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Uncertainty in Multi-Commodity Routing
Networks: When does it help?

Shreyas Sekar, Liyuan Zheng, Lillian J. Ratliff, and Baosen Zhang

Abstract—We study the equilibrium behavior in a multi-
commodity selfish routing game with uncertain users where
each user over- or under-estimates their congestion costs by
a multiplicative factor. Surprisingly, we find that uncertainties
in different directions have qualitatively distinct impacts on
equilibria. Namely, contrary to the usual notion that uncertainty
increases inefficiencies, network congestion decreases when users
over-estimate their costs. On the other hand, under-estimation of
costs leads to increased congestion.

We apply these results to urban transportation networks,
where drivers have different estimates about the cost of conges-
tion. In light of the dynamic pricing policies aimed at tackling
congestion, our results indicate that users’ perception of these
prices can significantly impact the policy’s efficacy, and ‘“caution
in the face of uncertainty” leads to favorable network conditions.

Index Terms—Network Routing, Uncertainty, Nash Equilib-
rium, Transportation

I. INTRODUCTION

Multi-commodity routing networks that allocate resources
to self-interested users lie at the heart of many systems such
as communication, transportation, and power networks (see,
e.g., [1] for an overview). In all of these systems, users
inherently face uncertainty and are heterogeneous. These users
rarely have perfect information about the state of the system,
and each have their own idiosyncratic objectives and trade-
offs between time, money, and risk [2]-[4]. Naturally, users’
personalized beliefs or preferences regarding system costs and
delays influence their decision and, in turn, the welfare of the
overall system. In this paper, we provide an understanding of
the effects of certain classes of uncertainties and limited user
heterogeneity with respect to such uncertainties on network
performance—i.e. we establish conditions on when they are
helpful and harmful to the overall social welfare.

A motivating example of a routing network that we use
throughout this paper is the urban transportation network.
Commuters in road networks simultaneously trade-off between
diverse objectives such as total travel time, road taxes, parking
costs, waiting delays, walking distance and environmental
impact. At the same time, these users tend to possess varying
levels of information, and there is evidence [5], [6] to suggest
that the routes adopted depend not on the true costs but on
how they are perceived by the users. For instance, users prefer
more consistent routes over those with high variance [7], seek
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to minimize travel time over parking costs [8], and react
adversely to per-mile road taxes [9].

Furthermore, the technological and economic incentives
employed by planners interact with user beliefs in a complex
manner [10]. For example, to limit the economic losses
arising from urban congestion, cities across the world have
introduced a number of solutions including road taxes, time-
of-day-pricing, road-side message signs and route recommen-
dations [11]-[13]. However, the dynamic nature of these incen-
tives (e.g., frequent price updates) and the limited availability
of information dispersal mechanisms may add to users’ uncer-
tainties and asymmetries in beliefs. The effect of uncertainties
on network equilibria has been examined in recent work [10],
[14]-[16] where each user perceives the network condition to
be different than the true conditions. The current results have
mostly focused on simple network topologies (e.g., parallel
links) or networks where a fixed percentage of the population
is endowed with a specific level of uncertainty. Given the
complexity of most practical networks, it is natural to ask
how uncertainty (and user beliefs on network costs) affects
equilibria in scenarios with at least two types of users, whose
perceptions vary according to the user type. Specifically, in
this work we are motivated by the following two questions: (i)
how do equilibria depend on the type and level of uncertainty
among network users, and (ii) when does uncertainty improve
or degrade equilibrium quality?

To address these questions, we turn to a multi-commodity
selfish routing framework commonly employed by many dis-
ciplines. In our model, users seek to route some flow from
a source to a destination across a network and they face
congestion costs on each link. Crucially, users’ perception
of these congestion costs may differ from the true cost or
travel time. It is well-known that even in the presence of
perfect information (every user knows the exact true cost),
strategic behavior by the users can result in considerably worse
congestion at equilibrium when compared to a centrally opti-
mized routing solution [17]. Against this backdrop, we analyze
what happens when users have imperfect knowledge of the
congestion costs. A surprising outcome arises: in the presence
of uncertainty, if users select routes based on perceived costs
that over-estimate the true cost, the equilibrium quality is
better compared to perfect information case. Conversely, if
the users are not cautious and under-estimate the costs, the
equilibrium quality becomes worse.

A. Contributions

We introduce the notion of type-dependent uncertainty in
multi-commodity routing networks, where the uncertainty of
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users belonging to type 6 is captured by a single parameter
rg > 0. Specifically, for each user of type 6, if their true
cost on edge e is given by C.(x) = a.x + be, Where x is
the total population of users on this edge, then their perceived
cost 18 Tgacx + be. For the majority of this work, we focus on
cautious behavior, where users over-estimate the costs (rg >
1), for all types 6. Some of our results will also hold for the
case where users under-estimate the costs (rg < 1), for all
types 6. The central message of this paper is that when users
exhibit “caution in the face of uncertainty”, the social cost at
the equilibrium is smaller compared to the case where users
have perfect information (i.e. know the true congestion costs).

The following results are independent of network topology:

(a) The social cost—i.e. C(x) = > ¢ 2cCe(xc) Where x,
is the total population mass, summed over all user types,
flowing on edge e—of the equilibrium solution(s) where
all users have the same level of uncertainty (ry = r for
all @) is always smaller than or equal to the cost of the
equilibrium solution without uncertainty when r € [1, 2]
and vice-versa when r < 1.

(b) The worst-case ratio of the social cost of the equilibrium
to that of the socially optimal solution (i.e. the price
of anarchy [17]) is 4/(47maxy — 72,ax)> Where 7oy =

maxg 79 and v < 1 is the ratio of the minimum to the

maximum uncertainty over user types.

Constraining network topology, we show the following:

(a) The social cost of the equilibrium where a fraction
of the users exhibit an uncertainty of r € [1,2] and
the rest have no uncertainty is always smaller than or
equal to the social cost of an identical system without
uncertainty, as long as the network has the serially
linearly independent topology [18].

(b) In systems having users with and without uncertainty,
the routing choices adopted by the uncertain users al-
ways results in an improvement in the costs experienced
by users without uncertainty, as long as the graph has a
series-parallel topology [18].

Finally, we prove that all of our results generalize gracefully
to a class of well-motivated polynomial functions known as
shifted monomials, where C,(z) = aez® + b, for d > 1.
In fact, for these general functions, we show that uncertainty
is typically beneficial over a larger range of the parameter
r, i.e., when r € [1,d 4 1]. Our results provide a complete
characterization for routing games with two user types or
uncertainty levels and a worst-case price of anarchy bound
for instances having more than two types. Moreover, we show
that our characterizations are tight by means of illustrative
examples where uncertainty leads to an increase in the social
cost when our characterization conditions are violated.

To validate the theoretical results, we present illustrative
simulation results. We focus specifically on the application
of parking in urban transportation networks and consider
realistic urban network topologies with two types of users:
through traffic and parking users. Given a parking population
with uncertainties, we show that cautious behavior improves
equilibrium quality while lack of caution degrades it even
when uncertainty is asymmetric across user types and when

the same user faces different levels of uncertainty on different
parts of the network.

A preliminary version of this paper [19] appeared in the
2018 American Control Conference. The current work is a
significant generalization of that version including (i) several
new results (Theorems 3, 4, 5, 6); (i7) a new model and
simulations and a detailed discussion of the modeling choices
(Section II-B); (ii7) expanded related work and connections
between our results and those in the literature on tolling.

B. Related Work

There is an extensive literature on congestion games and
more general potential games [20] which has focused on
quantifying the equilibrium cost as a function of system
parameters such as the network topology [21] and the degree
of cost functions [17]. Although we study the same research
questions as this literature, we look at settings where the users’
perceived cost on a route may not be equal to the true expected
cost. In contrast, much of the traditional work in this domain
look at models where the users are aware of the precise costs
which leads to considerably different results.

A notable exception is the body of work on routing games
with player specific costs which may or may not align with
the true costs [22]-[25]. First, a majority of these works
look at games with atomic users, which are known to have
qualitatively different results than the non-atomic game that
we consider. Second, they primarily analyze the existence of
and convergence to equilibrium solutions, whereas we study
more quantitative questions such as the price of anarchy, and
comparing the social cost of the equilibrium solutions with
and without cost misalignment.

Our work is closely related to the extensive body of
work on risk-averse selfish routing [26]-[28] and pricing tolls
in congestion networks [2], [29], [30]. The former line of
research focuses on the well known mean-variance model
where each self-interested user selects a path that minimizes a
linear combination of their expected travel time and standard
deviation. While such an objective is desirable from a central
planner’s perspective, experimental studies suggest that indi-
viduals tend to employ simpler heuristics when faced with
uncertainty [31]. Motivated by this, we adopt a multiplicative
model of uncertainty similar to [24], [32], [33].

The literature on computing tolls for network users is driven
by the need to implement the optimum routing by adjusting
the toll amount, on each edge and was originally pioneered
by Vickrey [29] and Walters [34]. It is possible to draw par-
allels between our model where users over-estimate costs and
tolling; specifically, tolls leverage users’ time-money trade-
offs to alter their perceptions of the cost of each edge. While
tolls can be (within reason) arbitrarily decided, the system
planner has little influence over the level of uncertainty among
the users. Bearing this in mind, we strive for a more subtle
understanding of how equilibrium congestion depends on the
level of uncertainty. Moreover, different than the existing
literature, we also study the effect of cost under-estimation.
It is also is worth noting that the classical works on network
pricing have focused on edge-specific tolls applicable to all
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users on a link, yet recent works such as [35] have sought
out more sophisticated congestion pricing techniques including
trip-dependent and time-sensitive pricing.

While tolls can be viewed as monetary disincentives that
alter the behavior of self-interested users in order to reduce
congestion, there has been a growing interest in using infor-
mation as an incentive to achieve the same effect. This line
of work [16], [36] looks at principal-agent settings, where the
principal can mis-represent or limit the information provided
to agents. Similar to the present work, these papers reach
the conclusion that when users’ perceived costs do not align
with the true costs, it is possible to achieve outcomes with
lower social costs. That said, as noted previously, existing
work only focuses on the problem of identifying the single
mis-representation that optimizes the social cost for largely
simple settings (e.g., parallel links). On the other hand, we
seek to comprehensively characterize the landscape of user
perceptions and how they impact congestion even for complex
network structures.

