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Uncertainty in Multi-Commodity Routing

Networks: When does it help?
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Abstract—We study the equilibrium behavior in a multi-
commodity selfish routing game with uncertain users where
each user over- or under-estimates their congestion costs by
a multiplicative factor. Surprisingly, we find that uncertainties
in different directions have qualitatively distinct impacts on
equilibria. Namely, contrary to the usual notion that uncertainty
increases inefficiencies, network congestion decreases when users
over-estimate their costs. On the other hand, under-estimation of
costs leads to increased congestion.

We apply these results to urban transportation networks,
where drivers have different estimates about the cost of conges-
tion. In light of the dynamic pricing policies aimed at tackling
congestion, our results indicate that users’ perception of these
prices can significantly impact the policy’s efficacy, and “caution
in the face of uncertainty” leads to favorable network conditions.

Index Terms—Network Routing, Uncertainty, Nash Equilib-
rium, Transportation

I. INTRODUCTION

Multi-commodity routing networks that allocate resources

to self-interested users lie at the heart of many systems such

as communication, transportation, and power networks (see,

e.g., [1] for an overview). In all of these systems, users

inherently face uncertainty and are heterogeneous. These users

rarely have perfect information about the state of the system,

and each have their own idiosyncratic objectives and trade-

offs between time, money, and risk [2]–[4]. Naturally, users’

personalized beliefs or preferences regarding system costs and

delays influence their decision and, in turn, the welfare of the

overall system. In this paper, we provide an understanding of

the effects of certain classes of uncertainties and limited user

heterogeneity with respect to such uncertainties on network

performance—i.e. we establish conditions on when they are

helpful and harmful to the overall social welfare.

A motivating example of a routing network that we use

throughout this paper is the urban transportation network.

Commuters in road networks simultaneously trade-off between

diverse objectives such as total travel time, road taxes, parking

costs, waiting delays, walking distance and environmental

impact. At the same time, these users tend to possess varying

levels of information, and there is evidence [5], [6] to suggest

that the routes adopted depend not on the true costs but on

how they are perceived by the users. For instance, users prefer

more consistent routes over those with high variance [7], seek
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to minimize travel time over parking costs [8], and react

adversely to per-mile road taxes [9].

Furthermore, the technological and economic incentives

employed by planners interact with user beliefs in a complex

manner [10]. For example, to limit the economic losses

arising from urban congestion, cities across the world have

introduced a number of solutions including road taxes, time-

of-day-pricing, road-side message signs and route recommen-

dations [11]–[13]. However, the dynamic nature of these incen-

tives (e.g., frequent price updates) and the limited availability

of information dispersal mechanisms may add to users’ uncer-

tainties and asymmetries in beliefs. The effect of uncertainties

on network equilibria has been examined in recent work [10],

[14]–[16] where each user perceives the network condition to

be different than the true conditions. The current results have

mostly focused on simple network topologies (e.g., parallel

links) or networks where a fixed percentage of the population

is endowed with a specific level of uncertainty. Given the

complexity of most practical networks, it is natural to ask

how uncertainty (and user beliefs on network costs) affects

equilibria in scenarios with at least two types of users, whose

perceptions vary according to the user type. Specifically, in

this work we are motivated by the following two questions: (i)

how do equilibria depend on the type and level of uncertainty

among network users, and (ii) when does uncertainty improve

or degrade equilibrium quality?

To address these questions, we turn to a multi-commodity

selfish routing framework commonly employed by many dis-

ciplines. In our model, users seek to route some flow from

a source to a destination across a network and they face

congestion costs on each link. Crucially, users’ perception

of these congestion costs may differ from the true cost or

travel time. It is well-known that even in the presence of

perfect information (every user knows the exact true cost),

strategic behavior by the users can result in considerably worse

congestion at equilibrium when compared to a centrally opti-

mized routing solution [17]. Against this backdrop, we analyze

what happens when users have imperfect knowledge of the

congestion costs. A surprising outcome arises: in the presence

of uncertainty, if users select routes based on perceived costs

that over-estimate the true cost, the equilibrium quality is

better compared to perfect information case. Conversely, if

the users are not cautious and under-estimate the costs, the

equilibrium quality becomes worse.

A. Contributions

We introduce the notion of type-dependent uncertainty in

multi-commodity routing networks, where the uncertainty of
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users belonging to type θ is captured by a single parameter

rθ > 0. Specifically, for each user of type θ, if their true

cost on edge e is given by Ce(x) = aex + be, where x is

the total population of users on this edge, then their perceived

cost is rθaex+ be. For the majority of this work, we focus on

cautious behavior, where users over-estimate the costs (rθ ≥
1), for all types θ. Some of our results will also hold for the

case where users under-estimate the costs (rθ ≤ 1), for all

types θ. The central message of this paper is that when users

exhibit “caution in the face of uncertainty”, the social cost at

the equilibrium is smaller compared to the case where users

have perfect information (i.e. know the true congestion costs).

The following results are independent of network topology:

(a) The social cost—i.e. C(x) =
∑

e∈E xeCe(xe) where xe

is the total population mass, summed over all user types,

flowing on edge e—of the equilibrium solution(s) where

all users have the same level of uncertainty (rθ = r for

all θ) is always smaller than or equal to the cost of the

equilibrium solution without uncertainty when r ∈ [1, 2]
and vice-versa when r < 1.

(b) The worst-case ratio of the social cost of the equilibrium

to that of the socially optimal solution (i.e. the price

of anarchy [17]) is 4/(4rmaxγ − r2max), where rmax =
maxθ rθ and γ ≤ 1 is the ratio of the minimum to the

maximum uncertainty over user types.

Constraining network topology, we show the following:

(a) The social cost of the equilibrium where a fraction

of the users exhibit an uncertainty of r ∈ [1, 2] and

the rest have no uncertainty is always smaller than or

equal to the social cost of an identical system without

uncertainty, as long as the network has the serially

linearly independent topology [18].

(b) In systems having users with and without uncertainty,

the routing choices adopted by the uncertain users al-

ways results in an improvement in the costs experienced

by users without uncertainty, as long as the graph has a

series-parallel topology [18].

Finally, we prove that all of our results generalize gracefully

to a class of well-motivated polynomial functions known as

shifted monomials, where Ce(x) = aex
d + be for d ≥ 1.

In fact, for these general functions, we show that uncertainty

is typically beneficial over a larger range of the parameter

r, i.e., when r ∈ [1, d + 1]. Our results provide a complete

characterization for routing games with two user types or

uncertainty levels and a worst-case price of anarchy bound

for instances having more than two types. Moreover, we show

that our characterizations are tight by means of illustrative

examples where uncertainty leads to an increase in the social

cost when our characterization conditions are violated.

To validate the theoretical results, we present illustrative

simulation results. We focus specifically on the application

of parking in urban transportation networks and consider

realistic urban network topologies with two types of users:

through traffic and parking users. Given a parking population

with uncertainties, we show that cautious behavior improves

equilibrium quality while lack of caution degrades it even

when uncertainty is asymmetric across user types and when

the same user faces different levels of uncertainty on different

parts of the network.

A preliminary version of this paper [19] appeared in the

2018 American Control Conference. The current work is a

significant generalization of that version including (i) several

new results (Theorems 3, 4, 5, 6); (ii) a new model and

simulations and a detailed discussion of the modeling choices

(Section II-B); (iii) expanded related work and connections

between our results and those in the literature on tolling.

