Capture the Feature Flag:
Detecting Feature Flags in Open-Source

Jens Meinicke,” Juan Hoyos,* Bogdan Vasilescu,” Christian Késtner”

“Carnegie Mellon University, USA
ABSTRACT

Feature flags (a.k.a feature toggles) are a mechanism to keep new
features hidden behind a boolean option during development. Flags
are used for many purposes, such as A/B testing and turning off
a feature more easily in case of failures. While software engineer-
ing research on feature flags is burgeoning, examples of software
projects using flags rarely come from outside commercial and pri-
vate projects, stifling academic progress. To address this gap, in this
paper we present a novel semi-automated mining software reposito-
ries approach to detect feature flags in open-source projects, based
on analyzing the projects’ commit messages and other project char-
acteristics. With our approach, we search over all open-source
GitHub projects, finding multiple thousand plausible and active
candidate feature flagging projects. We manually validate projects
and assemble a dataset of 100 confirmed feature flagging projects.
To demonstrate the benefits of our detection technique, we report
on an initial analysis of feature flags in the validated sample of
100 projects, investigating practices that correlate with shorter flag
lifespans (typically desirable to reduce technical debt), such as using
the issue tracker and having a flag owner.

1 INTRODUCTION

Feature flags (aka. feature toggles) are becoming an increasingly
important, but also controversial software-engineering practice
with the advent of continuous deployment and delivery. Techni-
cally, feature flags are a design pattern to conditionally enable a
code path (e.g., an if-statement controlled by a boolean flag), where
the decision is typically controlled by an external configuration
mechanism. Feature flags enable development of new features in
the same branch, which can speed up releases while avoiding large
merges [4, 8]. Flags are also used for experimentation in produc-
tion [1, 14] and canary releases [12, 13]. Feature flags are widely
discussed in blog posts and at practitioner conferences, and there
are multiple competing startups offering tool support. Feature flags
can be controversial and seen as a cause of technical debt, because
they are easy to introduce, create additional complexity in a system,
and are often hard to remove [6, 7, 9].

Unfortunately, there is little research on feature flagging prac-
tices, except for a handful of studies of Chromium [9, 10] and a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7517-7/20/05....$15.00
https://doi.org/10.1145/3379597.3387463

2
28
29
30
31
32
33

N

35

*Universidad Nacional de Colombia, Colombia

Listing 1: Excerpt from a json file defining feature flags in
Automattic/wp-calypso. Note that the file also contains other
kinds of configuration options that are not feature flags.

won

"livechat_support_locales": ["en",

"features": {
"async-payments": true,
"ad-tracking": false,
"automated-transfer":
"blogger-plan": true,
"calypsoify/plugins": true,
"code-splitting": true,
"comments/filters-in-posts":

es","pt-br"],

true,

true,

few commercial projects [6, 7]. Unlike many other software engi-
neering practices, where open-source software enabled a wealth
of large-scale empirical research, studies of feature flags in open-
source are rare. In part, this might be explained by feature flagging
being a rather commercial practice, often used for A/B testing
commercial web and mobile products. Another explanation is that
feature flag use is non trivial to identify systematically, leaving
uncertain how widespread and how diverse the practice is in open-
source. Indeed, feature flag implementations can range from cus-
tom solutions to commercial software libraries, e.g., from Split.io
or LaunchDarkly, to simple Boolean options in code or configura-
tion files; Listing 1 shows an example of the latter—feature flags in
Automattic/wp-calypso! are defined as a map in a json file.

To enable and encourage empirical research on feature flagging
practices, in this paper we propose a novel mining software reposi-
tories technique to identifying open-source projects using feature
flags, based on textual analysis of commit messages for patterns
such as “feature flag” combined with a series of filters to remove
likely false positives (§3). Applying our technique to all public
repositories on GitHub uncovers 3 237 candidate feature flagging
projects. To assemble a starting dataset for future research, we
manually confirm 100 projects that actually use feature flagging,
which together account for 7 593 different flags in total. We demon-
strate the value of this dataset with a small preliminary study on
feature flagging practices and changes to the feature flags over
time (introductions and removals) (§4). Among others, our study
reveals that high ownership (i.e., the author who introduces a flag
also removes it later) is statistically significantly associated with
shorter flag lifespans, suggesting that ownership can be an effective
practice to keep technical debt in check. In short, the goal of this
work is to identify open-source repositories that use feature flagging
and to provide a dataset, to help researchers study feature flagging
practices on a variety of open-source projects.