We remark that our work is thematically similar to the recent
paper on the informational Braess paradox [37] whose frame-
work can be viewed as an extreme case of our model where the
uncertainty parameter rg9 — oo on some edges. Our model is
more continuous, as user attitudes are parameterized by a finite
value of rg, which allows for a more descriptive depiction of
the trade-offs faced by users who must balance travel time,
congestion, and uncertainty. Finally, some recent works also
study the effect of cost misperceptions in non-atomic routing
games [30], [38], [39]. The present work partially extends a
few of the results in these papers—e.g., from parallel links
to more general structures [30], and from one user type to
multiple types [38], [39]. Moreover, while [38], [39] focus
on price of anarchy bounds, we also provide an instance-wise
characterization (Theorems 1,3).

C. Organization

The rest of the paper is structured as follows. In Section II,
we formally introduce our model followed by our main results
in Sections III, IV, and V. Section VI presents our simulation
results on urban transportation networks with parking and
routing users who face different levels of uncertainty. Finally,
we conclude with discussion in Section VII.

II. MODEL AND PRELIMINARIES

We consider a non-atomic, multi-commodity selfish routing
game with multiple types of users. Specifically, we consider
a network represented as G = (V, &) where V is the set of
nodes and & is the set of edges. For each edge e € &, we
define a linear cost function

Ce<xe> :ae$e+bez (1)

where z. > 0 is the total population (or flow) of users on that
edge and a., b, > 0. One can interpret C,(-) as the true cost or
expected congestion felt by the users on this edge. However,
due to uncertainty, users may perceive the cost on each edge
e € £ to be different from its true cost.

To capture that users may have different perceived un-
certainties, we introduce the notion of rype. Specifically, we
consider a finite set of user types 7, where each type 0 € T
is uniquely defined by the following tuple (sq,tg, 1a,79)-
The parameter 1y > 0 denotes the total population of users
belonging to type 6 such that each of these infinitesimal users
seeks to route some flow from its source node sy € V to the
destination node t9 € V. Moreover, given parameter rg > 0,
users of type 6 perceive the cost of edge e € £ to be

C’f(xe) = T9AcTe + be. 2)

The uncertainty parameter ry denotes the personalized
beliefs of the non-atomic population of type 6 and when
considered across types, captures the heterogeneity in pref-
erences. As we articulate in Section II-B, this term can be
viewed as a user’s belief or preference stemming from a
lack of information regarding the true costs or aversion to
congestion or wait times. For illustration, consider an urban
transportation network. Then b, may represent the constant
travel time on a link (in the absence of other vehicles) and
a.T., the congestion-dependent component of the travel time.
A multiplicative uncertainty of r¢ > 1 indicates that users of
type 6 adversely view costs arising due to congestion (e.g.,
waiting in traffic) when compared to other costs .

A path p € Py is a sequence of edges connecting sy to ty.
Define Py to be the set of all sy—tg paths in G. Let xf, € Rbe
the total flow routed by users of type 6 on path p € Py. We
use the notation x = ((EZ)QGT’pepg e RITIPsl for a network
flow and x? = (Iz)pe'pg to denote the network flow of type
0 € T. Then, for each type 6 € T, define the set of feasible
flows to be

X ={x| Y cp, 70 =po, 2 >0, Vp€Py}.  (3)

The action space of users of type 6 is Xp—that is, users of
type 6 choose a feasible flow x? € Xj,. Further, define the
joint action space X = (Xp)ge—i.e. the space of feasible
flows for all user types.

Path flows induce edge flows. Let 22 € R be the flow on
edge e due to users of type 6. The edge and path flow for
users of type 6 are related by

0 _ 0
Te = Zpe’Pe,eEp Lp-

Define the total flow on edge e to be z. = > 5.1 2%, Then,
using this notation, we write the path cost in terms of edge
flow. For any path p,

CP(X) = ZEEp Ce(xe) = Zeep(ael‘e + be)- 4)

Similarly, the perceived path costs are given by

ég(x) = ZEGP ég(xe) = Zeep Tohele + be' (5)

The following definition of a game instance G captures all
of the relevant information about the multi-commodity routing
game including the notion of type-based uncertainty we are
interested in studying.

Definition 1  (Instance): An instance of the
multi-commodity routing game is a tuple § =
{(V‘; 5)7 T7 X7 (P9)9677 (897 lo, o, T9)9€7-7 (06)665}’ where
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(V,€) denotes the network, (C.)ecce is the set of cost
functions on each link, 7 is the set of types and each type
6 € T is specified by the entities Py, (sg,tg, ito,70)0cT
that denotes the set of paths, origin-destination pair, total
population mass and uncertainty level, respectively.

A. Nash Equilibrium Concept

We assume that the users in the system are self-interested
with the goal of minimizing their individual cost. Therefore,
the solution concept of interest in such a setting is a Nash
equilibrium, where each user routes their flow on minimum
cost paths with respect to their perceived cost functions and
the actions of the other users.

Definition 2 (Nash Equilibrium): Given a game instance G,
a feasible flow x € X is said to be a Nash equilibrium if for
every 0 € T, for all p € Py with positive flow, zf > 0,

ChHx) < Ch(x), Yp ePy ©6)

In the transportation literature, this solution concept is referred
to as a Wardrop equilibrium. For the sake of consistency with
the body of work pertaining to price of anarchy [20], we will
continue using the term Nash equilibrium as the two concepts
lead to completely equivalent solutions. For the rest of this
work, we also will assume that all the flows considered are
feasible. Finally, it is useful to point out that our model and
solution allow for users of the same type to select different
paths that connect the source and destination. Given a feasible
flow x € X, it is possible that 9, 2% > 0 for p,p’ € Py;
however, if x is a Nash equilibrium then, it must be the case
that C’g (x) = C’g, (x)—i.e., users do not choose sub-optimal
paths with respect to their perceived costs at equilibrium.

B. Model Discussion

Although users’ perceived cost is deterministic given the
type—i.e., C%(x) = rga.x + b,—this modeling choice allows
us to capture decision-making in the presence of uncertainty in
costs. There is extensive experimental evidence showing that
users do not always minimize expected costs under uncertainty
and instead adopt simpler heuristics [6], [40], [41]. Consider
an example where the true cost on edge e € £ is Sa.z + b,
and B ~ F is a random variable in the range [f™", gmax]
with E[8] = 1. By selecting the parameter 7y appropriately,
we can model several user heuristics studied in the literature:

1) If the cost distribution () is unknown, a risk-averse user
(of type 0) typically pads their estimated cost on edge
e with a parameter 6 > 0 that represents the ‘margin
of safety’ [42]-[44]. For instance, the perceived cost is
given by a.z + b +6Y, where 6 = (rg — 1)a.x. Then a
risk-seeking user may have é. < 0 due to their optimism.
2) A body of evidence suggests that they prefer to opti-
mize convenient heuristic functions as opposed to more
involved probabilistic reasoning even if knowledge of
the distribution is available [41].A well-studied example
is the Hurwicz criterion [44], [45] that represents a
compromise between the best-case and worst-case travel

costs. Under this model, C?(z) = of (™ acz + be) +
(1 — %) (p™*a.z + b.), where 1y = af FmIn 4 (1 —
a?)pmax and 0 < o < 1 is a parameter that denotes
the level of caution.

3) In transportation, drivers exhibit delay aversion by pre-
ferring routes with lower congestion even under larger
travel times [46], [47]. In our model, the factor ry on
the a. term represents this delay aversion.

Note that although our model only induces multiplicative
uncertainty on the congestion-dependent component and not
the b. term, this is without loss of generality. If the users’
perceived cost on edge € is rjacz+13be, it can be transformed

to an instance of our routing game, where rg = :—é

Furthermore, the equilibrium concept that we ‘consider is
consistent with previous studies of non-atomic routing games
with heterogeneous cost functions users have heterogeneous
perceptions of the costs [22], [39], [48]. It is interesting to
consider how a Nash equilibrium is reached and the ties
between our solution concept and the Bayes Nash equilibrium
(BNE) [49]. Given that we study a non-atomic routing game
with infinitely many users, in order to reason about the Nash
equilibrium, it is sufficient to know the probability distribution
on the users’ types. Formally, suppose that each user’s (private)
type € is drawn i.i.d from a publicly known distribution Fr—
i.e., user has type 6 with probability Zu/gue/’ where g is
as given in Definition 1. Then, the equilif)rium solution that
is achieved when each infinitesimal user makes a routing
decision with respect to its own parameter ry and belief F'r
is equivalent to that given in Definition 2 almost surely. This
is because the cost of each edge at equilibrium depends only
on the aggregate flow on that edge.

Moreover, since the equilibrium in non-atomic games only
depends on the distribution of user types, it is analogous to that
a Bayes Nash equilibrium (see Section VII for a discussion of
other models). Owing to this similarity, the BNE in network
routing is more commonly studied in the context of atomic
games with a finite number of agents [50], [51].

When users do not possess knowledge of others, our equi-
librium notion occurs when the users are able to learn. In
routing games such as ours which admit a potential function
(see Proposition 1), a number of myopic user policies such as
best-response [52] and no-regret learning [53], [54] are known
to converge to equilibrium under iterative play. Under these
policies, each user’s route choice in a given round depends
only the observed costs on various paths in prior rounds.
We reiterate that although users’ perceived costs could stem
from information asymmetry, our setting still gives rise to
a deterministic game since each user type routes their flow
according to a known cost function.

C. Social Cost and Price of Anarchy

One of the central goals in this work is to compare the qual-
ity of the equilibrium solution in the presence of uncertainty
to the socially optimal flow as, e.g., computed by a centralized
planner with the goal of minimizing the aggregate cost in the
system. Specifically, the social cost of a flow x is given by

C(x) = D cce Celwe)me. @)
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Note that the social cost is only measured with respect to the
true congestion costs and thus does not reflect users’ beliefs
or uncertainties.

