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Abstract

Sunquakes are one of the more distinct secondary phenomena related to solar flares, where energy deposition in the
lower layers of the Sun’s atmosphere excites acoustic waves easily visible in photospheric dopplergrams. We
explore two possible excitation mechanisms of sunquakes in the context of the electron beam hypothesis: an
instantaneous transfer of momentum and a gradual applied force due to flare eruption. We model the sunquake
excitation and compare with five observed sunquake events using a cross-correlation analysis. We find that at least
half the events studied are consistent with the electron beam hypothesis and estimate the energy required to excite
the sunquakes to be within the range determined by previous studies.

Unified Astronomy Thesaurus concepts: Helioseismology (709); Solar flares (1496); Solar physics (1476)

1. Introduction

Solar flares represent some of the most energetic phenomena
observed in the solar system. It is well-understood that solar
flares result from the reconfiguration of the local magnetic field
toward a lower-energy state (Aschwanden 2019; Ulyanov et al.
2019), which drives particle acceleration and other secondary
processes. A comprehensive understanding of energy transport
in the solar atmosphere requires close inspection of these
secondary processes, which distribute the energy released in
flares at coronal heights to regions lower in the atmosphere.
Among these processes are sunquakes, which are impulsive
seismic events observed in the lower solar atmosphere. While
the effects of sunquakes are easily seen in observations—first
detected by expanding ripples in Michelson Doppler Imager
(MDI) dopplergrams (Kosovichev & Zharkova 1998; Kosovichev
2006)—the mechanism by which they are generated has yet to be
determined.

Magnetic reconnection in the corona has been identified as
the main driver of energy release during solar flares (Kopp &
Pneuman 1976; Antiochos et al. 1999), and electron beams
accelerated by this reconnection process are suggested as a
possible means of exciting sunquakes (e.g., Pedram &
Matthews 2012; Sharykin et al. 2017; Macrae et al. 2018). In
particular, the thick-target model (e.g., Fisher et al. 1985)
suggests that the electron beam strikes a stationary chromo-
sphere, and the resulting thermalization of the electrons can be
observed as a sharp increase in hard X-ray (HXR) emission. If
the electron beam hypothesis is correct, then there should be
some correlation between HXR emission as a function of time
and the time of sunquake excitation.

Sunquakes themselves are studied as part of helioseismol-
ogy, which is concerned with the propagation of acoustic
waves of the Sun. The discipline separates the acoustic waves
into three separate modes: pressure waves, also called p-modes;
gravity and buoyancy waves, also called g-modes; and the
f-mode, a surface propagating gravity wave which separates p-
and g-modes in the dispersion relation. In power spectra of the
Sun’s radial velocity field, the p-modes produce a distinct
banded structure identified as the resonant modes between 1
and 5 mHz. Non-resonant acoustic waves above 5 mHz are

usually referred to as pseudomodes, as they appear as a similar
banded structure in power spectra. Sunquakes generally
produce higher frequency waves due to the short duration of
excitation, and pseudomodes are often observed following
sunquakes because of this.
Previous studies of sunquakes have identified the photo-

sphere or lower chromosphere as possible locations of
sunquake excitation (Kosovichev & Zharkova 1995; Zharkova
& Zharkov 2015; Sharykin et al. 2017; Chen 2019). Further-
more, it appears that heating in these regions and the
subsequent shocks can provide enough energy to excite the
acoustic waves (Kosovichev & Zharkova 1995; Kosovichev
2015). Zharkova & Zharkov (2015) find that electron, proton,
or mixed-particle beams have the potential to provide the
necessary heating, that proton beams may penetrate up to
300 km below the quiet-Sun photosphere, and that electron
beams can penetrate as far as 5000 km below the photosphere.
An alternative mechanism was suggested by Fisher et al.
(2012), who argued that flare eruptions may cause a
perturbation of the Lorentz force balance and drive sunquake
excitation.
In this work, we will examine the possibility of an electron

beam and an applied external force as a sunquake excitation
mechanism. We construct a hydrodynamic model and test two
types of excitation mechanisms: an instantaneous transfer of
momentum to the surrounding atmosphere—analogous to the
shock excited by the thermalization of the electron beam—and
a more gradual transfer of energy modeled as an applied
external force. While the first mechanism is more applicable for
strong flares, where the emission is more impulsive, the second
type may help to explain sunquakes generated by magnetic
field perturbations. We place these sources of excitation in the
low chromosphere and photosphere, where it is suspected that
sunquakes are excited.
In addition to testing various mechanisms, we also account

for changes in the atmosphere through which resulting acoustic
waves travel. In higher density regions, such as the chromo-
sphere and photosphere, changes to acoustic wave propagation
due to MHD effects are expected to be small as these
contributions are relevant only when the Alfvén velocity is
close to or greater than the acoustic sound speed. This occurs
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for low densities, but also for very large magnetic fields. The
observed sunquakes we use to compare with our model
propagate outside their respective active regions, so an MHD
treatment of the acoustic waves is not necessary. We do,
however, consider the effects of acoustic wave propagation
through a damping medium by employing a damping scheme
based on wavenumber, which we explore in more depth in
Section 2.4.