B. Related Work

There is an extensive literature on congestion games and

more general potential games [20] which has focused on

quantifying the equilibrium cost as a function of system

parameters such as the network topology [21] and the degree

of cost functions [17]. Although we study the same research

questions as this literature, we look at settings where the users’

perceived cost on a route may not be equal to the true expected

cost. In contrast, much of the traditional work in this domain

look at models where the users are aware of the precise costs

which leads to considerably different results.

A notable exception is the body of work on routing games

with player specific costs which may or may not align with

the true costs [22]–[25]. First, a majority of these works

look at games with atomic users, which are known to have

qualitatively different results than the non-atomic game that

we consider. Second, they primarily analyze the existence of

and convergence to equilibrium solutions, whereas we study

more quantitative questions such as the price of anarchy, and

comparing the social cost of the equilibrium solutions with

and without cost misalignment.

Our work is closely related to the extensive body of

work on risk-averse selfish routing [26]–[28] and pricing tolls

in congestion networks [2], [29], [30]. The former line of

research focuses on the well known mean-variance model

where each self-interested user selects a path that minimizes a

linear combination of their expected travel time and standard

deviation. While such an objective is desirable from a central

planner’s perspective, experimental studies suggest that indi-

viduals tend to employ simpler heuristics when faced with

uncertainty [31]. Motivated by this, we adopt a multiplicative

model of uncertainty similar to [24], [32], [33].

The literature on computing tolls for network users is driven

by the need to implement the optimum routing by adjusting

the toll amount, on each edge and was originally pioneered

by Vickrey [29] and Walters [34]. It is possible to draw par-

allels between our model where users over-estimate costs and

tolling; specifically, tolls leverage users’ time-money trade-

offs to alter their perceptions of the cost of each edge. While

tolls can be (within reason) arbitrarily decided, the system

planner has little influence over the level of uncertainty among

the users. Bearing this in mind, we strive for a more subtle

understanding of how equilibrium congestion depends on the

level of uncertainty. Moreover, different than the existing

literature, we also study the effect of cost under-estimation.

It is also is worth noting that the classical works on network

pricing have focused on edge-specific tolls applicable to all
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users on a link, yet recent works such as [35] have sought

out more sophisticated congestion pricing techniques including

trip-dependent and time-sensitive pricing.

While tolls can be viewed as monetary disincentives that

alter the behavior of self-interested users in order to reduce

congestion, there has been a growing interest in using infor-

mation as an incentive to achieve the same effect. This line

of work [16], [36] looks at principal-agent settings, where the

principal can mis-represent or limit the information provided

to agents. Similar to the present work, these papers reach

the conclusion that when users’ perceived costs do not align

with the true costs, it is possible to achieve outcomes with

lower social costs. That said, as noted previously, existing

work only focuses on the problem of identifying the single

mis-representation that optimizes the social cost for largely

simple settings (e.g., parallel links). On the other hand, we

seek to comprehensively characterize the landscape of user

perceptions and how they impact congestion even for complex

network structures.

We remark that our work is thematically similar to the recent

paper on the informational Braess paradox [37] whose frame-

work can be viewed as an extreme case of our model where the

uncertainty parameter rθ → ∞ on some edges. Our model is

more continuous, as user attitudes are parameterized by a finite

value of rθ, which allows for a more descriptive depiction of

the trade-offs faced by users who must balance travel time,

congestion, and uncertainty. Finally, some recent works also

study the effect of cost misperceptions in non-atomic routing

games [30], [38], [39]. The present work partially extends a

few of the results in these papers—e.g., from parallel links

to more general structures [30], and from one user type to

multiple types [38], [39]. Moreover, while [38], [39] focus

on price of anarchy bounds, we also provide an instance-wise

characterization (Theorems 1,3).

C. Organization

The rest of the paper is structured as follows. In Section II,

we formally introduce our model followed by our main results

in Sections III, IV, and V. Section VI presents our simulation

results on urban transportation networks with parking and

routing users who face different levels of uncertainty. Finally,

we conclude with discussion in Section VII.

II. MODEL AND PRELIMINARIES

We consider a non-atomic, multi-commodity selfish routing

game with multiple types of users. Specifically, we consider

a network represented as G = (V, E) where V is the set of

nodes and E is the set of edges. For each edge e ∈ E , we

define a linear cost function

Ce(xe) = aexe + be, (1)

where xe ≥ 0 is the total population (or flow) of users on that

edge and ae, be ≥ 0. One can interpret Ce(·) as the true cost or

expected congestion felt by the users on this edge. However,

due to uncertainty, users may perceive the cost on each edge

e ∈ E to be different from its true cost.

To capture that users may have different perceived un-

certainties, we introduce the notion of type. Specifically, we

consider a finite set of user types T , where each type θ ∈ T
is uniquely defined by the following tuple (sθ, tθ, µθ, rθ).
The parameter µθ > 0 denotes the total population of users

belonging to type θ such that each of these infinitesimal users

seeks to route some flow from its source node sθ ∈ V to the

destination node tθ ∈ V . Moreover, given parameter rθ > 0,

users of type θ perceive the cost of edge e ∈ E to be

Ĉθ
e (xe) = rθaexe + be. (2)

The uncertainty parameter rθ denotes the personalized

beliefs of the non-atomic population of type θ and when

considered across types, captures the heterogeneity in pref-

erences. As we articulate in Section II-B, this term can be

viewed as a user’s belief or preference stemming from a

lack of information regarding the true costs or aversion to

congestion or wait times. For illustration, consider an urban

transportation network. Then be may represent the constant

travel time on a link (in the absence of other vehicles) and

aexe, the congestion-dependent component of the travel time.

A multiplicative uncertainty of rθ > 1 indicates that users of

type θ adversely view costs arising due to congestion (e.g.,

waiting in traffic) when compared to other costs .

A path p ∈ Pθ is a sequence of edges connecting sθ to tθ.

Define Pθ to be the set of all sθ–tθ paths in G. Let xθ
p ∈ R be

the total flow routed by users of type θ on path p ∈ Pθ. We

use the notation x = (xθ
p)θ∈T ,p∈Pθ

∈ R
|T |·|Pθ| for a network

flow and xθ = (xθ
p)p∈Pθ

to denote the network flow of type

θ ∈ T . Then, for each type θ ∈ T , define the set of feasible

flows to be

Xθ = {xθ|
∑

p∈Pθ
xθ
p = µθ, xθ

p ≥ 0, ∀p ∈ Pθ}. (3)

The action space of users of type θ is Xθ—that is, users of

type θ choose a feasible flow xθ ∈ Xθ. Further, define the

joint action space X = (Xθ)θ∈T —i.e. the space of feasible

flows for all user types.

Path flows induce edge flows. Let xθ
e ∈ R be the flow on

edge e due to users of type θ. The edge and path flow for

users of type θ are related by

xθ
e =

∑

p∈Pθ,e∈p x
θ
p.