To capture inefficiencies, we leverage the well-studied no-
tion of the price of anarchy which is the ratio of the social
cost of the worst-case Nash equilibrium to that of the socially
optimal solution. Specifically, we are interested in bounding
price of anarchy as a function of the maximum and minimum
uncertainty levels in the system, i.e., rnax = maxgry and
Tmin = Ming rg. Formally, given parameters 7max, "min, W€
use C(Tmax, "min) to refer to a set or class of instances (as per
Definition 1), where the maximum uncertainty level of any
type 6 is rpax and the minimum uncertainty level is rp;,.
Given an instance G € C(Tmax, "min), W€ suppose that x* is
the flow that minimizes the social cost C(x) and that X is the
Nash equilibrium for the given instance.

Definition 3 (Price of Anarchy): Given a class of instances
C(Tmax, "'min)» the price of anarchy for this class is

MaXGeC(rmax,"min) C(i)/C(X*) 8)

Since, we study a cost-minimizing game, the price of anarchy
is always greater than or equal to one.

III. MAIN RESULTS

To support the main theoretical results, we first show that
our game is a weighted potential game. Routing games that fall
into the general class of potential games have a number of nice
properties in terms of existence, uniqueness, and computabil-
ity [52]. In our case, the existence of a weighted potential
function indicates that a Nash equilibrium always exists and
moreover, best-response behavior by the users converges to
such an equilibrium. General multi-commodity, selfish routing
games with heterogeneous users, however, do not belong to
the class of potential games unless certain assumptions on the
edge cost structure are met [22].

The following proposition states that the game instances of
the form we consider admit a (weighted) potential function
and hence, there always exists a Nash equilibrium [52].

Proposition 1: A feasible flow x is a Nash equilibrium for
a given instance G of a multi-commodity routing game with
uncertainty vector (rg)pe7 if and only if it minimizes the
following potential function:

@) = Yece (Jaca? + b Yger 522) O

Moreover, for any two minimizers x,x’, Ce(z.) = C.(z.) for
every edge e € £.

Note that although users perceive the multiplicative uncer-
tainty r¢ on the a. term (see Equation (2)), the parameter
appears in the denominator of the b, term in the potential
function above. Conceptually, these have a similar effect:
dividing Equation (6) by 79 on both sides, one can obtain
equivalent equilibrium conditions where the 7y term is present
in the denominator of the constant b,.

Proof: By definition, a feasible flow x € X is a Nash
equilibrium if the following condition is satisfied for all 6 € T
and for all p,p’ € Py with 29 > 0:

Zeep(rgaeaze +be) < ZeEp’ (reacxe + be).

Since rg > 0, this is equivalent to > c (aeze + IT’—:) <
> eep (@eTe + f—;) The remainder of proof trivially follows
from standard arguments pertaining to the minimizer of a
convex function. See [52] for more detail. |

The second part of the proposition indicates that the equi-
libria are essentially unique as the cost on every edge is the

same across solutions.

A. Effect of Uncertainty on Equilibrium Quality

Our first main result identifies a special case of the general
multi-commodity game for which uncertainty helps improve
equilibrium quality—i.e. decreases the social cost—whenever
users over-estimate their costs by a small factor and vice-versa
when they under-estimate costs. To show this result, we need
the following technical lemma.

Lemma 1: Given an instance G of a multi-commodity selfish
routing game with Nash equilibrium X = (Z.).cg, wWe have
that for any feasible flow x,

C(i) - C(X) < - Z@ET(% - 1) Zeeg bEAJjZ’

where Az? = 7% — 20,

The proof of the above lemma is provided in Appendix A.

Given an instance G of the multi-commodity routing game,
we define G! to be the corresponding game instance with no
uncertainty—that is, G! has the same graph, cost functions,
and user types as G, yet rg = 1 for all § € T.

Theorem 1: Consider any given instance G of the multi-
commodity routing game with Nash equilibrium x and corre-
sponding game instance G', having no uncertainty, with Nash
equilibrium is x!. Suppose 9 = r for all & € T. Then,
C(x) <C(xY)if1<r<2and C(x)>C(x})if0<r<1.

Remark: What happens when the users are highly cautious,
i.e.,, rg > 2 for all #? Due to the presence of a few negative
examples where the social cost increases in the presence
of uncertainty, we cannot conclusively state that uncertainty
helps or hurts for all instances. However, these negative
instances appear to be isolated—both our price of anarchy
result (Theorem 2) and our experiments (Section VI) validate
our claim that caution in the face of uncertainty helps the users
by lowering equilibrium social costs even when ry > 2—i.e.,
uncertainty is favorable when the users are very cautious. It
is however, interesting to note that although under-estimation
always leads to a worse equilibrium, over-estimation may lead
to better or worse equilibria.

Proof of Theorem 1: Let ®,.(x) denote the potential func-
tion for the instance G and @4 (x) denote the potential function
for G' where ®, is given in (9) with r = 1. By definition of
the potential function, we know that ®,.(X) — ®,.(x!) < 0 and
®q(x!) — ®1(x) < 0. Expanding them gives

aeii 5:2 aﬁ(:cl)2 mi'e
Zeef( 2 +b620€7’7_ 2 _bCZGETT <0,

and
QE(xelz)z b 1,0 aeii b ~0 <0
Deee (75 b Xger T’ — 5= —be Dper Ee ) <0,

where xi*e denotes the total flow on edge e by users of type

6 in the solution x'. Let us define Az? = #% — 21, and

(10)
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Az, = T, — xl. By summing the above inequalities, the a.
terms cancel out and

> be Z(A:'Z S =30 Y0 - DA <0

ecE  OeT ecE 0T

Using the fact that Y, Az? = Az, for all edges, we get that
(L —1)3 cebeAze 0. (11)

Hence, ) g beAze >0 when r > 1 and ) o b Az, <0
when r < 1.

We finish the proof by considering two separate cases: (case
1)1 <r < 2and (case 2) » < 1. In case 1, applying Lemma 1

to the instance G with x = x!, we obtain that

Cx)—C(x') < (1—2)Y c¢beAxe.

ecf

12)

We claim that when r € (1,2], the right-hand side of (12) is
lesser than or equal to zero. This is not particularly hard to
deduce owing to the fact that (1 — %) < 0 in the given range
and that ) ccE beAx, > 0 as deduced from (11). Therefore,
C(%) — C(x!) < 0, which proves the claim that uncertainty
with a limited amount of caution helps lower equilibrium costs.
Now, let us consider (case 2) where » < 1. Applying
Lemma 1 to the instance G! with x = %, and using the
fact that Az, = %, — x!, we have that C(x!) — C(X) <
(2 1) ,ce beAz,. Once again when r < 1, we know that
21> 0and (6) gives 3. ¢ be Az, < 0 in the given range.
|
The following corollary identifies a specific level of uncer-
tainty at which the equilibrium solution is actually optimal.
Corollary 1: Given an instance G of the multi-commodity
routing game, let X denote its Nash equilibrium and x* denote
the socially optimal flow. If rg = 2 for all § € T, then C(X) =
C(x*)—i.e. the equilibrium is socially optimal.
Proof: Suppose 19 = r = 2. Applying Lemma 1, we have
that C(x) — C(x*) < —(% —1)> . cebe — Az, = 0. ]
Corollary 1 has a natural interpretation in terms of the theory
of computing optimal tolls. When rg = 2 for all § € T, each
user’s cost perceived function on a given edge e € £ becomes
C‘g(xe) = (aee+be)+(aexe) = Ce(xe) +aexe, i.e., the true
cost plus ‘an additional term’. If we view the term a.x. as
a congestion-dependent toll paid by the user for routing flow
on link e, then Corollary 1 is equivalent to a classical result
in tolling theory [20], [29]. In particular, this result states that
if the toll on each link is set to the marginal cost of adding
an extra user, then the ensuing Nash equilibria minimize the
social cost. Against this backdrop, Corollary 1 establishes
an intuitive connection between cost mis-perceptions under
uncertainty and monetary tolls. That said, much of the work
in the tolling literature focuses on optimal tolls and thus,
Theorem 1 can be viewed as a novel result on the properties
of price-bounded and even negative tolls.

ecé

B. Price of Anarchy Under Uncertainty

In Theorem 1, we showed that the equilibrium cost under
uncertainty decreases (resp. increases) when users are mildly
cautious (resp. not cautious) and all user types have the same
level of uncertainty. This naturally raises the question of

quantifying the improvement (or degradation) in equilibrium
quality and whether uncertainty helps when the uncertainty
parameter can differ between user types. In the following
theorem, we address both of these questions by providing price
of anarchy bounds as a function of the maximum uncertainty
in the system and -y, which is the ratio between the minimum
and maximum uncertainty among user types.

Theorem 2: (Price of Anarchy) For any multi-commodity
routing game G, the ratio between the social cost of the Nash
equilibrium to that of the socially optimal solution is at most

PoA(G) < 4/(4yrmax — 2 (13)

max))

where 7y, = maxy rg, and v = % if Tax < 47.

Discussion: The price of anarchy bound in (13) is tight when
v = 1and r € [0,2]. For any given r < 2, this can be
confirmed by constructing a Pigouvian network similar to the
one in Fig. 3 where the costs are C¢, (x) = x and C¢,(x) = 7.
Further, we note that our result generalizes the price of anarchy
bounds in [38], [39] towards instances with heterogeneous
uncertainties (v < 1). For example, Corollary 6.8 in [38] gives
the same expression as (13) for instances where v = 1 and

€ [1,2]. Similarly, we note that for the special case when
v =1 and r > 2, [39] provides a tighter bound for the price
of anarchy compared to our result in Theorem 2.