In summary, the contributions of this paper are:
e We propose a novel mining software repositories technique to

Uhttps://github.com/Automattic/wp- calypso/blob/master/config/development.json

https://doi.org/10.1145/3379597.3387463
https://github.com/Automattic/wp-calypso/blob/master/config/development.json

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

identify repositories that likely use feature flags, resulting in
3237 plausible candidates on GitHub.
e We provide a dataset of 100 projects and their 7 593 feature flags,
including information on each flag’s lifetime.
e We report on an initial analysis of this sample, showing that
ownership of flags correlates with shorter flag lifespans.
Our regular expressions for identifying feature flags, together
with the two lists of plausible candidate and manually verified

projects, are all available publicly at [R
2 RELATED WORK ON FEATURE FLAGS

Feature flags are a topic frequently discussed by practitioners in
blog posts and at practitioner conferences (e.g., [2, 3], Rahman
et al. [9, 10] and Mahdavi-Hezaveh et al. [6] provide an extensive
overview of grey literature on feature flags). According to an in-
terview study with practitioners [7] there are three common use
cases for feature flags: (a) parallel trunk-based development, where
multiple features guarded by feature flags are developed simultane-
ously in the same branch, (b) canary releases, where features are
released incrementally to different users, and (c) experimentation in
production (A/B testing), where features are selectively activated to
measure their impact on business objectives. In addition, they found
that the boundary between feature flags (intended to be temporary)
and configuration options (intended to be permanent) [11] is often
fuzzy, and often the same mechanisms are used for both.
Academic research on feature flags is rather sparse. Meinicke
et al. [7] interviewed and Mahdavi-Hezaveh et al. [6] surveyed
practitioners about their feature flagging practices, finding among
others than feature flag removal is a key pain point, that testing
is rarely conducted systematically across feature flags and their
interactions, and that concerns about technical debt abound. To
the best of our knowledge, the only study on feature flags using
mining software repository techniques is the analysis of feature
flags in Chromium, the open-source implementation behind Google
Chrome, by Rahman et al. [9, 10]; they found that feature flags are
often long lived, confirming concerns expressed by practitioners.

3 CAPTURING FEATURE FLAGS

Finding open-source projects that use feature flags was a surpris-
ingly challenging task. Many of our initial attempts (described
briefly below) found barely any projects or overwhelmed us with
false positives, such that we doubted whether feature flags would
be used in open-source at all.> We incrementally developed and
refined a method to identify and filter open-source feature-flagging
projects at scale on GitHub.

Our approach is semi-automated, using various heuristics to
identify promising candidate projects which we then manually vali-
date. Our goal here is not to identify all feature-flagging projects on
GitHub, but to build a substantial dataset of active feature-flagging
projects that can be used (and expanded) in future research.

Heuristics and Initial Sampling. We initially explored many
different strategies to identify open-source projects using feature
flags, including (a) finding projects importing feature flagging li-
braries (finds only few open-source projects, often without serious

2 At some point we even had a bet among team members whether we would ever find
more than 20 open-source projects with serious feature flag use.

