, we conduct a conceptual repli-
cation [32, 65], i.e., we attempt to corroborate observations from
past research using a different experimental design, on a different
population. The importance of replication studies in software engi-
neering is increasingly recognized.2 Our conceptual replication, as
opposed to an exact replication, represents a more robust design:

2E.g., see the ROSE (Recognizing and Rewarding Open Science in Software Engi-
neering) panel at FSE 2018: https://tinyurl.com/y4m2uzsp

https://doi.org/10.1145/3338906.3338922
www.martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1145/3338906.3338922
https://tinyurl.com/y4m2uzsp

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu

Lit. Review  
37 Papers, 32 Obvs.

8 Pain
Points

2 Logistic Regressions 
on 6,239 Repositories

Tr
ia
ng

ul
at
io
n

Current CI Users
Industry & OSS

Travis-CI Leavers
OSS

?
12 Interviews, 132 Surveys

Figure 1: Overview of our mixed-methods study design.

we can be more confident in results that have been replicated on
different populations and using different methods.

Whereas past work has studied CI in both open source and in-
dustry, we choose to focus on open source projects on GitHub
that used Travis CI, for two reasons: First, open-source GitHub
projects are real-world projects representing a diversity of program-
ming languages and application domains; and Travis CI is the most
popular CI service, used by as many as 90.1 % of CI-using GitHub
projects [28]. Second, both platforms make trace data publicly avail-
able (e.g., commits and build histories) [5, 20], which allows us
to identify survey candidates and perform statistical analyses of
repository data at scale.

Furthermore, where all prior work studied current CI users, e.g.,
surveying them about annoyances with their CI setup, we focus
on the population of Travis CI leavers, i.e., those for whom pain
points were acute enough to switch tools or abandon CI altogether.
Compared to CI adoption, leaving a CI service is arguably more
deliberate: e.g., some of our survey respondents report that they con-
sidered alternatives and trade-offs when switching tools, but merely
followed popular options during the initial adoption. This method-
ological change should allows us to better distinguish between
minor CI annoyances and serious barriers, which may otherwise
turn up during studies of current CI users. Leaving Travis CI has
the added benefit of being detectable from trace data.

Our study consists of several steps, outlined in Figure 1. First,
we conduct a literature review of 37 papers discussing CI pain
points, from which we distill 32 observations as candidates to repli-
cate, of which 22 are relevant to our population (former Travis CI
users) (Sec. 3). Filtering the observations is necessary, as many prior
industry-focused observations are out of scope in open-source (e.g.,
O2.d, CI may create too many meetings). However, for completeness
we include all 32 observations in an online replication package.3
Next, we proceed with a mixed-methods design that enables trian-
gulation. On the one hand, we survey Travis CI leavers (followed
up with interviews to ensure deep understanding), inspired by
customer exit surveys in market research [70, 79] (Sec. 4). On
the other hand, we operationalize the selected observations and
model them usingmultivariate logistic regression (Sec. 5). Mul-
tivariate regression modeling allows us to estimate the strength
of the association between a specific factor (e.g., number of tests)
and an outcome (e.g., abandoning Travis CI) while holding other
variables fixed, which makes our approach particularly robust to
known confounding factors.

3zenodo.org/record/3265294

By combining the qualitative (survey) and quantitative (model-
ing) results, we can achieve triangulation [19] and reduce sources
of methodological bias: On their own, surveys may be suscepti-
ble to human biases, e.g., social desirability effects [51], selection
bias [67], hindsight bias [26]. Similarly, quantitative analyses of
trace data may be impacted by skewed or missing data [49] and
GitHub-specific perils [33]; it is also harder to understand the moti-
vations behind people’s decisions [6] from trace data alone. Instead,
we evaluate agreement between both complementary methods [9],
thereby reducing biases inherent in any single-method study.

3 LITERATURE REVIEW

There is a rich literature on CI adoption and use, with many papers
mentioning pain points and mitigations. Here, we review 37 papers
published since 2012 that discuss CI pain points, their effects, and
ways to mitigate them (Table 1).

To find papers, we used the search term “Continuous Integration”
in Google Scholar, in addition to our collective knowledge of CI
literature and snowball sampling [38] from the resulting references.
The identified papers used different research methods, including
surveys of open-source CI users, case studies of industrial practices,
and modeling the effects of CI adoption on outcomes like bugs
reported and developer turnover. We read all papers and discarded
those that do not identify any pain points (e.g., only study benefits).
Seven papers that discuss or propose a technique to mitigate a
pain point but did not provide direct evidence for the pain point’s
existence were included as well (bottom partition of Table 1).

We conducted a thematic synthesis on the selected papers, in
which one “categorizes studies and summarizes the findings by
identifying major or recurrent themes within studies” [30], focus-
ing on pain points. These major recurrent themes become the sub-
sections of our literature review (, , , ,). We enumerate
all observations (e.g., “(O1.a)”), and list them again in the online
replication package.3

Information Overload . CI output logs can become verbose,
making it hard to pinpoint bugs and their causes (O1.a) [27, 28,
39]. Also, information about a project may be spread out across
many CI services or many sub-projects in an organization [52],
making it difficult to answer overarching questions (O1.b). There
is also a reported need for better notifications from CI (O1.c) [27],
for customizing the outputs [8], and for pinpointing which build
configuration caused a problem [69]. One industrial case study
suggested risking performance creep, as smaller, frequent builds
make performance changes harder to notice (O1.d) [63].
Organizational Pain Points . Organizational pain points have
been reported, ranging from a general resistance to change (O2.a) [13,
40, 59], to the perception that CI practices may be incompatible
with the team or company’s existing culture (O2.b) [12, 52, 63].
Industrial case studies show that management buy-in is crucial for
CI success (O2.c) [13, 63]. Some suggest that CI can have negative
effects on organizational culture, making them seem chaotic or
disorganized [63], and force meetings to happen too frequently
or prematurely (O2.d) [39]. Infrequent changes or a preexisting
rigorous testing regime can create the perception that CI does not
add additional value (O2.e,f) [28].

A lack of shared understanding of CI can cause conflicts be-
tween sites or between companies and their clients (O2.g) [52],

A Conceptual Replication of Continuous Integration Pain Points in the Context of Travis CI ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Literature review summary. Papers classified by

studied population (OSS, industry) and pain points

identified (information overload, organizational,

setup/config, slow feedback, testing deficiencies).

Ref Yr Research Method(s) Pop. Pain Points

[77] ’18 Quant. analysis of quality metrics, 1,772 proj.
[12] ’18 Case study, 1 company
[57] ’18 Survey of 158 CI users
[27] ’17 2 surveys of 51 and 523, 16 interviews
[60] ’17 Bivariate correlations, 14 Java projects
[83] ’17 Bivariate correlations, 20 Java projects
[4] ’17 Bivariate correlations, 2.6m builds
[37] ’17 Comparison of averages, 61 projects
[87] ’17 Time series of 77 projects, survey of 55
[31] ’17 Bivariate cor., 3.6m builds, 1090 proj.
[24] ’17 Bivariate correlations, 1283 projects
[43] ’17 Descriptive statistics, 1279 projects
[58] ’17 Survey of 158
[53] ’17 Bivariate cor., topic modeling, 1283 proj.
[28] ’16 Bivariate cor., 1.5m builds, surveys of 442
[69] ’16 Case studies, 3 companies
[63] ’16 Case studies, 2 companies
[21] ’16 Survey of 645, bivariate cor. on proj.
[8] ’15 Contrib. clustering on 20 proj., manual
[82] ’15 Regression modeling on 103k PRs
[35] ’15 Bivar. cor. of failures, 2 case studies
[39] ’15 27 interviews
[40] ’15 15 interviews
[22] ’15 Survey of 749, analysis of projects
[76] ’15 Quant. modeling 246 proj. + PRs, issues
[75] ’14 Bivariate cor. on 223 repos
[13] ’14 Case study on 1 company, 13 interviews
[56] ’13 33 interviews, 569 surveys
[52] ’12 Case st. of 4 companies, 18 interviews

[41] ’18 Test suite prioritization technique
[18] ’18 Analysis of 9312 proj. + tool evaluation
[2] ’17 Essay, constructed case study NA
[64] ’16 Appl. of model to past case studies -
[59] ’16 Comparison of features -
[7] ’14 Built tool, user study with 9 tasks 16 Stud.
[10] ’14 Built tool, evaluation on 23 projects
[16] ’14 Tool building + eval. cost effectivness -

and a lack of clarity about the goals of CI can lead to friction be-
tween teams [13]. Reports indicate interpersonal strain among
teams when CI knowledge is distributed unevenly [39] or CI is
adopted inconsistently [63], possibly because collaboration and
information exchange is poorly supported (O2.h) [52, 58]. CI can
be seen as taking a long time to perfect in an evolving organiza-
tion [63], or as an unclear, unreachable, and unrealistic standard
(O2.i) [39], perhaps leading to only intermittent usage [77].