Although the price of anarchy expression in (13) is not
tight when v < 1, it still serves as a useful upper bound
to understand the conditions under which there is a strict
improvement in equilibrium quality compared to the no-
uncertainty scenario. For example, the price of anarchy in
(13) is plotted in Fig. 1 as a function of 7, for three
different values of . Based on these plots, one can gather that
uncertainty lowers equilibrium cost when users over-estimate
their latencies by a small margin. This is true for r € [1, 3]
when 7 = 1, and for smaller ranges when v < 1. Note that
in all these cases, we compare to the price of anarchy of
% for multi-commodity routing games with linear cost and
no uncertainty [17]. Another interesting observation here is
that in contrast to Theorem 1, we observe an improvement in
equilibrium quality for a small range beyond r = 2, e.g., when
~v = 1, this occurs up to 7 = 3. However, we know from [39]
when the users are over-pessimistic, and rp.x 1S large, the
equilibrium quality degrades.

The price of anarchy bounds for v < 1 are also quite
revealing. As with the v = 1 case, we notice that equilibrium
cost can improve even when r > 2—albeit for a small range—
e.g., for ry. € [1.32,2.28] when v = 0.9. On the other
hand, uncertainty can hurt equilibrium even if rp.c > 1;
this occurs if 7 = minge7r9 < 1 and a large fraction of
users have 7y = ryi,. One can construct simple two network
examples to verify this lower bound. Finally, the price of
anarchy result leads to a surprising observation: as long as
Tmax > 1 and <y is not too small, for any given instance G
of the multi-commodity routing game, either the equilibrium
quality is already good or uncertainty helps lower congestion
by a significant amount. Therefore, uncertainty rarely hurts the
quality of the equilibrium and often helps.

In order to prove Theorem 2, we need the following
technical lemma whose proof is provided in Appendix B.
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Fig. 1. Price of anarchy as a function of 7max = maxgy rg for three different
ming 7 .

values of ~y : quz T(’ . In general, Wh.en Pmax > 1‘, the pI'lC? of anarchy

under uncertainty is smaller than that without uncertainty and vice-versa for

rmax < 1. Yet, too much caution or large asymmetries in the uncertainty

level across user types can also lead to poor equilibrium quality.

Lemma 2: For any two non-negative vectors of equal length,
(z1,22,...,2y,) and (z},25,...,2)), let z = 1" | x; and
' =" | x;. Moreover, let r = (r1,72,...,7,) be another
vector of length n whose entries are strictly positive. Then, if
we let r, = min; r; and r* = max; r;, for any given function
f(y) = ay + b with a,b > 0, we have that

<4 (4r.— ()7,

{CACED wan ey (e 14
Proof of Theorem 2: Consider some instance G of the
multi-commodity routing game with equilibrium x. Then,
adopting the variational inequality conditions for a Nash
equilibrium [14], [17], for any other solution x, and ev-
ery user type § € T, > ¢ (roacic+be) (28 —2%) =
>ece Celro@e) (@8 — x%) < 0. Fix any edge e € €. Let
(1, xn) = (@oer, v = Dperil, (2),....2)) =
(x:%)oeT, and &' = >, 22, Applying Lemma 2 with
f(y) = Ce(y) and r = (rg)peT, We have that Co(Z.)Z. <
CCela)es + Yger (@ — 229 (werg) where ¢ =
4/ (47 min — 1200) = 4/(4Y max — T2.)» and where 7, =
mingeT 19 and rpax = MaXgeT 9.
We claim that

Eees Ce(Te)Ze < C( ZeGS Z()eT(@z - 3729) (roacZe + be)

+ Zeeg CP(T:)T:)
< (e Cel@?)ze. (15)
Because for any type 0 c T,
Y ece (reac®e + be) (:Z'(Z — :cf) < 0. Since the price of
anarchy is defined as %, a worst case bound of

¢ follows from (15), givifgﬁus the theorem statement. |

IV. THE EFFECT OF HETEROGENEITY ON CONGESTION

In this section, we consider a more nuanced setting where
different users have different levels of uncertainty. Our goal
is to understand the effect of this heterogeneity in uncertainty
on the equilibrium congestion by studying the following two
questions: (i) how do the routing choices adopted by the
uncertain users impact the cost of the users without uncer-
tainty, and (ii) when is the equilibrium social cost of a system
with heterogeneous uncertainties smaller than the social cost
incurred when all users have no uncertainty?

A. Notation and Graph Topologies

To isolate the effect of heterogeneity on equilibrium con-
gestion, we study a selfish routing game on an undirected
network. There are two user types, 7 = {61,62}. Users
belonging to both these types seek to route their flow be-
tween source node s and destination node ¢. The uncertainty
levels for the two user types are specified as 79, = 1
and 79, = r > 0, and so, users of type 6; are without
uncertainty. We refer to this as the two-commodity game with
and without uncertainty. We slightly abuse notation and use
G = {G,T,(s,t), (proy, 16, ), (1,7),(Ce)ece} to refer to a
game instance, and P to represent the set of s-¢ paths in G.

Unlike the previous sections, where we made no assump-
tions on the graph structure, network topology matters here.
Specifically, we will consider two well-studied topologies:
series-parallel and linearly independent graphs:

Definition 4: (Series-Parallel [18]) An undirected graph G
with a single source s and destination ¢ is said to be a series-
parallel graph if no two s-t paths pass through an edge in
opposite directions.

There are a number of other equivalent definitions for this
class of graphs; e.g., a graph is said to be series-parallel if
it does not contain an embedded Wheatstone network [18].
Series-parallel graphs are an extremely well-studied topology
that naturally arise in a number of applications pertaining to
network routing. We refer the reader to [18] for more details.

Definition 5: (Linearly Independent [18]) An undirected

graph G with a single source s and destination ¢ is said to
be linearly independent if every s-t path contains at least one
edge that does not belong to any other s-t path.
Our final definition involves a simple extension of the above
topology to include linearly independent graphs connected
serially. Formally, a graph G = (V,&) is said to consist
of two sub-graphs G; = (V1,&1) with source-destination
pair (s1,t1) and Go = (V, &) with source-destination pair
(s2,t2) connected in serial if V = V; UV] with ¢; = so and
E=E U&,.

Definition 6: (Serially Linearly Independent (SLI)) An undi-

rected graph G with a single source s and destination ¢ is
said to belong to the serially linearly independent class if (i)
G is linearly independent or (ii) G' consists of two linearly
independent graphs connected in serial.
This extended topology was first introduced in [37]. Every
linearly independent graph belongs to the serially linearly
independent class, and every serially linearly independent
graph belongs to the series-parallel class [18].

B. Impact of Uncertain Users on Users without Uncertainty

We begin by studying what happens to the congestion cost
faced by the users without uncertainty as the uncertainty level
increases for the other users. This question is of considerable
interest in a number of settings. For example, in urban trans-
portation networks, the uncertainty about where a driver can
find available street parking can often cascade into increased
congestion for other drivers leading to a detrimental effect on
the overall congestion cost [55], [56].
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The following proposition shows a somewhat surprising
result. As long as the network topology is series-parallel, the
aggregate cost felt by users of type 6; (users without any
uncertainty) always reduces when users of 5 are uncertain
about the costs. In other words, the behavior under uncertainty
by one type of users always decreases the congestion costs of
other types of users who do not face any uncertainty.

Proposition 2: Given an instance G of the two-commodity
game with and without uncertainty such that the graph G is
series-parallel, let G 1 denote a modified version of this instance
with no uncertainty (i.e. 79, = rg, = 1). Let X and x' denote
the Nash equilibrium for the two instances, respectively. Then,
C%(x) < C”(x!), where C%'(x) = 3=, ¢ Ce(c)2?t is the
aggregate cost of users of type 6;.

Proof: Tt is well-known that [18, Lemma 3] for a series-
parallel graph G and any two feasible flows x, x/, there exists
a s—t path p with z, > 0, such that for every edge e € p,
2!, < x.. Now, consider flows x! and X. Applying the previous
property, we get that, there exists a path p with at}) > 0 such
that for all e € p, 7. < zl.

We now bound both C% (%) and C? (x!) in terms of the
cost of the path p. Specifically, note that in the solution
x1, the path p has non-zero flow on it so that C?(x!) =
101 Decp Ce(xl). However, in the solution X, we know that
every user of type 6; is using a minimum cost path with
respect to the true costs and therefore, the cost of any path
used by type 6; is at least that of the path p. Formally,
C™(X) < 1o, Yoep CelFe) < o, Y ee,, Ce(l). The final
inequality follows from the monotonicity of the cost functions
and the fact that 7, < :ci for all e € p. Therefore, we conclude
that C (%) < C”'(x!). n

C. Characterization of Instances where Heterogeneity Helps

We now consider the impact of heterogeneity on the system
performance as a whole and present a simple characterization
based on the network topology and the level of uncertainty,
where the presence of uncertainty (among a fraction of the
user population) results in a decrease in the equilibrium social
cost. Specifically, we show that for SLI networks, as long
as the uncertainty level of users belonging to type 65 is at
most two (i.e., 1 < r = rg, < 2), the social cost of the
equilibrium solution is always smaller than or equal to that of
the equilibrium when there is no uncertainty.

Before showing our theorem, we state the following tech-
nical lemma whose proof is deferred to Appendix C.

Lemma 3: Given any instance G of the two-commodity
routing game with and without uncertainty where the graph G
is linearly independent, let y and y* denote the Nash equilibria
of instances G and G' respectively. Then ' <yl Vp e P.
Informally, the above lemma states that given equilibrium
flows y and y! for any arbitrary instance G and its uncertainty-
free variant G!, the equilibrium solutions must satisfy the
property that for any path p, the flow on this path in the
absence of uncertainty (instance G') must be greater than or
equal to its magnitude due to the uncertainty-free users in G.

Theorem 3: Consider any given instance G of the two-
commodity game with and without uncertainty. Let X denote

the Nash equilibrium of this game and the corresponding game
instance G', having no uncertainty has Nash equilibrium x!.
Then, as long as G belongs to the serially linearly independent
class and 1 < r < 2, C(x) < C(x!). Moreover, there
exist instances of the two-commodity routing game with and
without uncertainty on series-parallel networks where the
social cost of the equilibrium without uncertainty is strictly
smaller than the cost with uncertainty r € [1, 2].