Define the total flow on edge e to be xe =
∑

θ∈T xθ
e. Then,

using this notation, we write the path cost in terms of edge

flow. For any path p,

Cp(x) =
∑

e∈p Ce(xe) =
∑

e∈p(aexe + be). (4)

Similarly, the perceived path costs are given by

Ĉθ
p(x) =

∑

e∈p Ĉ
θ
e (xe) =

∑

e∈p rθaexe + be. (5)

The following definition of a game instance G captures all

of the relevant information about the multi-commodity routing

game including the notion of type-based uncertainty we are

interested in studying.

Definition 1 (Instance): An instance of the

multi-commodity routing game is a tuple G =
{(V, E), T ,X , (Pθ)θ∈T , (sθ, tθ, µθ, rθ)θ∈T , (Ce)e∈E}, where
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(V, E) denotes the network, (Ce)e∈E is the set of cost

functions on each link, T is the set of types and each type

θ ∈ T is specified by the entities Pθ, (sθ, tθ, µθ, rθ)θ∈T

that denotes the set of paths, origin-destination pair, total

population mass and uncertainty level, respectively.

A. Nash Equilibrium Concept

We assume that the users in the system are self-interested

with the goal of minimizing their individual cost. Therefore,

the solution concept of interest in such a setting is a Nash

equilibrium, where each user routes their flow on minimum

cost paths with respect to their perceived cost functions and

the actions of the other users.

Definition 2 (Nash Equilibrium): Given a game instance G,

a feasible flow x ∈ X is said to be a Nash equilibrium if for

every θ ∈ T , for all p ∈ Pθ with positive flow, xθ
p > 0,

Ĉθ
p(x) ≤ Ĉθ

p′(x), ∀ p′ ∈ Pθ (6)

In the transportation literature, this solution concept is referred

to as a Wardrop equilibrium. For the sake of consistency with

the body of work pertaining to price of anarchy [20], we will

continue using the term Nash equilibrium as the two concepts

lead to completely equivalent solutions. For the rest of this

work, we also will assume that all the flows considered are

feasible. Finally, it is useful to point out that our model and

solution allow for users of the same type to select different

paths that connect the source and destination. Given a feasible

flow x ∈ X , it is possible that xθ
p, x

θ
p′ > 0 for p, p′ ∈ Pθ;

however, if x is a Nash equilibrium then, it must be the case

that Ĉθ
p(x) = Ĉθ

p′(x)—i.e., users do not choose sub-optimal

paths with respect to their perceived costs at equilibrium.

B. Model Discussion

Although users’ perceived cost is deterministic given the

type—i.e., Ĉθ
e (x) = rθaex+ be—this modeling choice allows

us to capture decision-making in the presence of uncertainty in

costs. There is extensive experimental evidence showing that

users do not always minimize expected costs under uncertainty

and instead adopt simpler heuristics [6], [40], [41]. Consider

an example where the true cost on edge e ∈ E is βaex + be,

and β ∼ F is a random variable in the range [βmin, βmax]
with E[β] = 1. By selecting the parameter rθ appropriately,

we can model several user heuristics studied in the literature:

1) If the cost distribution (F) is unknown, a risk-averse user

(of type θ) typically pads their estimated cost on edge

e with a parameter δθe > 0 that represents the ‘margin

of safety’ [42]–[44]. For instance, the perceived cost is

given by aex+be+δθe , where δθe = (rθ−1)aex. Then a

risk-seeking user may have δe < 0 due to their optimism.

2) A body of evidence suggests that they prefer to opti-

mize convenient heuristic functions as opposed to more

involved probabilistic reasoning even if knowledge of

the distribution is available [41].A well-studied example

is the Hurwicz criterion [44], [45] that represents a

compromise between the best-case and worst-case travel

costs. Under this model, Ĉθ
e (x) = αθ(βminaex+ be) +

(1 − αθ)(βmaxaex + be), where rθ = αθβmin + (1 −
αθ)βmax and 0 ≤ αθ ≤ 1 is a parameter that denotes

the level of caution.

3) In transportation, drivers exhibit delay aversion by pre-

ferring routes with lower congestion even under larger

travel times [46], [47]. In our model, the factor rθ on

the ae term represents this delay aversion.

Note that although our model only induces multiplicative

uncertainty on the congestion-dependent component and not

the be term, this is without loss of generality. If the users’

perceived cost on edge e is r1θaex+r2θbe, it can be transformed

to an instance of our routing game, where rθ =
r1θ
r2
θ

.

Furthermore, the equilibrium concept that we consider is

consistent with previous studies of non-atomic routing games

with heterogeneous cost functions users have heterogeneous

perceptions of the costs [22], [39], [48]. It is interesting to

consider how a Nash equilibrium is reached and the ties

between our solution concept and the Bayes Nash equilibrium

(BNE) [49]. Given that we study a non-atomic routing game

with infinitely many users, in order to reason about the Nash

equilibrium, it is sufficient to know the probability distribution

on the users’ types. Formally, suppose that each user’s (private)

type θ is drawn i.i.d from a publicly known distribution FT —

i.e., user has type θ with probability µθ∑
θ′

µθ′
, where µθ is

as given in Definition 1. Then, the equilibrium solution that

is achieved when each infinitesimal user makes a routing

decision with respect to its own parameter rθ and belief FT

is equivalent to that given in Definition 2 almost surely. This

is because the cost of each edge at equilibrium depends only

on the aggregate flow on that edge.

Moreover, since the equilibrium in non-atomic games only

depends on the distribution of user types, it is analogous to that

a Bayes Nash equilibrium (see Section VII for a discussion of

other models). Owing to this similarity, the BNE in network

routing is more commonly studied in the context of atomic

games with a finite number of agents [50], [51].

When users do not possess knowledge of others, our equi-

librium notion occurs when the users are able to learn. In

routing games such as ours which admit a potential function

(see Proposition 1), a number of myopic user policies such as

best-response [52] and no-regret learning [53], [54] are known

to converge to equilibrium under iterative play. Under these

policies, each user’s route choice in a given round depends

only the observed costs on various paths in prior rounds.

We reiterate that although users’ perceived costs could stem

from information asymmetry, our setting still gives rise to

a deterministic game since each user type routes their flow

according to a known cost function.

C. Social Cost and Price of Anarchy

One of the central goals in this work is to compare the qual-

ity of the equilibrium solution in the presence of uncertainty

to the socially optimal flow as, e.g., computed by a centralized

planner with the goal of minimizing the aggregate cost in the

system. Specifically, the social cost of a flow x is given by

C(x) =
∑

e∈E Ce(xe)xe. (7)
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Note that the social cost is only measured with respect to the

true congestion costs and thus does not reflect users’ beliefs

or uncertainties.

To capture inefficiencies, we leverage the well-studied no-

tion of the price of anarchy which is the ratio of the social

cost of the worst-case Nash equilibrium to that of the socially

optimal solution. Specifically, we are interested in bounding

price of anarchy as a function of the maximum and minimum

uncertainty levels in the system, i.e., rmax = maxθ rθ and

rmin = minθ rθ. Formally, given parameters rmax, rmin, we

use C(rmax, rmin) to refer to a set or class of instances (as per

Definition 1), where the maximum uncertainty level of any

type θ is rmax and the minimum uncertainty level is rmin.

Given an instance G ∈ C(rmax, rmin), we suppose that x∗ is

the flow that minimizes the social cost C(x) and that x̃ is the

Nash equilibrium for the given instance.