Jens Meinicke, Juan Hoyos, Bogdan Vasilescu, Christian Késtner

feature flag use, and misses many projects such as Chromium with
homegrown feature flag solutions), (b) looking for filename pat-
terns such as flags.» (which finds mostly configuration settings,
such as compiler options, not feature flags), and (c) searching for
documentation of feature flags in wikis or issues (very few hits).
The heuristics that turned out to be the most promising are based
on analyzing commit messages:
o Keywords (H1). We match common terms used for feature flags
in the existing literature and blog posts (see Sec. 2) with the
pattern “feature + (flag, toggle, flipper, switch, bit, gate)”, in the
project’s commit messages. We consider only commits where
the two search terms are no more than 50 characters apart, to
increase the likelihood that the terms are related. We chose 50
after some experimentation when collecting the commits from
GitHub; searching for commits that contain both keywords in-
dependent of their distance contained too many false positives
where the keywords are unrelated.
Mentions of feature flag removal (Hz). We match the pattern “(re-
move, delete, cleanup) + (flag, toggle)” in commit messages (again
at most 50 characters apart). The intuition is that feature flags are
meant to be removed more frequently than configuration flags
and configuration options [5, 7, 15].
We used the search queries from H; and Hj across all of GitHub
using GitHub’s API, identifying 231 223 non-fork repositories with
3918 003 commits matching at least one search term.

Data Cleaning. Informal inspection of a sample of the projects
identified previously revealed many small or toy projects, on the
one hand, and many clones of different repositories that are not
explicitly recorded as forks on GitHub, on the other hand.

Since we expect that projects with more feature flags may be
more interesting for future researchers, we impose a filter of at
least 10 “feature flagging” commits per repository, i.e., each project
should match Hy or Hj at least 10 times, and we do not consider
projects below this threshold further; We arrived at the 10 threshold
after some experimentation and our results are robust to other
values (i.e., the projects we manually analyzed would not change).

To identify clones, we compare repositories in terms of their
(i) commit SHAs and (ii) commit message titles and names of files
changed. This step revealed Chromium, linux, 11vm, and WordPress
as the four largest projects in our dataset with over 1000 copies
each (not tracked as forks by GitHub). We removed all copies of
these projects from further consideration.

After filtering out projects with fewer than 10 matching commits
and removing clones, 3 239 projects remained, with 126 067 commits
total matching our search heuristics.

Assembling a Dataset of Feature Flagging Projects. Not all of
the 3 237 remaining projects actually use feature flags. To assemble
the final dataset, we manually inspect projects by systematically
looking for two signals in their their repositories: 1) temporarily
guarding functionality using flags (i.e., typical use cases of feature
flags); 2) documentation on continuous deployment. We marked
all projects where either signal was clearly present as ‘Confirmed’
(Figure 1). We marked all projects where the two signals were
unclear as ‘Unclear’. If the project uses flags for other purposes,
such as compiler options, we mark it as ‘Denied’. Thus, we are
confident that the probability of having false positives is small.

https://doi.org/10.5281/zenodo.3712227

Capture the Feature Flag: Detecting Feature Flags in Open-Source

However, we did not manually inspect all 3 237 projects. Instead,
to guide our inspection process to focus on more likely candidates
first, we developed the following process. First, we inspected the
50 projects with the largest numbers of commits matching our
search terms. This revealed a significant number (about 50%) of
false positives among those projects, i.e., projects that use flags
for other purposes than feature flagging, such as compiler flags,
preprocessor flags, or configuration options. We then analyzed what
distinguished feature flagging projects from false positives in this
initial set, developing two further prioritization heuristics:

e We compared the fraction of commit messages that match in-
dividual search terms used in H; and H, above, in the first 50
manually classified projects. A closer inspection of the matched
terms reveals that non-feature-flagging projects tend to have a
high percentage of messages matching flag removal, i.e, “remove
flag” and “delete flag” (Hz) compared to feature-flagging projects,
which have higher percentages for “feature flag” and “feature tog-
gle” (H1). Feature-flagging projects also have commit messages
matching removal (Hz), however in a lower proportion; it is pos-
sible that these projects contain more feature-flagging-related
tasks, such as adding new flags or changing the flag values. Fig-
ure 1 shows how the analyzed projects cluster with respect to
their number of feature-flagging commits and the percentage of
commits matching H;. Note how the manually confirmed non-
flagging projects (labeled ‘Denied’) are on the bottom, while the
manually confirmed flagging projects are on the top, with high
percentages of commits matching Hy. Based on this insight we
used the ratio of flag removal mentions to all flag mentions as a
prioritization heuristic to aid our manual validation effort (Hs).