2. Governing Equations and Methods

2.1. Governing Equations

To construct the model, we begin with the compressible
mass continuity and momentum equations

r
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which includes changes in time and also gradients advected by

the velocity field. We assume that wave fronts travel through a

given point in the system quickly enough such that there is no

exchange of heat between the point and the surroundings, and

the entropy of the system should therefore be unaffected, i.e.,

propagation is adiabatic with the condition
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We will consider linear Eulerian perturbations to the above
equations, such that the background state is assumed to
be time-independent and contains only radial variations:
r r r J j + ¢r r t, , ,0 ( ) ( ). We choose the case where there
are no background velocity fields, and so the fluid velocity is
itself a perturbation: J jv v r t, , ,( ). Furthermore, we
separate the velocity into radial and horizontal components,

where the horizontal component contains both the q̂ and f̂
components. Finally, we assume that the radial and ϑ, j
dependence can be separated as

åJ j J j=a r a r Y, , , ,
l m

l m l
m

,
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where the Yl
m are the spherical harmonics.

Beginning with the equation for mass conservation,
Equation (1), we expand the variables in terms of their
background and perturbed quantities and keep only linear terms
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We introduce the horizontal velocity vh, the velocity vector in

the q̂ and f̂ directions, which describes flow along a spherical

shell. Expanding derivatives and separating the radial and

horizontal divergence (h·), we arrive at
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We choose the case where the angular dependence of the

horizontal component of velocity can be separated as

J jå v r t Y, ,hl m h l l
m

, , ( ) ( ), where h is the horizontal gradient

which contains the θ and f components of the full gradient

operator and vh l, is the scalar horizontal velocity. Expressing

the equation with any associated dependences (and summation

over l and m is considered implicit) gives
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It is convenient to choose the case where the sunquake is
centered over the pole at J = 0, as the system is then
azimuthally symmetric and the spherical harmonics reduce to
the associated Legendre polynomials JP cosl ( ). In this case, the

term  Ph l
2 is equivalent to - = - +L P l l P1l l

2 ( ) for any
positive integer l and no angular derivatives need to be
explicitly computed. We use the shorthand =x A xl l , where the
variable xl is any variable x with its associated Legendre
coefficients Al. Making the appropriate substitutions and
dividing through by r0 we arrive at
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where r r r= ¢ 0¯ is the normalized perturbation to density.
We move now to the energy equation (Equation (3));

expanding the material derivative and expressing the variables
in terms of background and perturbed quantities yields
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where we have made the approximations g g+ ¢ »P P P1 10 0( )

and r r r+ ¢ »1 10 0( ) since ¢P P0 and r r¢ 0 . We now

remove nonlinear terms, keeping in mind that background

pressure and density vary only in the radial direction
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Note that the Brunt–Väisälä frequency (N), or buoyancy
frequency, is defined as
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The buoyancy frequency determines the frequency and stability

of g-modes; in the solar core and atmosphere, this frequency is

real-valued (as in Figure 4) and produces stable g-modes. In the

convective region, this frequency is imaginary, and corre-

sponds to convective instabilities; to ensure the stability of

wave modeling, we set N2 to be zero in this region. We make

the buoyancy frequency substitution in the energy equation

g
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where = ¢P P P0¯ is the normalized perturbation to pressure.

Replacing the normalized density time derivative with

Equation (4), and substituting the Legendre polynomials, we

find the final form for the energy equation
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Lastly, we begin our treatment of the momentum equation by
first separating the radial and horizontal components, and
performing the same expansion as for Equations (4) and (5).
Looking first at the radial momentum equation
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We assume that the background state is in hydrostatic
equilibrium, which satisfies the relation r¶ ¶ + =P r g 00 0 ,
and these terms then fall out of the equation. Dividing through
by r0 to isolate the time derivative and substituting the
Legendre polynomials leaves us with

r
r

r
¶
¶

= -
¶ ¢

¶
+ +

v

t

P

r
g

F1
. 6

r l l
l

r l,

0

ext, ,

0

¯ ( )

The horizontal component of the momentum equation has
the original form
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When expanding the variables in terms of radial and angular

dependence, we note that ¢P varies only in time and in radius,

so the horizontal gradient is moved to the right and applied to

the Legendre polynomials. We assume that the horizontal

component of external forces can be decomposed as

J= å F F r t P,h l h l h lext, ext, , ( ) ( ). Since  Ph l now appears in

every term, it can be neglected during computation but still be

used to reconstruct ϑ dependence. Dividing through by r0
yields the final form
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The system of equations used to model sunquake propaga-
tion is then
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2.2. Boundary Conditions

Acoustic waves that propagate at or above the acoustic
cut-off frequency, wc, travel through the solar surface and are

mostly damped in the atmosphere (Christensen-Dalsgaard
2002). Waves that propagate below this frequency are reflected
at the surface and are resonant. To implement this selective
resonant behavior in the model, we must choose our boundary
conditions carefully. Using Dirichlet boundary conditions leads
to reflections at the upper computational domain, and it is not
entirely clear how Neumann boundary conditions can be
formulated a priori to minimize reflections.
We therefore derive nonreflecting boundary conditions by

performing an eigendecomposition of the matrix B, which
contains the radial derivatives of our system. To simplify
calculations, we include only Equations (5) and (6); this is
reasonably justified since r¢ and ¢P are essentially equivalent
through Equation (3), and Equation (7) contains no radial
derivatives. The matrix form of the simplified system is given by
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where A is the matrix containing time-derivative coefficients,
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,[ ] are the variables, and C is the vector containing