Definition 3 (Price of Anarchy): Given a class of instances

C(rmax, rmin), the price of anarchy for this class is

maxG∈C(rmax,rmin) C(x̃)/C(x∗). (8)

Since, we study a cost-minimizing game, the price of anarchy

is always greater than or equal to one.

III. MAIN RESULTS

To support the main theoretical results, we first show that

our game is a weighted potential game. Routing games that fall

into the general class of potential games have a number of nice

properties in terms of existence, uniqueness, and computabil-

ity [52]. In our case, the existence of a weighted potential

function indicates that a Nash equilibrium always exists and

moreover, best-response behavior by the users converges to

such an equilibrium. General multi-commodity, selfish routing

games with heterogeneous users, however, do not belong to

the class of potential games unless certain assumptions on the

edge cost structure are met [22].

The following proposition states that the game instances of

the form we consider admit a (weighted) potential function

and hence, there always exists a Nash equilibrium [52].

Proposition 1: A feasible flow x is a Nash equilibrium for

a given instance G of a multi-commodity routing game with

uncertainty vector (rθ)θ∈T if and only if it minimizes the

following potential function:

Φr(x) =
∑

e∈E

(

1
2aex

2
e + be

∑

θ∈T
1
rθ
xθ
e

)

(9)

Moreover, for any two minimizers x,x′, Ce(xe) = Ce(x
′
e) for

every edge e ∈ E .

Note that although users perceive the multiplicative uncer-

tainty rθ on the ae term (see Equation (2)), the parameter

appears in the denominator of the be term in the potential

function above. Conceptually, these have a similar effect:

dividing Equation (6) by rθ on both sides, one can obtain

equivalent equilibrium conditions where the rθ term is present

in the denominator of the constant be.

Proof: By definition, a feasible flow x ∈ X is a Nash

equilibrium if the following condition is satisfied for all θ ∈ T
and for all p, p′ ∈ Pθ with xθ

p > 0:
∑

e∈p(rθaexe + be) ≤
∑

e∈p′(rθaexe + be).

Since rθ > 0, this is equivalent to
∑

e∈p(aexe + be
rθ
) ≤

∑

e∈p′(aexe +
be
rθ
). The remainder of proof trivially follows

from standard arguments pertaining to the minimizer of a

convex function. See [52] for more detail.

The second part of the proposition indicates that the equi-

libria are essentially unique as the cost on every edge is the

same across solutions.

A. Effect of Uncertainty on Equilibrium Quality

Our first main result identifies a special case of the general

multi-commodity game for which uncertainty helps improve

equilibrium quality—i.e. decreases the social cost—whenever

users over-estimate their costs by a small factor and vice-versa

when they under-estimate costs. To show this result, we need

the following technical lemma.

Lemma 1: Given an instance G of a multi-commodity selfish

routing game with Nash equilibrium x̃ = (x̃e)e∈E , we have

that for any feasible flow x,

C(x̃)− C(x) ≤ −
∑

θ∈T (
2
rθ

− 1)
∑

e∈E be∆xθ
e, (10)

where ∆xθ
e = x̃θ

e − xθ
e.

The proof of the above lemma is provided in Appendix A.

Given an instance G of the multi-commodity routing game,

we define G1 to be the corresponding game instance with no

uncertainty—that is, G1 has the same graph, cost functions,

and user types as G, yet rθ = 1 for all θ ∈ T .

Theorem 1: Consider any given instance G of the multi-

commodity routing game with Nash equilibrium x̃ and corre-

sponding game instance G1, having no uncertainty, with Nash

equilibrium is x1. Suppose rθ = r for all θ ∈ T . Then,

C(x̃) ≤ C(x1) if 1 ≤ r ≤ 2 and C(x̃) ≥ C(x1) if 0 ≤ r ≤ 1.

Remark: What happens when the users are highly cautious,

i.e., rθ > 2 for all θ? Due to the presence of a few negative

examples where the social cost increases in the presence

of uncertainty, we cannot conclusively state that uncertainty

helps or hurts for all instances. However, these negative

instances appear to be isolated—both our price of anarchy

result (Theorem 2) and our experiments (Section VI) validate

our claim that caution in the face of uncertainty helps the users

by lowering equilibrium social costs even when rθ > 2—i.e.,

uncertainty is favorable when the users are very cautious. It

is however, interesting to note that although under-estimation

always leads to a worse equilibrium, over-estimation may lead

to better or worse equilibria.

Proof of Theorem 1: Let Φr(x) denote the potential func-

tion for the instance G and Φ1(x) denote the potential function

for G1 where Φ1 is given in (9) with r = 1. By definition of

the potential function, we know that Φr(x̃)−Φr(x
1) ≤ 0 and

Φ1(x
1)− Φ1(x̃) ≤ 0. Expanding them gives

∑

e∈E

(

aex̃
2
e

2 + be
∑

θ∈T
x̃θ
e

r
−

ae(x
1
e)

2

2 − be
∑

θ∈T
x1,θ
e

r

)

≤ 0,

and

∑

e∈E

(

ae(x
1
e)

2

2 + be
∑

θ∈T x1,θ
e −

aex̃
2
e

2 − be
∑

θ∈T x̃θ
e

)

≤ 0,

where x1,θ
e denotes the total flow on edge e by users of type

θ in the solution x1. Let us define ∆xθ
e = x̃θ

e − x1,θ
e , and
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∆xe = x̃e − x1
e. By summing the above inequalities, the ae

terms cancel out and

∑

e∈E

be
∑

θ∈T

(
∆xθ

e

r
−∆xθ

e) =
∑

e∈E

be
∑

θ∈T

(
1

r
− 1)∆xθ

e ≤ 0.

Using the fact that
∑

θ ∆xθ
e = ∆xe for all edges, we get that

( 1
r
− 1)

∑

e∈E be∆xe ≤ 0. (11)

Hence,
∑

e∈E be∆xe ≥ 0 when r > 1 and
∑

e∈E be∆xe ≤ 0
when r < 1.

We finish the proof by considering two separate cases: (case

1) 1 ≤ r ≤ 2 and (case 2) r < 1. In case 1, applying Lemma 1

to the instance G with x = x1, we obtain that

C(x̃)− C(x1) ≤ (1− 2
r
)
∑

e∈E be∆xe. (12)

We claim that when r ∈ (1, 2], the right-hand side of (12) is

lesser than or equal to zero. This is not particularly hard to

deduce owing to the fact that (1− 2
r
) < 0 in the given range

and that
∑

e∈E be∆xe ≥ 0 as deduced from (11). Therefore,

C(x̃) − C(x1) ≤ 0, which proves the claim that uncertainty

with a limited amount of caution helps lower equilibrium costs.

Now, let us consider (case 2) where r < 1. Applying

Lemma 1 to the instance G1 with x = x̃, and using the

fact that ∆xe = x̃e − x1
e, we have that C(x1) − C(x̃) ≤

( 2
r
− 1)

∑

e∈E be∆xe. Once again when r < 1, we know that
2
r
− 1 > 0 and (6) gives

∑

e∈E be∆xe ≤ 0 in the given range.

The following corollary identifies a specific level of uncer-

tainty at which the equilibrium solution is actually optimal.

Corollary 1: Given an instance G of the multi-commodity

routing game, let x̃ denote its Nash equilibrium and x∗ denote

the socially optimal flow. If rθ = 2 for all θ ∈ T , then C(x̃) =
C(x∗)—i.e. the equilibrium is socially optimal.