Developers also experience negative effects of CI, including the
perceived risk of reputation damage from breaking the build [40],
causing reluctance to expose early versions of their work (O2.j) [13].
They disagree about whether it is acceptable to break the build, and
what should constitute a broken build [58].

Some believe that CI can make it harder to onboard and retain
developers (O2.k) [24, 58], though others argue that automated
negative feedback is preferable to human negative feedback [71].
One industry study suggests that it can be hard to hire developers
with CI expertise (O2.l) [63]; in open source, there is evidence that
not all project members need to use or understand CI [43].

Broader organizational pain points can also exist: regulatory re-
quirements or a conservative business model can prohibit frequent
releases in some domains (e.g., medical devices) and thus can be
seen to prohibit CI usage [40], because they demand that require-
ments are defined upfront (O2.m) [52]. Some company supported
projects are reluctant to use a public CI service, e.g., for privacy or
security reasons (O2.n) [27].
Setup and Configuration Pain Points . CI can be hard to con-
figure (O3.a) [18, 21, 27, 58, 60], especially when switching from
an old build environment [27], testing components developed by a
third party [39], or configuring a self-hosted CI server [2, 27]. The
prevalence of anti-patterns in CI configuration files also suggests
that users find configuring CI challenging [18]. Some would prefer
graphical user interfaces for their CI tools (O3.b) [27].

Connecting other tools to CI can be difficult (O3.c) [13, 27], es-
pecially legacy and immature tools [13, 52]. Still, some GitHub
projects attempt to use Travis CI even if it does not support the
programming language they use (O3.d) [4]. Surveys show that CI
users dislike when tools force a specific workflow (O3.e).
Slow Feedback . Some projects find it hard to use CI because
their build takes too long (O4.a) [27, 37, 39, 60], in many cases
because of large test suites [16, 35, 40]. This makes it hard to get
quick and continuous feedback, a hallmark benefit of CI.

Two studies suggest that CI might increase pull-request latency
when maintainers wait for long CI builds before manual review
(O4.b) [82, 87]. Many developers complain that long build times
make it hard to debug CI builds (O4.c) [2, 4, 13, 52, 60], where
some suggest test suite prioritization might shorten the feedback
loop [16, 35, 41]. The cost of computational resources for CI has been
reported as a pain point (O4.d) [58, 59], and some domains, such as
DNA analysis, have datasets so large that CI remains impractical [2].
Testing Deficiencies . Insufficient tests are seen as a significant
pain point for adopting CI (O5.a) [28, 39, 40, 52, 64]. Conversely,
many see the value of CI, but see writing tests as challenging [27,
39, 40, 52, 64]. The difficulty of automating certain kinds of tests
(e.g., GUI) or formerly manual processes is frequently reported as a
significant pain point (O5.b) [13, 21, 39, 40, 56]. Qualitative research
indicates that projects may lack a strong “testing culture” [56, 58],
or that developers perceive writing tests as difficult [10, 56], not
fun [56], or too time consuming (O5.c) [10, 39, 40]. Many common
testing challenges can surface as pain points when adopting CI:
estimating test coverage [69], agreeing on an appropriately strict
level of coverage [64], or improving coverage metrics [64, 72].

Flaky tests are a pain point too (O5.d) [13, 37], as they make
developers take CI build results less seriously [39, 60] or develop a
false sense of security [58]. Difficulties recreating the production
environment also diminish trust in CI build results (O5.e) [52].

4 SURVEY AND INTERVIEWS

Our survey design is based on the idea of exit surveys (cf. Sec. 2),
conducted with developers who disabled Travis CI. In this section,
we detail our survey methodology. We present and discuss the
survey results together with modeling results in Section 6.
Survey Protocol. We randomly selected 400 (expecting a 25%
response rate) projects from our dataset of GitHub projects that
deactivated Travis CI (Section 5), cloned each repository locally,
and parsed its commit log. We collected the names and emails

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu

of the contributors who had most recently edited their project’s
.travis.yml file, on the assumption that they could best answer
questions about that project’s CI practices. We filtered out people
whose emails were not also publicly available on their GitHub
profiles, and those contacted in our previous (to reduce survey
fatigue). We then emailed the remaining contributors individually
about their respective projects, asking the single question: “Why
did this project stop using Travis CI, and what has the CI situation
been like since then?” We specifically designed the survey as a single
question, so that participants could answer directly by replying
to the email, to lower survey fatigue and the effort required to
respond, and left it open ended to capture possible answers not
found in the literature and avoid priming participants. We received
132 responses, a 33 % response rate.
Interview Protocol.While most survey responses were detailed
enough to understand why a project had abandoned Travis CI
(mean 82words per response), we also conducted 12 semi-structured
interviews (recorded with participant consent, then transcribed),
purposely sampled to stratify across different stated reasons. In
these interviews, we discussed how people’s decision to abandon
Travis CI was made, whether there were any secondary reasons,
and integrated aspects of participatory study design by discussing
our operationalizations and integrating their suggestions [15, 61].
In the remainder of the paper, we refer to interview responses as
extensions of the corresponding participant’s survey answer.
Card Sorting.We then open card sorted the survey responses, a
standard approach to categorize and relate qualitative data [3, 27,
48]: Two authors card sorted the survey answers into cohesive cat-
egories in a collaborative process. Disagreements were discussed
and, if needed, the categories were adjusted. The categorizations
were then independently reviewed by the other authors. Survey
responses yielded 9 themes, each described in detail in Section 6 and
summarized in Table 4. Overall, 78 participants reported abandon-
ing CI altogether vs. 54 switching tools. Note that some respondents
stated multiple reasons for their decision to leave, so respondents
may repeat across categories.
Threats to Validity.Without triangulation (Sec. 2), survey results
may suffer from human biases such as social desirability effects [51],
hindsight bias [26], or selection effects [67]. Note, some degree
of subjectivity is inherent in qualitative research, and thus other
researchers may interpret the same data differently [14]. To allow
further replication, our full interview protocol is included in the
online replication package.3

5 QUANTITATIVE ANALYSIS

For our quantitative analysis, we use logistic regression (cf. Sec. 2).
Travis CI Leavers: Abandonment vs. Switching. First, we as-
semble a dataset of GitHub projects that stopped using Travis
CI between Dec 2011 and Aug 2017 by mining the Travis CI API
for projects that had originally signed up for the service, but have
since disabled it; we refer to these projects as Travis CI leavers. Of
these, the overwhelming majority had ceased development activity
shortly after disabling Travis, i.e., had no commits beyond 30 days
after Travis abandonment; we subsequently filtered these out as
the leaving event cannot be disentangled from the termination of
project development altogether.

As a novel operationalization, we detect abandoners and switch-
ers as two different kinds of leavers based on the commit status

Table 2: Descriptive statistics for our final dataset (1,087

abandoners, 352 switchers, 4,800 controls).

Numeric variables Mean St. Dev. Min Max

Project age (days) 1680.74 392.43 1095 2999
Num. commits 340.02 1152.92 1 29303
Num. contribs 8.47 14.49 1 141
Num. jobs 2.69 3.02 1 57
Num. PRs 25.2 74 0 796
Last build duration 240.94 369.79 2 2976
Num. tests 43.46 326.64 0 16695
% Rebuilds 0.01 0.03 0 0.5
Binary variables % True % True

Has long builds 22 New user 45
Commercial users 22 Needs Docker 2
Exposure to leavers 31 Low activity 93
Lang. supported 91

context of recent commits, which is a form of metadata attached to
commits on GitHub, used to visually indicate whether a service
has performed a check on the commit and with which resulting
status.4 If leavers had any commit status context after their last
recorded Travis CI build, we label them as switchers; otherwise as
abandoners. We identified 1,145 abandoners and 369 switchers.
Control Group. For modeling, we match our dataset of leavers
with a control group of 4,902 retainers – projects that adopted
Travis CI around the same time and still use it. Starting from a
larger dataset of projects using Travis CI released by Zhao et al [87],
we sample our control group using nearest-neighbor propensity
score matching [11] on the Travis CI adoption date; this ensures
that the control group projects had the same CI options available
when they first adopted Travis CI. Note that leaving Travis CI
is relative rare compared to using it, hence our decision to down-
sample current Travis CI users when compiling the control group;
in addition, a larger (but not too large) control group compared
to leavers helps reduce sampling bias while maintaining relatively
balanced groups. Table 2 shows descriptive statistics of the full
dataset. An exploratory preliminary analysis of a similar dataset
(without distinguishing between abandonment and switching) was
performed in a recent short paper [78].
Logistic Regression Modeling.We built two logistic regression
models with abandonment and switching as response, respectively.
Binomial logistic regression models estimate the likelihood of a
binary outcome given a set of predictors. The technique allows us
to explain the likelihood of the dependent binary event (abandoning
or switching) as a function of different factors, and to estimate the
effect of each factor while holding the other variables fixed. For each
factor (predictor), the model provides information on the statistical
significance and strength of the association with the outcome (we
report odds ratios, above or below 1); we also compute η2, the share
of the total variance explained by that predictor using an ANOVA
analysis, with typical thresholds (i.e., small: 0.01 ≤ η2 < 0.06,
medium: 0.06 ≤ η2 < 0.14, or large: η2 ≥ 0.14) [47].