Proof of Theorem 3: Each SLI network can be bro-
ken down into a sequence of linearly independent networks
connected in series. Applying Definition 6 recursively, we
get a sequence of linearly independent sub-graphs G(1) =
(V(1),E(1),G(2) = (V(2).£(2)),...,G(£) = (V(£),£(0))
with source-destination pairs (to, t1), (t1,t2), . . ., (te—1, te) re-
spectively ( note that ty = s,ty = t), that are connected in
series—i.e., GG; is connected in series with G5 such that the
destination t; for GG; acts as the origin for G». By definition,
the set of edges in these subgraphs are mutually disjoint.

Secondly, given the equilibrium flow X on G for
instance G, we can divide this flow into components
(%(1),%(2),...,%(¢)) such that for every 1 < i < ¢, %(7) is
the sub-flow of X on the graph G(i), and for every e € £(i),
Z(i)e = Z,. Finally, it is not hard to see that X(¢) must be an
equilibrium of the sub-instance of G restricted to G(%).

Given this decomposition, we apply Lemma 3 to each
G(i). Consider any index i: since the graph G(i) is linearly
independent, we can apply Lemma 3 and get that for any ¢;_;-
t path p in G(i), #(1)% < &' ().

Suppose that P(i) denotes the set of ¢;_
Then by standard convex analysis,

C(X) =D ece Cel@e)Te = D ce(@eTe + be)Te

< eee (Celad)al + (20T, + be) (& — a?))
SO 4+ ce(2aeTe + be)(Te — )

1-t; paths in G(3).

(16)
so that, using the above decomposition,

Cx) + i D) (2acT(1)e + be)
(D)e — ' (i)e)
)+ i per
Z(i)p — ( i)p)

To complete the proof we show 3 5 ;) (3o (2acZ(i)e +
be))(Z(i)p — 2(i)p) < 0 for all 1 < i < {. Indeed, fix an
arbitrary index 4 and consider the corresponding graph G(i)
and flows %(i) and x!(i). Recall that x'(i) is the equilibrium
solution in the absence of uncertainty and therefore, minimizes
the following potential function ®1(x) = 3= .c¢(;) (5ae(we)*+
bex.). Hence, by convexity

0 < @1(X(0)) — Pa(x'(4))
= Zeeg( (%(i(z)e)Q be ()P - %(Il(i)e)Z - bezl(i)e)
< Deee(y(@e@(i)e + be)(Z(i)e — 2 (i)e). (17)

Next, we claim that Zeeg( y(rac®(i)e +be) (T (i)e — xt(i),) <
0. Indeed, for convenience define D, = >~ ¢, (rae (i)e +

C(x) <

(z
C(x! (YXeep(2aci(i)e +be))
(Z

\_/
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be)(7(i)e — 21(i)e) so that

D, = ZpeP(i) Zeep(raej(i)e + be) (Z(1)p — Il(i)p)
= T pepy- Lecyraci(i)e +b.)(Aw,)
+ Zpep(i)+ Zeep(raej(i)e + be) (Azp),

where Az, = (i), —x'(i), and P(i) =, P(i)" refer to the set
of the paths where Az, < 0 and Az, > 0, respectively. From
Lemma 3, we know that #(i)%' < z!(i), for all p € P(i).
Therefore, if Az, = i(i)gl + i(i)fﬁ — 21(i), > 0 for any
p € P(i), it must be the case that &(i)% > 0 for that path. In
other words, we have that for every p € P(i)", j(i)f? > 0.
Recall that Z()% denotes the total flow due to the users with
uncertainty on path p.

We make the following two observations that help us
simplify (18). First, by flow conservation, we know that
Zpep(i) Az, = 0. Second, for every p € P(i)", we have
that Z(i)%> > 0, and so p is a min-cost path for the users
with uncertainty in the flow %(i) . This in turn implies that
for any p’ € P(i) and p € P(i)*, the following inequality is
valid 37 ¢, (raci(i)e + be) < > .c,(raeci(i)e + be). Define
¢p = Milpep(i) X ee,(raci(i)e + be). Then, using the fact
Az, < Oforallp € P(i)” and that 3 (raeZ(i)e+be) > ¢
for all p € P(i)~, (18) can be rewritten as

D, = ZpeP(z‘)— Z(:‘Ep(ra’e‘%(i)e + be)(Azy)
+ ZpeP(i)+ Zeep C;(Axp)
< EpE'P(i)— ZeEp cp(Azp) + Zpep(i)— ZeEp cp(Azp)
=c, ZpEP(i) Az, =0 (19)

so that

Zegé(z‘) (raei(i)e + be)((i)e — ' (i)e) < 0.

Summing this inequality with (17), we see that the b, terms
cancel out, leaving us with (r — 1) 3" ¢ ;) @eZ (é)e(Z(i)e —
z'(i)e) < 0 which implies that Y gy aef(i)e(Z(i)e —
x1(i).) < 0 since 7 > 1. This, in turn, implies that

(2 - ’I") Zegg(i) aei‘(i)e(‘i‘(i)e - 551(7:)@) S 0

since r < 2. Adding (21) to (20), we get that
ZeeE(i)(Qaeit(i)e + be)(Z(i)e — x'(i)e) < 0, which in
combination with (16) yields the first part of the theorem.
The negative example for networks that are series-parallel but
not SLI is provided in Section IV-D1. |

Although we only provide an instance-wise characterization
for routing games with two types of users, we conjecture
that uncertainty can help lower equilibrium cost with three
or more types as long as r € [1,2] for all types and the
network is SLI. It may be possible to leverage the proof
of Theorem 3 in an inductive fashion by gradually adding
more types to prove such a result. More precisely, consider
an arbitrary instance where the types are numbered such
that rg, < 1rg, < ... < 07 - Proceeding inductively and
supposing that the claim holds for all instances with j — 1
types, one could then add the j—th uncertainty level rg,. In
this case, comparing the equilibrium cost for the instance with
j—1 and j types could be analogous to the proof of Theorem 3

(18)

(20)

21

ey, 5x + 2

()

(s, RS N
%
€9, T .
i

e5, 3z + 1

Fig. 2. A series-parallel network that is not SLI, where all traffic originates
at node s and terminates at ¢. The label on each edge represents its identity
and cost. For the two-commodity game with and without uncertainty, the total
population is 1 and a population of ¢ = 0.05 users have an uncertainty factor
of » = 2. The social cost for this example in the presence of uncertainty is
strictly larger than the social cost in the absence of uncertainty.

with only two types since the population of users having all
uncertainties except rg,_, and rg, remains static across the
two instances. We leave this analysis for future work.

D. Tightness of Results: Negative Examples

Our central result in this section (Theorem 3) shows that
for networks having the SLI topology with a limited amount
of uncertainty (r € [1,2]), the social cost at equilibrium in
the presence of uncertainty is always smaller than or equal to
the social cost without any uncertainty. Naturally, this raises
the question of whether the result is tight—i.e. what happens
when the graph does not belong to the SLI class or if 7 > 2. In
this section, we show the tightness of our results by illustrating
examples where uncertainty leads to an increase in congestion
costs when either one of the above requirements fail.

1) Series-Parallel Networks where Uncertainty Hurts:
Fig. 2 depicts an example of a network that is series-parallel
but not SLI, where the equilibrium cost when a small fraction
of users have an uncertainty of = 2 becomes strictly larger
than the cost when all users have no uncertainty. The details of
the equilibrium solutions for this example are listed in Table I.
Contrasting our result in Theorem 3, this example indicates
that for networks that violate the SLI topology, the helpful
effects of uncertainty are not guaranteed even when r € [1,2].

TABLE 1
FLOWS ON EACH PATH AND SOCIAL COST IN THE ABSENCE AND
PRESENCE OF UNCERTAINTY: IN THE LATTER CASE, A SMALL POPULATION
OF € = 0.05 USERS HAVE AN UNCERTAINTY OF r = 2. THE EQUILIBRIUM
SOCIAL COST IN THE ABSENCE OF UNCERTAINTY IS SMALLER.

‘ Instance “ Equilibrium Flow I Cost I
Certain Tp, = o5, Tpy = 2, Ty = & 62/21
Uncertain || @p, = 5. 7p, = 22, 2p; = 22, 2, = 2 | 591/200

2) Networks with Large Uncertainty, i.e., v > 2: We now
provide an example of a simple two-link Pigou network where
the equilibrium social cost with uncertainty r = 3 is strictly
larger than the equilibrium cost without any uncertainty. This
example illustrates that even for networks that fall within the
SLI class (parallel links are the most trivial class of networks),
uncertainty can be detrimental to social cost when r > 2.

Consider the instance depicted in Fig. 3. In the absence
of uncertainty, the entire population uses ey, resulting in a
social cost of Ce,(1) = 1. Next, suppose that a population
of € < 1 users have an uncertainty level of r = 3. If € <
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0.25z + 2.5

Fig. 3. A two link Pigou network. Consider a two-commodity game with and
without uncertainty where a fraction O < € < 1 of users have an uncertainty
parameter of r = 3. For every ¢ > 0, the equilibrium social cost without
uncertainty is strictly smaller than the social cost with uncertainty.

2/15, then all € users route their flow on e;, and the social
cost of the equilibrium solution with uncertainty is given by
Ce, (€)e+Ca(1 — €)1 — e = 1+0.5¢ + 1.25¢2 which is strictly
greater than C., (1), the social cost without uncertainty. When
€ > 2/15, only 2/15-th of the users prefer e;, and the increase
in social cost follows from the ¢ = 2/15 case.

V. GENERALIZATIONS

In this section, we generalize our model and consider multi-
commodity routing games where the edge costs belong to a
class of well-motivated polynomial functions. Specifically, we
focus on shifted monomial [57] cost functions, where C.(x) =
aex% + b, and d. > 1 for all e € £. These functions have
been the subject of a considerable literature (e.g., see [58])
across disciplines owing to their real-world applications—it is
known that actual road latency functions can be modeled as
shifted monomials of degree four [59]. In what follows, we
show that all of the results from Sections III and IV generalize
smoothly to this new class of functions.