Proof: Suppose rθ = r = 2. Applying Lemma 1, we have

that C(x̃)− C(x∗) ≤ −( 2
r
− 1)

∑

e∈E be −∆xe = 0.

Corollary 1 has a natural interpretation in terms of the theory

of computing optimal tolls. When rθ = 2 for all θ ∈ T , each

user’s cost perceived function on a given edge e ∈ E becomes

Ĉθ
e (xe) = (aexe+be)+(aexe) = Ce(xe)+aexe, i.e., the true

cost plus ‘an additional term’. If we view the term aexe as

a congestion-dependent toll paid by the user for routing flow

on link e, then Corollary 1 is equivalent to a classical result

in tolling theory [20], [29]. In particular, this result states that

if the toll on each link is set to the marginal cost of adding

an extra user, then the ensuing Nash equilibria minimize the

social cost. Against this backdrop, Corollary 1 establishes

an intuitive connection between cost mis-perceptions under

uncertainty and monetary tolls. That said, much of the work

in the tolling literature focuses on optimal tolls and thus,

Theorem 1 can be viewed as a novel result on the properties

of price-bounded and even negative tolls.

B. Price of Anarchy Under Uncertainty

In Theorem 1, we showed that the equilibrium cost under

uncertainty decreases (resp. increases) when users are mildly

cautious (resp. not cautious) and all user types have the same

level of uncertainty. This naturally raises the question of

quantifying the improvement (or degradation) in equilibrium

quality and whether uncertainty helps when the uncertainty

parameter can differ between user types. In the following

theorem, we address both of these questions by providing price

of anarchy bounds as a function of the maximum uncertainty

in the system and γ, which is the ratio between the minimum

and maximum uncertainty among user types.

Theorem 2: (Price of Anarchy) For any multi-commodity

routing game G, the ratio between the social cost of the Nash

equilibrium to that of the socially optimal solution is at most

PoA(G) ≤ 4/(4γrmax − r2max), (13)

where rmax = maxθ rθ, and γ = minθ rθ
maxθ rθ

if rmax < 4γ.

Discussion: The price of anarchy bound in (13) is tight when

γ = 1 and r ∈ [0, 2]. For any given r ≤ 2, this can be

confirmed by constructing a Pigouvian network similar to the

one in Fig. 3 where the costs are Ce1(x) = x and Ce2(x) = r.

Further, we note that our result generalizes the price of anarchy

bounds in [38], [39] towards instances with heterogeneous

uncertainties (γ < 1). For example, Corollary 6.8 in [38] gives

the same expression as (13) for instances where γ = 1 and

r ∈ [1, 2]. Similarly, we note that for the special case when

γ = 1 and r > 2, [39] provides a tighter bound for the price

of anarchy compared to our result in Theorem 2.

Although the price of anarchy expression in (13) is not

tight when γ < 1, it still serves as a useful upper bound

to understand the conditions under which there is a strict

improvement in equilibrium quality compared to the no-

uncertainty scenario. For example, the price of anarchy in

(13) is plotted in Fig. 1 as a function of rmax for three

different values of γ. Based on these plots, one can gather that

uncertainty lowers equilibrium cost when users over-estimate

their latencies by a small margin. This is true for r ∈ [1, 3]
when γ = 1, and for smaller ranges when γ < 1. Note that

in all these cases, we compare to the price of anarchy of
4
3 for multi-commodity routing games with linear cost and

no uncertainty [17]. Another interesting observation here is

that in contrast to Theorem 1, we observe an improvement in

equilibrium quality for a small range beyond r = 2, e.g., when

γ = 1, this occurs up to r = 3. However, we know from [39]

when the users are over-pessimistic, and rmax is large, the

equilibrium quality degrades.

The price of anarchy bounds for γ < 1 are also quite

revealing. As with the γ = 1 case, we notice that equilibrium

cost can improve even when r > 2—albeit for a small range—

e.g., for rmax ∈ [1.32, 2.28] when γ = 0.9. On the other

hand, uncertainty can hurt equilibrium even if rmax > 1;

this occurs if rmin = minθ∈T rθ < 1 and a large fraction of

users have rθ = rmin. One can construct simple two network

examples to verify this lower bound. Finally, the price of

anarchy result leads to a surprising observation: as long as

rmax > 1 and γ is not too small, for any given instance G
of the multi-commodity routing game, either the equilibrium

quality is already good or uncertainty helps lower congestion

by a significant amount. Therefore, uncertainty rarely hurts the

quality of the equilibrium and often helps.

In order to prove Theorem 2, we need the following

technical lemma whose proof is provided in Appendix B.
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The following proposition shows a somewhat surprising

result. As long as the network topology is series-parallel, the

aggregate cost felt by users of type θ1 (users without any

uncertainty) always reduces when users of θ2 are uncertain

about the costs. In other words, the behavior under uncertainty

by one type of users always decreases the congestion costs of

other types of users who do not face any uncertainty.

Proposition 2: Given an instance G of the two-commodity

game with and without uncertainty such that the graph G is

series-parallel, let G1 denote a modified version of this instance

with no uncertainty (i.e. rθ1 = rθ2 = 1). Let x̃ and x1 denote

the Nash equilibrium for the two instances, respectively. Then,

Cθ1(x̃) ≤ Cθ1(x1), where Cθ1(x) =
∑

e∈E Ce(xe)x
θ1
e is the

aggregate cost of users of type θ1.

Proof: It is well-known that [18, Lemma 3] for a series-

parallel graph G and any two feasible flows x, x′, there exists

a s–t path p with xp > 0, such that for every edge e ∈ p,

x′
e ≤ xe. Now, consider flows x1 and x̃. Applying the previous

property, we get that, there exists a path p with x1
p > 0 such

that for all e ∈ p, x̃e ≤ x1
e.

We now bound both Cθ1(x̃) and Cθ1(x1) in terms of the

cost of the path p. Specifically, note that in the solution

x1, the path p has non-zero flow on it so that Cθ1(x1) =
µθ1

∑

e∈p Ce(x
1
e). However, in the solution x̃, we know that

every user of type θ1 is using a minimum cost path with

respect to the true costs and therefore, the cost of any path

used by type θ1 is at least that of the path p. Formally,

Cθ1(x̃) ≤ µθ1

∑

e∈p Ce(x̃e) ≤ µθ1

∑

e∈p Ce(x
1
e). The final

inequality follows from the monotonicity of the cost functions

and the fact that x̃e ≤ x1
e for all e ∈ p. Therefore, we conclude

that Cθ1(x̃) ≤ Cθ1(x1).

C. Characterization of Instances where Heterogeneity Helps

We now consider the impact of heterogeneity on the system

performance as a whole and present a simple characterization

based on the network topology and the level of uncertainty,

where the presence of uncertainty (among a fraction of the

user population) results in a decrease in the equilibrium social

cost. Specifically, we show that for SLI networks, as long

as the uncertainty level of users belonging to type θ2 is at

most two (i.e., 1 ≤ r = rθ2 ≤ 2), the social cost of the

equilibrium solution is always smaller than or equal to that of

the equilibrium when there is no uncertainty.

Before showing our theorem, we state the following tech-

nical lemma whose proof is deferred to Appendix C.