As a precaution, for highly-skewed measures we filtered out
the top 1 % of values as potential high-leverage points, to increase
model robustness [55, 74], and we log-transformed variables as

4developer.github.com/v3/repos/statuses/

A Conceptual Replication of Continuous Integration Pain Points in the Context of Travis CI ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

needed, to stabilize variance and reduce heteroscedasticity [29].
We further performed multicollinearity analysis, checking if the
Variance Inflation Factor remained below 3 [1]. Past work has shown
that general attributes of a project, such as the number of commits
and contributors are associated with Travis CI abandonment [78];
we control for these covariates explicitly.
Operationalization. While the survey (Sec. 4) can cover all kinds
of pain points that our respondents report, the quantitative analysis
is limited to pain points we can operationalize with GitHub and
Travis CI trace data. As discussed in Sec. 2, we exclude seven
observations as not relevant for our target population of leavers
of Travis CI in open source projects on GitHub (O2.a, O2.d, O2.g,
O2.h, O2.l, O2.m, O5.e); for example, we consider observation (O2.d)
(CI can be perceived as creating too manymeetings) to be less relevant
in an open source context. In addition, for 10 of our observations,
we did not find a plausible way to operationalize them at scale
in trace data (O1.b, O1.c, O1.d, O2.b, O2.c, O2.i, O2.j, O2.k, O5.b,
O5.c); for example, regarding observation O2.j (some developers
fear damage to their reputation when breaking the CI build, making
them less willing to expose early versions of their work), we may
detect overly large commits but cannot detect the reason from
public artifacts; similarly, operationalizing some other observations
would require sophisticated code analysis techniques that cannot be
easily generalized to multiple programming languages at scale (e.g.,,
detecting GUI code (O5.b)). Finally, in some cases there are multiple
observations that have the same observable symptoms, so we model
them with the same factor; for example, (O4.a) users dislike long
builds because they prohibit quick feedback, and (O4.b) long builds
lead to high pull request latency, are both operationalized with the
same factors: last build duration and has long builds.

This leaves us with 14 observations to operationalize with the
following measures:
• %Rebuilds:Wemeasure a rebuild rate, the percentage of a project’s
builds triggered by the same commit. These instances indicate
that someone has manually re-triggered the build, which is sug-
gestive of flaky builds or flaky infrastructure (O5.d) and may
indicate difficulty troubleshooting a flaky build (O1.a).

• Low activity: We label a project as having low activity if there are
any months without commits in the six months preceeding the
last build on Travis CI, thus capturing projects that possibly get
little benefit from CI due to low activity (O2.e).

• Commercial users:We label a project has having commerical users
with a measure originally developed by Valiev et al. [73]: we parse
the email address from the projects’ commit logs and classify
contributors based on the domain name of their email address
as either “academic” (e.g., name@nyu.edu), “commercial” (e.g.,
name@facebook.com), “public” (e.g., name@gmail.com), or “un-
known”. Literature suggests that company supported projects
are reluctant to use public CI infrastructure (O2.n).

• Needs Docker: We record whether repositories have a container
build script (‘Dockerfile’) of the most popular container format
Docker on the day before the project’s last build (for those who
left, this is also the date that they stopped using Travis CI)
arguing that such presence is a strong signal that the project
intends to use containers. We experimented with detecting other
development tools, in line with (O3.c), but Docker was the only
one we were able to consistently detect at scale. More generally,

if attempts to configure container use lead to abandonment or
switching, this may indicate configuration challenges (O3.a).

• Language support: We label a project as having language support
by comparing the primary language of each project to the list of
officially supported languages on the Travis CI platform.5 Weuse
GitHub’s own detection of languages and consider the most used
language as primary.6 Based on the Travis CI documentation, we
classify C, C++, Go, Java, JavaScript, PHP, Python, and Ruby as
supported. In our sample, primary languages without support or
only with community support were C#, CSS, HTML, Objective-C,
and Puppet. Literature suggests that lack of language support
presents a significant barrier (O3.d).

• Last build duration:We include the last build duration, as reported
by the Travis CI API as a predictor, as is the most straightforward
way to operationalize annoyance resulting from long build times
(O4.a), long builds leading to high PR latency (O4.b), long build
times leading to more error prone configurations (O4.c), and the
possibility that CI is impractical in data intensive domains (O4.d).

• Has long builds: In contrast to above, we suspect nonlinearity
in that moderate build times are acceptable but very long build
times are frustrating and indicate a barrier (O4.a). To attempt to
capture this effect, we classify projects as having long builds if
they had builds in their history that are among the top 20 percent
of build times, globally, in our dataset.

• Number of test files: We consider test files to be those with the
name “test[s]” or “spec[s]” in the directory or file name, in line
with previous work [72]. We count the number of files rather
than than their size to better control for language differences.
Literature suggests that projects with a preexisting testing culture
are less likely to see benefit from CI (O2.f), as well as those with
few or no tests (O5.a).

• New user: We expect that technology barriers (O3.d, O3.c) es-
pecially affect new CI users, who then must choose whether to
“hack” and attempt to manually add support, or switch early on
to a platform with built-in support. To allow us to model this, we
set a new user variable true if the project has fewer than 30 days
between their first and last build or fewer than 30 builds total.
Finally, we found a new pain point during our survey that was

not covered by previous observations in literature (network effects),
and we operationalize that pain point as well.
• Exposure to leavers: We check whether a project has contributors
who have also contributed to projects on GitHub that previously
left Travis CI. We only model exposure which occurs before
before a project’s last Travis CI build, i.e., before the decision to
leave Travis CI for those in the switcher and abandoner treatment
groups, because exposure after this point clearly cannot influence
choices made in the past. This way, we test whether a project
was potentially exposed to leaving decisions in other projects,
by knowledge transferred through contributors.

Threats to Validity. When splitting abandoners from switchers,
we cannot automatically detect switchers in our dataset if develop-
ers move to a private CI service that does not update the commit
status context on GitHub. However, our survey responses offer
ground truth for a subset of our full dataset: respondents report

5docs.travis-ci.com/user/languages/
6help.github.com/articles/about-repository-languages/

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu

Table 3: Regressionmodels for CI abandoners and switchers.