constants. We choose to use the form of Equation (5) where

pressure perturbations are not normalized, and the matrix A is

then simply the identity matrix. The radial-derivative matrix B

then has the form
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which has eigenvalues l = ++ cs and l = -- cs, where

g r=c Ps 0 0 is the adiabatic sound speed. With these

eigenvalues we obtain the eigenvalue decomposition
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Performing the matrix multiplication within B and keeping terms

separate allows us to determine which derivatives correspond to the

inward propagating waves. For these terms, we enforce hydrostatic

equilibrium for the perturbed quantities ([ r¶ ¢ ¶ = - ¢P r gl ] and

¶ ¶ =v r 0r l,[ ] ) so that these derivatives need not be evaluated.

The boundary conditions for =R Rmax used are then
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where we have made the substitution r¢ = ¢P cl s l
2 .
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2.3. Numerical Methods

The governing equations are solved along a radial mesh
containing values for radius, background density, background
pressure, adiabatic exponent, and gravitational acceleration. The
background model used for the simulations is the Standard Solar
Model as described by Christensen-Dalsgaard et al. (1996),
which is computed to R=696.841Mm with 501 grid points.

The time derivatives are approximated by a first order
forward difference

t
¶
¶
»

-+
y

t

y y
,i

n
i
n1

where τ is the time step chosen to satisfy the Courant–Friedrichs–

Lewy condition (Courant et al. 1967) t D x cmin sCFL [ ],

corresponding to the travel time of an acoustic wave between

the shortest grid point separation Dx. We choose to use

t t= 0.6 CFL for stability. A detailed analysis of the stability of

the system can be found in the Appendix. The radial derivatives

are approximated by a fourth order central difference, which has

the following form for a uniform grid
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We use a nonuniform grid, however, and the appropriate
coefficients and grid separations are substituted. We employ a
staggered mesh scheme, where the pressure, density, and
horizontal velocity variables are placed on “body” points, and
the radial velocity variable is placed on “edge” points halfway
between two body points; i.e., < < +r r rb i e i b i, , , 1. Values for
pressure and density are computed first, followed by the radial
and horizontal velocities using the updated pressure and density
values. The velocity radial derivative at the upper boundary is
evaluated using a second order central difference, as the
boundary body point has edge points both above and below.
On uniform grid, this approximation has the form

¶
¶
»
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D
+ -y

r
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x2
,

i
n

i
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1 1

Figure 1. (a) Power spectrum obtained from the Dopplergram series of AR 11598 observed by the Helioseismic and Magnetic Imager (HMI) (Scherrer et al. 2012).
Redder colors indicate greater power, bluer colors indicate lesser power. (b) Power spectrum of angular degree l=800. The first peak (in red) corresponds to
t = 408800 s, and the second peak (in blue) corresponds to t = 422800 s.

Figure 2. (a) Normalized radial velocity measured at a distance of 18 Mm from the excitation source, for momentum (green) and force (red) sources. (b) Normalized
radial velocity time derivative (green) of the momentum excitation and radial velocity of the force mechanism (red).
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Figure 3. (Left column) Time–distance diagrams of radial velocity on the solar surface (R=696 Mm) for force excitations with increasing damping: (a) undamped,
(b) quiet-Sun damped, and (c) active-region damped. (Right column) Time–distance diagrams of radial velocity on the solar surface (R=696 Mm) for momentum
excitations with increasing damping: (d) undamped excitation with p-modes (red arrows), f-mode (magenta arrow), and atmospheric acoustic-gravity waves (cyan
arrow) highlighted; (e) quiet-Sun damped; (f) active-region damped. Darker pixels correspond to more negative velocities, lighter pixels correspond to more positive
velocities.
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and the appropriate substitutions are made for implementation

on a staggered mesh. The perturbed density radial derivative at

the upper boundary is evaluated using the same difference,

though a ghost point is implemented beyond the boundary so

that a central difference can be used. The pressure and density

variables at the ghost point are evolved in time using the

boundary conditions, and radial derivatives are approximated

with a second order one-sided difference, of the form

¶
¶
»

- +

D
- -y

r

y y y

x

3 4

2
.i

n
i
n

i
n

1 2

The discretized governing equations and time advancement
scheme are written in Fortran, and parallelized using the MPI
(message-passing interface) library. The code is run on 504
nodes of the Pleiades supercomputer at NASA Ames Research
Center; we compute the solutions to the governing equations up
to angular degree l=6000, so each node runs approximately
12 iterations of the program in series. After the computation is
completed, the data is stored as function of radius, time, and
angular degree l. Damping is applied to each angular order (as
described in the following section) and a spherical harmonic
transformation takes the data from a function of l to a function
of angle θ.

2.4. Damping by Wavenumber

Our governing equations have so far neglected any effects
from viscous damping, as the plasma viscosity is highly
dependent on ionization, temperature, and magnetic field
strength (Vranjes 2014), which are outside the scope of this
research. We instead choose to use an ad hoc damping scheme,
where acoustic waves are damped by wavenumber, and
appropriate parameters are derived from observation. We
assume that acoustic waves traveling with frequency w0 have
time dependence of the form w aY = -t A i t texp exp l0( ) [ ] [ ],
where al is a damping parameter dependent on the angular
degree l associated with the frequency w0. The angular degree
and horizontal wavenumber are closely related by =kh

+l l R1( ) , and we choose to evaluate al in terms of the
angular degree since our governing equations are solved in this
way as well.