Lemma 3: Given any instance G of the two-commodity

routing game with and without uncertainty where the graph G
is linearly independent, let y and y1 denote the Nash equilibria

of instances G and G1 respectively. Then yθ1p ≤ y1p ∀p ∈ P.
Informally, the above lemma states that given equilibrium

flows y and y1 for any arbitrary instance G and its uncertainty-

free variant G1, the equilibrium solutions must satisfy the

property that for any path p, the flow on this path in the

absence of uncertainty (instance G1) must be greater than or

equal to its magnitude due to the uncertainty-free users in G.

Theorem 3: Consider any given instance G of the two-

commodity game with and without uncertainty. Let x̃ denote

the Nash equilibrium of this game and the corresponding game

instance G1, having no uncertainty has Nash equilibrium x1.

Then, as long as G belongs to the serially linearly independent

class and 1 ≤ r ≤ 2, C(x̃) ≤ C(x1). Moreover, there

exist instances of the two-commodity routing game with and

without uncertainty on series-parallel networks where the

social cost of the equilibrium without uncertainty is strictly

smaller than the cost with uncertainty r ∈ [1, 2].

Proof of Theorem 3: Each SLI network can be bro-

ken down into a sequence of linearly independent networks

connected in series. Applying Definition 6 recursively, we

get a sequence of linearly independent sub-graphs G(1) =
(V (1), E(1)), G(2) = (V (2), E(2)), . . . , G(ℓ) = (V (ℓ), E(ℓ))
with source-destination pairs (t0, t1), (t1, t2), . . . , (tℓ−1, tℓ) re-

spectively ( note that t0 = s, tℓ = t), that are connected in

series—i.e., G1 is connected in series with G2 such that the

destination t1 for G1 acts as the origin for G2. By definition,

the set of edges in these subgraphs are mutually disjoint.

Secondly, given the equilibrium flow x̃ on G for

instance G, we can divide this flow into components

(x̃(1), x̃(2), . . . , x̃(ℓ)) such that for every 1 ≤ i ≤ ℓ, x̃(i) is

the sub-flow of x̃ on the graph G(i), and for every e ∈ E(i),
x̃(i)e = x̃e. Finally, it is not hard to see that x̃(i) must be an

equilibrium of the sub-instance of G restricted to G(i).

Given this decomposition, we apply Lemma 3 to each

G(i). Consider any index i: since the graph G(i) is linearly

independent, we can apply Lemma 3 and get that for any ti−1-

ti path p in G(i), x̃(i)θ1p ≤ x1(i)p.

Suppose that P(i) denotes the set of ti−1-ti paths in G(i).
Then by standard convex analysis,

C(x̃) =
∑

e∈E Ce(x̃e)x̃e =
∑

e∈E(aex̃e + be)x̃e

≤
∑

e∈E

(

Ce(x
1
e)x

1
e + (2aex̃e + be)(x̃e − x1

e)
)

≤ C(x1) +
∑

e∈E(2aex̃e + be)(x̃e − x1
e) (16)

so that, using the above decomposition,

C(x̃) ≤ C(x1) +
∑ℓ

i=1

∑

e∈E(i)(2aex̃(i)e + be)

· (x̃(i)e − x1(i)e)

= C(x1) +
∑ℓ

i=1

∑

p∈P(i)

(
∑

e∈p(2aex̃(i)e + be)
)

· (x̃(i)p − x1(i)p)

To complete the proof we show
∑

p∈P(i)(
∑

e∈p(2aex̃(i)e+

be))(x̃(i)p − x1(i)p) ≤ 0 for all 1 ≤ i ≤ ℓ. Indeed, fix an

arbitrary index i and consider the corresponding graph G(i)
and flows x̃(i) and x1(i). Recall that x1(i) is the equilibrium

solution in the absence of uncertainty and therefore, minimizes

the following potential function Φ1(x) =
∑

e∈E(i)(
1
2ae(xe)

2+
bexe). Hence, by convexity

0 ≤ Φ1(x̃(i))− Φ1(x
1(i))

=
∑

e∈E(i)

(

ae

2 (x̃(i)e)
2 + bex̃(i)e −

ae

2 (x1(i)e)
2 − bex

1(i)e
)

≤
∑

e∈E(i)(aex̃(i)e + be)(x̃(i)e − x1(i)e). (17)

Next, we claim that
∑

e∈E(i)(raex̃(i)e+be)(x̃(i)e−x1(i)e) ≤
0. Indeed, for convenience define Dr =

∑

e∈E(i)(raex̃(i)e +
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example. More precisely as r increases, a large fraction of the

population favors the garage, whose location intersects with

the route adopted by the through traffic.

We conclude by remarking that even though cautious behav-

ior results in only a small improvement in the price of anarchy

(see Fig. 6c), even a small improvement in daily congestion

in downtown areas could result in economic gains.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we consider a multi-commodity selfish routing

game where different types of users face different levels

of uncertainty quantified by a multiplicative parameter rθ.

Broadly classifying the user attitudes as cautious and not-

cautious, we provide several theoretical results highlighting

the effect that when users over-estimate their network costs,

equilibrium quality tends to improve and vice-versa when

users under-estimate the costs. Although our primary focus

is on linear costs, we also show that our results generalize

gracefully to more general polynomial functions that are well-

motivated by real-world latencies.

Our work presents a number of novel contributions and new

insights on ‘how much uncertainty’ is beneficial for a system.

For example, a little pessimism in the face of uncertainty

can result in considerable improvements in equilibrium quality

whereas too much optimism may lead to increased congestion.

While most of the literature looks at worst-case price of

anarchy bounds, we show that uncertainty is helpful for every

possible instance (Theorems 1, 3, 4, 6). This is important since

the average instance encountered in practice may not resemble

the worst-case one. More specifically, we are among the first

to provide an instance-wise characterization of social cost

for instances containing two types of users and in networks

more general than parallel links (e.g., SLI). In terms of

price of anarchy, we extend many of the existing results for

homogeneous users [38], [39] and provide new bounds for

networks with heterogeneous user uncertainties and two or

more types. Finally, the techniques that we leverage to prove

our results may be of value to future work. In particular,

we believe that the proof of Theorem 3 where we combine

two disparate approaches: (i) using a potential function to

bound social cost, and (ii) topological characterization of SLI

networks is applicable broadly.

The results also expose a number of new avenues for future

research. Perhaps, the most important direction is to consider

more realistic models of cost uncertainty (e.g., the mean-

variance approach [27]) and equilibrium notions such as the

Bayes Nash equilibrium [49] (BNE). For instance, one could

study a BNE by assuming that users of type θ have incomplete

information on the uncertainty corresponding to every other

type θ′. Although this general model is appealing at first

glance, it is fraught with computational challenges. Under a

BNE, each individual user’s cost could depend on taking the

expectation over an exponential number of realized states, and

crucially, layered beliefs on the uncertainty parameter—e.g.,

user i’s belief on user j’s belief on user i’s cost and so on. Fur-

ther research is required in order to reconcile the differences

between the desirable properties of the BNE, its computational

difficulties, and users’ preferences for simpler decision-making

heuristics as advocated by behavioral economics [31].