Switchers (R2 = 28%) Abandoners (R2 = 22%)

OR Coeffs (Err.) LR Chisq OR Coeffs (Err.) LR Chisq

(Intercept) 1161306.24 (2.45)∗∗∗ 4.57 (1.32)
Project age 0.11 (0.34)∗∗∗ 46.10∗∗∗ 0.74 (0.18) 2.65
Num. commits 2.61 (0.09)∗∗∗ 139.97∗∗∗ 1.93 (0.04)∗∗∗ 225.67∗∗∗
Num. contribs 1.24 (0.11)∗ 4.10∗ 1.51 (0.06)∗∗∗ 49.48∗∗∗
Num. jobs 0.88 (0.13) 0.90 0.84 (0.07)∗ 6.07∗
Num. PRs 0.73 (0.06)∗∗∗ 27.08∗∗∗ 0.57 (0.04)∗∗∗ 248.35∗∗∗
Last build duration 0.57 (0.07)∗∗∗ 79.07∗∗∗ 0.67 (0.04)∗∗∗ 123.81∗∗∗
Num. tests 0.95 (0.05) 0.79 0.84 (0.03)∗∗∗ 36.02∗∗∗
Has long builds 1.17 (0.20) 0.61 1.26 (0.11)∗ 4.06∗
Lang. supported 0.47 (0.21)∗∗∗ 12.11∗∗∗ 0.49 (0.12)∗∗∗ 33.10∗∗∗
Commercial users 0.74 (0.18) 2.79 0.75 (0.11)∗∗ 7.30∗∗
Exposure to leavers 1.83 (0.16)∗∗∗ 13.63∗∗∗ 1.49 (0.10)∗∗∗ 17.37∗∗∗
New user 1.94 (0.19)∗∗∗ 15.25∗∗∗ 2.01 (0.10)∗∗∗ 51.46∗∗∗
Needs Docker 1.03 (0.38) 2.70 0.80 (0.30) 1.31
% Rebuilds 1.19 (0.06)∗∗ 7.16∗∗ 1.15 (0.03)∗∗∗ 15.86∗∗∗
Low activity 0.49 (0.24)∗∗ 8.59∗∗ 0.27 (0.15)∗∗∗ 71.79∗∗∗
New usr:Docker 9.42 (0.81)∗∗ 8.20∗∗ 5.25 (0.54)∗∗ 9.93∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

whether they switch or abandon. When comparing responses with
our automated detection, we estimate that our detection underre-
ports switchers by 18 %. We expect that the impact of this underre-
porting on the general observations in our models is small.

As usual, many operationalizations can only approximate the ef-
fects of the underlying pain points with data available; for example,
we operationalize resource limitations of data-intensive projects
(O4.d) by measuring the average build time, which captures only
part of the pain point but is measurable automatically at scale. De-
spite careful inspection on a sample of our data to avoid systematic
biases, we also cannot exclude all construct validity issues with our
operationalized factors.We expect that by averaging over thousands
of sampled projects through our regression models, our measures
will reflect the intensity and directionality of underlying trends in
the dimensions we study. When we triangulate in conjunction with
our survey, which does not suffer from this bias (but from others,
e.g., hindsight bias, which does not threaten the model) we build
confidence in our final, triangulated results.

Our dataset contains a large sample of GitHub projects for which
we could detect recent disabling of Travis CI. While Travis CI is
currently the most popular cloud-based CI service, care must be
taken when generalizing results to other CI services, or beyond
open source projects on GitHub.

6 RESULTS

We list the eight themes that emerged from our survey with corre-
sponding survey participants in Table 4 and report our regression
models (separately for switchers and abandoners) in Table 3.

Triangulating our results and comparing them to observations
from previous literature, we discuss key reasons for abandoning
or switching CI service in our target population. Specifically, we
found eight factors that have strong support from either method in
our replication, summarized in Table 4.

When appropriate, we report effect sizes in two ways: the ap-
proximate effect of a 1 % increase in numerical predictors or of

true cases for binary predictors [80], and also amount of deviance
explained by that predictor (Table 3), relative to other variables.

6.1 Long Build Times

Fifteen respondents indicated leaving Travis CI because of build
speed issues (A100, A104, S35, S4, S59, S75, A80, S99, S125, S128, S26, S27,
S5, S51, S62), and five others reported similar resource constraints
including memory, disk space, and available build time (A14, S26, A79,
S81, A23), together representing the second most common reason
cited in our survey, and concurring with observations O4.a [16,
27, 35, 37, 39, 40, 60], O4.b [82, 87], O4.c [2, 4, 13, 52, 60], and
O4.d [2, 58, 59]. Build speed issues manifested in different ways.
Some complained about long build times and thus slow feedback
with similar builds taking very different lengths of time (S51), others
were frustrated by long queue times (S5, S125); e.g., S125 complained
“We stopped using Travis CI because it was working too slow for us.
After pushing new changes, the build would wait up to 30 minutes
in the queue.” Several respondents explicitly indicated that they
switched to a different CI service because the target CI service
offered faster builds (S27, S35, S51, S62, S75, S128) or the opportunity
to parallelize elements of the build process, which Travis CI did not
support (S27, S51). In another example, one participant reported “We
stopped using Travis CI for this project because of random compile
failures whenever the compiler ran out of RAM.” It appears that, given
the baseline rate of more answers from abandoners, switchers are
overrepresented regarding complaints about build speed.

In our model, last build duration is associated with a decreased
chance of abandoning or switching CI. For every 1 % increase in last
build duration, the chance of switching and abandoning decreases
by 57 % and 67%, respectively, and this factor explains the highest
fraction of variance in both models relative to the other non-control
variables, with a large and medium effect size, respectively (η2 =
0.21, 0.14). However, build length itself does not indicate whether
it is perceived as too long, and long builds could actually indicate
that CI performs valuable analyses for the project.

We separately model has long builds, because we suspect non-
linearity in that moderate build times are acceptable but very long
build times indicate a barrier: we thus classify projects as having
very long builds if they have builds much longer than their peers of
similar size (full operationalization details above in Sec. 5). Those
with very long builds are 126 % more likely to abandon, though this
factor explains the least amount of variance in the model, not even
reaching a small effect size (η2 = 0.004).

In summary, we find strong evidence in the survey that people
abandon and switch because of long builds, in line with past literature,
but our model finds the opposite effect for the absolute duration of the
last build.

6.2 Unsupported Technologies

28 respondents left Travis CI because it did not support technology
they needed, the most common reason cited in our survey, aligning
with observations O3.c: multiple tool use [13, 13, 27, 52], O3.d: lack
of language support [4], and partially with O3.a: general configura-
tion challenges [2, 4, 18, 21, 27, 39, 58, 60]. 11 respondents reported
poor support for the Windows ecosystem as a reason for leaving
Travis CI (S4, S5, S32, S34, S40, S67, S96, S98, A71, A79, A129), including
the .NET framework (S4, S34, S40, S67, S98, A129), C# language (S4, S98,

A Conceptual Replication of Continuous Integration Pain Points in the Context of Travis CI ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 4: Results Summary. A↑: Abandoning CI is statistically significantly more likely; A↓: Abandoning CI – less likely;

S↑: Switching CI – more likely; S↓: Switching CI – less likely.

Active CI Users Travis CI Leavers

Theme Literature Observation(s) Support from Survey Modeling Results

Unsupported tech. O3.d: Lack of support for a project’s language
makes CI use difficult [4]. O3.c: Connecting de-
veloper tools to CI is challenging [13, 13, 27, 52].
O3.a: CI can be hard to configure [2, 4, 18, 21, 27,
39, 58, 60].

11 respondents left Travis CI because it did not support
the programming language they need (S4, S5, S32, S34, S40,
S67, S96, S98, A71, A79, A129). 9 left Travis CI because of
poor Docker support (S8, S19, S20, S31, S58, S60, S89, S121,
A100), and 8 needed other tools (S31, S57, S58, S75, S83, S97,
S116, S125).

Project’s language
is supported: A↓,S↓

Needs Docker :A↑ and

S↑, for new users

only

Long build times O4.a: Long builds frustrate users or make CI im-
practical [16, 27, 35, 37, 39, 40, 60]. O4.b: Long
builds lead to pull request latency [82, 87]. O4.c:
Long builds lead to an error prone setup [2, 4, 13,
52, 60]. O4.d: Data intensive projects make CI
expensive. [2, 58, 59].

15 left Travis CI because they found the build or queue
times too long (S35, S4, S59, S75, A80, S99, S125, S128, S26, S27,
S5, S51, S62, A100, A104). 5 other left Travis CI because of
RAM, space, or build time limits (S26, S81, A14, A23, A79).

Has long builds: A↑.
Longer last build dura-
tion: A↓, S↓

CI consistency N/A, see Sec. 6.3 17 left Travis CI to achieve CI consistency across projects,
or carry poor Travis CI experiences to new projects (S4,
S5, S8, S9, S31, S38, S59, S60, S63, S69, S74, S88, S93, S124, S126,
S127, A17).

Exposure to leavers:
A↑, S↑

Lack of tests O5.a: Projects with few/no tests benefit less from
CI. [28, 39, 40, 52, 64]O2.f: Projects with existing
test culture benefit less from CI [28].

14 left Travis CI because they lacked (sufficient) tests
(S44, S91, A6, A18, A25, A50, A66, A68, A70, A86, A101, A102,
A111, A115).

Lower num. tests: A↑

Infrequent changes O2.e: Projects which change infrequently are less
likely to need to use CI [28].

6 left Travis CI because the project was inactive or had
very low activity (S77, A48, A53, A82, A103, A118).