The power spectrum of the signal is dependent on frequency
as

p w w a
=

- +
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4

1
.

l
2

0
2 2( )

Note that the power is maximized at the frequency w0.
Evaluating the power at the upper frequency (w+) of the

FWHM ( w w= - +FWHM 2 0( ) and equating with Pmax shows

the damping parameter is a = 1 2 FWHMl ( )( ). The associated

damping time (tl) is the inverse of al. For simplicity, we

assume that the damping time varies with l as

t t=
g



l

l
,l ⎜ ⎟

⎛

⎝

⎞
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where l is an arbitrary base angular degree, t is the damping

time of the base angular degree, and γ is a power-law exponent

derived from observations.
We consider three damping cases: quiet-Sun damping,

active-region damping, and no damping. For the first case,
we use p-mode data from Rhodes et al. (2011), in which a
three day full-disk dopplergram series is used to compute an

Figure 4. Square of the buoyancy frequency as a function of height in the solar
atmosphere, with z=0 km being the base of the photosphere. Negative values
correspond to unstable g-mode propagation and positive values indicate stable
regions of g-mode propagation.

Table 1

Sunquake Events and Relevant Times

GOES Flare Class Date Tstart (UT) Longitudea (deg) Latitudea (deg) TG1 (s) TG3 (s) TBP (s)

X1.8 2012 Oct 23 03:16:30 110.3 −12.7 +85 +141 +45

X9.3 2017 Sep 6 11:57:00 122.6 −9.1 −82 −49 −60

X3.3 2013 Nov 5 22:10:19 175.5 −12.6 +34 +76 +56

X1.0 2014 Mar 29 17:45:00 132.5 +32.0 +17 +48 +135

M1.1 2015 Sep 30 13:15:00 108.0 −21.0 +86 +48 N/A

Notes. Sunquake events used for comparison, where the start time is the beginning time of the Dopplergram series. The flare relevant times are listed as a time shift

relative to the start time of the Dopplergram series.
a
Latitude and longitude are given in Carrington heliographic coordinates.
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azimuthally averaged power spectrum. The damping times are

derived from the FWHM data of the set, and the obtained

damping times are fit to a power law using a least-squares

algorithm to derive the index. We find g = -0.723 and for the

chosen base l=1000, the damping time is 843 s. For active-

region damping, we assume that only the damping times

change, and the exponent γ remains constant. The power

spectrum of a three-hour dopplergram series of AR 11598

(Figure 1(a)) is used to obtain the damping time for the base

angular order l=800, which is chosen instead of l=1000 as

this degree is not well-resolved from the background. There are

two discernible peaks in the l=800 power spectrum

(Figure 1(b)), and fitting with a Gaussian profile yields a

damping time of 408 s for the first peak and 422 s for the

second; we use the average of 415 s as the base t. Since the

solution is stored as function of angular degree l, we use these

parameters to apply the damping to the respective angular

order. Once the damping has been applied, a spherical

harmonic transformation is used to express the solution as

function of the angle θ instead of the angular degree l.

2.5. Form of Excitation Mechanisms

We consider two types of excitations, initial conditions for

momentum impact and applied external forces. The momentum

initial conditions are time-independent, and the external force

excitations are time-dependent, which we use to simulate

gradual processes. Both the momentum and force are directed

in the downward radial direction, and have Gaussian radial and

angular dependences; the time dependence of the force

excitations are also Gaussian. In the general case, the force

impact is modeled with the form

J
s

J
s

s

= -
-

-

-
-

J
F r t A

r r

t t

, , exp
2

exp
2

exp
2
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2

2

2

2
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2
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⎤

⎦
⎥

where sr, sJ, and st are parameters related to the FWHM of the

respective Gaussians, r0 is the radial center of the excitation

source, =t T 20 is the central time chosen to be half the

duration of the excitation, the duration T=200 s, s = 0.2r

Mm, s = =T 4 50t s, and the amplitude A is arbitrary and

negative, chosen to be −0.001 dyn cm−3. Momentum initial

conditions are applied to the radial velocity equation with the

form

J
r s

J
s

= -
-

-
J

V r
A

r

r r
, , 0 exp

2
exp

2
;r
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2

2
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⎥
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⎢

⎤

⎦
⎥

again, the amplitude is arbitrary and negative, though a value of

r- r100 0 ( ) g m s−1 is chosen, where r r0 ( ) is the background

density at a given grid point. Additionally, the sJ parameter is

fixed at ´ -8.6 10 4 radians, which corresponds to a circular

area on the surface (R=695.9906 Mm) with radius 0.6 Mm.