APPENDIX

A. Proof of Lemma 1

Recall from Proposition 1 that the equilibrium solution x̃

minimizes the corresponding potential function Φr(x). So for

some x′, we have that Φr(x̃)− Φr(x
′) ≤ 0 and

C(x′) =
∑

e∈E(aex
′
e + be)x

′
e

=
∑

e∈E

(

ae(x
′
e)

2 + be
∑

θ∈T 2
x′θ
e

rθ
+ be

∑

θ∈T (1−
2
rθ
)x′θ

e

)

= 2Φr(x
′)−

∑

e∈E be
∑

θ∈T (
2
rθ

− 1)x′θ
e . (24)

Applying (24) to the solutions x̃ and x, we get that

C(x̃)− C(x) = 2Φr(x̃)− 2Φr(x)

−
∑

e∈E be
∑

θ∈T (
2
rθ

− 1)(x̃θ
e − xθ

e) (25)

≤ −
∑

θ∈T (
2
rθ

− 1)
∑

e∈E be∆xθ
e. (26)

where (26) follows from Φr(x̃)− Φr(x) ≤ 0. �

B. Proof of Lemma 2

Fixing the left-hand side of

f(x)x
f(x′)x′+

∑
n
i=1(xi−x′

i
)f(rix)

≤ 4
(

4r∗ − (r∗)2
)−1

, (27)

we first derive a lower bound on the denominator (i.e. identify

when the denominator is minimized over the space of all valid

instantiations of the parameter set). Let us begin with the

second term in the denominator:

∑n
i=1(xi − x′

i)f(rix) =
∑n

i=1(xi − x′
i)(riax+ b)

=
∑n

i=1 xiriax−
∑n

i=1 x
′
iriax+ b(x− x′)

≥
∑n

i=1 xir∗ax−
∑n

i=1 x
′
ir

∗ax+ b(x− x′)

= xr∗ax− x′r∗ax+ b(x− x′)

Using this upper bound on the rest of the terms in the

denominator, we get that

f(x′)x′+
∑n

i=1(xi−x′
i)f(rix) ≥ a(x′)2+bx+xr∗ax−x′r∗ax.

For any given fixed value of x, consider the function a(x′)2−
x′r∗ax: by basic calculus, its minimum value is attained if

x′ = r∗x
2 . In other words, for any x, x′, we can conclude

that a(x′)2 − x′r∗ax ≥ (r∗)2 ax2

4 − (r∗)2 ax2

2 = −(r∗)2 ax2

4 .

Substituting this bound into the above equation, we have

f(x′) +
∑n

i=1(xi − x′
i)f(rix) ≥ −(r∗)2 ax2

4 + bx+ r∗ax
2.

Now that we have removed the dependence on x′, we can

substitute this back into (14) to get that

f(x)x
f(x′)x′+

∑
n
i=1(xi−x′

i
)f(rix)

≤ ax2+bx

−
(r∗)2ax2

4 +bx+r∗ax2

≤ ax2

−
(r∗)2ax2

4 +r∗ax2
= 4

4r∗−(r∗)2

The penultimate inequality is obtained by removing the

dependence on b in the denominator. �
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C. Proof of Lemma 3

We prove Lemma 3 via induction.

Claim 1: Given instances I = {G, T , (s, t), (µθ1 , µθ2),
(1, r), (Ce)e∈E} and I ′ = {G, T , (s, t), (µ′

θ1
, µ′

θ2
), (1, 1),

(Ce)e∈E} where the graph G is linearly independent, let

y and y1 denote the Nash equilibria of the two instances,

respectively. Then, if

∑

e∈p Ce(ye) ≤
∑

e∈p Ce(y
1
e), ∀ p ∈ P s.t. yθ1p > 0, (28)

it must be the case that yθ1p ≤ y1p for all p ∈ P .

To prove Lemma 3, it is sufficient to prove the above claim.

Indeed, setting I = G and I ′ = G1, we can directly apply

the claim to prove the lemma statement. In order to verify

that the condition from (28) is satisfied, first observe that

linearly independent networks are a special case of series-

parallel networks. Now, applying [18, Lemma 3] to the flows

y and y1 as defined in the statement of Lemma 3, we get

that there exists a path p∗ ∈ P with y1p∗ > 0 such that
∑

e∈p∗ Ce(ye) ≤
∑

e∈p∗ Ce(y
1
e). However, p∗ is a min-cost

path in y1 and its cost in y is an upper-bound on that of

any min-cost path used by users of type θ1. This immediately

implies that for any p with yθ1p > 0 its cost in y (where it is

a min-cost path for users of type θ1) must be smaller than or

equal to its cost in y1 (where all users have no uncertainty).

The proof of Claim 1 proceeds by induction on the number

of edges in the graph—that is, given a graph G = (V, E), we

assume that the claim holds for all graph G′ = (V ′, E ′) such

that |E ′| < |E| and proceed from there. A property of linearly-

independent graphs, which will be useful for our proof.

Proposition 3 ( [18, Proposition 5]): A two terminal net-

work G is linearly-independent if and only if: (i) it consists

of a single edge, or (ii) it is the result of connecting two

linearly-independent networks in parallel, or (iii) it is the result

of connecting in series a linearly independent network and a

network with a single edge.

Proof of Claim 1: Let us start with the base case. The

inductive hypothesis is trivially true when the graph G consists

of a single edge between the source and sink (i.e. E = {e}). All

of the users must route their flow on this edge only, regardless

of their uncertainty level. Since we are given (by assumption)

that the instance satisfies the condition that Ce(ye) ≤ Ce(y
1
e),

by monotonicity of the cost functions, we get that yθ1e ≤ y1e
and the inductive claim thus holds for the base case.

Now, let us consider the inductive case. Consider the in-

ductive claim with respect to an arbitrary linearly independent

graph G = (V, E) consisting of two or more edges, and assume

that the inductive hypothesis holds for all instances defined on

linearly independent graphs G′ = (V ′, E ′) such that |E ′| < |E|.
From Proposition 3, we know that G consists of two sub-

graphs G1 = (V1, E1) and G2 = (V2, E2) connected either

in parallel or in series with |E2| = 1 (i.e., G2 is simply a

single edge). We consider both cases, apply the inductive claim

recursively to both sub-graphs, and merge the resulting flows

to prove the inductive claim for the original graph G.

Let (s1, t1), (s2, t2) denote the origin-destination pairs for

G1 and G2 respectively. We use P1 to denote the set of s1-t1
paths in G1 and P2 to denote the set of s2-t2 paths in G2.

When G1 and G2 are connected in series (case 1), we have

that s2 = t1. When they are connected in parallel (case 2),

s1 = s2, t1 = t2. We treat each of these cases separately.

(case 1) Subgraphs connected in series. We first introduce

some additional notation required for this part of the proof.

As we did in the proof of Theorem 3, we use y(1) and y(2)
to denote the sub-flows of y with respect to graphs G1 and

G2. Similarly, we define y1(1) and y1(2) to be the sub-flows

of y1. Recall that G2 consists simply of a single edge.

Since y is an equilibrium for I, it must be the case that

y(1) and y(2) are equilibria for G1, G2 respectively for

suitably defined sub-instances, I1 = {G1, T , (s1, t1), (µθ1 ,
µθ2), (1, r), (Ce)e∈E1} and I2 = {G2, T , (s2, t2), (µθ1 , µθ2),
(1, r), (Ce)e∈E2

}, respectively. In a similar manner, y1(1) and

y1(2) represent equilibria for the instances I ′
1 = {G1, T ,

(s1, t1), (µ
′
θ1
, µ′

θ2
), (1, 1), (Ce)e∈E1

} and I ′
2 = {G2, T ,

(s2, t2), (µ
′
θ1
, µ′

θ2
), (1, 1), (Ce)e∈E2

}, respectively. These are

formally summarized in the notation table below.