We begin by a identifying a potential function ®4,(x) that
the Nash equilibrium solution minimizes for a generalization
of the multi-commodity routing game given by Definition 1
where every edge e € £ has the true cost function C.(z) =

z% + b,, which users of type § € T perceive as CY(z) =
roa.x% + b.. Therefore, equilibrium existence is guaranteed
for this more general class of functions.

Dy, (x) = Zees (—deilaexgsﬂ + b, ZeeT %xf) (22)

For convenience of exposition, we assume that d. =d > 1
for all e € £ for the rest of this section. The following result
generalizes Theorem 1 to games with shifted monomial costs.

Theorem 4: Consider an instance G of the multi-commodity
routing game with shifted monomial costs of degree d having
Nash equilibrium % and the corresponding game instance G,
having no uncertainty, with equilibrium x'. Suppose g = r
for all @ € T. Then, the following hold: (i) C(x) < C(x!) if
1<r<d+1; (ii) C(x) >C(x})if 0<r < 1.

Unlike Theorem 1 where uncertainty leads to decrease in
social cost only when r € [1, 2], we observe (surprisingly) that
as d grows, so does the range of r under which uncertainty
is helpful. The proof of Theorem 4 is very similar to that the
original result for linear costs (Theorem 1); in fact, this is true
for all of the results in this section. To avoid repetition, we only
sketch the key differences and defer the details to the extended
version on arXiv [60]. The central idea involved in the proof of
Theorem 4 is a strict generalization of Lemma 1 via a potential
function argument, to obtain the following difference in costs:

C(x)—C(x) < — 2967—('”1 1) ce be(2) —2f), where x

is an arbitrary feasible flow. The rest of the proof is analogous
to that of Theorem 1. Next, we generalize the price of anarchy
bounds from Theorem 2.

Theorem 5: For any multi-commodity routing game G with
shifted monomial cost functions of degree d, the ratio between
the social cost of the Nash equilibrium to that of the socially
optimal solution is at most

(d+1)d+1/d
'Yrrzlax(d+1)(d_1)/d7d7‘(d4+1>/d 5

PoA(G) < (23)
where 1. = maxger g, and vy = % as long as 1y <
(3)4(d + 1)@+,
Substltutlng d = 1 in the above equation, we obtain Theorem 2
as a special case. In the absence of uncertainty, it is known that
routing games with monomial functions having large degree
d, tend to exhibit poor price of anarchy, i.e., the PoA bound
grows as O(m) [20]. Theorem 5 makes a strong case
that increasing uncertainty can counteract the poor price of
anarchy, e.g., if we assume fy = 1, the PoA bound from
Equation (23) grows as O (;— 100 =) when 7.y = O(log(d))
We now generalize the results I)rom Section IV to shifted
monomial costs. First, it is not hard to see that Proposition 2
can be immediately extended to arbitrary cost functions includ-
ing monomials as the proof does not depend on any specific
cost function. Hence, we have the following generalization of
Theorem 3 in the context of shifted monomial functions.
Theorem 6: Consider an instance G of the two-commodity
game with and without uncertainty and with shifted monomial
cost functions of degree d > 1. Let x denote the Nash
equilibrium of this game and the corresponding game instance
G, having no uncertainty has equilibrium x!. Then, as long as
G belongs to the SLI class and 1 < r < d+1: C(x) < C(x}).
Discussion: We remark that Theorem 6 (and Theorem 3)
partially extends a similar result from [30]. In particular, in
Lemma 5.2 in [30] it is shown that for parallel link networks,
the social cost of the equilibrium with no uncertainty is always
larger than or equal to that of the equilibrium solution when
the users have (possibly heterogeneous) uncertainty levels in
the range r € [1,2]. We generalize this result from parallel
links to SLI networks but for a more specialized model with
two types of users and a more restricted class of cost functions.
Proof sketch: We begin by observing that Lemma 3 holds
for shifted monomials as the proof does not explicitly refer to
the linear functional form. Leveraging the SLI decomposition,
convexity leads to Y- .o Ce(Ze)(Ze — x}) > 0. Similarly, we
can decompose the paths into those that gain and lose flow
respectively to prove that Y, g (racz? + be)(Z. — zl) < 0.
The rest of the proof follows from simple algebra. [ ]

VI. CASE STUDIES

In this section, we present our main simulation results on
both stylistic as well as realistic urban network topologies
comprising of two types of users—i.e. through traffic, parking
users (types 01,0, respectively)—each associated with a sin-
gle commodity. We consider a more general edge-dependent
uncertainty model and assume that the parking users have
different uncertainty levels on different parts of the network
and the through traffic does not suffer from uncertainty at all.
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On-Street Parking

(t,)
~~'Garage

Fig. 4. A multi-commodity network with two types of users: parking users
and through traffic. All traffic originates at the source node s. Users belonging
to the through traffic population simply select a (minimum-cost) path from s
to ¢ and incur the latencies on each link. The parking users select between
one of two parking structures: on-street parking (indicated in green) with
additional circling costs and off-street parking (e.g., parking garage).
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Fig. 5. (Left) The on-street parking population flow (mass) under the social
optimum and the Nash equilibrium with and without uncertainty as the level
of uncertainty r varies. (Right) The equilibrium quality as measured by the
ratio of the social cost of the Nash equilibrium to that of the social optimum.
As 7 increases, we observe from the left plot that more users move away from
on-street parking, which in turn affects the social cost as seen from the right
plot. In particular, when r > 1, the users over-estimate both on-street and
garage wait times leading to a decrease in social cost as more users choose
the garage option. When r < 1, users view the garage option adversely, which
leads to more congestion.

We vary the level of uncertainty faced by the parking users,
and observe its effect on the social cost at equilibrium.

Despite the generality of the model considered here—
different user types have different beliefs and the level of
uncertainty depends on the edge under consideration—our
simulations validate the theoretical results presented in the
previous section. In particular, when the parking users are
cautious (over-estimate the congestion cost due to cruising and
waiting for a parking spot), we observe that the social cost
of the equilibrium decreases in both our experiments. On the
other hand, the behavior of parking users who under-estimate
the cost incurred due to searching for a parking spot leads to
a worse-cost equilibrium.

A. Effect of Uncertainty on On-Street vs Garage Parking

Inspired by the work in [55] which provides a framework for
integrating parking into a classical routing game that abstracts
route choices in urban networks, we begin with a somewhat
stylized example of an urban network, depicted and described
in Fig. 4. The users looking for a parking spot are faced with
two options: (i) on-street parking which is cheaper but leads to
larger wait times; (ii) an off-street or a private garage option
that has lower wait times at the expense of a higher price.

To understand the costs faced by the parking users (type 62),
let £, be the set of edges in the on-street parking structure
(the green edges in Fig. 4). For parking users that select the
on-street option, the cost on edges e € &,s are of the form
Ol () = Cly(we) + O (), where O () = ae +be

€,

is the travel latency part of the cost and C2, (z¢) = aoste +

bos is the parking part of the cost. Fig. 4 is easily converted
into a two-commodity network by creating a fake edge € from
node o0; to to that has the accumulated parking costs from the
edges in £,s—i.e. ng (&) = D ece.. Cgfos(:cé) = QpsTe+bos
. Then, the costs on edges in &, are re-defined to only contain
the travel latency component of the cost, and this is the same
for both types of users: for e € &5, C%(z.) = C%(x,) =
aeTe + be. For the off-street parking structure, the edge, say
¢/, from 0y to to has cost C%7 (zer) = apgaer + byy and all
other edges have costs Cfl (ze) = ng (Te) = aee + be.

The price on-street is generally lower than that of a private
garage, whereas the inequality is reversed for wait times.
Parking garages typically comprise of a larger capacity than
on-street parking options and one expects this to be reflected
in the a,s and a,, terms.

The uncertainty is faced by users of type 62 only on the
costs pertaining to parking such that the congestion-dependent
component of their parking cost is multiplied by a parameter
r > 0. This captures the notion that the users may face
uncertainty regarding the number of other users competing for
the same parking spots(s) or the capacity of each structure.
In the converted two commodity network, this translates to
6’52 (x3) = raosxs + bos Where € is the fake edge from o; to
ty and C% (z0) = rayywer +byy Where ¢ is the edge from o
to t2. As mentioned previously, the through traffic population
(type 601) does not suffer from uncertainty on any of its edges
and therefore, 79, (e) = 1 with respect to every edge e.

For the simulations, we assume that there is a total popula-
tion mass of 2 originating at the source node s, comprising of
an equal number of parking and through traffic users. The edge
congestion functions are selected randomly from a suitable
range. The costs on the parking structures are set as:

1) On-Street Parking: On-street parking contains a fixed
number of parking spots, and the parameter a,s is
chosen to be inversely proportional to this quantity. The
constant term b, captures the price paid by drivers for
on-street parking and is selected based on parking prices
multiplied by a constant that captures how users tend to
trade-off between time (congestion) and money.

2) Off-street Parking: Off-street parking is assumed to have
a large number of available parking spots; thus, we set
apg = 0. The parameter b, is set to be the price of off-
street parking (e.g., a garage) multiplied by the same
trade-off parameter as above.

Fig. 5 shows how the parking users divide themselves
among the on-street and garage option (left plot) and how
this affects equilibrium quality as r varies (right plot). From
the left plot, we observe that at the social optimum, about half
of the parking population prefers on-street parking. With no
uncertainty (i.e. 7 = 1), at the Nash equilibrium more parking
users (80%) gravitate towards the cheaper on-street option
leading to higher congestion and inefficiency. So even without
uncertainty, the system is inefficient. This is reminiscent of
the classic Pigou example [20] in traffic networks.

As r increases—that is, as users become more cautious
in their beliefs about parking congestion—more users start
flocking to the off-street option due to the fact that they
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perceive a multiplicative increase in the congestion-dependent
term. This results in an improvement to efficiency. On the
contrary, for users who tend to under-estimate parking costs
(r < 1), the appeal of parking in off-street options decreases
and more users flock towards on-street parking leading to
increased congestion and poor equilibrium quality.