3. Results

3.1. Differences Between Force and Momentum Mechanisms

We first examine the relationship between force and momentum
mechanisms, as we expect there to be a 90° phase difference
between the time–distance diagrams of the two mechanisms. This

Table 2

Best-fit Parameters for Sunquake Events—Momentum Mechanism

Momentum Case

Flare Damping Tshift (s) Height (km) Amplitude (g cm s−1
) Maximum V (km s−1

) Energy (erg)

X1.8 Undamped −45 −17 ´1.95 1022 11.1 ´6.39 1027

Quiet Sun −45 −104 ´3.31 1023 141.8 ´1.39 1030

Active region −56.25 −142 ´1.76 1024 675.6 ´3.53 1031

X9.3 Undamped +112.5 +432 ´5.40 1021 32.5 ´3.05 1027

Quiet Sun +112.5 −33 ´1.54 1023 82.3 ´3.74 1029

Active region +112.5 −68 ´1.54 1024 785.8 ´3.82 1031

X3.3 Undamped +135 +386 ´2.68 1021 11.5 ´5.88 1026

Quiet Sun +67.5 +386 ´2.83 1022 121.2 ´6.57 1028

Active region −123.75 −162 ´1.65 1024 599.8 ´2.94 1031

X1.0 Undamped +67.5 +87 ´2.87 1022 24.0 ´1.94 1028

Quiet Sun +78.75 −86 ´9.48 1023 430.2 ´1.21 1031

Active region +78.75 −123 ´6.96 1024 2825.6 ´5.85 1032

M1.1 Undamped +101.25 −182 ´4.60 1022 15.8 ´2.15 1028

Quiet Sun +135 −203 ´7.34 1023 238.8 ´5.19 1030

Active region +123.75 −203 ´5.47 1024 1780.1 ´2.88 1032
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phase difference is motivated by the relationship between force and

velocity; functionally speaking, force is the time derivative of

velocity (multiplied by mass, of course) and ought to be orthogonal

to the velocity itself. The force impact has a duration of T=200 s,
and the momentum initial conditions are time-independent. We

observe the expected phase difference in time dependence of the

radial velocity signal at a distance of 18Mm from the excitation

source, which can be seen clearly in Figure 2, and note that it

persists regardless of excitation depth. Interestingly, the phase
difference is actually −90°, as differentiation with respect to time

of the signal from the momentum impact yields a 180° phase

difference (Figure 2). The signals of the two mechanisms are

separated by several minutes, well within HMI resolution, and if

the start time of the sunquake is known, then matching the ray path

with the sunquake’s time–distance diagram may be useful in

determining what type of mechanism initiated the quake.
Additionally, we find that the appearance of the time–

distance diagrams of the two mechanisms, which display line-

of-sight (mostly radial) velocity, are completely distinct

(Figure 3). For comparison, we center force and momentum

sources at R=696.119Mm with sr =0.2 Mm. The first

bounce signal of the undamped time-dependent force excitation
appears to be longer than that of the momentum excitation, and

also has more complicated structure.
We are able to identify the three types of wave propagation:

p-modes, the f-mode, and atmospheric acoustic-gravity waves
in these time–distance diagrams. The p-modes (red arrows in

Figure 3(d)) form the main wavepacket of the sunquake, which

travel downwards and are reflected upwards by the sound speed

gradient. The f-mode (magenta arrow in Figure 3(d)) is formed

by surface gravity waves, and has a distinctive ridge pattern

where the phase speed is twice that of the group velocity

(Gizon 2003), and acoustic-gravity waves (cyan arrow in

Figure 3(d)) are recognized by constant phase and group

velocity. Both models produce atmospheric gravity waves,
which propagate in a similar fashion to atmospheric gravity

waves on Earth (e.g., Row 1967). In linear acoustics the solar

atmosphere is stable to gravity wave propagation (Figure 4),
though these waves—especially of such strength—have not

been observed. This may be due to break-up caused by

convective up-flows and down-flows, which occupy the same
frequencies as gravity waves in solar power spectra. The

gravity waves in the force excitation model are stronger and

more coherent than in the momentum excitation model. The
model also reproduces the surface gravity wave (f-mode),

which is regularly observed (Singh et al. 2016), and in the

model precedes the shallow water waves. The f-mode is more
prominent in momentum excitations and there is longer time

delay between f-mode and gravity wave arrival as compared to

the force excitations.
As damping is increased, the atmospheric acoustic-gravity

waves are affected more heavily than the seismic wave, though
the consecutive bounces of the seismic wave and the f-mode

show decreases in amplitude. The general phase relationship

between momentum-excited seismic signals is preserved,

though it appears to be smoothed, with shorter wavelength
features blending into the the longer wavelength features. The

force excitation model shows similar smoothing and the first

bounce signal is stretched into two main packets. This
separation into two packets intensifies in the active-region

damped case, and the acoustic-gravity wave in this case is

almost entirely damped. The acoustic-gravity wave damping is
also present in the active-region damped momentum excitation,

though these waves are damped stronger in this case. In both

Table 3

Best-fit Parameters for Sunquake Events—Force Mechanism

Force Case

Flare Damping Tshift (s) Height (km) Amplitude (dyn cm−3
) Energy (erg)