Low activity in past 6
months: A↓,S↓

Poor user exp. O3.b: CI configuration files can be confusing,
leading some to prefer a GUI [18, 27].

9 reported that UI concerns, poor documentation or com-
munity support influenced their decision to leave Travis
CI(S4, S26, S35, S38, S51, S62, S69, A80, S83).

N/A, see Sec. 6.6

Company support O2.n: Company supported projects are reluctant
to use a public CI service [27].

6 left Travis CI due to security concerns related to to the
proprietary nature of their test environment (S5, S15, S41,
S57, S58, S69, S116, A64).

Contributors with
commercial users: A↓

Build failures O1.a: Troubleshooting build failures is diffi-
cult [27, 28, 39]. O5.d: Flaky tests or CIs com-
pound this [13, 37, 39, 39, 52, 58, 58, 60].

4 found it difficult to troubleshoot a build failure (S58,
S75, S83, A13). 6 left Travis CI because of test or CI setup
instability (S19, S59, S121, A14, A66, A108).

Higher % of rebuilds:
A↑, S↑

A71), and .NET package manager NuGet.org (S34, S67). For exam-
ple, one respondent acknowledged that while Travis CI supported
Windows projects in a limited manner, they found this insufficient;
e.g.,: “I stopped using Travis CI at this point because I switched from
Java to C# with .NET Core. I think I even tried to install .NET during
part of the build steps but couldn’t get it to work very well.” Nine
respondents specifically stated their need for Docker support (A100,
S20, S31, S58, S89, S121, S19, S60, S8), all but one switching for this
reason. For example, S89 responded “I switched to Wercker a long
time ago. Wercker [is a] container based CI pipeline, which means
it can execute any scripts with much more flexibility.” Finally, eight
respondents reported that poor support for various other artifact
and deployment services lead to their decision to switch Travis
CI (S31, S57, S58, S75, S83, S97, S116, S125). E.g., S58 explained: “Cloud-
bees allowed us to publish artifacts on the Maven repo [...] for building
“interim” versions [...] primarily for ourselves but for others too.”

We suspect that any technology without full support of the CI
service could influence developers to switch. In addition, we suspect
that developers realize a platform barrier early on: they either find
a workaround or switch to a CI service without this barrier quickly.

Thus we expect that platform barrier will disproportionately affect
projects new to a CI service.

Our model indicates that the lack of language support has a signif-
icant effect, associated with an increased risk of abandonment and
switching, but needing Docker has no significant effects alone. How-
ever, our model shows that when interacted with new users, need-
ing docker has significant, strong effects (illustrated in Figure 2c).
Needing Docker increases new users’ chances of switching and aban-
doning by 942 % and 525 %, respectively, with a small effect size in
each case (η2 = 0.02, 0.01), likely because the interaction is rare.
The effect appears stronger for switching than abandoning, suggest-
ing that many switch to a CI providing the necessary technology
support rather than abandon CI altogether. This is in line with the
fact that of the 28 respondents reporting unsupported technology,
only four abandoned. (Note: Though we tried, we were unable to
model a similar interaction for language support, because the VIF
indicated excessive multicolinearity.) Language support decreases
projects’ chances of switching and abandoning by 53% and 51%,
respectively, with a small effect size in each model (η2 = 0.03, 0.04).

In summary, our survey and model confirm that lack of support for
needed technology is associated with an increase risk of abandoning,

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu

but more so switching to a CI platform with the necessary support, in
line with previous research.

6.3 CI Consistency Across Projects

The third most common reason given for switching CI in our survey
was that developers followed decisions in other projects to achieve
consistency across projects. Even though not mentioned in previous
literature, this reason had strong support from survey and model
in our population.

Sixteen participants indicated that they switched CI services be-
cause they followed decisions in their other projects, and switched
the project in question to maintain consistency (S4, S5, S8, S9, S31, S38,
S59, S60, S63, S69, S74, S88, S93, S124, S126, S127), and one respondent
abandoned CI for the same reason (A17). For example, one respon-
dent said “I had some open source projects running in TravisCI and
some in CircleCI. I just wanted to consolidate the project to one place
and I’m sorry to say that at that time TravisCI lost the battle.”

Exposure to leavers increases projects’ chances of switching and
abandoning by 183 % (η2 = 0.04) and 149 % (η2 = 0.02), respectively,
Our model confirms a significant but small network effect, indicat-
ing that projects of contributors who have previously left Travis
CI are influenced, and thus more likely to switch or abandon CI.

In summary, our results indicate that the desire for CI consistency
across projects plays an important role in a contributor’s choice of CI
and that knowledge aboutCI flows across communities through people:
projects with contributors who have participated in other projects that
left Travis CI in the past are more likely to switch and abandon.

6.4 Lack of Tests

Even though running tests is a key feature of CI, our survey in-
dicates that many participants adopted Travis CI with few or no
tests for it to run. Aligning with O5.a: CI is less useful with few
tests [28, 39, 40, 52, 64], but perhaps contradicting O2.f: an existing
testing culture makes CI less useful [28], 14 participants cited the
lack of tests, the lack of meaningful test coverage, or the difficulty
of writing quality tests as a reason for leaving Travis CI (S44, S91,
A6, A18, A25, A50, A66, A68, A70, A86, A101, A102, A111, A115); e.g., A111
indicated “We abandoned Travis because [a certain API] requires an
elaborate test setup. The goal [of adopting Travis] was to ‘force’ myself
to add some real tests (to have green Travis badge again!) but this
failed so far :)” Lack of tests was predominantly a barrier that lead
to abandonment rather than switching (12 out of 14 participants).

In our model, a lower number of test files is significantly associ-
ated with an increased risk of abandonment, with no significant
effect observed for switching. This is as expected: the problem of
not having tests will not be solved by switching CI, thus no asso-
ciation is expected. For every 1% increase in the number of test
files, the chance of abandoning decreases by 16% (η2 = 0.04). To
illustrate this effect, we plot the number of tests for per project In
Figure 2b, where we see that abandoners have slightly fewer tests
on average than switchers do or the control group.

In summary, our survey and model confirm past literature: CI is
much less useful with few tests, associated with an increased chance
of abandonment.

6.5 Infrequent Changes

Nine of our respondents reported that they left Travis CI because
their project had so little activity that they did not see the point
of maintaining a CI platform and its associated overhead (A44, A48,
A53, A82, A86, A102, A103, A118, S77), which aligns with findings in
prior literature (O2.e) [28]. As one would expect, all but one of these
participants abandoned CI on their project altogether.

However, these results do not generalize to our measure of low
activity in the last 6 months: According to our model, projects with
low activity are less likely to abandon and switch CI. Low activity de-
creases projects’ chances of switching and abandoning by 51 % and
73 %, having a small (η2 = 0.02) and medium effect size (η2 = 0.08)
in the switching and abandoning models, respectively. This may be
because across the GitHub population at large, most projects with
low activity perceive little CI overhead once configured or may not
think to switch off CI even if it is not being used.

In summary, our survey supports low activity as a reason for aban-
doning in line with prior research, though our model does not.

6.6 Poor User Experience

Nine respondents mentioned aspects related to UI, documentation,
and support when explaining why they left Travis CI (S4, S26, S35,
S38, S51, S62, S69, S83, A80). Four respondents mentioned that the UI
was a factor in choosing their new CI (S26, S35, S38, S83), with these
respondents preferring GUIs over configuration files, in accordance
withO3.b [18, 27]. Other factorsmentionedwere the level of support
(S26) and the quality of the documentation provided (S51). E.g., S26
expressed “Mostly I liked the fact [I can] conl all repository settings
through their web interface, rather than including a ‘.travis.yml’
with a bunch of complicated options. Semaphore is very responsive
to customers [implementing features based on feedback]. It feels like
Semaphore really cares about us.” These responses align well with
O3.b: configuration files are confusing, leading some to prefer a GUI.
Difficulties largely motivate switching rather than abandonment.

User experience is difficult to operationalize with archival data,
hence we leave validation to future work in which other research
methods such as user studies should be considered.

In summary, with the caveat that this is not a triangulated result,
participants report that user experience concerns lead them to switch
and abandon CI use, in line with previous findings.