TABLE II
INSTANCE DEFINITIONS AND NASH EQUILIBRIA WHEN G1 AND G2 ARE

CONNECTED IN SERIES.

Game Instance Definition N.E.

I {G, T , (s, t), (µθ1
, µθ2

), (1, r), (Ce)e∈E} y

I1 {G1, T , (s1, t1), (µθ1
, µθ2

), (1, r), (Ce)e∈E1
} y(1)

I2 {G2, T , (s2, t2), (µθ1
, µθ2

), (1, r), (Ce)e∈E2
} y(2)

I′ {G, T , (s, t), (µ′
θ1
, µ′

θ2
), (1, 1), (Ce)e∈E} y

1

I′
1

{G1, T , (s1, t1), (µ′
θ1
, µ′

θ2
), (1, 1), (Ce)e∈E1

} y
1(1)

I′
2

{G2, T , (s2, t2), (µ′
θ1
, µ′

θ2
), (1, 1), (Ce)e∈E2} y

1(2)

From (28) that for any path p ∈ P with yθ1p > 0,
∑

e∈p Ce(ye) ≤
∑

e∈p Ce(y
1
e). Dividing the path p into sub-

paths p1 and p2 representing its intersection with G1, G2

respectively, we get that
∑

e∈p1
Ce(ye) +

∑

e∈p2
Ce(ye) ≤

∑

e∈p1
Ce(y

1
e) +

∑

e∈p2
Ce(y

1
e).

Based on the above inequality, either
∑

e∈p1
Ce(ye) ≤

∑

e∈p1
Ce(y

1
e) or

∑

e∈p2
Ce(ye) ≤

∑

e∈p2
Ce(y

1
e).

Suppose that
∑

e∈p1
Ce(ye) ≤

∑

e∈p1
Ce(y

1
e). Since the

graph G1 is linearly independent, we can apply the inductive

claim to instances I1 and I ′
1 to get that y(1)θ1p ≤ y1(1)p

for every path p ∈ P1. However, recall that G2 consists of

only one edge (call it e2). This implies that there is a one-

to-one correspondence between every path in P and path in

P1. Specifically, for every path p ∈ P , there exists a unique

path p1 ∈ P1 such that p = p1 ∪{e2}. Since the mapping is a

bijection, this implies that for every p = p1 ∪{e2}, it must be

the case that yθ1p = y(1)θ1p1
and y1p = y1(1)p1 . Therefore, for

every path p ∈ P , yθ1p = y(1)θ1p1
≤ y1(1)p1

= y1p. This proves

the inductive claim for this case.

Next, suppose that
∑

e∈p2
Ce(ye) ≤

∑

e∈p2
Ce(y

1
e). Once

again, since G2 consists of a single edge e2, the condition

implies that ye2 = y(2)e2 ≤ y1e2 = y1(2)e2 . Thus, we infer that

conditional upon
∑

e∈p2
Ce(ye) ≤

∑

e∈p2
Ce(y

1
e), µθ1+µθ2 ≤

µ′
θ1
+µ′

θ2
. That is, the total population for instance I is smaller

than or equal to the total population for instance I ′.

Since linearly independent networks are a special case of

series-parallel, we can now apply [18, Lemma 3] for flows

y(1) and y1(1) on graph G1. Since µθ1 + µθ2 ≤ µ′
θ1

+ µ′
θ2

,

this of course, implies that there exists at least one origin-
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destination path p∗ in G1 with y1(1)p∗ > 0 satisfying
∑

e∈p∗ Ce(y(1)e) ≤
∑

e∈p∗ Ce(y
1(1)e). Therefore, we can

conclude that for any path p ∈ P1 with yθ1p > 0, we have,
∑

e∈p Ce(y(1)e) ≤
∑

e∈p Ce(y
1(1)e).

The above equation symbolizes the induction condition as

described in (28). Applying the inductive hypothesis recur-

sively to instances I1, I
′
1, and using the same reasoning as

before, we conclude that for every s-t path p ∈ P , yθ1p ≤ y1p.

This concludes the proof for the series case.

(case 2) Subgraphs G1, G2 connected in parallel to obtain

G. The proof for this case proceeds similarly to the case

where the networks are connected in series. Once again, we

divide the flows y and y1 into sub-flows y(1),y(2) and y1(1)
and y1(2). Moreover, we use µθ1(1), µθ2(1) to denote the

total flow without and with uncertainty in sub-graph G1 and

similarly so, for all the other subgraphs and sub-flows. A

comprehensive notation table is listed below.

TABLE III
INSTANCE DEFINITIONS AND NASH EQUILIBRIA WHEN G1 AND G2 ARE

CONNECTED IN PARALLEL.

Game Instance Definition N.E.

I {G, T , (s, t), (µθ1
, µθ2

), (1, r), (Ce)e∈E} y

I1 {G1, T , (s, t), (µθ1
(1), µθ2

(1), (1, r), (Ce)e∈E1
} y(1)

I2 {G2, T , (s, t), (µθ1
(2), µθ2

(2)), (1, r), (Ce)e∈E2
} y(2)

I′ {G, T , (s, t), (µ′
θ1
, µ′

θ2
), (1, 1), (Ce)e∈E} y

1

I′
1

{G1, T , (s, t), (µ′
θ1
(1), µ′

θ2
(1), (1, 1), (Ce)e∈E1

} y
1(1)

I′
2

{G2, T , (s, t), (µ′
θ1
(2), µ′

θ2
(2), (1, 1), (Ce)e∈E2

} y
1(2)

Before applying the inductive claim recursively to the two

subgraphs, we need to verify that the condition specified

in (28) is satisfied for the subgraphs. We know that the

instances I, I ′ satisfy the condition in (28) (this is part of

our assumption). That is, for any p ∈ P such that yθ1p > 0
∑

e∈p Ce(ye) ≤
∑

e∈p Ce(y
1
e). (29)

Since the graphs G1, G2 are connected in parallel, the set of

edges and paths in each graph are disjoint. In other words,

P = P1 ∪ P2. Moreover, the path-flows in y coincide

with those in y(1) or y(2)—e.g., for any p1 ∈ P1, we

have that yp1 = y(1)p1 and so on. This combined with

(29) implies that for any path p1 ∈ P1 with y(1)θ1p1
> 0,

∑

e∈p1
Ce(y(1)e) ≤

∑

e∈p1
Ce(y

1(1)e). Therefore, the flows

y(1) and y1(1) satisfy the inductive condition. Similarly, we

can show that the flows y(2) and y1(2) also satisfy (28).

Applying the inductive claim to the instances I1 and I ′
1,

we get that y(1)θ1p1
≤ y1(1)p1

∀p1 ∈ P1. Similarly, we can

apply the inductive claim to instance pair I2, I
′
2 to get that

y(2)θ1p2
≤ y1(2)p2

∀p2 ∈ P2. Since y = y(1) ∪ y(2) and

y1 = y1(1) ∪ y1(2), the claim follows immediately.
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