X1.8 Undamped −146.25 −203 ´ -1.38 10 2 ´1.01 1028

Quiet Sun −157.5 −203 ´ -1.01 10 1 ´5.58 1028

Active region −157.5 −203 ´ -6.59 10 1 ´2.58 1029

X9.3 Undamped +135 +129 ´ -2.19 10 3 ´2.27 1027

Quiet Sun −33.75 −203 ´ -2.29 10 1 ´1.27 1029

Active region −45 −203 1.57 ´6.17 1029

X3.3 Undamped +135 +181 ´ -5.65 10 4 ´6.44 1026

Quiet Sun +157.5 +255 ´ -1.30 10 2 ´1.32 1028

Active region 0 −33 ´ -4.24 10 1 ´2.07 1029

X1.0 Undamped −157.5 +327 ´ -3.59 10 3 ´4.56 1027

Quiet Sun −157.5 +155 ´ -5.34 10 2 ´4.73 1028

Active region −11.25 +432 ´ -6.52 10 1 ´3.73 1029

M1.1 Undamped +146.25 −203 ´ -4.04 10 2 ´2.93 1028

Quiet Sun −78.5 −203 ´ -2.59 10 1 ´1.44 1029

Active region −90 −203 1.45 ´5.68 1029
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models the f-mode is also entirely damped, and consecutive
bounces are barely measurable. We note that there is some
corruption of signal near the origin, which is caused by the
damping on higher wavenumbers, leading to the loss of small-
scale resolution and a blurring effect.

3.2. Observational Comparisons

We compare our results with a number of observed
sunquakes, which are the events associated with the X1.8 flare
in 2012 October, the X9.3 flare in 2017 September, the X3.3
flare in 2013 November, the X1.0 flare in 2014 March, and the
M1.1 flare in 2015 September (Table 1) from the sunquake
catalog of Sharykin & Kosovichev (2019).

Time–distance diagrams are produced for these events using
data from the HMI from Solar Dynamics Observatory (Scherrer
et al. 2012), after a frequency filter with a Gaussian cut-off is
applied to the dopplergram series. The central frequency and
width of the filter vary, and are chosen to increase the contrast
of the sunquake signal from the background convective noise.
Time–distance diagrams are also produced from the model
runs, and are treated with an identical filter for comparison. The
model runs used in the comparison are separated into two sets,
one of momentum excitations and one of force excitations.
Each set contains 46 modeled sunquakes with fixed radial
width centered along the grid points of the Standard Solar
Model, corresponding to the range of R=695.788Mm to
R=696.422Mm.

In increments of 1 Mm along the horizontal axis, the cross-
correlation t xX d z, , ,( ) of the observed sunquake to the set of
modeled sunquakes is computed as a function of time shift (τ)
and distance shift (ξ). The signal from the observed sunquake S
has dependence on time t and horizontal distance from the

excitation source d, and the collection of modeled sunquake
signals ¢S also has these dependencies with its own distance
from the excitation source ¢d , and an additional dependence on
excitation source depth z. The cross-correlation is then
dependent on four parameters: time shift, distance shift,
excitation source depth (z), and distance from excitation source
(d). We initially compute the cross-correlation over time shift
and distance shift, for each excitation depth and distance from
excitation source, as

ååt x t xX = ¢ + ¢ +
¢

d z S t d S t d z, , , , , , .
t d

( ) ( ) ( )

Since a perfect match of observed to modeled sunquake signals

will not vary with respect to distance from the excitation

source, the cross-correlation is averaged over d

åt x t xX = Xz
N

d z, ,
1

, , , ,
d d

¯ ( ) ( )

where Nd is the number of pixels along the horizontal axis.

Finally, the set of cross-correlations that are maximized with

respect to distance shift are identified, and the resulting cross-

correlation function tX z,( ) is dependent only on time shift

and excitation depth

t t xX = X
x

 z z, max , , .( ) ( ¯ ( ))

This is analogous to aligning the two sunquake signals along

the horizontal distance axis. A best fit is identified based on

which time shift and excitation depth parameters maximize the

cross-correlation and the ratio of maximum velocities within

the first bounce wavepacket of the observed sunquake and

model sunquake—which has the identified parameters—is used

Figure 5. Time–distance diagrams of: (a) the best-fit force case for the sunquake of the X1.8 flare; (b) the sunquake produced by the X1.8 flare; (c) the best-fit
momentum case for the sunquake of the X1.8 flare; (d) the best-fit force case for the sunquake of the X9.3 flare; (e) the sunquake produced by the X9.3 flare; (f) the
best-fit momentum case of the X9.3 flare. Darker pixels correspond to more negative velocities, lighter pixels correspond to more positive velocities.
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to obtain an estimate for the excitation mechanism’s amplitude,

which in turn is used to estimate transferred kinetic energy.
We examine the results of the computation in the context of

three main times: (1) when the time derivative of soft X-ray
(SXR) emission is at its maximum; (2) the time when the HXR
emission is at its maximum; and (3) the start time of the
sunquake as determined from strong perturbations in HMI so-
called “bad pixels.” In HMI dopplergrams, there appear pixels
that have wildly different values from their neighbors, and are
often called bad pixels or anomalous pixels. These pixels
appear as a failure of algorithms to correctly interpret filtergram
data during Level 1 processing, and are associated with
extreme values of Doppler velocity, magnetic field, and other
observables that are associated with flare impacts in the low
atmosphere (Couvidat et al. 2016). We interpret these pixels as
the excitation source location of sunquakes, and their first
appearance as the start time (TBP) of the sunquake.

