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After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical
solution of reaction-diffusion (RD) partial differential equations (PDEs). +e Crank–Nicolson (CN) method has been a common
second-order time-stepping procedure. However, the CNmethod may introduce spurious oscillations for nonsmooth data unless
the time step size is sufficiently small. +is article studies a nonoscillatory second-order time-stepping procedure for RD
equations, called a variable-θmethod, as a perturbation of the CN method. In each time level, the new method detects points of
potential oscillations to implicitly resolve the solution there. +e proposed time-stepping procedure is nonoscillatory and of a
second-order temporal accuracy. Various examples are given to show effectiveness of the method. +e article also performs a
sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is
much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an
improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions.

1. Introduction

As molecular imaging and single cell analysis is advancing
our understanding of spatial processes shaping the cellular
dynamics, new models of nonlinear dynamics are necessary.
Originating in study of organism development, spatial
pattern formation has received a large amount of research
over the past decade. Among the most studied, the reaction-
diffusion (RD) systems are generating patterns that have
been shown to represent well morphogenesis. A theory of
morphogenesis based on a RD model was initially proposed
by Turing [1]. Gierer and Meinhardt [2] were the first to
explore pattern formation in biological systems using the RD
equation. Subsequently, several equations of RD type have
been studied to understand patterning in developmental
biology. Some were derived from phenomenological models
(Gierer–Meinhardt) while other modeled simple reaction
schemes (Schnackenberg trimolecular autocatalytic

reactions model [3], Gray–Scott model [4], Brusselator
model [5], chlorite-iodide-malonic acid, CIMA model [6]).
Recent work on RD systems demonstrates that it can be used
to understand biological patterns formation [7], while [8]
and [9] reviewed RD systems can be used to investigate
spatial patterning in developmental systems.

+e RD model for biological pattern formation is
defined as follows [10]. LetΩ be a bounded domain inRd,
d � 1, 2, 3, Γ � zΩ denote the boundary of Ω, and J �

(0, T] for some T> 0:

zu

zt
− DΔu � f(u), Ω × J,

zu

z]
� 0, Γ × J,

u � u
0
, Ω × t � 0{ },

(1)
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where u � [u1, u2]
T, D � diag[D1, D2]

T is the diffusion
tensor, Δ denotes the Laplace operator, z/z] is the outward
normal derivative on the boundary Γ, and f(u) is the re-
action kinetics of the system given as

f(u) �
f1 u1, u2( 􏼁

f2 u1, u2( 􏼁
􏼢 􏼣. (2)

After Turing proposed a theory of morphogenesis in
chemical cells in 1952 [1], much attention has been devoted
to the numerical solution of RD problems of form (1); see
[11–14] and references therein. Most of the numerical
methods studied employed finite difference or finite element
approximations for the spatial discretization, while some
researchers use finite volume and collocationmethods. Once
the nonlinear reaction terms are treated (linearized or
extrapolated), the Crank–Nicolson (CN) method can be
applied as a second-order time-stepping procedure. Time-
stepping procedures are required at each time step to solve a
system of linear algebraic equations, which, although sparse,
is compute intensive for multidimensional problems. In
order to enhance efficiency of time-stepping procedures, one
can adopt the alternating direction implicit (ADI) method as
in [11–13, 15]. In particular, Fernandes et al. [12] introduce
an ADI extrapolated CN orthogonal spline collocation
method for RD problems.

ADI was invented as a perturbation of the CNmethod by
Douglas, Peaceman, and Rachford in 1955 [16–18] and has
been employed effectively for the calculation of numerical
solution of various time-dependent multidimensional
problems, either parabolic or hyperbolic [19, 20]. ADI re-
duces a multidimensional problem to multiple easy-to-solve
one-dimensional problems, for an extra cost of a splitting
error in O(Δt2), where Δt is the time step size. However, the
splitting error can bemuch larger than the sum of spatial and
temporal discretization errors, unless the time step size is
sufficiently small [21].

On the contrary, the CN method applied for nonsmooth
data may introduce spurious oscillations to the numerical
solution unless the time step size is sufficiently small to
satisfy the maximum principle 12, which has been recog-
nized in the original paper as well [22]. For this reason,
whenever a larger time step or a higher spatial resolution is
desirable/necessary, the (less accurate, first order) implicit
method which is immune to oscillations has been used at
least for several initial time steps with nonsmooth initial data
[23]. +e CN method and its perturbations (such as ADI)
must be applied with care when the solution involves fast
transitions or sharp edges; in particular, the time step size
should be set very small, e.g., Δt � O(Δx2), where Δx is the
spatial grid size. In order to overcome the oscillation
problem of the CN method applied for linear parabolic
problems of nonsmooth data, the authors recently suggested
a variable-θmethod in which the time-stepping parameter of
the conventional θ-method, θ ∈ [0, 1], was determined
based on local oscillatory characteristics of the solution and
the data [24].

In this article, we apply the variable-θ method for the
numerical solution of two-component nonlinear RD
equations, as given in (1). +e variable-θ method is a per-
turbation of the CN method which evolves the solution
implicitly at points where the solution shows a certain
portent of oscillations and maintains as a similar accuracy as
the CN method with smooth data. +e proposed method
would be an adequate choice of time-stepping procedure for
the numerical solution of RD partial differential equations
(PDEs) when a larger time step or a higher spatial mesh
resolution is desirable. We have performed a sensitivity
analysis for the numerical solution of biological pattern
forming models to the spatial and temporal grid sizes. It has
been observed from various examples that accuracy of the
numerical solution is much more sensitive to the spatial
mesh resolution than the temporal one. When the spatial
mesh resolution is set high for a higher accuracy, the method
allows to keep the temporal resolution moderate or low. +e
suggested variable-θ method can result in a smooth/stable
numerical solution by suppressing possible oscillations,
unlike the CN method.