6.7 Closed Source Concerns

Eight survey respondents mentioned that they left Travis CI due
to security or permissions concerns, often due to the proprietary,
closed source nature of code associated with their open source
project or test environment, even though the project itself was
open source, aligning with with O2.n [27], (S5, S15, S41, S57, S58,
A64, S69, S116). Specific reasons included the unwillingness to trust
third parties with security certificates, the wish to run CI behind
a firewall, the need to anonymize database information needed to
run tests, and the need to run security tools unsupported by Travis
CI. E.g., S57 who switched to a self-hosted CI indicates “It is now
easier for us to accommodate closed-source projects for our commercial
customers without the security issues of source hosted by third parties
such as Travis CI.” Three respondents mentioned that they wanted
the ability to run the same CI system on private repositories also,
to be able to work with closed source code with the same tool, as

A Conceptual Replication of Continuous Integration Pain Points in the Context of Travis CI ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

0

10

20

30

0.000 0.025 0.050 0.075 0.100
Rebuild Rate (ln)

N
um

be
r o

f P
ro

je
ct

s

Abandoned

Switched

Control

(a) % Rebuilds ↑ for Aban. & Switch.

0.0

0.1

0.2

0.3

0.0 2.5 5.0 7.5 10.0
Num. Tests (ln)

N
um

be
r o

f P
ro

je
ct

s

(b) Test count lower for abandoners.

●

●

●

●0.25

0.50

0.75

FALSE TRUE
Needs Docker

C
ha

nc
e

of
 S

w
itc

hi
ng

●

●

Experienced User

New User

New User

Experienced User

(c) New users needing Docker: S↑.

Figure 2: Layered histograms for Rebuild Rate &Number of Tests, Dot andWhisker plot forNew User/Needs Docker interaction.

the free tier Travis CI does not support private repositories (S41,
S57, S69).

However, in our model, we find that projects with commercial
users are less likely to abandon, with no significant observed effects
on switching. Commercial involvement decreases projects’ chances
of abandoning by 25 %, but with a negligible effect size (η2 = 0.008).

In summary, our survey responses confirm that commercially sup-
ported, closed source associated projects are reluctant to use a public
CI service, in line with past literature, though our model does not.

6.8 Troubleshooting Build Failures

Four participants spoke about problems they ran into while debug-
ging their projects on Travis CI (S58, S75, S83, A13), corresponding
to prior observations O1.a: troubleshooting build failures is diffi-
cult [27, 28, 39] and complicated by O5.d, concerning flaky tests
and platforms [13, 27, 28, 37, 39, 39, 39, 52, 58, 58, 60]. They mostly
switched to competing CI services or local installations which allow
them to debug their build as it was running (e.g., over SSH), such as
S83: “Then [CircleCI] became my preference because they offered the
ability to SSH in to debug, because the constant pushing/rebuilding
for one print line got really old.” Furthermore, six respondents men-
tioned that they left due to issues with the CI service’s stability (S19,
S59, A14, A66, A108, S121), e.g., S121 reports “We had a lot of issues
getting Travis to build consistently and should’ve just removed it. [...]
Sometimes the build was just hanging – not completing. Which lead
to manually having to re-trigger it.” Specific complains included ran-
dom and nondeterministic compilation failures (A14), a lack of build
reproducibility (S59), and the testing environment failing before any
tests could run (A108).

Our model indicates that rebuilds of the same commit (an in-
dicator of flakyness) associate significantly with both switching
and abandoning CI. For every 1% increase in the percentage of
rebuilds, the chances of switching and abandoning increase by ap-
proximately 119% (η2 = 0.02) and 115% (η2 = 0.02), respectively.
For illustration, we plot the distribution of the rebuild rate variable
for abandoners, switchers, and control group projects in Figure 2a.

In summary, survey and model confirm that troubleshooting CI
build failures is difficult, especially with flaky tests or CI platforms.
Projects with many rebuilds of the same commit are more likely to
abandon and switch CI.

7 DISCUSSION AND IMPLICATIONS

Our study replicated and confirmed several findings across two
research methods, providing strong support that the certain dis-
cussed pain points are actually barriers to adopting CI or finding
the right tool that affect broad user populations. We argue that
both researcher and CI providers should explore solutions for those
problems, possibly prioritized by severity of our findings.

7.1 Triangulated Results

We start with the triangulated results, suggesting ways to integrate
existing research to improve CI processes and tools, where possible.

Unsupported technology was the most common issue in our sam-
ple. CI tool builders should enhance support for commonly used
tools, especially Docker, because many found current support in-
sufficient.7 Likewise, as CI becomes more ubiquitous, CI providers
may consider supporting a wider variety of languages, or make it
easier for users to add support for niche languages. Perhaps more
importantly, the CI community at large should consider highlight-
ing this factor as a primary decision point when choosing a CI,
because even though it is quick to check whether Docker or your
language is supported, our survey shows that some only realize
this will be an issue after spending the time to adopt Travis CI.

Lack of tests is an important barrier to effective CI use, and
getting people to write tests has been broadly recognized as diffi-
cult [56]. There has been work investigating the effects of providing
incentives in an educational context for test writing [68], and also
work showing that gamification using GitHub badges can improve
test coverage [72]. CI vendors or external services could consider
integrating such mechanisms into the CI ecosystem (e.g., a “test
suite degraded” badge to signal to a team that a developer’s com-
mit did not include tests), and future research can find ways to
further incentivize test writing. Survey respondents complained
about the difficulty of writing GUI tests, so research on automating
the creation of these tests [25], as well as automating test creation
in general [17], can be integrated into newer versions of CI tools.

The strive for CI consistency across an organization (which is
understandable from a desire to minimize context switches [46])
might encourage CI vendors in the current competitive market to
support also niche requirements, as not meeting the technical re-
quirements for a single project may have rippling effects for others.

7https://docs.travis-ci.com/user/docker/

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu

Although technical limitations for languages and tools, such as
containerization, .net, and GUI testing, may be relevant only for few
customers, they were frequently mentioned in our survey and are
strong drivers for switching and abandoning for those projects af-
fected, but may influence decisions on other projects as well. Where
CI consistency is not possible or desirable, external tools could re-
duce CI context switching costs, for example providing compatible
configuration files, interconnectivity, or shared dashboards.

Regarding troubleshooting build failures, it seemsworth exploring
new tools that learn from decades of debugging research [36, 54,
81, 84, 85] for the use in CI settings, where interactive debugging is
less feasible. For example, debugging big-data analytics faces some
similar challenges and recent advances [23] may provide some
encouraging direction also for CI research. Research on usability
and understandability of CI logs and how they could be presented
better could provide significant benefits. Flaky tests seem to be a
frequent and severe pain point, and work, such as identifying root
causes of flaky tests [42], seems promising for improving CI.
7.2 Conflicting or Weak Results

Not all previously reported pain points gathered support from
survey and model on our population. Indeed, some results were
even seemingly contradictory and deserve further investigation.

Firstly, company support, and associated risks of exposing propri-
etary data or confidential information needed for testing otherwise
open source code, was cited as a common reason for leaving the
public Travis CI system. CI tool builders may consider adding
more features to partition open source components from associ-
ated proprietary or confidential code and data. However, our model
across many projects suggests the opposite: commercially associ-
ated projects are more likely to abandon Travis CI, with no effect
observed for switchers. More work is thus needed, for example,
to explore to what degree leavers may have specific requirements
different from the general population of commercially associated
open-source projects.

Secondly, Long build times were a commonly cited barrier to CI
use. Test suite prioritization and selection could improve feedback
times [62] and it already has some success in industry in a CI set-
ting [16, 44, 45], e.g., prioritizing commits rather than tests [41]. Still,
these techniques have not been explored much in public CI tools
beyond in vitro studies [41]. Travis CI recommends parallelizing
test suite execution, but future iterations of CI tools should consider
providing built-in support for test suite selection and prioritization.
Our model found that having very long builds is associated with a
very small but higher risk of abandonment, absolute build duration
had a much stronger, negative association with leaving Travis CI;
future work should study developer perceptions of build length in
more detail, to further investigate possible non-linearity.

Thirdly, infrequent changes were a commonly cited reason for
CI abandonment, but our model showed the opposite: less active
projects were less likely to abandon CI. We speculate that this may
simply be because maintainers do not turn off CI on mostly (but
not entirely) inactive projects; more research is needed given this
conflicting result.

Finally, user experience issues were frequently mentioned in our
survey, consistent with prior literature. Since we cannot opera-
tionalize these issues on trace data, we do not have confidence in
the severity and pervasiveness of the issue.