The HXR and dSXR/dt peak times are obtained from
KONUS-WIND data (Aptekar et al. 1995; Lysenko et al.
2018), which observes in three bands: G1 in the 21–82 keV
range, G2 in the 82–331 keV range, and G3 in the
331–1252 keV range. The time derivative of the G1 band is
used to find the dSXR/dt peak (TG1) and the peak of the G3
curve is associated with the HXR peak (TG3). These times, and
the timing of bad pixel appearance, are listed in Table 1; we
note that bad pixels could not be identified in the M1.1
sunquake.
The best-fit parameters from the cross-correlation analysis

using the momentum and force mechanisms are listed in
Tables 2 and 3, respectively; a visual comparison between the
X1.8 sunquake and the identified force and momentum best-fit
models, and a comparison between the X9.3 sunquake and the
identified best fits, are both shown in Figure 5. The two-
dimensional cross-correlations for the quiet-Sun damped

Figure 6. Cross-correlation functions with the quiet-Sun damped momentum excitation model set. (a) Sunquake associated with the M1.1 flare; (b) sunquake
associated with the X1.0 flare; (c) sunquake associated with the X1.8 flare; (d) sunquake associated with the X3.3 flare; (e) sunquake associated with the X9.3 flare.
The contours begin at the median value, and each successive contour represents an increase in 5 percentile points (i.e., 50th, 55th, 60th, etc. percentiles). The solid
horizontal line shows the HXR peak time, the dashed horizontal line shows the dSXR/dt peak time, and the dotted–dashed horizontal line shows the suspected
sunquake start time based on bad pixel count. The white and black diamond indicates where the parameters produce the greatest cross-correlation, and is used for
energy estimation. Redder colors indicate greater correlation, green representing intermediate correlation, and purple representing low correlation.
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momentum and force mechanisms are displayed in Figures 6

and 7, respectively. As a result of the periodicity in the signal,

more than one band of best fit is often present. For momentum

mechanisms, a majority of undamped sunquakes have energies

bounded by ´1 1028 erg and excitation amplitudes on the

order of 10 km s−1. There does not seem to be an easily

identifiable height at which these types of mechanisms may

excite sunquakes, though the excitation’s height consistently

decreases when damping is increased.
When the observed sunquake events are compared with the

force excitation set, the same relationship between excitation

height and damping intensity remains. The amount of energy

required to excite sunquakes in this way is also on the order

´1 1028 erg, and the energy estimates are more regular as

damping is increased. Additionally, the bands of best fit for the

force excitation set are offset relative to those of the momentum

excitation set. This is consistent with the previous finding that

force and momentum excitations produce sunquakes offset by

two to three minutes, and is related to the −90° phase difference

between the two signals.

The cross-correlation method does produce bands in close
proximity to time shifts related to important moments in flare
evolution, such as the HXR peak time. In two of the five
sunquake events compared with the undamped momentum set,
the best-fit case begins immediately following the HXR peak
(the M1.1 and X1.0 event). This count increases to three in the
quiet-Sun case (including the X3.3 event), and reduces to two
for active-region damping. For force excitations, the undamped
case has two best-fit cases close to the HXR peak, and one in
the quiet-Sun and active-region damping cases.

4. Discussion and Conclusions

It is expected that the estimated sunquake excitation location
moves downwards as damping is increased, since excitement of
acoustic waves in these lower layers will increase their
amplitude once the waves reach the lower densities of higher
atmospheric layers. This plays a role in the large amounts of
energy required to excite the sunquakes in heavily damped
regions, as well as the increase in excitation amplitude needed
to produce acoustic waves with the observed amplitudes. In

Figure 7. The same as in Figure 6 for the force excitation.
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particular, the active-region damping is not necessarily
representative of conditions for some sunquakes, as the
observed waves travel outside the regions of strong magnetic
field. The remaining sunquake events were excited at the edge
of the respective active regions and propagated toward regions
of lower magnetic field. The active-region damping is
particularly applicable in sunquake events where the acoustic
waves travel across sunspot or active regions, though these
types of events are difficult to observe and were not included in
this study.

Additionally, the energy estimates are reliable only when the
identified excitation coincides with or follows the HXR peak or
bad pixel times, when the electron beam hypothesis is valid; we
do not expect sunquake events to precede the HXR peak, which
is a clear indication of energy deposition. The cases where this
criteria is met include the M1.1, X1.0, and X3.3 events in the
case of an instantaneous momentum excitation, and the M1.1
and X9.3 events in the case of an external force excitation. For
both mechanisms, the X1.8 has a band of best fit in conjunction
with the HXR, dSXR/dt, and bad pixel times, but no points in
the band maximize the cross-correlation.

In the successfully analyzed events of momentum mechan-
isms, the energy required to excite the quake without damping
is on order of ´1 1028 erg, consistent with recent estimates of
Chen (2019) using acoustic holography methods. Furthermore,
the energy estimate of a force mechanism for the M1.1 event is
nearly equivalent to the momentum mechanism counterpart. In
the case of the X3.3 event, the undamped momentum
mechanism timing is not coincident with the HXR or bad
pixel times, though increasing the damping temporally aligns
the excitation nearly exactly with the HXR peak time. This
quiet-Sun damping case also gives an energy estimate on the
order of ´1 1028 erg, up to a maximum of ´1 1029 erg for the
active-region damped case, which also provides an excitation
coincident with the HXR peak time. Similar circumstances
arise for the X9.3 case with an external force mechanism,
where the undamped case is unrelated temporally with any
main times but the quiet-Sun damping indicates an excitation
time just following the HXR peak time. The energy estimate
for the X9.3 force excitation with quiet-Sun damping is roughly
´1 1029 erg; this is not unreasonable for such a strong flare,