+e article is organized as follows. Section 2 includes a
brief review on the CN method and its spurious oscillatory
behaviors, as preliminaries. In Section 3, a variable-θmethod
is presented for the numerical solution of two-component
nonlinear RD equations. We adopt the successive over-
relaxation (SOR) method to solve the resulting linear sys-
tems at each time level. Section 4 considers a heuristic
technique for the choice of the optimal relaxation parameter
for SOR. Section 5 gives numerical examples that show
effectiveness of the variable-θ method applied to RD
problems in 1D and 2D spaces. In Section 6, we summarize
our experiments and present conclusions.

2. Preliminaries

In this section, we present a brief review of time-stepping
procedures, for the numerical solution of linear parabolic
equations of the form

zu

zt
− Δu � f, Ω × J,

zu

z]
� 0, Γ × J,

u � u
0
, Ω × t � 0{ },

(3)

where D> 0 is a diffusion coefficient and f is a reaction/
source term. We also consider difficulties arising when
dealing with nonsmooth data (initial values, boundary
conditions, and/or the source term).

2.1. %e θ-Method: Difference Equation. Let Ω be a rectan-
gular domain in R2: Ω � (ax, bx) × (ay, by). By partitioning
Ω × J, we obtain the space-time grid points:
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xij, t
n

􏼐 􏼑 ≔ xi, yj, t
n

􏼐 􏼑, i � 0, 1, . . . , nx, j � 0, 1, . . . , ny, n � 0, 1, . . . , nt, (4)

where nx, ny, and nt are prescribed positive integers and

xi � ax + i · Δx,

yj � ay + j · Δy,

t
n

� n · Δt,

Δx �
bx − ax

nx

,

Δy �
by − ay

ny

,

t �
T

nt

.

(5)

Define the discrete domain, the set of the spatial grid
points, by

Ωd � xi, yj􏼐 􏼑 : 0≤ i≤ nx, 0≤ j≤ ny􏽮 􏽯, (6)

and denote the set of boundary grid points by Γd � Ωd ∩ Γ
and the set of interior grid points by Ω0d � Ωd\Γd.

Let gn
ij � g(xij, tn) for all functions g defined in (x, t).

+en, the second-order 5-point finite difference (FD) ap-
proximation A of − Δ at t � tn reads

Au
n
ij � A1u

n
ij + A2u

n
ij, A1u

n
ij ≔ − δxxu

n
ij, A2u

n
ij ≔ − δyyu

n
ij,

(7)

where the FD operators are defined as

δxxu
n
ij �

un
i− 1,j − 2un

ij + un
i+1,j

Δx2 ,

δyyu
n
ij �

un
i,j− 1 − 2un

ij + un
i,j+1

Δy2 .

(8)

For the temporal derivative zu/zt, a convenient FD
approximation can give

un+1
ij − un

ij

Δt
. (9)

Expressing the spatial derivative by a weighted average
θ ∈ [0, 1] of previous and current time values, we can for-
mulate the θ-method for (3) as

un+1
ij − un

ij

Δt
+ A θu

n+1
ij +(1 − θ)u

n
ij􏽨 􏽩 � f

n+θ
ij , (10)

where fn+θ
ij is either f(xij, tn+θ) or θfn+1

ij + (1 − θ)fn
ij. A

simple algebraic rearrangement of (10) in a vector form
becomes

(I + θΔtA)u
n+1

� [I − (1 − θ)ΔtA]u
n

+ Δtfn+θ
, (11)

where un � [un
ij]0≤i≤ nx, 0≤j≤ny

and fn+θ � [fn+θ
ij ]0≤i≤nx, 0≤j≤ny

,
considered as column vectors. Popular choices of θ ∈ [0, 1]

are 0, 1, and 1/2, which are, respectively, the explicit method
(the forward Euler method), the implicit method (the
backward Euler method), and the semi-implicit method (the
Crank–Nicolson method).

(i) Forward Euler method: when θ � 0, algorithm (11) is
stable when it satisfies

μx + μy ≤
1
2
,

μx �
Δt
Δx2,

μy �
Δt
Δy2.

(12)

Although the explicit method is efficient for each time
step, its stability condition in (12) enforces, choosing a small
time step size Δt; it may become less efficient compared with
other implicit methods. It is elementary in numerical
analysis that when θ ≥ 1/2, the θ-method (10) is uncondi-
tionally stable.

(ii) Crank–Nicolson method: when θ � 1/2, (11) can be
rewritten as

I +
Δt
2
A􏼒 􏼓u

n+1
� I −
Δt
2
A􏼒 􏼓u

n
+ Δtfn+1/2

. (13)

+e CN method has been the most popular time-step-
ping procedure for the numerical solution of parabolic
problems because it is stable and of second-order accuracy in
both spatial and temporal directions. However, the CN
method applied for nonsmooth data may introduce spurious
oscillations to the numerical solution unless the algorithm
parameters satisfy the maximum principle [22, 23]. As
analyzed by the authors [24], the undesired oscillations are
due to instability involved in the explicit half step of the CN
method, the first term in the right side of (13). +e variable
θ-method proposed in [24] suppresses spurious oscillations,
by evolving the solution implicitly (θij � 1) at points xij

where the solution shows a certain portent of oscillations or
reduced smoothness, and maintains as a similar accuracy as
the CN method with smooth data.

(iii) Backward Euler method: when θ � 1, algorithm (11)
reads

(I + ΔtA)u
n+1

� u
n

+ Δtfn+1
. (14)

Although the implicit method shows a first-order ac-
curacy in the temporal direction, it never introduces spu-
rious oscillations to its numerical solutions.