e We inspected the changes made in feature-flagging commits
(H1 and Hy) with the goal of identifying the files that define the
feature flags. Such files commonly store the flag in a single field or
as an entry in a map-like data structure. Thus, changes to feature
flags in these files, such as adding or removing a flag, tend to
only involve a few lines of code. We ranked the files touched
by feature-flagging commits by median number of line changes
and number of commits touching them. Analyzing the manually
classified projects we found that repositories with changes to
file names containing ‘feature’ and either ‘flag’ or ‘toggle’ are
very likely to be actual feature-flagging projects. Based on this
insight we used the names of the files defining the flags as a
prioritization heuristic to aid our manual validation effort (Hy).

These prioritization heuristics (H3 and Hy) were effective in
guiding the rest of our inspection process, having few false positives
among the highly ranked projects. Using H3 and Hy we continued
to validate candidate projects until reaching 100 confirmed feature-
flagging projects total. Note that Hs uncovered 185 additional likely
feature-flagging projects (labeled ‘Likely’ in Figure 1), but we have
yet to manually validate these. If more feature flagging projects are
needed, we are confident that, with further manual analysis, one
can find many more among the remaining candidate projects.

The Dataset. Both our candidate set of 3 237 projects as well as
our validated set of 100 projects, the latter also including the exact
names of the feature flags used, are part of our dataset.

In Figure 2 (b-e), we characterize the validated set of 100 fea-
ture flagging projects in our dataset. The projects are mostly large,

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

g 1007 .00.<>° ¥, .
£ ﬁ'o..ﬁ 4}‘&"’# * . +
2 80P .; Oy il F ¢
© PR
s l,.. .:..4. %%f%% & % : Unclassified
g @)
2 60 b..‘. ‘ wﬁ‘#&% %} - e Likely
© bee @ f o 4+ Confirmed
QL 0 * %8 o &
v 409 s ® h + Unclear
s K ot * Denied
§ 20 '.. :{..& o & . - =
g_ 0‘0"...0 s P x g
10! 102 103 10

number of commits

Figure 1: Classified and potential feature-flagging projects.

Listing 2: Example of definition for collecting flag data.

"gocd__gocd": {

"owner": "gocd",
"project": "gocd",
"files":

["server/src/main/resources/available. toggles"],
"regex": ["[+-1\\s*\"key\":\\s*x\"([\\w_1x)\""1}

active, and popular, and written in a large number of different pro-
gramming languages, showing that feature flags are indeed used
in practice in open-source. Although we cannot be certain that
our dataset is representative of all feature flag use in open-source,
our data suggests that feature flagging is most common in web
applications—this is expected, as websites (in contrast to say desk-
top applications) allow to roll-out features to subsets of users and
for A/B testing on the server side.

4 PRELIMINARY FEATURE-FLAG STUDY

Our dataset of 100 open-source projects confirmed to use feature
flags, which contains many large and active projects, will be a valu-
able resource to study feature-flag practices in public repositories.
To demonstrate the potential, we report on a preliminary study of
these 100 projects, that analyzes some aspects of feature-flag use.

Flag Data Collection. Informed by the previous manual inspec-
tion of each project, we collect data about individual feature flags,
including how flags are used, introduced, and removed.

Most of the projects define their flags in a single file, usually
either as field, or in a data structure (e.g., a map). We developed
tooling, such that we only need to define the file path(s) to files
storing flags, and a regular expression that we use to identify the
flags’ names and locations. We manually created these flag specifi-
cations for all 100 projects, which we release as part of our dataset.
We show one such definition in Listing 2.

We then mined the git history of each project to record when
flags are added and removed and by whom. In total, we collected
data for 7 593 feature flags in the 100 projects of our dataset (distri-
bution in Figure 2a). The median number of flags per project is 34
and Chromium has the maximum number of flags with 1790.