7.3 Non Confirmed Observations

Finally, for many cited pain points in the literature we found no
support in our survey or model. Beyond seven out of scope ob-
servations (see Sec. 5, e.g., O2.l: effects of CI on hiring), we found
no mention in the survey at all for 11 observations For example,
no respondents complained about the difficulty of understanding
the overall state of a project using CI (O1.b), nor a need for better
notifications (O1.c); neither culture (O2.b) nor leadership buy-in
problems (O2.c) were found in responses, nor were possibility of
reputational damage (O2.j), concerns about CI being an unreachable
standard (O2.i), or concerns about newcomer misunderstandings
(O2.k). These may therefore amount to annoyances, but not things
that outright lead people to switch or abandon CI altogether.

7.4 Implications for Open-Source Practitioners

Adopting and configuring CI can be time consuming. To improve
the experience, we provide a concrete checklist of questions to ask,
based on our research, that highlights the most common barriers
to CI adoption before finding out problems the hard way after
investing significant time in trying and configuring a CI system:
Does the CI platform support the languages and tools we use?
Choosing a CI platform with native support for an existing setup
will likely be much easier than hacking a CI platform to work
with an unsupported language or tool. Consider at least operating
system, programming languages, and container support, if needed.
Do our builds take a long time to run? If builds take a long time
to run with your current setup, they may take even longer on a
public CI platform. Consider a local CI with dedicated hardware or
a service with sufficient resources, or splitting up larger projects
and testing them individually.
Do other people in our organization currently use a different
CI? If so, ask them how they like it. If they abandoned it, ask them
why. It is likely that their negative experiences may carry over to
your the current project, and CI setup consistency across different
projects in your organization may make things easier.
Do we have tests? CI can encourage people to write more tests,
but CI might not be helpful if there are not already tests to run.
Consider encouraging people to write tests before adopting CI.
Do we interact with proprietary artifacts? Even if your project
is open source, interacting with proprietary artifacts in other parts
of your organization makes it harder to have a consistent CI setup.
Consider investing in a private CI setup for both open and closed
source code to ensure consistency.

8 CONCLUSION

In this paper, we conducted a multiple conceptual multiple repli-
cation of observations derived from a literature review of 37 pa-
pers, using a mixed methods triangulation design comprised of 132
survey responses and 12 interviews from Travis CI leavers and
two logistic regression models on trace data from 6,239 Travis CI
projects. Comparing results from each method, we discuss which
observations we were able to confirm, and also discuss what factors
lead people to switch CI tools and which lead people to abandon CI
altogether. We discuss how our work has actionable implications
for CI research, CI tool builders, and CI users.
Acknowledgements.We thank our participants and theNSF (awards
1717415, 1318808, 1552944, 1717022).

A Conceptual Replication of Continuous Integration Pain Points in the Context of Travis CI ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Paul D Allison. 1999. Multiple regression: A primer. Pine Forge Press.
[2] Brett K Beaulieu-Jones and Casey S Greene. 2017. Reproducibility of computa-

tional workflows is automated using continuous analysis. Nature Biotechnology
(2017).

[3] Andrew Begel and Thomas Zimmermann. 2014. Analyze this! 145 questions for
data scientists in software engineering. In International Conference on Software
Engineering (ICSE). ACM, 12–23.

[4] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke
the build: An explorative analysis of Travis CI with GitHub. In International
Conference on Mining Software Repositories (MSR). IEEE, 356–367.

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Syn-
thesizing travis ci and github for full-stack research on continuous integration.
In International Conference on Mining Software Repositories (MSR). IEEE press,
447–450.

[6] Michael Berkwits and Thomas S Inui. [n. d.]. Making use of qualitative research
techniques. Journal of general internal medicine ([n. d.]).

[7] Martin Brandtner, Emanuel Giger, and Harald Gall. 2014. Supporting continu-
ous integration by mashing-up software quality information. In Conference on
Software Maintenance, Reengineering and Reverse Engineering. IEEE, 184–193.

[8] Martin Brandtner, Sebastian C Müller, Philipp Leitner, and Harald C Gall. 2015.
Sqa-profiles: Rule-based activity profiles for continuous integration environments.
In International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 301–310.

[9] Donald T Campbell and Donald W Fiske. 1959. Convergent and discriminant
validation by the multitrait-multimethod matrix. Psychological bulletin (1959).

[10] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. 2014. Continuous test
generation: enhancing continuous integration with automated test generation. In
International conference on Automated software engineering (ASE). ACM, 55–66.

[11] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM.

[12] Ricardo Colomo-Palacios, Eduardo Fernandes, Pedro Soto-Acosta, and Xabier
Larrucea. 2018. A case analysis of enabling continuous software deployment
through knowledge management. International Journal of Information Manage-
ment (2018).

[13] Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. 2014. Chal-
lenges when adopting continuous integration: A case study. In International
Conference on Product-Focused Software Process Improvement. Springer, 17–32.

[14] Mary Dixon-Woods, Rachel L Shaw, Shona Agarwal, and Jonathan A Smith. 2004.
The problem of appraising qualitative research. BMJ Quality & Safety (2004).

[15] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting empirical methods for software engineering research. In Guide
to advanced empirical software engineering. Springer, 285–311.

[16] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 235–
245.

[17] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite genera-
tion for object-oriented software. In Symposium on the Foundations of Software
Engineering (FSE). ACM, 416–419.

[18] Keheliya Gallaba and Shane McIntosh. 2018. Use and Misuse of Continuous
Integration Features: An Empirical Study of Projects that (mis) use Travis CI.
Transactions on Software Engineering (TSE) (2018).

[19] Lisa M Given. 2008. The Sage encyclopedia of qualitative research methods. Sage
Publications.

[20] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from
a firehose. InWorking Conference on Mining Software Repositories (MSR). IEEE,
12–21.

[21] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: the contributor’s perspective.
In International Conference on Software Engineering (ICSE). IEEE, 285–296.

[22] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integrator’s
perspective. In International Conference on Software Engineering (ICSE). IEEE
Press, 358–368.

[23] Muhammad Ali Gulzar, Xueyuan Han, Matteo Interlandi, Shaghayegh Mardani,
Sai Deep Tetali, Todd D Millstein, and Miryung Kim. 2016. Interactive Debugging
for Big Data Analytics.. In HotCloud.

[24] Yash Gupta, Yusaira Khan, Keheliya Gallaba, and Shane McIntosh. 2017. The
impact of the adoption of continuous integration on developer attraction and
retention. In International Conference on Mining Software Repositories (MSR). IEEE,
491–494.

[25] Leegeun Ha, Sungwon Kang, Jihyun Lee, and Younghun Han. 2018. Automatic
Generation of GUI Test Inputs Using User Configurations. In International Con-
ference on Big Data, Cloud Computing, and Data Science Engineering. Springer,
103–116.

[26] Ralph Hertwig, Carola Fanselow, and Ulrich Hoffrage. 2003. Hindsight bias: How
knowledge and heuristics affect our reconstruction of the past. Memory (2003).

[27] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexibility.
In Foundations of Software Engineering (FSE). ACM, 197–207.

[28] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In International Conference on Automated Software Engineering (ASE). IEEE, 426–
437.

[29] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied
logistic regression. Vol. 398. John Wiley & Sons.

[30] Xin Huang, He Zhang, Xin Zhou, Muhammad Ali Babar, and Song Yang. 2018.
Synthesizing qualitative research in software engineering: a critical review. In
International Conference on Software Engineering (ICSE). ACM, 1207–1218.

[31] Md Rakibul Islam andMinhaz F Zibran. 2017. Insights into continuous integration
build failures. In International Conference on Mining Software Repositories (MSR).
IEEE, 467–470.

[32] Natalia Juristo and Omar S Gómez. 2012. Replication of software engineering
experiments. In Empirical software engineering and verification. Springer.

[33] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In International Conference on Mining Software Repositories (MSR). ACM, 92–101.

[34] David Kavaler, Asher Trockman, Bogdan Vasilescu, and Vladimir Filkov. 2019.
Tool Choice Matters: JavaScript Quality Assurance Tools and Usage Outcomes
in GitHub Projects. In International Conference on Software Engineering (ICSE).
IEEE.

[35] Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Söder, Agneta Nilsson, and
Magnus Castell. 2015. Supporting continuous integration by code-churn based
test selection. In InternationalWorkshop on Rapid Continuous Software Engineering.
IEEE Press, 19–25.

[36] Andrew Ko and Brad Myers. 2008. Debugging reinvented. In International Con-
ference on Software Engineering (ICSE). IEEE, 301–310.

[37] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: a study of Java projects using continuous
integration. In Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
ACM, 821–830.

[38] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. 2017. Challenges
for Static Analysis of Java Reflection-Literature Review and Empirical Study. In
International Conference on Software Engineering (ICSE). IEEE, 507–518.