2.2. Numerical Oscillations of the CN Method. Although the
CN method is unconditionally stable and of second-order
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accuracy in both spatial and temporal directions, it may
introduce spurious oscillations into the numerical solution
for nonsmooth data. For simplicity, consider a homoge-
neous diffusion equation with discontinuous initial values
defined in the one-dimensional (1D) space:

zu

zt
− uxx � 0,

(x, t) ∈ (0, 1) ×[0, T],

u(0, t) � u(1, t) � 0, t ∈ [0, T],

u(x, 0) �

0 if 0<x<
1
4
,

1 if
1
4
≤x<

3
4
,

0 if
3
4
≤x< 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

of which the exact solution is given by

u(x, t) � 􏽘
∞

k�1

4
kπ

sin
kπ
2

􏼠 􏼡sin
kπ
4

􏼠 􏼡sin(kπx)e
− k2π2t

, (16)

for (x, t) ∈ (0, 1) × [0, T].
Figure 1 depicts the exact and numerical solutions

evolved by the CN and the variable-θ method [24], while
Figure 2 compares the numerical solutions at T � 1.0
obtained by the three numerical methods. +e numerical
solutions are obtained with Δt � 0.01 and Δx � Δy � 0.025.
As one can see, spurious oscillations occur along with the
step discontinuities in the numerical solution of the CN
method, as shown in Figure 1(b). On the contrary, as in
Figures 1(c) and 2, the variable-θ method results in an
accurate numerical solution without any oscillations. One
should notice from Figures 1(a) and 2 that the implicit
method is immune to spurious oscillations, but its error is
considerably large due to a first-order discretization error
in the temporal direction. Although the CNmethod reveals
spurious oscillations, it is quite accurate far from discon-
tinuities. +e variable-θ method results in numerical so-
lutions which are smooth as for the implicit method and
accurate as for the CN method associated with smooth
data.

+e variable-θ method is a hybrid time-stepping pro-
cedure that is based on the CN method (θ � 1/2) and al-
ternately using the implicit method (θ � 1) at points, where
the numerical solution shows a certain portent of oscillations
or reduced smoothness (the wobble set).

3. A Variable-θ Method for Two-Component
Nonlinear Problems

+is section introduces an effective time-stepping procedure
for the numerical solution of two-component RD problems
(1).

3.1. Linearization through Extrapolation. Once the spatial
derivatives are approximated by second-order finite differ-
ence schemes, as in Section 2.1, the semidiscrete problem for
(1) is formulated as

zu

zt
+ DAu � f(u), t ∈ (0, T],

u � u0, t � 0.

(17)

Let numerical solutions be obtained up to the nth time
level, n> 0. For the numerical solution in the (n + 1)th level,
we first extrapolate numerical solutions in the two previous
levels to approximate the solution at the midpoint tn+1/2:

􏽥u
n+1/2 ≔

3
2
u

n
−
1
2
u

n− 1
. (18)

See [12], for details of second-order extrapolation
schemes for n≥ 0. +en, the θ-method for the two-com-
ponent RD problem reads:

un+1
ij − un

ij

Δt
+ DA θu

n+1
ij +(I − θ)u

n
ij􏽨 􏽩 � f 􏽥u

n+1/2
􏼐 􏼑

ij
, (19)

where u � [u1, u2]
T, D � diag[D1, D2]

T, and
θ � diag[θ1, θ2]

T.
+e linearized problem (19) can be resolved by solving

for two separate components un+1 � [un+1
1 , un+1

2 ]T. Each
component in (19) can be formulated as follows:

un+1
ij − un

ij

Δt
+ DA θu

n+1
ij +(I − θ)u

n
ij􏽨 􏽩 � f

n+1/2
ij , (20)

where u, D, and θ denote, respectively, uk, Dk, and θk, for
k � 1 or 2, and fn+1/2 is a known source term.+e θ-method
(20) can be rewritten in a vector form as

(I + θΔt DA)u
n+1

� [I − (1 − θ)Δt DA]u
n

+ Δtfn+1/2
.

(21)

We present here the main steps of variable-θmethod for
a nonoscillatory solution of (20); a complete study of the
method for diffusion equation was published in [24].

3.2. %e Variable-θ Method. +e method begins with de-
fining the wobble set, the set of wobble points, as a collection
of the grid points where the solution has high fluctuations so
that the implicit method (θ � 1) should be applied for the
numerical solution not to develop oscillations.

One can easily verify that numerical oscillations of the
CN method occur when its explicit half step produces
spurious oscillations. Such nonphysical oscillations may
happen particularly when the time step size Δt is larger than
the stability limit of the explicit scheme.+us, the wobble set
may be formed to include points where the explicit half step
of the CN method introduces undesired local extrema. It
follows from (21) that the explicit half step of the CNmethod
(θ � 1/2) reads

u
n,∗ ≔ I −

Δt
2

DA􏼒 􏼓u
n
. (22)
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Let xij be an interior grid point and consider the four
partial directions (made with eight vicinal points of xij ):
four directions having 0°, 45°, 90°, and 135° from the
positive x-direction. When spurious oscillations are ob-
served in at least one direction, we select the point xij as a
wobble point.

Define an index function for local extrema (idxt) as

idxt(a, b, c) �

0, if min(a, c)< b<max(a, c),

1, if b � max(a, c),

− 1, if b � min(a, c),

2, if max(a, c)< b,

− 2, if b<min(a, c).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Let P, Q, and R be point indices and define

iswb(P, Q, R, n) �

1, if idxt un,∗
P , un,∗

Q , un,∗
R􏼐 􏼑≠ 0 and

idxt un,∗
P , un,∗

Q , un,∗
R􏼐 􏼑 + idxt un

P, un
Q, un

R􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 4,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

+en, the wobble set (for the computation of
un+1 � un+1

ij􏽮 􏽯) is defined as

W
n

� xij ∈ Ω
0
d ∣ iswb[(i − 1, j), (i, j), (i + 1, j), n] � 1􏽮

or iswb[(i − 1, j − 1), (i, j), (i + 1, j + 1), n] � 1

or iswb[(i, j − 1), (i, j), (i, j + 1), n] � 1

or iswb[(i + 1, j − 1), (i, j), (i − 1, j + 1), n] � 1}.