Preliminary Analysis and Results. We analyzed the lifespan
of feature flags to observe how frequently flags are cleaned up in
open-source projects. Figure 3 shows the Kaplan-Meier estimate of

MSR 20, October 5-6, 2020, Seoul, Republic of Korea

o e o}
103 A 106 104 4
104_

2

10 104 4
102 -
0 102 A

10! - 102
(a) Flags (b) Size (c) Forks (d) Stars
20 -
154
10 A
5_
0_

BEx20cog+arpEOCc o=y

28520 E2ses 230528

[0 B~ | wno VE QTS5

© a [J] O o a

> o

© >

- =

(e) Language

Figure 2: Statistics on 100 feature flagging projects (size,
forks, and stars are metrics provided by GitHub).

the survival probability for flags in our sample, accounting for right
censorship (flags that have been introduced recently, that may or
not be removed in the future). The estimator suggests that most
flags are expected to be eventually removed, that half of the flags
are removed within 15 months, but also that 25 % of flags remain
for a very long time or forever (more than 8 years).

Overall, we found that cleanup practices differ across projects;
most projects clean up most flags, but few projects keep flags alive
for a long time. Note though that the distinction of temporary fea-
ture flags and permanent configuration options is not always clear
from the outside and a flag initially introduced as temporary might
evolve into a permanent option in practice, without the ability of
external observers to distinguish this in the implementation [3, 7, 9].

We further analyzed how ownership and tracking flags in issues
associates with the lifespan of feature flags, for those flags that get
removed (4 032 out of 7593). First, flag ownership is a suggested
practice to encourage the cleanup of flags by expecting the creator
(i-e., the owner) of the flag to remove the flag after the feature is
complete [6]. We identify all flags as having ownership if they were
removed by the same Git user who introduced them in an earlier
commit. Second, another suggested practice is to create a “cleanup’
issue per feature flag, stating that the flag should be removed when
the feature is finished, and assign the issue with a future date to a
team or developer as a reminder [6]. We identified flags linked to
issues by looking for patterns “(#nr)” in the commit messages that
introduce or remove the flag.

We then estimated a mixed-effects linear regression, modeling
flag age (days) as a function of the presence of an associated cleanup

3

Jens Meinicke, Juan Hoyos, Bogdan Vasilescu, Christian Késtner

100% +
75%
50% -

25%

Survival probability

00/0 1

T T T T

T
0 1 2 3 4 5 6 7 8
Time in years

Figure 3: Survival curve for the feature flags in our sample.

issue (boolean) and flag ownership (boolean), while controlling for
project size (number of commits) and with a random effect for
project, to account for the hierarchical nature of our data (flags
nested within projects). The model has a total explanatory power
(conditional R2) of 63 %; the fixed effects alone explain 36 % of
the variance (marginal R2). Within this model, the effect of flag
ownership is significant (beta = -189.13, SE = 10.14, 95 % CI [-209.02,
-169.25], (3964) = -18.65, p < .001) and can be considered as medium
(std. beta = -0.55, std. SE = 0.03). The effect of cleanup issues is
negligible. Results suggest that flags removed by their owner have,
on average, a 189 days shorter lifespan than flags removed by others,
which suggests that ownership could be an effective practice to
keep the project clean of stale flags and thus reduce technical debt.
The weak correlation between cleanup issues and the lifetime of
flags warrants more in depth future analyses.

5 CONCLUSION AND OPEN QUESTIONS

Research on feature flagging is sparse and focuses on interviews
with practitioners. Beyond the Chromium study by Rahman et al.
[9, 10], we are not aware of any mining software repository studies
of feature flags, possibly because it is difficult to identify projects
using the practice, as there are no obvious identifiers. In this work,
we describe our semi-automated process to assemble a dataset
of 100 open-source feature flagging projects, and we additionally
collect data about the individual flags used in these projects, and
their lifecycle. Our preliminary analysis demonstrates that this
dataset provides promising research opportunities; among others
we found that flag ownership is a promising practice which cor-
relates with faster flag cleanup and may help control technical
debt pending confirmation through experimental methods. There
are many more practices recommended by practitioners (see grey
literature overviews [6, 9]), and we hope that our dataset can be
used to collect evidence about which practices are effective. Also
follow up qualitative studies of the implementations or interviews
with open-source practitioners using feature flags can be facilitated
with our dataset. We hope that our work contributes to fighting
technical debt in projects using feature flags and to evidence-based
guidelines about effective practices.