which may release up to ´1 1032 erg (Hudson 2011).
Moving forward, it is clear that sunquake signals are

degenerate in parameter space with respect to source depth,
and also time shift. The time-shift degeneracy is relatively easy
to deal with, as we expect the moment of excitation to have
timing close to the X-ray and bad pixel times, and this can be
accounted for. The excitation depth degeneracy is more
difficult to treat, as lower-amplitude excitations produced by
deep sources can be compensated for by greater energy
deposition. There are also several events—notably the X1.0
event—which indicate the presence of a high excitation source,
though such excitations tend to produce weaker p-modes and
stronger acoustic-gravity waves in the model as the height
increases. Further study of atmospheric acoustic-gravity waves
is necessary to understand their role in sunquake excitation and
propagation.

In conclusion, we find that at least three sunquake events for
the momentum mechanism and at least two events for the force
mechanism are consistent with the electron beam hypothesis.
The excitation start times of these events are coincident with or
closely follow the time of peak HXR emission, which is a

reliable diagnostic of energy deposition. In these cases, the
energy required to excite the sunquakes falls within expecta-
tions based on previous studies, and in some cases indicates a
moderate amount of acoustic damping in the region of
sunquake propagation.

The research was supported by NASA grants NNX14AB68G,
NNX16AP05H, and NSF grant 1916509.

Appendix
Stability Analysis of the Numerical Finite-difference

Method

Begin with discretizing the governing equations and
substituting associated errors, keeping in mind that we use a
staggered grid, where the half-grid variables are linearly
interpolated onto a given grid point, i.e.,
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where r= ¶ ¶ +x r rln 21 0 and = +x x N g2 1
2 . The

scheme is semi-implicit, as the updated values (of the
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+n 1 th( ) time step) are used to determine the new values of

radial and horizontal velocity. The error associated with vh can

be expressed in terms of Fourier components

å=v D e e .h i
n

m

m
a t ik r

,
m n m i

The errors associated with r̄, ¢P , and vr have the same form

with coefficients A, B, and C, respectively. Let us consider a

single Fourier mode ( = ¢m m ) and divide through by e eikr ati n

r
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For convenience in evaluating the characteristic equation, we

define

= + =
D

= - + -

=
D

-
D

-
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D D

D D D D

x e e
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x e e e e

i k r k r
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We evaluate the stability at the shortest wavelength
(l = Dr2 , p= Dk r), which is usually the most unstable
oscillation mode. Substituting the value for k in x3 and x4 yields
=x 03 and =x i3 24 .
In order to express the stability of the system in terms of

nondimensional parameters, we define new Fourier coefficients
¢ ¢ ¢A B C, , and distribute the appropriate variables

¢ = « =
¢

A Ac A
A

c

r
r¢ = « = ¢B

B

c
B cB

0
0

¢ =C C

¢ =D D.

Additionally, the dimensionless parameters we wish to express

the system in are

=
D
D

N
c t

r
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=
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N
c t

r
s

=
D

N
g t

c
g

r
=

D
= D

¶
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r
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N
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H
c t

r

ln 0

=
D

N
c tN

g
.N

2

Where Nc is the Courant number, the ratio between the speed
of sound waves and the speed of the fastest radial wave are
allowed by the system. Ns is the ratio of the distance traveled
by a radially propagating pressure wave to its given radial
position. When Ns is multiplied by L2, it is the same ratio but
now in terms of horizontally propagating waves. Ng is the ratio
between the sound speed and the change in velocity
experienced by a fluid element due to gravity per unit time.

rN is the ratio of the distance traveled by a radially propagating
wave to the density scale height, and NN is a stability parameter
for gravity waves.
Beginning with the equation for perturbed density and

multiplying everywhere by c

= - D -
D
D

+
D

c GA A tx x C
t

r
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tL

r
D1 3 4

2⎡
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Moving to the equation for perturbed pressure and multiplying

everywhere by r c1 0( )

r
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Substituting the new Fourier coefficients ¢A and ¢B into the

radial momentum equation yields

r
= -

D
D

- DGC C
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r
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4 3
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¢GC C G
c t

r
x B G

g t

c
x A4 3

+ ¢ + ¢ =G C N x B N x A C.c g4 3( )

And performing a similar substitution in the horizontal

momentum equation yields

r
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t

r
B

1

0

= -
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¢GD D G
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1
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In general, the above conditions form the matrix equation
=x xGY Z , or
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⎥
⎥

Solving the above system for G yields the amplification
factors, whose amplitudes are bounded by 1 for all values of l.
Figures A1(a)–(i) show how the amplitude of the amplification
factors grow with the Courant number Nc, for l=0, l=100,
and l=1000, respectively. The parameters in the above
system are evaluated locally, for R=562Mm (Figures A1(a),
(d), (g)), R=673Mm (Figures A1(b), (e), (h)), and

R=696Mm (Figures A1(c), (f), (i)). While the l=1000
mode is unstable at R=562Mm for our Courant number
( =N 0.6c ), this instability is more physical than numerical.
This mode has a lower turning point of R=664Mm, so
R=562Mm is never reached; in other words, we should
require the system to be stable only in a given modes region of
propagation, which is indeed the case.
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