(25)

Remark 1. +e function iswb selects candidates for the
wobble set from local extrema satisfying
idxt(un,∗

P , un,∗
Q , un,∗

R )≠ 0; however, the condition

idxt u
n,∗
P , u

n,∗
Q , u

n,∗
R􏼐 􏼑 + idxt u

n
P, u

n
Q, u

n
R􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 4, (26)

excludes cases where a strict extremum in un becomes a strict
extremum in the same sense in un,∗. +us, the wobble set
(25) is the set of interior grid points xij where un,∗

ij becomes a
local extremum while un

ij is either a nonextreme or an ex-
treme in the opposite sense, for at least one of four partial
directions.

Having the wobble set, the parameter θ for the com-
putation of un+1 can be assigned pointwise:

θn+1
ij ≔ θ xij, t

n+1
􏼐 􏼑 �

1, if xij ∈Wn,

1/2, otherwise.
􏼨 (27)

+us, the variable-θmethod for (20) can be formulated as
un+1

ij − un
ij

Δt
+ DA θn+1

ij u
n+1
ij + 1 − θn+1

ij􏼐 􏼑u
n
ij􏽨 􏽩 � f

n+1/2
ij , (28)

or, in a vector form after grouping variables:

I + θn+1Δt DA􏼐 􏼑u
n+1

� I − 1 − θn+1
􏼐 􏼑Δt DA􏽨 􏽩u

n
+ Δtfn+1/2

.

(29)

+e variable-θ method is analyzed for its numerical
stability and accuracy and verified for various examples [24].
It results in nonoscillatory numerical solutions of which the
accuracy is almost second-order in time.

Remark 2. +e ADI procedure was also applied to (19) for
which the initial values show sharp transitions. It has been

t
x

1

0.5

0.5

0
0

1 1

0.5

0

(a)

t
x

1

0.5

0.5

0
0

1 1

0.5

0

(b)

t
x

1

0.5

0.5

0
0

1 1

0.5

0

(c)

Figure 1: Propagation of the exact and numerical solutions for (15): (a) the exact solution and the numerical solution by (b) the CNmethod
and (c) the variable-θ method [24], for 0≤ t≤T � 1.0, when Δt � 0.01 and Δx � 0.025.

3
×10−4

2

1

u

0

−1

−2
0 0.2 0.4

x
0.6 0.8 1

Exact
Implicit

CN
Variable-θ

Figure 2: +e numerical solutions of (15) at T � 1.0, compared
with the exact solution.
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observed that ADI may introduce undesirable/discontinu-
ous features to its solution unless the time step size is
sufficiently small, i.e., Δt � O(Δx2,Δy2). +e main problem
with ADI is that the diffusion becomes anisotropic, i.e., faster
in the coordinate directions. When ADI is applied to the
variable-θ formulation of (19), the anisotropic features are
reduced significantly. However, it requires to set Δt small
enough for a reliable numerical solution.

+e algebraic system in (29) will be solved by applying
the SOR method, with its initial value at the time level tn+1

being set as

u
n+1,0

� 2u
n

− u
n− 1

. (30)

In particular, SOR converges quite fast for an appro-
priate choice of the relaxation parameter ω.

In the following, we will consider how to tune the op-
timal relaxation parameter 􏽢ω for SOR.

4. The Optimal SOR Parameter 􏽢ω

In this section, we will try to find a relaxation parameter
which is heuristically optimal. Let us begin with the 2D
algebraic system of (21) with θ � 1/2:

Lu � r ∈ Rm×m
, (31)

where L � I + (Δt/2)DA, r � (I − (Δt/2)DA)u+ Δtfn+1/2,
and m> 0 is the dimension of the algebraic system. It is
known that the optimal relaxation parameter for the SOR
method can be determined as ([25], Section 4.3)

􏽢ω �
2

1 +

���������

1 − ρ TJ􏼐 􏼑
2

􏽱 , (32)

where ρ(TJ) is the spectral radius of the Jacobi iteration
matrix TJ.

For simplicity, assume that the problem is defined on the
unit square with a Dirichlet boundary condition. We further
assume that the domain is partitioned into N × N grids so
that h � Δx � Δy � 1/N. +en, the eigenvalues of the sec-
ond-order 5-point FD coefficient matrix A read ([25],
Section 6.5)

λk,ℓ(A) �
1
h2 4 − 2 cos

kπ
N

􏼠 􏼡 − 2 cos
ℓπ
N

􏼒 􏼓􏼢 􏼣,

1≤ k, ℓ ≤N − 1,

(33)

and therefore the eigenvalues of L can be formulated as

λk,ℓ(L) � 1 +
Δt
2

Dλk,ℓ(A) � 1 +
DΔ t

h2 2 − cos
kπ
N

􏼠 􏼡 − cos
ℓπ
N

􏼒 􏼓􏼢 􏼣,

(34)

for 1≤ k, ℓ ≤N − 1. Note that the diagonal element of L is

p ≔ 1 +
Δt
2

D
4
h2 � 1 + 2

DΔ t

h2 . (35)

So, the eigenvalues of the Jacobi iteration matrix TJ are
given as

λk,ℓ TJ􏼐 􏼑 �
p − λk,ℓ(L)

p
�

DΔ t

h2
[cos(kπ/N) + cos(ℓπ/N)]

1 + 2 DΔ t/h2( )( )
.