The effect of the above behavior on equilibrium quality
can be seen in the right-hand plot in Fig. 5. The graph indi-
cates that a cautious approach under uncertainty (users over-
estimating costs) helps improve equilibrium quality, whereas
lack of caution results in enhanced congestion in the network.
In fact, we notice when r < 1, the price of anarchy increases in
a rather steep fashion as r decreases. Finally, we observe that
even though our theoretical results guarantee an improvement
in equilibrium congestion only in the range of 1 < r < 2, our
simulation results lend credence to the claim that even highly
cautious behavior (r > 2) can lead to a decrease in the social
cost. This can occur due to two reasons. First, according to
Fig. 5 (left), the fraction of users parking on-street decreases
in a convex fashion as r increases. Therefore, the rate at which
users gravitate from on-street parking to garage parking is
rather slow as r increases beyond two and consequently, the
change in social cost is also bounded. Second, since the garage
option has a,, = 0, there are no congestion costs and so an
increase in the population parking off-street at » > 2 leads
to a limited increase in cost. In conclusion, we see that when
r > 2 but is not too large, we still obtain reasonable efficiency
because the flow is still comparable to the r = 2 case and
changes slowly when r increases.

B. Parking vs. Through Traffic in Downtown Seattle

In a similar manner to the toy example, we take a real-
world urban traffic network (depicted in Fig. 6) that captures
a slice of a highly congested area in downtown Seattle. The
network contains both on-street and off-street parking options
and the parking population experiences both a travel latency
cost and a parking cost, both of which we model as affine
functions. Once again, this can be converted to a standard
two-commodity instance by adding a new (fake) destination
node tg, and including fake edges from (i) the top left and
bottom right nodes in the on-street parking zone (boundary
nodes on the blue colored dotted area in Fig. 6a) to tg,; (ii) the
node containing the parking garage (marked with a ‘P’ symbol
in Fig. 6a) to tg,. By adding fake edges from only specific
boundary nodes in the on-street parking area, we are able to
capture the added congestion due to the cruising and circling
behavior exhibited by users searching for parking spots. As
with our previous example, we assume that the through traffic
faces no uncertainty (rg, (¢) = 1 for all edges) and the parking
users face an uncertainty parameter of > 0 only on the fake
edges, which affects their perception of the parking costs.

For the simulations, we assume that the parking traffic
originates at a few select nodes in the network (indicated in
magenta in Fig. 6) and wishes to route their flow to either
an on-street parking slot or a garage. On the other hand, the
through traffic originates at every node in the network and has
a single destination, which represents drivers seeking to leave
the downtown area via state highway 99.
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Fig. 6. Setup and results for the parking and through traffic example modeled
on a region of downtown Seattle. In (a) and (b), the network superimposed on
the corresponding area in downtown Seattle is shown. The parking population
originates at the magenta nodes, whereas the through traffic begins at every
grey node and terminates at the green node. The blue dotted box represents
the on-street parking zone and the parking symbol (‘P’) is the location of the
off-street parking garage. The color on each edge depicts the intensity of flow
on that edge: the intensity increases as the color transitions from gray to red.

The parameters for our simulations were chosen similarly to
the example in Section VI-A. Specifically, the cost functions
for the two parking structures were based on an estimation
of the number of available parking slots, and the hourly price
for parking for both on-street and garage parking in Seattle.
Furthermore, owing to the uniformity of the downtown roads,
we assumed that all edges in the network have the same
congestion cost function, which were sufficiently scaled in
order to ensure that they are comparable to the parking costs.

As seen in Fig. 6a, in the downtown Seattle network,
the equilibrium without uncertainty is sub-optimal as more
parking users select the cheaper on-street option. This leads
to heavy congestion in the network (indicated by the red edges)
as parking users distributed across the network approach the
on-street parking area. That being said, the equilibrium without
uncertainty is not as sub-optimal as the simple network in
Fig. 4 as the cost functions are more symmetric and parking
users who originate closer to the parking garage prefer using
that option despite the higher price.

In the presence of uncertainty, we observe an interesting
phenomenon. When the parking users are cautious, the garage
option becomes more preferable to users who are equidistant
from both parking locations. The parking users distribute
themselves more evenly across the two options, which in turn
leads to lesser congestion in the middle of the network.

It is well-known that sub-optimal behavior by the parking
leads to increased congestion for through traffic [61]. Our
simulation results indicate that the routes adopted by that
uncertainty helps alleviate some of this congestion.

Fig. 6¢c shows the inefficiency of each of the equilibria as
a function of the uncertainty parameter value of the parking
users. Specifically, at » = 1.5, the equilibrium solution is close
to optimal (inefficiency ~ 1.02) and at » = 2, it coincides
with the socially optimal flow. On the other hand, for r < 1,
the social cost of the equilibrium solution increases because
more users select the on-street parking option. This in turn
leads to heavier congestion in the rest of the network. Once
again, we observe that over-estimation can lead to a decrease
in social cost even when » > 2 (up to r ~ 2.5 in this
case). However, unlike our results in Fig. 5, significant cost
over-estimation leads to large inefficiency— this is due to the
specific placement of the parking garage in the downtown
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example. More precisely as 7 increases, a large fraction of the
population favors the garage, whose location intersects with
the route adopted by the through traffic.

We conclude by remarking that even though cautious behav-
ior results in only a small improvement in the price of anarchy
(see Fig. 6¢), even a small improvement in daily congestion
in downtown areas could result in economic gains.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we consider a multi-commodity selfish routing
game where different types of users face different levels
of uncertainty quantified by a multiplicative parameter 4.
Broadly classifying the user attitudes as cautious and not-
cautious, we provide several theoretical results highlighting
the effect that when users over-estimate their network costs,
equilibrium quality tends to improve and vice-versa when
users under-estimate the costs. Although our primary focus
is on linear costs, we also show that our results generalize
gracefully to more general polynomial functions that are well-
motivated by real-world latencies.

Our work presents a number of novel contributions and new
insights on ‘how much uncertainty’ is beneficial for a system.
For example, a little pessimism in the face of uncertainty
can result in considerable improvements in equilibrium quality
whereas too much optimism may lead to increased congestion.
While most of the literature looks at worst-case price of
anarchy bounds, we show that uncertainty is helpful for every
possible instance (Theorems 1, 3, 4, 6). This is important since
the average instance encountered in practice may not resemble
the worst-case one. More specifically, we are among the first
to provide an instance-wise characterization of social cost
for instances containing two types of users and in networks
more general than parallel links (e.g., SLI). In terms of
price of anarchy, we extend many of the existing results for
homogeneous users [38], [39] and provide new bounds for
networks with heterogeneous user uncertainties and two or
more types. Finally, the techniques that we leverage to prove
our results may be of value to future work. In particular,
we believe that the proof of Theorem 3 where we combine
two disparate approaches: (i) using a potential function to
bound social cost, and (i) topological characterization of SLI
networks is applicable broadly.

The results also expose a number of new avenues for future
research. Perhaps, the most important direction is to consider
more realistic models of cost uncertainty (e.g., the mean-
variance approach [27]) and equilibrium notions such as the
Bayes Nash equilibrium [49] (BNE). For instance, one could
study a BNE by assuming that users of type ¢ have incomplete
information on the uncertainty corresponding to every other
type 6’. Although this general model is appealing at first
glance, it is fraught with computational challenges. Under a
BNE, each individual user’s cost could depend on taking the
expectation over an exponential number of realized states, and
crucially, layered beliefs on the uncertainty parameter—e.g.,
user ¢’s belief on user j’s belief on user ’s cost and so on. Fur-
ther research is required in order to reconcile the differences
between the desirable properties of the BNE, its computational

difficulties, and users’ preferences for simpler decision-making
heuristics as advocated by behavioral economics [31].

APPENDIX
A. Proof of Lemma 1

Recall from Proposition 1 that the equilibrium solution x
minimizes the corresponding potential function ®,.(x). So for
some x’, we have that ®,.(x) — ®,.(x’) <0 and

C(x') = Yeeelac, + be)a;
= Poce (@e(@l)? +be Cper 255 4 be Yper (1 — 2)al?)
=20, (x') = Y cg be Xper (& — Db (24)
Applying (24) to the solutions x and x, we get that
C(x) — C(x) = 29,.(x) — 29,.(x)
= Peee be Xper (7 — D - 27) (25)

< = Yper(F = 1) Leee beAal. (26)
where (26) follows from &, (%) — ®,(x) < 0. ]
B. Proof of Lemma 2

Fixing the left-hand side of
f(z)z #y2) 71
TS T < 4 W= 07)°) 7, @D

we first derive a lower bound on the denominator (i.e. identify
when the denominator is minimized over the space of all valid
instantiations of the parameter set). Let us begin with the
second term in the denominator:

>im (@i — @) f(riw) = 320, (21 — @) (riaz + b)
=30 wirar — Yo wiriax 4+ b(x — ')
>3 wirsar — Yo wirtaz + b(z — 2')
= ar.axr — 2'r*ax + b(z — ')

Using this upper bound on the rest of the terms in the
denominator, we get that

F@)'+30 (=) f(riz) > a(a’)?+br+ar.ar—a'r*az.

For any given fixed value of z, consider the function a(z’)? —

Z'r*az: by basic calculus, its minimum value is attained if
x’ = 5%, In other words, for any z,z’, we can conclude
2 .2 2
that a.(:v'.)2 — @’r*am 2. (r*)2% — (r*)Q% = —(r*)Q%.
Substituting this bound into the above equation, we have

F@)+ 300 (i — af) f(riz) > —(T*)z% + bz + roax’.

Now that we have removed the dependence on 2/, we can
substitute this back into (14) to get that

ax’+bx

— W +br+r,.ax?

flaa'+3270 (=) f(rizw) —
2
< (r*)2:f2 S X
—#—&-r,‘am

T Ar.—(r*)2

The penultimate inequality is obtained by removing the
dependence on b in the denominator. ]
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C. Proof of Lemma 3

We prove Lemma 3 via induction.