[39] Eero Laukkanen, Maria Paasivaara, and Teemu Arvonen. 2015. Stakeholder
Perceptions of the Adoption of Continuous Integration–A Case Study. In Agile
Conference (AGILE). IEEE, 11–20.

[40] Marko Leppanen, Simo Makinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V Mantyla, and Tomi Mannisto. 2015. The highways and country roads to
continuous deployment. IEEE Software 2 (2015), 64–72.

[41] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining priori-
tization: Continuous prioritization for continuous integration. In International
Conference on Software Engineering (ICSE). IEEE.

[42] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In International Symposium on Foundations of
Software Engineering (FSE). ACM, 643–653.

[43] Marco Manglaviti, Eduardo Coronado-Montoya, Keheliya Gallaba, and Shane
McIntosh. 2017. An empirical study of the personnel overhead of continuous
integration. In International Conference on Mining Software Repositories (MSR).
IEEE Press, 471–474.

[44] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test case prioritization for
continuous regression testing: An industrial case study. In International Confer-
ence on Software Maintenance (ICSM). IEEE.

[45] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP.

[46] André N Meyer, Thomas Fritz, Gail C Murphy, and Thomas Zimmermann. 2014.
Software developers’ perceptions of productivity. In International Symposium on
Foundations of Software Engineering (FSE). ACM, 19–29.

[47] Jeremy Miles and Mark Shevlin. 2001. Applying regression and correlation: A guide
for students and researchers. Sage.

[48] Craig S Miller. 2011. Item sampling for information architecture. In Conference
on Human Factors in Computing Systems (CHI). ACM, 2211–2214.

[49] Audris Mockus. 2008. Missing data in software engineering. In Guide to advanced
empirical software engineering. Springer, 185–200.

[50] Gareth Morgan. 1997. Images of organization. SAGE Publications.
[51] Anton J Nederhof. 1985. Methods of coping with social desirability bias: A review.

European journal of social psychology (1985).
[52] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. 2012. Climbing the

“Stairway to Heaven”–A Mulitiple-Case Study Exploring Barriers in the Tran-
sition from Agile Development towards Continuous Deployment of Software.
In Conference on Software Engineering and Advanced Applications (SEAA). IEEE,
392–399.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu

[53] Klérisson VR Paixão, Crícia Z Felício, Fernanda M Delfim, and Marcelo de A Maia.
2017. On the interplay between non-functional requirements and builds on con-
tinuous integration. In International Conference on Mining Software Repositories
(MSR). IEEE Press, 479–482.

[54] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In International Symposium on Software Testing
and Analysis (ISSTA). ACM, 199–209.

[55] Jagdish K Patel, CH Kapadia, Donald Bruce Owen, and JK Patel. 1976. Handbook
of statistical distributions. Technical Report. M. Dekker New York.

[56] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schnei-
der. 2013. Creating a shared understanding of testing culture on a social coding
site. In International Conference on Software Engineering (ICSE). IEEE Press, 112–
121.

[57] Gustavo Pinto, Fernando Castor, Rodrigo Bonifacio, and Marcel Reboucas. 2018.
Work Practices and Challenges in Continuous Integration: A Survey with Travis
CI Users. In Software - Practice And Experience. Wiley.

[58] Gustavo Pinto, Marcel Rebouças, and Fernando Castor. 2017. Inadequate testing,
time pressure, and (over) confidence: a tale of continuous integration users. In
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE Press, 74–77.

[59] Denis Polkhovskiy. 2016. Comparison between continuous integration tools.
(2016).

[60] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.
An empirical analysis of build failures in the continuous integration workflows of
Java-based open-source software. In International Conference on Mining Software
Repositories (MSR). IEEE Press, 345–355.

[61] Peter Reason and Hilary Bradbury. 2001. Handbook of action research: Participative
inquiry and practice. Sage.

[62] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold.
1999. Test case prioritization: An empirical study. In International Conference on
Software Maintenance (ICSM). IEEE, 179–188.

[63] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. 2016. Continuous deployment at Facebook and OANDA. In
International Conference on Software Engineering Companion (ICSE-C). IEEE, 21–
30.

[64] Gerald Schermann, Jürgen Cito, Philipp Leitner, and Harald C Gall. 2016. Towards
quality gates in continuous delivery and deployment. In International Conference
on Program Comprehension (ICPC). IEEE, 1–4.

[65] Stefan Schmidt. [n. d.]. Shall we really do it again? The powerful concept of
replication is neglected in the social sciences. Review of General Psychology ([n.
d.]).

[66] W Richard Scott. 1981. Organizations: rational, natural, and open systems. NJ:
Prentice Hall, Englewood Cliff.

[67] Reginald G Smart. 1966. Subject selection bias in psychological research. Canadian
Psychologist/Psychologie canadienne (1966).

[68] Jaime Spacco and William Pugh. 2006. Helping students appreciate test-driven
development (TDD). In Companion to the Symposium on Object-oriented Program-
ming Systems, Languages, And Applications (OOPSLA). ACM, 907–913.

[69] Daniel Ståhl and Jan Bosch. [n. d.]. Industry application of continuous integra-
tion modeling: a multiple-case study. In International Conference on Software
Engineering Companion (ICSE-C).

[70] Kate Stewart. 1998. An exploration of customer exit in retail banking. International
Journal of Bank Marketing 16, 1 (1998), 6–14.

[71] Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie van Deursen. 2017. Why and
how JavaScript developers use linters. In International Conference on Automated

Software Engineering (ASE). IEEE, 578–589.
[72] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.

Adding sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In International Conference on Software Engineering (ICSE). ACM,
511–522.

[73] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Determinants of
Sustained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem.
In Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 392–
399.

[74] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian,
Premkumar Devanbu, and Vladimir Filkov. 2016. The sky is not the limit: multi-
tasking across GitHub projects. In International Conference on Software Engineer-
ing (ICSE). IEEE, 994–1005.

[75] Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik,
and Mark GJ van den Brand. 2014. Continuous integration in a social-coding
world: Empirical evidence from GitHub. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 401–405.

[76] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In JointMeeting on Foundations of Software Engineering (ESEC/FSE).
ACM, 805–816.

[77] Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C Gall. 2018.
Continuous code quality: are we (really) doing that?. In International Conference
on Automated Software Engineering (ASE). ACM.

[78] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.
2018. I’m Leaving You, Travis: A Continuous Integration Breakup Story. In
International Conference on Mining Software Repositories (MSR).

[79] Timothy Williams, Jessie Schutt-Aine, and Yvette Cuca. 2000. Measuring family
planning service quality through client satisfaction exit interviews. International
Family Planning Perspectives (2000), 63–71.

[80] JeffreyMWooldridge. 2015. Introductory econometrics: Amodern approach. Nelson
Education.

[81] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014.
CrashLocator: locating crashing faults based on crash stacks. In International
Symposium on Software Testing and Analysis (ISSTA). ACM, 204–214.

[82] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for it: Determinants of pull request evaluation latency on
GitHub. In International Conference on Mining software repositories (MSR). IEEE,
367–371.

[83] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In International Conference on Mining
Software Repositories (MSR). IEEE, 334–344.

[84] Andreas Zeller. 1999. SubjectYesterday, my program worked. Today, it does not.
Why?. In Joint Meeting on the Foundations of Software Engineering (ESEC/FSE).

[85] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2003. Precise dynamic slicing
algorithms. In International Conference On Software Engineering (ICSE). IEEE
Computer Society, 319–329.

[86] Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov. 2018. One
Size Does Not Fit All: An Empirical Study of Containerized Continuous Deploy-
ment Workflows. In Joint Meeting on the Foundations of Software Engineering
(ESEC/FSE). ACM, 295–306.

[87] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: a large-scale empirical study. In International Conference
on Automated Software Engineering (ASE). IEEE, 60–71.

	Abstract
	1 Introduction
	2 Study Design
	3 Literature Review
	4 Survey and Interviews
	5 Quantitative Analysis
	6 Results
	6.1 Long Build Times
	6.2 Unsupported Technologies
	6.3 CI Consistency Across Projects
	6.4 Lack of Tests
	6.5 Infrequent Changes
	6.6 Poor User Experience
	6.7 Closed Source Concerns
	6.8 Troubleshooting Build Failures

	7 Discussion and Implications
	7.1 Triangulated Results
	7.2 Conflicting or Weak Results
	7.3 Non Confirmed Observations
	7.4 Implications for Open-Source Practitioners

	8 Conclusion
	References