(36)

In order to find the maximum of |λk,ℓ(TJ)|, we first
obtain

maxk cos
kπ
N

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� cos

π
N

􏼒 􏼓 � 1 − c1h
2
, (37)

for some c1 > 0. Here, we have used h � 1/N and the ap-
proximation cos(x) ≈ 1 − x2/2. Now the spectral radius of
TJ reads

ρ TJ􏼐 􏼑 � maxk,ℓ λk,ℓ TJ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 1 − c1h
2

􏼐 􏼑 1 +
1
2

h2

DΔ t
􏼠 􏼡

− 1

.

(38)

Assuming that c1h
2 < h2/(2DΔ t)< 1, we finally obtain

ρ TJ􏼐 􏼑 � 1 − c2
h2

DΔ t
, (39)

for some c2 > 0.
It follows from (32) and (39) that the optimal SOR

parameter 􏽢ωΔt,h, corresponding to the spatial grid size h and
the time step size Δt, can be written as

􏽢ωΔt,h �
2

1 + c0(h/
����
DΔ t

√
)
, (40)

for some c0 > 0. +e constant c0 can be found experimentally
from a selected set of (Δt, h), as summarized in the following:

(a)Determine 􏽢ωΔt0 ,h0
for prescribed grid sizes Δt0, h0( 􏼁, heuristically.

(b)Solve (40) for c0:

c0 �

�����
DΔ t0

􏽰

h0

2
􏽢ωΔt0 ,h0

− 1􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

Once c0 is estimated as in (41), the parameter 􏽢ωΔt,h in
(40) is near-optimal for various choices of (Δt, h).

5. Numerical Experiments

In this section, we present numerical experiments which
show effectiveness of the variable-θ method. +e algorithms
are implemented in MATLAB and carried out on a desktop
computer of Intel Xeon CPU E5-1620 3.60GHz processor.

To solve the algebraic system at each time level, the SOR
method is employed with the near-optimal parameter 􏽢ω
calculated as in (40), with c0 being estimated with a small
grid problem. +e SOR iteration is stopped when the
maximum difference of consecutive iterates becomes smaller
than a tolerance ε � 10− 6:

u
n,k

− u
n,k− 1

�����

�����∞
< ε. (42)
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+e L∞-error E∞[tn], measured at t � tn, is defined as
follows:

E∞ t
n

􏼂 􏼃 ≔ u
n

− 􏽢u t
n

( 􏼁
����

����∞, (43)

where 􏽢u is the exact solution.

5.1. One-Component RD System. To investigate accuracy of
the variable-θ method, we consider the diffusion problem
(15) studied earlier in Section 2.2. For a comparison purpose,
we have implemented not only the θ-methods and the
variable-θ method but also the implicit predictor-corrector
(0, 2)-Padé (IPC-[0,2]) method [26] and Lawson and Morris
(LM) local extrapolation method [23].

Table 1 presents the L∞-error E∞[T] at T � 1.0 when the
five methods are applied for the numerical solution of (15),
with various Δt and Δx. As one can see from the table, the
CN method resolves its numerical solution poorly (due to
oscillations), except for the case the method satisfies the
maximum principle. On the contrary, the variable-θmethod
results in a second-order accuracy, with its errors being
smallest among all the methods for most cases. +e new
method is a hybrid time-stepping procedure which as-
sembles merits from the CN method (high-accuracy) and
the implicit method (smoothness).

Now, consider a nonlinear RD problem of the form
zu

zt
− uxx � u(1 − u),

(x, t) ∈ (0, 1) ×[0, T],

(44)

with the boundary and initial values, as given in (15).
Figure 3 presents the numerical solutions evolved by the

implicit method, the CNmethod, and the variable-θmethod,
when Δt � 0.01 and Δx � 0.025 (the mesh is the same as the
one selected in Figure 1). Similar to the linear problem in
Figure 1, spurious oscillations are introduced into the nu-
merical solution of the nonlinear problem by the CNmethod
only. It should be noticed that spurious oscillations of the
CN method are damped out much faster for the nonlinear
problem than the linear problem, which is due to the re-
action kinetic term f(u) � u(1 − u). For the nonlinear
problem, It seems that the oscillations at early time steps do
not affect the solution at later steps much. +is observation
explains a partial reason that the second-order CN method
has been popular for the numerical solution of PDEs in
mathematical biology. However, for other applications, such
spurious oscillations at early moments may alter the nu-
merical solution significantly so as for the CN method to be
unstable; see Figure 4 below. It is important to develop an
effective algorithm which can suppress spurious oscillations
for convenient choices of algorithm parameters; the vari-
able-θ method is effective and stable.

5.2. Two-ComponentNonlinearRDSystems. Two-component
RD systems enable to explain a much wider range of phe-
nomena than their one-component counterparts. Many
two-component models have been developed and numeri-
cally verified for dynamical patterning behaviors in biology
and chemistry. In this section, we consider two-component
models interested in the literature of biology and chemistry,
to verify effectiveness of the variable-θ method.