Claim 1: Given instances Z = {G,T,(s,t), (1o, lto,),
(1,7), (Ce)ece} and I' = {G,T,(s,t), (Nlel ) /”Llez)’ (1,1),
(Ce)ece} where the graph G is linearly independent, let
y and y' denote the Nash equilibria of the two instances,
respectively. Then, if

Y ey Cele) € Xee, Celyd), VP EP st gyl >0, (28)

it must be the case that yzl < y; for all p € P.

To prove Lemma 3, it is sufficient to prove the above claim.
Indeed, setting Z = G and Z' = G', we can directly apply
the claim to prove the lemma statement. In order to verify
that the condition from (28) is satisfied, first observe that
linearly independent networks are a special case of series-
parallel networks. Now, applying [18, Lemma 3] to the flows
y and y' as defined in the statement of Lemma 3, we get
that there exists a path p* € P with y. > 0 such that
Zeep Ce( ye) < Deep Cely 1). However, p* is a min-cost
path in y' and its cost in y is an upper-bound on that of
any min-cost path used by users of type #;. This immediately
implies that for any p with ygl > 0 its cost in y (where it is
a min-cost path for users of type 61) must be smaller than or
equal to its cost in y' (where all users have no uncertainty).

The proof of Claim 1 proceeds by induction on the number
of edges in the graph—that is, given a graph G = (V, ), we
assume that the claim holds for all graph G’ = (V' £’) such
that |£’| < |€]| and proceed from there. A property of linearly-
independent graphs, which will be useful for our proof.

Proposition 3 ( [18, Proposition 5]): A two terminal net-
work G is linearly-independent if and only if: (i) it consists
of a single edge, or (ii) it is the result of connecting two
linearly-independent networks in parallel, or (iii) it is the result
of connecting in series a linearly independent network and a
network with a single edge.

Proof of Claim 1: Let us start with the base case. The
inductive hypothesis is trivially true when the graph G consists
of a single edge between the source and sink (i.e. £ = {e}). All
of the users must route their flow on this edge only, regardless
of their uncertainty level. Since we are given (by assumption)
that the instance satisfies the condition that C(y.) < Ce(yl),
by monotonicity of the cost functions, we get that % < y!
and the inductive claim thus holds for the base case.

Now, let us consider the inductive case. Consider the in-
ductive claim with respect to an arbitrary linearly independent
graph G = (V, E) consisting of two or more edges, and assume
that the inductive hypothesis holds for all instances defined on
linearly independent graphs G’ = (V”/,£’) such that |£’| < |£].
From Proposition 3, we know that G consists of two sub-
graphs G; = (V1,&1) and Gy = (V2,&;) connected either
in parallel or in series with |E2] = 1 (i.e., G2 is simply a
single edge). We consider both cases, apply the inductive claim
recursively to both sub-graphs, and merge the resulting flows
to prove the inductive claim for the original graph G.

Let (s1,%1), (s2,t2) denote the origin-destination pairs for
(1 and G5 respectively. We use P; to denote the set of s1-t1
paths in G; and Ps to denote the set of so-to paths in Gs.

When G; and G5 are connected in series (case 1), we have
that s = t;. When they are connected in parallel (case 2),
$1 = 82,11 = to. We treat each of these cases separately.

(case 1) Subgraphs connected in series. We first introduce
some additional notation required for this part of the proof.
As we did in the proof of Theorem 3, we use y(1) and y(2)
to denote the sub-flows of y with respect to graphs G; and
G. Similarly, we define y!(1) and y!(2) to be the sub-flows
of y!. Recall that G5 consists simply of a single edge.

Since y is an equilibrium for Z, it must be the case that
y(1) and y(2) are equilibria for Gy, G3 respectively for
suitably defined sub-instances, Z; = {G1,T, (s1,t1), (1,
65 ) (17 T)a (06)6651} and 7 = {G27 T, (s2,t2), (M91vu92)7
(1,7), (Ce)ece, }» respectively. In a similar manner, y*(1) and
y1(2) represent equilibria for the instances Z] = {G1,T,
(817 tl)? (N’IHI ) ,uflez)v (17 1)7 (Ce)fiGSl} and Ié = {GQa T,
(s2,t2), (g, s 1, )s (1, 1), (Ce)ece, }» respectively. These are
formally summarized in the notation table below.

TABLE I
INSTANCE DEFINITIONS AND NASH EQUILIBRIA WHEN (G1 AND G2 ARE
CONNECTED IN SERIES.

Game Instance Definition N.E.
7 {07 T, (S’t)f(“911/~L92)7(177')1(CE)868} y
VA {leTv (Slvtl)v(N917M92)7(1 T),(C )6681} Y(l)
o) {GQ,Tv (827t2)>(ﬂ917ﬂ62)7(1 T)v( E)eESQ} y(2)
v {G7 T, (s,t),(,uél,,ug?), 171)7(06) EE} y1
Ii {Gl’T7 (817t1)>(“;9171u/32)7(1 1)7( )6651} yl(l)
Ié {021T7 (827152)’(“/917#/92)7(1 1)7( )6652} y1(2)

From (28) that for any path p € P with ygl > 0,
Yeep Celte) < 3oc, Ce(ye). Dividing the path p into sub-
paths p; and py representing its intersection with G1,Go
respectively, we get that Zeem e(Ye) + Deep, Celye) <
ZeEpl Ce(ye) + Ze@pg (ye)

Based on the above inequality, either ) . Ce(ye) <
Zeepl C (yé) or Zeepg (ye) S ZeepQ (ye)

Suppose that Y . Ce(ye) < 3.c,, Ce(ys). Since the
graph (31 is linearly independent, we can apply the inductive

claim to instances 7Z; and Zj to get that y(l)(’1 < y'(1),
for every path p € P;. However, recall that Gg consists of
only one edge (call it e3). This implies that there is a one-
to-one correspondence between every path in P and path in
P;1. Specifically, for every path p € P, there exists a unique
path p; € P such that p = p; U{ez}. Since the mapping is a
bijection, this implies that for every p= p1 U{ez}, it must be
the case that yel = y( )g} and y, = y'(1),,. Therefore, for
every path p € P yor = y(1)% < y'(1),, =y, This proves
the inductive claim for this case.

Next, suppose that 3 . Ce(ye) < 3 c,, Ce(ys). Once
again, since (G consists of a single edge eo, the condition
implies that ye, = y(2)e, < y2, = y'(2)e,. Thus, we infer that
conditional upon 3° . Ce(ye) < 3 .cp, Celye), o, +116, <
“191 + “;92' That is, the total population for instance Z is smaller
than or equal to the total population for instance Z'.

Since linearly independent networks are a special case of
series-parallel, we can now apply [18, Lemma 3] for flows
y(1) and y'(1) on graph G1. Since pg, + po, < p, + pip,»
this of course, implies that there exists at least one origin-
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destination path p* in G; with y'(1),» > 0 satisfying
Yoeepr Ce(y(D)e) < Xoc,e Ce(y'(1)e). Therefore, we can
conclude that for any path p € P; with ygl > 0, we have,
Zeep Ce(y(1)e) < Zeep Ce(y'(1)e).

The above equation symbolizes the induction condition as
described in (28). Applying the inductive hypothesis recur-
sively to instances Z;,Z], and using the same reasoning as
before, we conclude that for every s-t path p € P, 35 < yl.
This concludes the proof for the series case.

(case 2) Subgraphs G1, G2 connected in parallel to obtain
G. The proof for this case proceeds similarly to the case
where the networks are connected in series. Once again, we
divide the flows y and y! into sub-flows y(1),y(2) and y*(1)
and y'(2). Moreover, we use g, (1), i1g,(1) to denote the
total flow without and with uncertainty in sub-graph G and
similarly so, for all the other subgraphs and sub-flows. A
comprehensive notation table is listed below.

TABLE III
INSTANCE DEFINITIONS AND NASH EQUILIBRIA WHEN (G1 AND G2 ARE
CONNECTED IN PARALLEL.

Game Instance Definition N.E
z {Gv T, (Svt)v(UGl?MGz)v(lvr)r(Ce)eES} y
I {G17T7 (s)t)7(/>‘91 (1),#92(1),(I,T),(Ce)eggl} y(l)
Iz {GQv 7, (8, t)v (l"’91 (2)7 Moo (2))7 (17 ’I”), (05)6652} Y(Q)
v {Gv T, (Svt)7(Mélvulgz)v(lvl)v(ce)ﬁeg} y1
Iy | {G1 T, (5,), (kg (1), mp, (1), (1,1), (Ce)eegy } | ¥'(1)
Ié {G27 T, (S» t)v (N’lel (2)7 “/92 (2)7 (17 1)’ (05)6652} y1(2)

Before applying the inductive claim recursively to the two
subgraphs, we need to verify that the condition specified
in (28) is satisfied for the subgraphs. We know that the
instances Z,Z' satisfy the condition in (28) (this is part of

our assumption). That is, for any p € P such that yff >0

Yeep Ce(ye) < 2 ep Ce(y)- (29)

Since the graphs G1, G4 are connected in parallel, the set of
edges and paths in each graph are disjoint. In other words,
P = P1 U Py. Moreover, the path-flows in y coincide
with those in y(1) or y(2)—e.g., for any p; € P, we
have that y,, = y(1),, and so on. This combined with
(29) implies that for any path p; € P; with y(l)gi > 0,
Yeep, Ce(y(D)e) < ey, Ce(y'(1)e). Therefore, the flows
y(1) and y!(1) satisfy the inductive condition. Similarly, we
can show that the flows y(2) and y!(2) also satisfy (28).
Applying the inductive claim to the instances Z; and Z7,
we get that y(l)f}} < y*(1)p, Vp1 € Py. Similarly, we can
apply the inductive claim to instance pair Z,,7Z} to get that
y(2)% < y'(2)p, Vp2 € Py Since y = y(1) Uy(2) and
yt =y!(1) Uy!(2), the claim follows immediately. [
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