Acknowledgements. Meinicke and Késtner have been supported
in part by the NSF (awards 1552944, 1717022, 1813598), AFRL, and
DARPA (FA8750-16-2-0042). Vasilescu has been supported in part
by the NSF (awards 1717415, 1901311).

Capture the Feature Flag: Detecting Feature Flags in Open-Source MSR ’20, October 5-6, 2020, Seoul, Republic of Korea

REFERENCES 2016. Feature toggles: practitioner practices and a case study. In Proc. Int’l Conf.
[1] Eytan Bakshy, Dean Eckles, and Michael S Bernstein. 2014. Designing and Ml"l"&f S?ftware Repositories (MSR)‘ ACM, 201_211:
deploying online field experiments. In Proc. Conf. World Wide Web (WWW). [10] Md Tajmilur Rahman, Peter C Rigby, and Emad Shihab. 2019. The modular and
ACM. 283-292. feature toggle architectures of Google Chrome. Empirical Software Engineering
[2] Martin Fowler. 2010. FeatureToggle. https://martinfowler.com/articles/ 24, 2(2019), 826-853.

[11] Mohammed Sayagh, Noureddine Kerzazi, Bram Adams, and Fabio Petrillo. 2018.
Software Configuration Engineering in Practice: Interviews, Survey, and System-
atic Literature Review. IEEE Transactions on Software Engineering (2018).
Gerald Schermann, Jiirgen Cito, Philipp Leitner, Uwe Zdun, and Harald Gall.
2016. An empirical study on principles and practices of continuous delivery and
deployment. Technical Report. Peer] Preprints.

feature-toggles.html

[3] Pete Hodgson. 2017. Feature Toggles (aka Feature Flags). https://martinfowler.
com/articles/feature-toggles.html

[4] JezHumble and David Farley. 2010. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.

[5] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej

[12

Wasowski. 2010. Evolution of the Linux Kernel Variability Model. In Proc. Int’] [13] Chungiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,

Software Product Line Conference (SPLC). Springer-Verlag, 136-150. Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holis-
[6] Rezvan Mahdavi-Hezaveh, Jacob Dremann, and Laurie Williams. 2019. Feature tlc'co‘nﬁguratmn management at Facebook. In Proc. Symp. Operating Systems

Toggle Driven Development: Practices used by Practitioners. arXiv preprint P)Tmctples (SOSP)'_ACM’ 328-343. . .)

arXiv:1907.06157 (2019). [14] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. 2010. Over-
[7] Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and Christian Kastner. 2020. lapping experimeflt infrastructure: Mor'e, better, faster exper?n?entation. In Proc.

Exploring Differences and Commonalities between Feature Flags and Configura- ‘1470;/16 SIGKDD In’l Conf. Knowledge Discovery and Data Mining (KDD). ACM,

tion Options. In Proc. Int’l Conf. Software Engineering — Software Engineering in T .
Practice (ICSE-SEIP). ACM. [15] Tianyin Xu, Long Jin, Xuepeng Fan, Yu_anyuan Zhou, Shankar Pasupathy, a'nd
Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy Rukma T.alwaqker. 2015. H'ey, you have given me too many knobs!: understanding
Glover, James Holman, John Micco, Brendan Murphy, Tony Savor, et al. 2017. The and dealing leth 9ver—d651gned cor?ﬁguratlon in system sof.tware In Proc. Europ.
Top 10 Adages in Continuous Deployment. IEEE Software 34, 3 (2017), 86-95. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM,

[9] Md Tajmilur Rahman, Louis-Philippe Querel, Peter C Rigby, and Bram Adams. 307-319.

[8

https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html