5.2.1. Gray–Scott Model in 1D. We apply the numerical
methods for the numerical solution of the Gray–Scott model
[4, 27] defined as (1) associated with the following reaction
kinetics:

f(u) � F 1 − u1( 􏼁 − u1u
2
2, u1u

2
2 − (F + k)u2􏽨 􏽩

T
, (45)

for any constants F and k. LetΩ � (0, 1). We assign two sets
of model constants and initial and boundary conditions as
follows [28]:

D � 10− 4
, 10− 6

􏽨 􏽩
T
, F � 0.035, k � 0.049, (46a)

u1(x, 0) � 1 −
1
2
sin100(πx), u2(x, 0) �

1
4
sin100(πx), x ∈ (0, 1),

(46b)

u1(0, t) � u1(1, t) � 1, u2(0, t) � u2(1, t) � 0, t ∈ [0, T],

(46c)

where (46b) is a mid-pulse initial condition, and

D � 10− 4
, 5 · 10− 5

􏽨 􏽩
T
, F � 0.025, k � 0.0544, (47a)

u1(x, 0) � 1 −
1
2
cos100

πx

2
􏼒 􏼓, u2(x, 0) �

1
4
cos100

πx

2
􏼒 􏼓,

x ∈ (0, 1),

(47b)

zu1

zx
(0, t) �

zu1

zx
(1, t) � 0,

zu2

zx
(0, t) �

zu2

zx
(1, t) � 0, t ∈ [0, T],

(47c)

where (47b) is a left-pulse initial condition.
In Figure 5, we present the propagation of the numerical

solution of u2 by the variable-θ method associated with
(46a)–(46c) at the grid sizes Δt � 0.01 and Δx � 0.004 over
0≤ t≤T � 2000.+e initial midpulse splits in early moments
to travel in both directions (self-replication of the pulse). As
each of the pulses travels, it becomes thicker (bigger) up to a
certain width and begins to replicate itself recursively.
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Figure 6 depicts the propagation of the numerical so-
lution of u2 by the variable-θ method associated with
(47a)–(47c) over 0≤ t≤T � 5000, at the same resolution, as
in Figure 5. One can clearly observe a traveling pulse which
begins from the left edge point and reflects whenever it hits
the boundary, due to the no-flux boundary condition (47c).

To investigate bifurcation in the RD system and our
method numerical accuracy, we present numerical solutions
of the wave-splitting problem (46a)–(46c) obtained with
various spatial and temporal grid sizes, as shown in Figure 7.
+e image Ikℓ represents the numerical solution obtained
with the mesh resolution (Δt,Δx) � (10− k, 0.01/2ℓ− 1). For
example, the image I23 is associated with themesh resolution
(Δt,Δx) � (1/100, 1/400). One can easily point out from the
images that the spatial resolution alters the numerical so-
lution dramatically even with halved spatial grid sizes
(compare the images horizontally), while the temporal
resolution affects little the numerical solution even with one-
order smaller temporal step sizes (compare them vertically).

+e main reason for such a sensitivity to the spatial reso-
lution is that the RDdoes not have asmuch time before growing
to reach the margins of the mesh in low spatial resolutions (of
large Δx’s). When this happens, the RD pattern typically de-
teriorates and it does not travel in an appropriate speed nor
reaches a condition to replicate itself on time, see ([29], Section
4.2) for similar observations. We summarize the experiments
with the Gray–Scott model in 1D as follows:

(i) Accuracy of the numerical solution is much more
sensitive to the spatial mesh resolution than the
temporal one.

(ii) +us, it is crucial to set a high spatial resolution
(small Δx’s) for a desirable accuracy.

(iii) As the spatial resolution becomes higher, the CN
method may more likely produce spurious oscil-
lations, while the variable-θmethod results in stable
solutions.

5.2.2. Gray–Scott Model in 2D. Note that the two-compo-
nent Gray–Scott model is formulated as in (1) with the
reaction kinetics f(u) given in (45). We choose problem
coefficients as follows [15]:

Ω � (− 1, 1) ×(− 1, 1),

D � [0.001, 0.001]
T
,

F � 1,

k � 0.

(48)

For the purpose of error analysis, we select a smooth
solution 􏽢u � [􏽢u1, 􏽢u2] defined as

􏽢u1(x, y, t) � cos(2t)cos(2πx)cos(πy),

􏽢u2(x, y, t) � cos(2t)cos(πx)cos(2πy),
(49)

and replace the reaction kinetics f(u) with f􏽢u(u):

f􏽢u(u) ≔ f(u) +
z􏽢u

zt
− DΔ􏽢u − f(􏽢u). (50)

+en, 􏽢u � [􏽢u1, 􏽢u2] in (49) would be the exact solution of
zu/zt − DΔu − f(u) � f􏽢u(u) with the initial condition
u0 � 􏽢u(x, y, 0).

Table 2 summarizes the L∞-error E∞[T] with T � 1.0
and the elapsed time (CPU) for the implicit, CN, variable-θ
methods for three different meshes refined by a factor of 2 in
both spatial and temporal directions withΔx � Δy. Since the
solution including the initial condition is smooth over the

Table 1: L∞-error E∞[T] for (15) at T � 1.0.

(Δt,Δx) Implicit CN IPC-[0, 2] LM Variable-θ
(0.1, 0.05) 9.0 · 10− 4 2.4 · 10− 1 6.0 · 10− 5 8.4 · 10− 5 8.4 · 10− 5

(0.01, 0.05) 2.8 · 10− 5 4.8 · 10− 7 1.6 · 10− 6 3.2 · 10− 6 8.5 · 10− 7

(0.1, 0.025) 8.9 · 10− 4 3.7 · 10− 1 5.9 · 10− 5 8.3 · 10− 5 5.1 · 10− 5

(0.01, 0.025) 2.7 · 10− 5 2.0 · 10− 4 9.1 · 10− 7 2.5 · 10− 6 1.5 · 10− 7

(0.1, 0.0125) 8.9 · 10− 4 4.3 · 10− 1 5.8 · 10− 5 8.3 · 10− 5 2.7 · 10− 4

(0.01, 0.0125) 2.7 · 10− 5 3.9 · 10− 2 7.5 · 10− 7 2.4 · 10− 6 1.2 · 10− 7

t
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Figure 3: Propagation of the numerical solutions for (44): (a) the implicit method, (b) the CN method, and (c) the variable-θ method, for
0≤ t≤T � 1.0, when Δt � 0.01 and Δx � 0.025.
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entire time interval [0, T � 1], the CNmethod introduces no
spurious oscillations into its numerical solution and proves a
second-order accuracy for the two-component Gray–Scott
model in the 2D space. One should notice that the variable-θ
has also proved its second-order accuracy, the same as the
CN method. On the contrary, the implicit method involves

considerable errors due to its first-order convergence in
temporal direction. Figure 8 shows the numerical solution
by the variable-θ method, and its error at T � 1.0 for the
Gray–Scott model, when Δt � 0.025 and Δx � Δy � 0.05.

For all the three methods, the algebraic system is solved
by the SOR method with its optimal relaxation parameter
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Figure 4: Numerical solutions for u1 of the Gierer–Meinhardt model at the spatial resolution Δx � Δy � 1/32: (a) the variable-θ method
with Δt � 0.05, (b) the CN method with Δt � 0.05, and (c) the CN method with Δt � 0.005; (d–f) are the aerial views of (a–c), respectively.
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being calibrated from the lowest resolution,
(Δt,Δx � Δy) � (0.05, 0.1). +at is, the constant c0 in (41) is
evaluated using the experimentally optimal 􏽢ωΔt0 ,h0

with
(Δt0, h0) � (0.05, 0.1) and then (40) is utilized to estimate
􏽢ωΔt,h for other grid sizes (Δt, h � Δx � Δy). With the near-
optimal parameter and an effective initialization scheme in
(30), for both the CN and variable-θ methods, the SOR
method has converged in (59) iterations in average for
solving the two algebraic systems (for u1 and u2) in a time
level. SOR is comparable with ADI in efficiency when the
parameter is set optimal and the initialization is carried out
accurately; SOR has proven its efficiency for the numerical
solution of elliptic obstacle problems [30]. For the
Gray–Scott model in 2D, the variable-θ method becomes
about a third most expensive computationally than the CN
method, due to the wobble set processing.

5.2.3. Gierer–Meinhardt Model. +e Gierer–Meinhardt
model [2] is (1) defined in Ω � (− 1, 1) × (− 1, 1) ⊂ R2 with
the following reaction kinetics and parameters:

D � ε2,
κ
μ

􏼢 􏼣

T

,

f(u) �
u2
1

u2
− u1,

1
μ

u2
1
ε

− u2􏼠 􏼡􏼢 􏼣

T

,

(51)

for which various numerical methods have been developed
[12, 31, 32]. We cast the experiment employing coefficients
and the initial condition used in [32]:

+e initial values are depicted in Figure 9. In this section,
we restrict our attention to the dynamics of u1 of the model.

ε � 0.04, μ � 0.1, κ � 0.0128,

u1(x, y, 0) �
1
2

1 + 0.001 􏽘
20

k�1
cos

kπy

2
􏼠 􏼡⎡⎣ ⎤⎦sech2

������
x2 + y2

􏽰

2ε
􏼠 􏼡,

u2(x, y, 0) �
cosh 1 −

������
x2 + y2

􏽰
( 􏼁

3 cos h(1)
.

(52)

t

x

1500
1000

500

2000

01

0.4
0.2

0.8
0.6

0
0

4

2

(a)

2000
1800
1600
1400
1200
1000t

800
600
400
200

0
0 0.2 0.4

x
0.6 0.8 1

(b)

Figure 5: Propagation of the numerical solution of u2 for the 1D Gray–Scott model by the variable-θ method: (a) the wave-splitting (self-
replication of the pulse) and (b) its aerial view over 0≤ t≤T � 2000, when Δt � 0.01 and Δx � 0.004.
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Figure 6: Propagation of the numerical solution of u2 for the 1D Gray–Scott model by the variable-θ method: (a) the pulse traveling and
reflecting and (b) its aerial view over 0≤ t≤T � 5000, when Δt � 0.01 and Δx � 0.004.
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In order to investigate effectiveness of the variable-θ
method and oscillatory behaviors of the CN method as well,
we have carried out numerical experiments for the Gier-
er–Meinhardt model with a relatively low spatial resolution.
Figure 4 presents numerical solutions at two different times
for u1 of the Gierer–Meinhardt model with the spatial
resolution Δx � Δy � 1/32. When the time step size is set
Δt � 0.05, the variable-θ method evolves the numerical
solution as shown in Figures 4(a) and 4(d), for which the
final steady-state pattern is the same as that in [32]. On the
contrary, with the same Δt � 0.05, the CN method has
produced a quite different pattern as in Figures 4(b) and 4(e),
due to the nonsmooth initial values (Figure 9). However, the
CN method can recover the correct steady-state pattern
when it runs with Δt � 0.005, as depicted in Figures 4(c) and

4(f ). For a similar accuracy, the variable-θ method (taking
170 s) is about 7 times more efficient than the CN method
(taking 1242 s).

We summarize our experiments with the Gray–Scott and
Gierer–Meinhardt models in 2D as follows:

(i) +e variable-θ method shows the same accuracy as
the CN method for problems of smooth data

(ii) For nonsmooth data, the variable-θ method evolves
a smooth solution for all choices of Δt, while the CN
method introduces spurious oscillations to alter the
solution unless the time step size is sufficiently small

(iii) When a large time step size is desirable, the sug-
gested method is a few times more efficient than the
CN method for a similar accuracy
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Figure 7: +e wave-splitting (self-replication of the pulse) by the variable-θ method over 0≤ t≤ 2000 with various (Δt,Δx). +e image Ikℓ
represents the numerical solution obtained with the mesh resolution (Δt,Δx) � (10− k, 0.01/2ℓ− 1). (a) (I11). (b) (I12). (c) (I13). (d) (I21). (e)
(I22). (f ) (I23). (g) (I31). (h) (I32). (i) (I33).
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Table 2: L∞-error E∞[T] and the elapsed time (CPU) for the numerical solution of the Gray–Scott model in the 2D space: T � 1.0.

ε � 10− 6 Implicit CN Variable-θ

(Δt,Δx � Δy)
E∞[T]

CPU
E∞[T]

CPU
E∞[T]

CPU
u1 u2 u1 u2 u1 u2

(0.05, 0.1) 4.3 · 10− 2 4.0 · 10− 2 0.036 s 9.6 · 10− 4 9.4 · 10− 4 0.047 s 9.6 · 10− 4 9.4 · 10− 4 0.062 s
(0.025, 0.05) 2.0 · 10− 2 1.7 · 10− 2 0.225 s 2.5 · 10− 4 2.3 · 10− 4 0.280 s 2.5 · 10− 4 2.3 · 10− 4 0.394 s
(0.0125, 0.025) 8.0 · 10− 3 8.0 · 10− 3 1.629 s 6.4 · 10− 5 5.5 · 10− 5 2.102 s 6.4 · 10− 5 5.5 · 10− 5 2.798 s
Conv. order 1.2 1.2 1.9 2.0 1.9 2.0
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Figure 8: +e numerical solution of the variable-θ method and its error at T � 1.0 for the Gray–Scott model, when Δt � 0.025 and
Δx � Δy � 0.05: (a) u1, (b) u2, (c) e1 � u1 − 􏽢u1, and (d) e2 � u2 − 􏽢u2.
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Figure 9:+e initial values in (52) for the Gierer–Meinhardt model with ϵ � 0.04 at the mesh resolution Δx � Δy � 1/32: (a) u1(x, y, 0) and
(b) u2(x, y, 0).
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Remark 3. Although the variable-θmethod can employ larger
time step sizes than the CN method to get stable numerical
solutions for problems of nonsmooth data, one may not set the

time step size too large, due to an accuracy issue rather than the
stability issue. Furthermore, for nonlinear problems, the overall
stability of the numerical algorithm can be determined by not
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Figure 10: Numerical solutions for u1 of the Gray–Scott model at T � 1.0 by the variable-θmethod varying Δx � Δy with fixed Δt � 0.25.
+e image Iℓ represents the numerical solution obtained with the mesh resolution (Δt,Δx � Δy) � (0.25, 0.02/2ℓ− 1) and Iℓ′ represents the
error of Iℓ. (a) (I1). (b) (I2). (c) (I3). (d)(I1′). (e)(I2′). (f )(I3′).
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Figure 11: Numerical solutions for u1 of the Gierer–Meinhardt model at T � 340 by the variable-θ method, varying Δx � Δy with fixed
Δt � 0.1. +e image Iℓ represents the numerical solution obtained with the mesh resolution (Δt,Δx � Δy) � (0.1, 0.02/2ℓ− 1) and Iℓ′
represents the aerial view of Iℓ. (a) (I1). (b) (I2). (c) (I3). (d)(I1′). (e)(I2′). (f )(I3′).
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only grid sizes but also numerical schemes including methods
of dealing with the nonlinear terms.

Figure 10 presents numerical solutions and their errors
of u1 for the Gray–Scott model (48)–(50) at T � 1.0 by the
variable-θ method, varying Δx � Δy with fixed Δt � 0.25.
Compared with Figure 8, the solutions show stability and a
good accuracy, although the time step size is as large as
Δt � 0.25. As shown in the bottom line in Figure 10, all three
spatially different cases show the same level of errors since
the entire errors are dominated by temporal direction errors.
We conclude from this example that grid sizes in both
temporal and spatial directions would not significantly affect
the stability of the proposed method when the initial con-
dition is smooth and the nonlinearity is not severe.

As an example of nonsmooth data and severe nonlin-
earity, we select the Gierer–Meinhardt model (51) and (52)
to simulate with large temporal step sizes.When Δt≥ 0.2, the
proposed algorithm introduced a rapid decay of solution
values independently of the spatial grid size, so that the
pattern is not formed appropriately. We believe that it is due
to the error incorporated with the reaction term (19) when
un+1/2 is approximated by the extrapolation scheme (18).
However, when Δt≤ 0.1, our method produces stable so-
lutions for all choices of spatial grid sizes. Figure 11 presents
numerical solutions of u1 for the Gierer–Meinhardt model at
T � 340 by the variable-θ method with fixed Δt � 0.1 and
various Δx � Δy. Note that for Gierer–Meinhardt model,
the pattern forming is slow down as the spatial grid size
becomes smaller, as shown in (I2) and (I3) of Figure 11; this
tendency has been observed for all other choices of Δt≤ 0.1.
+is is another example that accuracy of the numerical
solution is much more sensitive to the spatial mesh reso-
lution than the temporal one.

6. Conclusions

+e Crank–Nicolson (CN) method has been a popular sec-
ond-order time-stepping procedure for the numerical solu-
tion of systems of nonlinear RD equations. However, the CN
method may introduce spurious oscillations for nonsmooth
data unless the time step size is sufficiently small. We have
studied a nonoscillatory time-stepping procedure for RD
equations, called a variable-θ method, as a perturbation of the
CNmethod. In each time level, the newmethod detects points
of potential oscillations and resolves the solution applying the
implicit method locally at those points. +e proposed time-
stepping procedure has proven nonoscillatory and having a
second-order temporal accuracy, although the initial condi-
tions are nonsmooth. Various examples have been considered
to show effectiveness of the method. We also have performed
a sensitivity analysis for the numerical solution of biological
pattern forming models to conclude that the numerical so-
lution is much more sensitive to the spatial mesh resolution
than the temporal one.
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